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Abstract— In this paper we propose a discrete time protocol
to align the states of a network of agents evolving in the
space of rotations SO(3). The starting point of our work
is Riemannian consensus, a general and intrinsic extension
of classical consensus algorithms to Riemannian manifolds.
Unfortunately, this algorithm is guaranteed to align the states
only when the initial states are not too far apart. We show how
to modify Riemannian consensus so that the states of the agents
can be aligned, in practice, from almost any initial condition.
While we focus on the specific case of SO(3), we hope that this
work will represent the first step toward more general results.

I. INTRODUCTION

Assume a network of N agents, where the state of each
agent is represented by a 3-D rotation matrix and each
agent can communicate with a small set of neighbors. In
this paper, we consider the problem of finding a discrete
time protocol that the agents can use to asymptotically
synchronize their states. This and similar problems appear
in a variety of situations such as vehicle coordination [1],
attitude coordination [2], [3], pose averaging [4], [5] or even
camera network localization from images [6].

Natural candidates for solving this problem are consensus
algorithms [7], where the state of each node is updated using
a combination of the states from the neighbors. An attractive
property of consensus algorithms is that they are completely
autonomous and do not rely on any central coordination.

Classical consensus algorithms assume that the states of the
agents evolve in Euclidean space (Rd). However, in this paper
we are interested in extensions of consensus to Riemannian
manifolds. Existing work in this area can be divided in two
categories. The first category comprises extrinsic algorithms
[8], [9], [10], [4]. These solutions rely on the embedding of
the manifold (e.g., SO(3)) in an Euclidean ambient space
(e.g., R3×3), where the usual consensus algorithms can be
employed. The states are then obtained through projections.
The downside of these algorithms is that they rely on a
specific choice of the embedding and projection operations,
and that they cannot be easily generalized. On the other hand,
these algorithm can show almost-global convergence.

The second category comprises intrinsic algorithms, such
as [5], [11], [12]. These algorithms are formulated as a
distributed minimization problem and depend only on the
intrinsic geometric properties of the manifold, such as the
definition of a metric and of geodesics. However, due to
the geometry of the manifold, the underlying optimization
problem is typically not convex. This results in algorithms
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that, depending on the network topology and on the initial
conditions, might get trapped near undesired configurations
where the states are not aligned (as we will see in §III).

Comparing the two categories, a natural question arises:
is it possible to achieve almost-global convergence with
an intrinsic formulation? In this paper we give a partial
affirmative answer by proposing an intrinsic consensus
algorithm with almost-global convergence on SO(3).

Related work. This paper builds on an existing almost-
global convergent consensus algorithm on the circle [13]. We
extend the approach to SO(3), and we pass from a continuous
to a discrete time formulation. Other works treat the state
alignment problem with a state-feedback approach, where
the control inputs for the agents are designed. Proofs of
convergence then use either Lyapunov stability ([14], [15])
or passivity ([16], [3] and references therein). However, all
these works consider a continuous timeformulation, and they
provide only local convergence results.

An expanded version of this article is available in [17].

II. NOTATION AND PRELIMINARIES

We model the network of N agents using an undirected
connected graph G = (V,E). The vertices V = {1, . . . , N}
represent the nodes of the network while the edges E ⊆ V ×V
represent the communication links. The set of neighbors
of node i is denoted as Ni = {j ∈ V | (i, j) ∈ E}. We
indicate the maximum degree of the graph G as Deg(G) =
maxi∈V {|Ni|}, where |Ni| is the number of neighbors of
node i. We denote as Diam(G) the diameter of the graph G,
i.e., the maximum length of the shortest path between any
two vertices in the graph [18].

We associate to each agent i ∈ V a state Ri ∈ SO(3),
where SO(3) = {R ∈ R3×3 : RTR = I, det(R) = 1} is the
space of three-dimensional rotations. The tangent space of
SO(3) at a rotation R given by TRSO(3) = {RV : V ∈
so(3)}, where so(3) is the space of 3× 3, skew symmetric
matrices. We can identify a tangent vector W ∈ TRSO(3)
with a vector w ∈ R3 using the usual hat (·)∧ and vee (·)∨
operators, given by the relations

w =

w1

w2

w3

 (·)∧

�
(·)∨

W = R

 0 −w3 w2

w3 0 −w1

−w2 w1 0

 . (1)

With the identification in (1), given two tangent vectors
W1,W2 ∈ TRSO(3) and the corresponding vector repre-
sentations w1, w2 ∈ R3, the standard metric for SO(3) is
given by:

〈W1,W2〉 = 〈ŵ1, ŵ2〉 = wT1 w2. (2)



For a given rotation R ∈ SO(3), the exponential and loga-
rithm map are denoted, respectively, as expR : TRSO(3)→
SO(3) and logR : UR → TRSO(3), where UR ⊂ SO(3) is
the maximal set containing R for which expR is diffeomor-
phic. For convenience, we also define Log : UI → R3, the
vectorized version of the logarithm map at the identity:

Log(R) = (logI(R))∨ ∈ R3, (3)

where R ∈ SO(3). See [17] for closed form expressions. Note
that Log(RTS) = (RT logR S)∨ for R,S ∈ SO(3) [5].

Also, for any edge (i, j) ∈ E we use the shorthand notation

θij = d(Ri, Rj) and uij =
Log(RTi Rj)

‖Log(RTi Rj)‖
(4)

to indicate, respectively, the geodesic distance in SO(3)
between the two rotations Ri and Rj and the normalized
rotation axis of RTi Rj . Unless necessary, we omit the explicit
dependence of θij and uij on their arguments.

Note the following equivalences:

‖Log(RTi Rj)‖ = ‖logRi(Rj)‖ = d(I,RTi Rj) = θij . (5)

For any given rotation R ∈ SO(3), we denote as
D Log
‖Log‖ (R) the matrix representation of the differential of the

normalized logarithm. More precisely, let R(t) be a smooth
curve in SO(3) such that R(0) = R0 and Ṙ(0) = W , then

d

dt

Log(R)

‖Log(R)‖

∣∣∣∣
t=0

= D
Log

‖Log‖
(R0)W∨. (6)

This matrix and its spectral decomposition can be computed
explicitly (see [17] for the proof):

Proposition 1: Given R ∈ SO(3), let θ = ‖Log(R)‖ and
u = Log(R)

‖Log(R)‖ . The matrix representations in (6) is given by
D Log
‖Log‖ (R) = 1

2

(
û − cot( θ2 )û2

)
. One of the eigenvalues is

zero with eigenvector u. The other eigenvalues are α(θ)±
jβ(θ), where α(θ) = θ

2 cot( θ2 ), β(θ) = θ
2 and j =

√
−1

is the unit imaginary number. The corresponding complex
conjugate eigenvectors v, v̄ ∈ C3 are orthogonal to u.

In the following, we use the product manifold SO(3)N ,
which is the N -fold cartesian product of SO(3) with itself.
We use R = {Ri}i∈V to indicate a point in SO(3)N

and W = {W1, . . . ,WN}, Wi ∈ TRiSO(3) to indicate a
tangent vector at R. We use the natural metric 〈V ,W 〉 =∑N
i=1〈Vi,Wi〉. Geodesics, exponential maps, and gradients

in SO(3) can then be easily obtained by using the respective
definitions on each copy of SO(3). Here and in the following,
we use boldface letters to denote N -tuples where each element
represents a quantity related to one of the nodes.

Given a function ϕ : SO(3)N → R twice differentiable
at a point R0 ∈ SO(3)N , we denote the gradient of ϕ
as gradϕ(R0) and its Hessian as Hessϕ(R0) [19]. By
definition, we have the properties

〈gradϕ(R0),W 〉 =
d

dt
ϕ(R(t))

∣∣∣
t=0

, (7)

and
〈W ,Hessϕ(R0)W 〉 =

d2

dt2
ϕ(R(t))

∣∣∣
t=0

, (8)

where R(t) is a smooth curve in SO(3)N such that R(0) =
R0 and Ṙ(0) = W . The gradient of the distance from a
fixed rotation S ∈ SO(3) is given by

gradR d(S,R) = − logR(S)

‖logR(S)‖
. (9)

Note that at the minimum (d(S,R) = 0) and at the maximum
(d(S,R) = π) of the distance, the function is continuous but
not differentiable.

Given the twice differentiable function ϕ and an initial point
R0 ∈ SO(3)N , it is possible to define a steepest gradient
descent algorithm on SO(3)N with constant step size ε > 0,
as shown by Algorithm 1.

Algorithm 1 A Riemannian steepest gradient descent algo-
rithm with fixed step size for differentiable functions
Input: An initial rotations R0 ∈ SO(3)N , a step size ε > 0

1) Initialize R(0) = R0

2) For k ∈ N, repeat

W (k) = − gradϕ(R(k)) (10)
R(k + 1) = expR(k)(εW (k)) (11)

At each iteration k, the algorithm moves from the current
state x(k) to a new one along the geodesic in the direction
opposite to the gradient. Under some conditions on the step
size ε, x(k) converges to the set of critical points of ϕ [20],
[21]. Note that (9) is not defined where ϕ is non-differentiable.
Therefore, (10) needs to be modified on an application-specific
basis to handle these special cases, as we do in §III.

III. PROPOSED SOLUTION AND AN
ILLUSTRATIVE EXAMPLE

Similarly to [11], we construct our proposed consensus
algorithm by applying Algorithm 1 to the following function:

ϕ
(
{Ri}i∈V

)
=

∑
(i,j)∈E

f(θij), (12)

where f is a reshaping function, as defined next.
Definition 2: We say that f : [0, π] → R is a reshaping

function if it satisfies the following assumptions:
• f is twice differentiable on (0, π).
• f(0) = 0.
• ḟ(0) = 0, ḟ(θ) > 0 for θ ∈ (0, π].
In the definition we used the notation ḟ and f̈ to denote,

respectively, the first and second derivative of f with respect
to its only argument. We also use ḟ− and ḟ+ to denote the
left and right derivative of f , respectively.

Thanks to Def. 2, ϕ is at least twice differentiable except
when θij = π

2 for at least one edge (i, j) ∈ E, in which case
it is only continuous (see also §II).

In this paper, we propose the reshaping function

f(θ) = af0(θ) where f0(θ) =
1

b
− (

1

b
+θ) exp(−bθ), (13)

a = π2

2f0(π) and b ∈ R is a “sufficiently large” constant. The
reasons behind this specific choice of f and b will be clear
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Fig. 1: Examples of the proposed reshaping function
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Fig. 2: Example of consensus on a network of 10 nodes in
a 4-regular graph with (a) the cost in [11] versus (b) the
proposed reshaped cost (b = 3). The initial states are nearly
uniformly distributed along a closed geodesic

by the end of the paper. For now, it is sufficient to notice
that (13) tends to f(θ) = 1

2θ
2 when b goes to zero (see Fig.

1). In this case, we recover the cost of [11] as a particular
case of our framework.

With this cost function, (11) in Algorithm 1 becomes:

Ri(k + 1) = expRi(k)

ε ∑
j:(i,j)∈E

ḟ(θij)
logRi(k)(Rj(k))

‖logRi(k)(Rj(k))‖

 .

(14)
Note that logRi(Rj) does not exist when d(Ri, Rj) = π. In
this case, one can randomly perturb R(k) and compute (14)
at that point. As mentioned before, the protocol in [11] is
derived when b tends to zero.

To illustrate the intuition behind the proposed protocol,
and to understand the role played by the reshaping function
f , we consider a network with N = 10 nodes connected in
a 4-regular graph topology. Let R0 be a configuration where
the rotations are evenly distributed on a closed geodesic in
SO(3). We set the initial states in the network to a slightly
perturbed version of R0. We first run the protocol (14) with
the cost function of [11] (f(θ) = 1

2θ
2) for 1000 iterations.

Fig. 2a shows the distances of each state from the node i = 1
after every iteration. This algorithm gets trapped in a local
minimizer of the cost function, and the states of the nodes
do not deviate significantly from the initial configuration.

We then repeat the same experiment, but using instead the
protocol (14) with the proposed reshaped cost and b = 3.
The results are shown in Fig. 2b. In this case, the alignment
of the nodes is reached after about 800 iterations.

This is not an isolated example, and it is indicative of the
general behavior of the algorithms. To demonstrate this, we
repeated 1000 times both experiments of Fig. 2, but with a
different initial state R0 chosen uniformly at random. Table I
reports the number of times the algorithms reached alignment
among the nodes. The Riemannian consensus algorithm in
[11] succeeded slightly less than half of the times, while the
proposed algorithm with b = 3 aligned the states in all cases.

The different behavior of the two algorithms can be
understood by considering the fact that configurations such
as R0, where the states follow a closed geodesic, are
undesired stationary points where gradR ϕ(R0) = 0. Due
to the topology of SO(3), such kind of configurations are
unavoidable and, for the cost in [11], they are stable local
minimizers: The algorithm does not deviate too much from
these points even in the presence of small perturbations.
On the other hand, as we will show, for the proposed
cost these undesired stationary points are unstable saddle
points: When Algorithm 1 passes them, it slows down but it
eventually deviates until it reaches the global minimizer. This
is comfirmed by the flat regions in the potential of Fig. 2b.

In summary, while global convergence may not be attain-
able (due to undesired stationary points), we can still obtain
almost-global convergence, in that the only stable stationary
points are global minimizers.

Paper outline. The rest of the paper is devoted to showing
that, when b is large enough, the proposed protocol converges
to the sub-manifold of consensus configuration from almost



Riemannian consensus Cost in [11] Reshaped cost with b = 3
Number of correct alignments 485 1000

TABLE I: Number of successful alignments reached from
1000 random initializations for the same network as in Fig. 2

any initial configuration (Thm. 16). Our proof requires
consideration of many different aspects of the cost function
(12) and the protocol (14). In the first part (§IV–VI) we show
that all the desired equilibria of the protocol (i.e., the global
minimizers of ϕ) are stable, while all the undesired equilibria
(i.e., any other equilibria) are unstable. We do this by using
θ-neighborhood subgraphs (§IV) and their relation with the
Hessian of ϕ (§V), which depends on the properties of the
reshaping function f (§VI). In the second part (§VII) we
focus on the choice of the step-size ε, which, together with
the previous results, gives our main convergence theorem.

IV. DESIRED AND UNDESIRED EQUILIBRIA

Notice that (14) describes a dynamical system on SO(3)N ,
whose equilibria we label as follows:

1) Desired equilibria: these are the global minimizers of
ϕ, i.e., those points at which ϕ = 0, ϕ is differentiable,
and gradϕ = 0.

2) Undesired equilibria: these are either stationary points
of ϕ (e.g., local but not global minimizers) or points
at which ϕ is non-differentiable and the sum in (14) is
zero for every node i ∈ V .

Both the desired and undesired equilibria are critical points of
ϕ by definition but not every critical point of ϕ is an equilibria
of the system. Note that the desired equilibria are not isolated
point and constitute a connected set. Our goal is to show that
(under appropriate conditions) the set of desired equilibria
is the only asymptotically stable equilibria set, while all the
others are unstable (see Thm. 16).

The distinction between desired equilibria and undesired
equilibria is intuitively easy. However, to continue our
analysis, we need to build on these definitions. In this section,
we first characterize a non-trivial subset S ⊂ SO(3)N that
contains only global minimizers and no other critical points.
Then, we give a result which associates undesired equilibria,
the set S and the connectivity of a θ-neighborhood sub-graph.

A non-trivial set with only global minimizers. We now
extend basic results from [11] to our setting, where ϕ includes
an arbitrary reshaping function and the manifold of interest
is SO(3). Define the diagonal space of SO(3)N as

D =
{
S = {S, . . . , S} ∈ SO(3)N : S ∈ SO(3)

}
. (15)

This space represents all the possible consensus configurations
of the network, where all the nodes are aligned. It corresponds
also to the space of desired equilibria (global minimizers),
as proven by the following proposition.

Proposition 3: If G is connected, then S ∈ D if and only
if S is a global minimizer of ϕ.
The proof, with any reshaping function respecting Def. 2,
follows from [11, Prop. 1] with trivial modifications.

We define the set S ⊂ SO(3)N as

S={R ∈ SO(3)N: ∃S ∈ SO(3) s.t. max
i∈V

d(Ri, S) <
π

2
}.

(16)
Intuitively, S is a tube in SO(3)N centered around the

diagonal space D and having a “square” section. We can now
extend [11, Theorem 1] to the use of reshaping functions.

Theorem 4: A point R0 ∈ S is a critical point for ϕ if
and only if R0 ∈ D. In other words, the set S contains all
the global minima and no other critical points of ϕ.
The proof in [11, Theorem 1] can be used provided that the
following lemma is used instead of [11, Lemma 1].

Lemma 5: Let R1, R2, S be three rotations in SO(3)
such that d(Ri, S) < π

2 , i = 1, 2 and let f be a reshaping
function. Define the unique minimal geodesics γi(t) such that
γi(0) = S and γi(1) = Ri, i = 1, 2. Define also θ12(t) =
d(γ1(t), γ2(t)) and φ12(t) = f(θ12(t)). Then φ̇12 ≥ 0 for
t ∈ (0, 1], with equality if and only if R1 = R2.

Proof: Notice that φ̇12 = ḟ(θ12)θ̇12. From [11, Lemma
1] we have θ̇12 ≥ 0 on (0; 1], and ḟ(θ12) > 0 by Def. 2.

Undesired minima and θ-neighborhood sub-graphs. We
give the following definition of θ-neighborhood sub-graph.

Definition 6: Given a graph G = (V,E), a configuration
R ∈ SO(3)N and an angle θ ∈ [0, 2π), the θ-neighborhood
sub-graph induced by R ∈ SO(3)N on G is defined as
GR,θ = (V,ER,θ), where ER,θ ⊆ E is the set of edges
(i, j) ∈ E such that θij = d(Ri, Rj) < θ.

We can relate Def. 6 to S and the notion of de-
sired/undesired equilibria by defining

θ0 <
π

2 Diam(G)
. (17)

Proposition 7: Let R? be an equilibrium of (14). If GR?,θ0

is connected, then R? ∈ D, i.e., it is a global minimizer.
Otherwise, R? is an undesired equilibrium.

Proof: [Sketch] When GR,θ0 is connected, one can show
that all the states Ri are inside an open ball of radius π

2 .
Let Sconn = {R ∈ SO(3)N : GR,θ0 is connected}. Then
Sconn ⊂ S. Moreover, it is easy to show that R ∈ D implies
that GR,θ0 is connected, hence D ⊂ Sconn. However, the
only equilibria of (14) in S are global minimizers, hence R?

is an equilibrium and is in Sconn if and only if R? ∈ D .
The rest of the claim follows easily (see also Fig. 3).

In the following, we show that any equilibrium R for which
GR,θ0 is disconnected is unstable. Proposition 7 then will
imply that the only stable equilibria are the global minimizers.

S

SO(3)N

D

Sconn

Undesired
critical points

Fig. 3: Graphical description of the proof for Prop. 7



V. INSTABILITY OF UNDESIRED EQUILIBRIA

Here we show that if R? is an equilibrium of (14), and if
GR?,θ0 is not connected, then R? cannot be stable.

We first consider non-differentiable points of ϕ, i.e., points
for which θij = π for some edge (i, j) ∈ E (see §III).

Proposition 8: Non-differentiable points of ϕ are not local
minima.

Proof: At a given point R? ∈ SO(3)N where ϕ is not
differentiable, we can decompose ϕ as follows

ϕ(R) =
∑

(i,j)∈Eπ

f(θij)+
∑

(i,j)∈Ēπ

f(θij)
.
= ϕπ(R)+ϕπ̄(R), (18)

where Eπ ={(i, j)∈E : θij(R
?
i , R

?
j ) =π} and Ēπ =E\Eπ.

Since π is the maximum value that θij can take, ϕπ has
a maximum at R?. Next, we argue that addition of the
twice differentiable term ϕπ̄ cannot turn R? into a local
minimizer of ϕ. Let R̃

?
(ε) be a geodesic in SO(3)N such that

R̃
?
(0) = R? and ˙̃R? = W , W ∈ TR?SO(3)N . Let ϕ̃(ε) =

ϕ
(
R̃
?
(ε)
)
, ϕ̃π(ε) = ϕπ

(
R̃
?
(ε)
)
, and ϕ̃π̄(ε) = ϕπ̄

(
R̃
?
(ε)
)
.

Assume that W is chosen such that ˙̃ϕ−π (0) > ˙̃ϕ+
π (0). Note

that such W always exists, as shown by Prop. 25 in [17].
Since ϕπ̄ is differentiable at R?, we have ˙̃ϕ−π̄ (0) = ˙̃ϕ+

π̄ (0),
and ˙̃ϕ−(0) > ˙̃ϕ+(0). However, a necessary condition for
R? to be a local minimizer of ϕ is that ˙̃ϕ−(0) ≤ ˙̃ϕ+(0)
independently from the direction W . The claim follows.
Since non-differentiable points are not local minima, they
cannot be stable.

We now consider stationary points of ϕ. Since the function
is twice differentiable (see §III), a stationary point R∗ is unsta-
ble when the Hessian of ϕ has at least one negative eigenvalue.
The following gives a matrix form for Hessϕ [17].

Proposition 9: With the identifications of TRSO(3) with
R3 and TRSO(3)N with R3N given by (1), the matrix
representation of the Hessian of ϕ at R is equal to H ∈
R3N×3N whose (k, l)-th, 3× 3 block is given by

[H]k,l;3 =


∑
j:(k,j)∈E sym

(
Hkj

)
if k = l

−Hkl if (k, l) ∈ E, k > l

−HT
kl if (k, l) ∈ E, k < l

0 otherwise

,

(19)
where sym(A) = 1

2 (A+AT ) denotes the symmetric part of
a matrix, and where

Hij(Ri, Rj) = f̈(θij)uiju
T
ij + ḟ(θij)Dij , (20)

and Dij(Ri, Rj) = D Log
‖Log‖ (R

T
i Rj).

The following lemma characterizes the spectral decompo-
sition of sym(Hij) (see [17] for a proof).

Lemma 10: The spectrum of sym(Hij) is given by

σ
(
sym(Hij)

)
= {f̈(θij),

ḟ(θij)

θij
α(θij),

ḟ(θij)

θij
α(θij)}

(21)
where α(θ) is given in Prop. 1. The first eigenvector is uij
and the other two eigenvectors are orthogonal to the first.
Note that α(θ) ∈ [0; 1] for θ ∈ [0;π].

The main idea for the proof of Lemma 10 is to use Prop. 1
to obtain the spectral decomposition of Hij , compute its real
Jordan canonical form and then use this decomposition to
obtain σ

(
sym(Hij)

)
. A detailed proof can be found in [17].

The following theorem gives sufficient conditions on the
reshaping function f which imply that Hessϕ(R) has a
negative eigenvalue whenever GR,θ0 is disconnected.

Theorem 11: Let R ∈ SO(3)N be any configuration of
states for which GR,θ0 is not connected. Define a partition of
the vertices V = {Vc, Vc̄}, where Vc represents a connected
component of GR,θ0 . Let Ecc̄ = {(i, j) ∈ E : i ∈ Vc, j ∈
Vc̄} be the set of edges between the two elements in the
partition and let q ∈ R be a number satisfying

0 < q < max
v∈S2

min
(i,j)∈Ecc̄

(vTuij)
2, (22)

Assume that the reshaping function f(θ) satisfies the follow-
ing properties:

1) f̈(θ) < 0 for θ ∈ [θ0, π].
2) f̈(θ)q + ḟ(θ)

θ (1− q) < 0 for θ ∈ [θ0, π].
Then, the Hessian of ϕ evaluated at R has at least one
negative eigenvalue.

Proof: From the Rayleigh-Ritz theorem [22], if there
exist u ∈ R3N such that uTHu < 0, then the matrix H has
at least one negative eigenvalue. We now construct such u.

Let Nc = |Vc| and assume, without loss of generality, that
Vc = {1, . . . , Nc} (if not, just reorder the vertices). Define:

u =

[
u⊗ 1Nc

−u⊗ 1N−Nc

]
=
[
uT . . . uT︸ ︷︷ ︸

Nc times

−uT . . . −uT︸ ︷︷ ︸
N−Nc times

]T
,

(23)
where 1d represents the vector of all ones in Rd, ⊗ represents
the Kronecker’s product and u ∈ R3 is defined as

u
.
= arg max

v∈S2
min

(i,j)∈Ecc̄
(vTuij)

2. (24)

Note that q < (uTuij)
2 for all (i, j) ∈ Ecc̄. The quantity

uTHu can be computed as

uTHu = uT
(∑
i∈V

∑
j:(i,j)∈E

sym(Hij)

)
u (25a)

+ uT
∑
i∈Vc

( ∑
j∈Vc

(i,j)∈E

− sym(Hij) +
∑
j∈Vc̄

(i,j)∈E

sym(Hij)

)
u

(25b)

+ uT
∑
i∈Vc̄

( ∑
j∈Vc

(i,j)∈E

sym(Hij) +
∑
j∈Vc̄

(i,j)∈E

− sym(Hij)

)
u

(25c)

where (25a) corresponds to the diagonal blocks of H , (25b)
comes from the first Nc row-blocks of H , (25c) comes from
the remaining (N −Nc) row-blocks of H and we used the
fact that uT sym(Hij)u = uTHiju = uTHT

iju. Then, the
expression in (25) can be simplified as

uTHu = 4
∑

(i,j)∈Ecc̄

uT sym(Hij)u (26)



Note that, from the definition of GR,θ0 , we have θij > θ0

for all the edges involved in the sum (26).
From Lemma 10, we have

uTHiju = f̈(θij)(u
Tuij)

2 +
α(θij)

θij
ḟ(θij)

(
1− (uTuij)

2
)
,

(27)
where the first term comes from the projection on the space
spanned to the first eigenvector of Hij and the second term
comes from the projection on the orthogonal complement. We
focus on the interval θij ∈ [θ0, π]. Note that, on this interval,
α(θij) ∈ [0, 1]. Also, by assumption, we have ḟ(θij) > 0
and f̈(θij) < 0. Since (uTuij)

2 ∈ [0, 1], (27) can be seen
as a convex combination of the two values f̈(θij), which
is negative, and α(θij)

θij
ḟ(θij), which is positive. From these

considerations and the definition of q we have that

uTHiju ≤ f̈(θij)q +
ḟ(θij)

θij
(1− q). (28)

From the assumption on f we therefore conclude that
uTHiju < 0 for θij ∈ [θ0, π], and, from (26), uTHu < 0.
The claim follows.

The next step in our development is to show that the
proposed reshaping function (13) satisfies the assumptions of
Thm. 11 when the parameter b is large enough.

VI. PROPERTIES OF THE RESHAPING FUNCTION

In this section we show that it is possible to choose a
parameter b in (13) such that the only stable equilibria of the
consensus protocol are desired equilibria.

We have the following result:
Proposition 12: The function (13) satisfies the assump-

tions of Def. 2 and Thm. 11 when b > (qθ0)−1. Moreover,
f(0) = 0, f(π) = π2, ḟ(0) = 0, ḟ(θ)

θ ≤ ab and f̈(θ) ≤ ab
for θ ≥ 0.

Remark 1: The property f(π) = π2 fixes a scaling for
f(θ). The choice of the particular value of f(π) is somewhat
arbitrary and can be changed by scaling a accordingly.

Proof: We first show a > 0. The derivative of f0(θ) is

ḟ0(θ) = bθ exp(−bθ). (29)

Note f(0) = f0(0) = ḟ0(0) = 0. By inspection, b > 0, and
therefore ḟ0(θ) > 0 for θ > 0. It follows that also f(θ) > 0

for θ > 0. Since a = π2

2f0(π) , we have a > 0 and f(π) = π2.
Now, the derivatives of f are

ḟ(θ) = aḟ0(θ) = abθ exp(−bθ), (30)

f̈(θ) = ab(1− bθ) exp(−bθ). (31)

From the discussion above, we have ḟ(0) = 0 and ḟ(θ) > 0
for θ > 0, which is the first property we needed to show.
Also, note bθ0 = q−1 > 1, hence f̈(θ) < 0 for θ > θ0. This
shows the second property. Next,

f̈(θ)q +
ḟ(θ)

θ
(1− q) ≤ ab(q − bqθ + 1− q) exp(−bθ)

= ab(1− bqθ) exp(−bθ), (32)

which is negative for θ > (bq)−1 = θ0, as requested by the
third property. Finally, notice that we have

f̈(θ) = ab exp(−bθ)− ab2θ exp(−bθ) ≤ ab exp(−bθ) ≤ ab
(33)

and
ḟ(θ)

θ
= ab exp(−bθ) ≤ ab. (34)

This concludes the proof.
Remark 2: One subtle issue here is that the value of b

must be fixed a priori, and it can be finite only if there exist
a number q > 0 satisfying (22) for any possible configuration
R ∈ SO(3)N for which GR,θ0 is not connected. Luckily, one
can show that, given the graph G, such number q > 0 always
exists. The proof of this fact is rather technical and it can be
found in [17]. Unfortunately, this proof is non-constructive,
and we were not able to give a distributed way to compute
a bound on q (and therefore on b). Hence the notion that b
should be “sufficiently large” in §III, whose existence is at
least ensured by our current results. We plan to investigate
constructive methods for estimating q in our future research.

VII. CHOICE OF STEP SIZE AND CONVERGENCE
Tracing back all the results of §IV–VI, we can deduce

that the only stable equilibria of the protocol (14) are global
minimizers R? ∈ D, where all the states are aligned. However,
this is not enough to ensure the convergence of the protocol.
In this section, we give bounds on the choice of the step
size ε such that the cost ϕ is reduced at each step. This
ensures the convergence of the protocol to the set of global
minimizers D.

Our method follows and extends ideas from [11]. First, we
need the following.

Proposition 13: Wherever ϕ is twice differentiable, the
bound on the maximum eigenvalue of the Hessian Hessϕ is

µmax = 2 Deg(G) max
θ∈[0,π]

max
{ ḟ(θ)

θ
, f̈(θ)

}
= 2abDeg(G).

(35)
This proposition can be proved by starting from Lemma 10.

Its result can then be used in conjunction with the following.
Theorem 14: Let µmax be a uniform bound on the

Hessian of ϕ as given by Prop. 13. Define R̃0(ε) =
expR0

ε gradR ϕ(R0) and ϕ̃(ε) = ϕ(R̃0). Then ϕ̃(ε) ≤
ϕ̃(0) for ε ∈ (0, 2µ−1

max), with equality if and only if R0 is
a stationary point of ϕ.
This theorem is almost identical to [11, Thm. 3], with the
exception that R̃ is not restricted to a specific set. To show
this result, we first need the following lemma, whose proof
can be found in [17].

Lemma 15: For any ε0 ∈ R we have ˙̃ϕ−(ε0) ≥ ˙̃ϕ+(ε0).
Proof: [of Theorem 14] It is possible to show (see Prop.

26 in [17]) that ϕ̃ can be upper bounded with the quadratic
function

u0(ε) = ϕ̃(0) + ˙̃ϕ(0)ε+
−µmax

˙̃ϕ(0)

2
ε2. (36)

In general, this bound stops to be valid after a point where ϕ
is not differentiable. However, in our case, we have ˙̃ϕ−(ε) ≥



ε

u(ε)

2µ−1
max

ϕ̃(ε)

Non-
differentiability

Fig. 4: The cost function ϕ restricted to a line and our
quadratic upper bound

˙̃ϕ+(ε) for any ε ∈ R, as shown in Lemma 15. This is true
in particular at all non-differentiable points of ϕ̃. From Prop.
26 in [17] it then follows that u0(ε) ≥ ϕ̃(ε) for any ε > 0.
Again from Prop. 26 in [17], we have also that u0(ε) ≤ u0(0)
for ε ∈ (0, 2µ−1

max). The claim then follows. See Fig. 4 for
an illustration.

We can finally state the main convergence theorem.
Theorem 16 (Almost-global convergence): There exist a

sufficiently large b ∈ R and ε ∈
(
0; 1

abDeg(G)

)
, where a

is given in §III, such that:

• The protocol (14) converges to the set of its equilibria.
• The only asymptotically stable equilibria set is set of

configurations with aligned states.
Proof: [Sketch] Thm. 14 ensures that, with the given

value of ε, the cost does not increase after each iteration of
the protocol (14). Using a standard argument, one can show
that R(k) converges to the set equilibria of (14). Then, from
§IV–VI, we know that the only stable equilibria set is the
set of global minimizers.
The presence of any numerical perturbation added to the
iterates, together with Thm. 16, implies that our algorithm
eventually leaves any unstable equilibrium, and converge to
the set of global minimizers.

VIII. CONCLUSIONS AND FUTURE WORK

We proposed a discrete time algorithm to align the
rotational states of agents connected in a network. The
fundamental idea is to reshape the cost function used in
Riemannian consensus [11] so that the only stable equilibria
of the proposed protocol are global minimizers. We showed
how undesired equilibria are related to θ0-neighborhood sub-
graphs, and how the properties of the reshaping function f(θ)
imply that the equilibria are unstable whenever such graphs
are non-connected. Finally, we showed that it is possible
to choose a step size such that the global cost function is
reduced at every step. Combined with the instability of the
undesired equilibria, this implies almost-global convergence,
in that the only stable equilibria are global minimizers.

Unfortunately, our results depend on the choice of a
parameter b which must be “sufficiently large”. However,
an excessively large value for b would reduce the step size
and therefore the convergence speed of the algorithm. In our

future research we plan to investigate a distributed method
to automatically choose such parameter.
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APPENDIX

We collect in this appendix all the results supporting the
derivations and claims of the main part of the paper.

A. Exponential and logarithm map

The exponential map at the identity can be compactly
computed using the well-known Rodrigues’ formula, from
which also the logarithm map can be deduced. More precisely,
we have the following (see [23] for details).

Proposition 17: Let v̂ ∈ so(3), and R ∈ SO(3). The
exponential map at the identity is given by

θ = ‖v‖, (37)

u =
v

θ
(38)

R = expI(v̂) = I + sin(θ)û+
(
1− cos(θ)

)
û2. (39)

The logarithm map at the identity is given by

θ = arccos

(
tr(R)− 1

2

)
, (40)

u =
1

2 sin θ
(R−RT )∨ (41)

v̂ = logI(R) = θû (42)
The following simple proposition gives some properties of

the matrix R in relation to the axis vector u
Proposition 18: We have the following properties

1) Ru = u.
2) Rûk = ûkR for any k ∈ N.

Proof: The first property can be proved easily by
substitution using (39) and by recalling that ûu = 0. The
second property can be proved by using again (39) and by
regrouping terms.

B. Matrix representation for the differential of the logarithm
map

In this section, we give closed form expressions for the
matrix representation and the eigenvalue decomposition of
D Log
‖Log‖ defined in (6). Some of the calculations below are a

simplification of the results in [24, Appendix A].
To start, let u, v ∈ R3, θ ∈ [0, 2π) and recall the following

properties:

1) û2 = uuT − ‖u‖2I and û2 is symmetric.
2) ûv̂ − (ûv̂)T = ûv̂ − v̂û = vuT − uvT = (ûv)∧.
3) û2v̂ − v̂û2 = −

(
(2I + û2)v

)∧
= −

(
(I + uuT )v

)∧
, if

‖u‖ = 1.
4) tr(û) = 0.
5) tr(ûv̂) = 2uT v.
6) tr(û2v̂) = 0.
7) 1+cos(θ)

sin(θ) = cot
(
θ
2

)
Properties 1–5 can be easily verified by direct computation.
Property 6 follows from the fact that û2 is symmetric and v̂
is skew-symmetric. Property 7 follows from the half-angle
trigonometric identity for the tangent of an angle.

We can now give a proof of Proposition 1

Proof: From the definition (6) and from the expression
for Log(R) in (42), we have:

D
Log

‖Log‖
(R)v =

d

dt

Log(R)

‖Log(R)‖
= u̇

=
cos(θ)

2 sin2(θ)
θ̇(R−RT )∨ +

1

2 sin(θ)
(Ṙ− ṘT )∨. (43)

We now expand the necessary computations. From Ro-
drigues’ formula (39):

Ṙ = Rv̂ = v̂ + sin(θ)ûv̂ +
(
1− cos(θ)

)
û2v̂

(44)

(R−RT )∨ = 2 sin(θ)u (45)

(Ṙ− ṘT )∨ =
(
2v̂ + sin(θ)(ûv)∧ + (1− cos(θ))(û2v̂ + v̂û2)

)∨
=
(
2I + sin(θ)û− (1− cos(θ))(2I + û2)

)
v

=
(
2 cos(θ)I + sin(θ)û− (1− cos(θ))û2

)
v
(46)

From the expression for θ in (41):

θ̇ = −

2

√
1−

(
tr(R)− 1

2

)2
−1

tr(Ṙ)

= −
(

2
√

1− cos2(θ)
)−1

tr(Ṙ)

= − 1

2 sin θ
sin(θ) tr(ûv̂) = uT v (47)

Substituting (45), (46) and (47) into (43), we obtain

D
Log

‖Log‖
(R) = −cos(θ)

sin(θ)
uuT +

1

2 sin(θ)
(2 cos(θ)I

+ sin(θ)û− (1− cos(θ))û2)

= −cos(θ)

sin(θ)
(uuT − I) +

1

2
û− 1− cos(θ)

2 sin(θ)
û2

=
1

2
û− cos(θ)

sin(θ)
û2 −

( 1

2 sin(θ)
− cos(θ)

2 sin(θ)

)
û2

=
1

2
û− 1 + cos(θ)

2 sin(θ)
û2 =

1

2

(
û− cot

(θ
2

)
û2
)

=
1

2

(
û− cot

(θ
2

)
(uuT − I)

)
=

1

2

(
cot
(θ

2

)
I + û− cot

(θ
2

)
uuT

)
, (48)

which gives the expression in the claim. Notice that we have
expanded û2 in order to simplify the computations for the
eigenvalue decomposition.

In this regard, let

U =
[
u v v̄

]
. (49)

Then, the eigenvalue decomposition of û is

û = UΛ1U
H (50)

where
Λ1 = diag (0, j,−j) , (51)



Since uuT is rank one, it has an eigenvalue equal to zero
with double multiplicity, and its eigenvalue decomposition is
not unique. However, for our purposes, we can use:

uuT = UΛ2U
H , (52)

where U is the same as before and

Λ2 = diag(1, 0, 0). (53)

Also, since U is unitary, we have

I = UUH . (54)

By combining (50), (52) and (54) with (48), the eigenvalue
decomposition given in the claim follow.

The following proposition gives a relation between
D Log
‖Log‖ (R) and the multiplication by RT .
Proposition 19: We have the following identity:

RT D
Log

‖Log‖
(R) = D

Log

‖Log‖
(R)RT = D

Log

‖Log‖
(R)T .

(55)
Proof: The first equality can be shown from the explicit

expression in Prop. 1 and by using Prop. 18 to reorder the
terms. The second inequality can be show by computing the
following:

2
(

D
Log

‖Log‖
(R)T −RT D

Log

‖Log‖
(R)
)

=

ûT − cot
(θ

2

)
(û2)T −RT û+ cot

(θ
2

)
û2

= −û− cot
(θ

2

)
û2 −

(
û− sin(θ)û2 + (1− cos(θ))û3

)
+ cot

(θ
2

)(
û2 − sin(θ)û3 + (1− cos(θ)

)
û4

= −û− cot
(θ

2

)
û2 − û+ sin(θ)û2 + (1− cos(θ))û

+ cot
(θ

2

)(
û2 + sin(θ)û− (1− cos(θ))û2

)
=
(
−1− cos(θ) + cot

(θ
2

)
sin(θ)

)
û

+
(

sin(θ)− cot
(θ

2

)
(1− cos(θ))

)
û2 = 0, (56)

where we used the following facts
• û3 = −û.
• û4 = −û2.
• cot

(
θ
2

)
sin(θ) = cos(θ) + 1.

• cot
(
θ
2

)
(1− cos(θ)) = 1−cos2(θ)

sin(θ) = sin(θ).

C. Hessian of the cost function ϕ

In this section, our goal is to show Prop. 9 by computing
the Hessian of ϕ.

Proof: As usual, we define R(t) = {Ri(t)}i∈V as a
geodesic in SO(3)N and ϕ̃(t) = ϕ(R(t)) as the global cost
function evaluated along this geodesic. We then obtain the
matrix expression for the Hessian from the second derivative
ϕ̈(t). For the sake of clarity, we suppress, in the following

derivations, the explicit dependence on t of θij , Ri, ϕ̃ and
their derivatives.

The first derivative of ϕ̃ is given by

˙̃ϕ =
∑

(i,j)∈E

ḟ(θij)θ̇ij (57)

and the second derivative is given by

¨̃ϕ =
∑

(i,j)∈E

(
f̈(θij)θ̇

2
ij + ḟ(θij)θ̈ij

)
. (58)

As a side note, if we made similar derivations for the
Euclidean space or for the circle, we would have θ̇ = 1
and θ̈ = 0.

From (9) and the chain rule, we have

θ̇ij = 〈Ṙi,−
logRi Rj

‖logRi Rj‖
〉+ 〈Ṙj ,−

logRi Rj

‖logRj Ri‖
〉

= −vTi Log(RTi Rj)− vTj (RTj Ri)

= (vj − vi)T Log(RTi Rj) = (vj − vi)uij , (59)

where vi = (Ri)
∧ and where we used the property Log(R) =

−Log(RT ).
Before passing to the computation of θ̈ij , we need an

expression for the tangent of the curve RTi Rj :

d

dt
(RTi Rj) = ṘTi Rj +RTi Ṙj = v̂Ti R

T
i Rj +RTi Rj v̂j

= −RTi Rj(RTi Rivi)∧ +RTi Rj v̂j (60)

where we used the fact that RT v̂R = (RT v)∧. In vector
coordinate representation, we then have(

d

dt
(RTi Rj)

)∨
= vj −RTj Rivi. (61)

Then, we have

θ̈ij = (vj − vi)T
d

dt

Log(RTi Rj)

‖Log(RTi Rj)‖

= (vj − vi)T D
Log

‖Log‖
(RTi Rj)(vj −RTj Rivi)

= (vj − vi)TDij(vj −RTj Rivi)

=

[
vi
vj

]T [DijR
T
j Ri −DijR

T
j Ri

−
(
Dij

)T
Dij

] [
vi
vj

]
=

[
vi
vj

]T [
sym(Dij) −Dij

−DT
ij sym(Dij)

] [
vi
vj

]
, (62)

where we used Prop. 19.
Plugging in (59) and (62) into (58), we get

¨̃ϕ =
∑

(i,j)∈E

[
vi
vj

]T (
f̈(θij)

[
uiju

T
ij −uijuTij

−uijuTij uiju
T
ij

]

+ ḟ(θij)

[
sym(Dij) −Dij

−DT
ij sym(Dij)

])[
vi
vj

]
, (63)

from which the claim follows.



D. Proof of Lemma 10

In this section we give a proof of Lemma 10, which details
the spectral decomposition of sym(Hij). Before giving such
proof, however, we need the following lemma.

Lemma 20: Then the Real Jordan Canonical Form (RJCF)
of H̃12 can be obtained as H̃12 = SJST where S, J ∈ R3×3

and

S =
[
u12

√
2<(v12)

√
2=(v12)

]
(64)

J =

f̈(θ12) 0 0

0 α(θ12) ḟ(θ12)
θ12

β(θ12) ḟ(θ12)
θ12

0 −β(θ12) ḟ(θ12)
θ12

α(θ12) ḟ(θ12)
θ12

 (65)

Proof: Let D Log
‖Log‖ (R

T
i Rj) = UΛUH be the eigenvalue

decomposition of D Log
‖Log‖ (R

T
i Rj), where

U =
[
uij vij v̄ij

]
(66)

and

Λ = diag
(
0, α(θij) + jβ(θij), α(θij)− jβ(θij)

)
, (67)

see Prop. 1. Combining the eigenvalue decomposition of
D Log
‖Log‖ (R

T
i Rj) with the definition of Hij in (20), we have

the eigenvalue decomposition

Hij = U diag
(
σ(Hij)

)
UH , (68)

where

σ(Hij) = {f̈(θij),
ḟ(θij)

θij

(
α(θij)± jβ(θij)

)
} (69)

Define

P =
1√
2

√2 0 0
0 1 j
0 1 −j

 ∈ C3×3. (70)

Notice that P is unitary, i.e., PPH = PHP = I . Also,
S = UP is real and SH = ST . Then, we can write H̃12 =
UPPHΛHijPP

HUH , from which the given RJCF follows
with S = UP and J = PHΛHijP .

Notice that this decomposition depends only on the angle
θij and axis uij of RTi Rj , and not on the individual values
of the rotations.

We can now give the proof of Lemma 10. Proof:
Using the RJCF given in Lemma 20, the eigenvalue decom-
position of sym(H̃12) can be computed as

sym(H̃12) =
1

2
(SJST + SJTST ) = S sym(J)ST

= S diag
(
f̈(θij),

ḟ(θij)

θij
α(θij),

ḟ(θij)

θij
α(θij)

)
ST . (71)

The claim follows.

E. Proof of Prop. 13
Proof: Using the result of Prop. 9, the Hessian of the

cost function between only two nodes ϕij = f(θij) is given
by [

sym(Hij) −HT
ij

−Hij sym(Hij)

]
. (72)

Using the RJCF decomposition of Hij from the proof of
Lemma 10, we have the following similarity transformations:[

sym(Hij) −HT
ij

−Hij sym(Hij)

]
∼
[
S sym(J)ST −SJTST
−SJTST S sym(J)ST

]

∼ S̃


f̈ −f̈

ḟ
θij

[
α

α

]
ḟ
θij

[
−α β
−β α

]
−f̈ f̈

ḟ
θij

[
−α −β
β α

]
ḟ
θij

[
α

α

]

 S̃

∼


f̈

[
1 −1
−1 1

]
ḟ
θij


α −α β

α −β α
−α −β α
β −α α




.
=

[
f̈K1

ḟ
θij
K2

]
, (73)

where S̃ =
[
S
S

]
and the dependence of ḟ , f̈ , α and β

from θij has been omitted for brevity. The eigenvalues of
the Hessian are given by the union of the eigenvalues of K1

times f̈ and the eigenvalues of K2 times ḟ
θij

. The spectrum
of K1 is σ(K1) = {2, 0}. The spectrum of K2 (which can be
computed with a symbolic math software) is σ(K2) = {α±√
α2 + β2}, where each eigenvalue has double multiplicity.

One can then directly verify that all the eigenvalues of K1

and K2 are bounded by 2. This means that the eigenvalues
of (72) can be bounded by 2 maxθ∈[0,π] max

{ ḟ(θ)
θ , f̈(θ)

}
.

Using [12, Thm. 8] and Prop. 12, the claim follows.

F. Existence of q satisfying (22)
In this section we show that it is always possible to choose

a constant q ∈ R satisfying (22). We first need the following
preliminary lemma.

Lemma 21: Let {u1, . . . , uNu} be a finite set of Nu
vectors in S2. There always exists a vector u ∈ S2 such
that (uTi u)2 > 0 for all i ∈ {1, . . . , Nu}.

Proof: First, we denote as {Si}Nui=1 the set of two-
dimensional hyperplanes with normals {ui}Nui=1. Since the
quantity (uTi u)2 is always non-negative, the only case we
need to examine is when uTi u = 0 for some i. This would
imply that u ∈ Si. However, for finite Nu,

⋃Nu
i=1 Si ⊂ R3,

i.e., the union of the hyperplanes cannot cover the entire
space. Therefore, it is always possible to find a u /∈

⋃Nu
i=1 Si,

i.e., u /∈ Si ∀i ∈ {1, . . . , Nu}, and the lemma is proven.
This lemma ensures that the quantity

max
v∈S2

min
(i,j)∈Ecc̄

(vTuij)
2 (74)



is always strictly positive.
The following theorem justifies the claims made in Re-

mark 2.
Theorem 22: Let G = (V,E) be a bipartite graph where

V = (V1, V2) and E contains edges (i, j) such that i ∈ V1

and j ∈ V2. Imagine that for each vertex i ∈ V we can
associate a rotation Ri. Given an angle θ0 ∈ (0, π], define
the set Sθ0 ⊆ SO(3)|V | as

S
|V |
θ0

=
{
{Ri}i∈V ∈ SO(3)|V | : d(Ri, Rj) ≥ θ0 ∀(i, j) ∈ E

}
(75)

and, similarly, the set

S2
θ0 =

{
{R1, R2} ∈ SO(3)2 : d(Ri, Rj) ≥ θ0

}
. (76)

For each (i, j) ∈ E, define the distance θij(Ri, Rj) =
d(Ri, Rj) ∈ (θ0, π] and the unit-norm vector

uij(Ri, Rj) =
Log(RTi Rj)

θij(Ri, Rj)
=

1

sin(θij)
asym(RTi Rj)

∨,

(77)
when θij ∈ [θ0, π). Note that uij is not defined when θij = π.
Define also the functions

gij(u,Ri, Rj) = (uTuij(Ri, Rj))
2. (78)

Again, note that gij(u,Ri, Rj) is not defined when
d(Ri, Rj) = π.

Then, we have the following:
1) We can define functions {ḡij(u,Ri, Rj)}(i,j)∈E where

each one is defined and continuous on the entire set
S2 × S2

θ0
and it is the extension by continuity of

{gij(u,Ri, Rj)}(i,j)∈E .
2) There exist a strictly positive constant q ∈ (0, 1] such

that

0 < q ≤ min
R∈S|V |θ0

max
u∈S2

min
(i,j)∈E

ḡij(u,Ri, Rj). (79)

Proof: First, notice that gij(u,Ri, Rj) = gij(u, I,Rij),
where Rij = RTi Rj . Then, gij can be written as an explicit
function of Rij and u as follows.

gij(u, I,Rij) =

(
uT asym(Rij)

∨

sin(θij(Rij))

)2

=

 − tr(ûRij)

2 sin
(
arccos

(
tr(Rij)−1

2

))
2

=
tr2(ûRij)

4

(
1−

(
tr(Rij)−1

2

)2
) , (80)

where we used the fact that

θij = arccos

(
tr(Rij)− 1

2

)
(81)

and sin(arccos(x)) =
√

1− x2.
The only problems with the continuity of gij on S2

θ0
appear

when Rij = R0 where d(I,R0) = π, for which the function
does not exist. We want to show that these points are in fact
removable singularities.

In order to do so, let R(t) be a curve in SO(3) with R(0) =
R0 and Ṙ(0) = R0v̂, where v ∈ R3. Our strategy is to show
that limt→0 gij(u, I,R(t)) does not depend on the particular
path R(t). By definition, this implies that ḡij(u, I,Rij) is
continuous.

We will denote as u0 ∈ S2 a vector such that R0 =
expI(πû0). Note that we could also choose −u0. However,
this choice does not influence the final result, as we will
see later. From Rodrigues’ formula, we have that R0 =
−I+2u0u

T
0 and, hence, R0 is symmetric. In order to obtain an

expression for the Taylor for the numerator of (80), consider
first the following function:

gN0(t) = tr
(
ûR(t)

)
. (82)

Note that gN0(0) = tr(ûR0) = 0, because û is skew-
symmetric and R0 is symmetric. The derivative of gN0(t)
is

ġN0(t) = tr
(
ûR(t)v̂) (83)

Now, the numerator of (80) evaluated along R(t) is given by

gN (t) = g2
N0(t) =

2
tr
(
ûR(t)

)
(84)

The first two derivatives of gN (t) are given by

ġN (t) = 2gN0(t)ġN0(t), (85)

g̈N (t) = 2
(
ḟ2
N0(t) + gN0(t)g̈N0(t)

)
. (86)

For t = 0 these reduce to

gN (0) = ġN (0) = 0, (87)

g̈N (0) =
2
tr(ûR0v̂) =

2
tr(û(−I + 2u0u

T
0 )v̂)

=
(
− tr(ûv̂) + 2 tr(ûu0u

T
0 v̂)
)2

=
(
2uT v + 2uT0 ûv̂u0)

)2
= 4
(
uT v + uT û2

0v)
)2

= 4
(
uT v + uT (−I + u0u

T
0 )v)

)2
= 4(uTu0)2(vTu0)2. (88)

Now we consider the denominator of (80). Similarly to
before, define

gD0(t) =
tr
(
R(t)

)
− 1

2
. (89)

The first two derivatives of gD0(t) are given by

ġD0(t) =
1

2
tr
(
v̂R(t)

)
, (90)

g̈D0(t) =
1

2
tr
(
v̂2R(t)

)
. (91)

When t = 0 these reduce to

gD0(0) = −1, (92)
ġD0(0) = 0, (93)

g̈D0(0) =
1

2
tr
(
v̂2(−I + 2u0u

T
0 )
)

= −1

2
tr v̂2 + uT0 (−‖v‖2I + vvT )u0

= ‖v‖2 − ‖v‖2‖u0‖2 + (vTu0)2

= (vTu0)2. (94)



The denominator of (80) evaluated along R(t) and its
derivatives are given by

gD(t) = 1− g2
D0(t), (95)

ġD(t) = 2gN0(t)ġN0(t), (96)

g̈D(t) = 2
(
ḟ2
N0(t) + gN0(t)g̈N0(t)

)
. (97)

For t = 0 these reduce to

gD(0) = ġD(0) = 0, (98)

g̈D(0) = 2(vTu0)2. (99)

We can use (87) and (98) to express the ratio in (80)
computed along R(t) using Taylor series, and compute the
limit

lim
t→0

gij
(
u, I,R(t)

)
=

4(uTu0)2(vTu0)2t2 + o(t2)

2(vTu0)2t2 + o(t2)

= 2(uTu0)2 .
= ḡij(u, I,R0). (100)

As anticipated, this value does not depend on the particular
path followed by R(t), and is also independent on the choice
of sign for uij . Therefore, ḡij is continuos at R0. The first
claim of the lemma follows.

Regarding the second claim, from Lemma 21 we know
that

max
u∈S2

min
(i,j)∈E

ḡij(u,Ri, Rj) > 0, (101)

which is equivalent to (74). Thanks to the first part of the
proof, we also know that this quantity is continuous as a
function of Ri, Rj . Combined with the fact that S

|V |
θ0

is
compact, we deduce that the minimizer of the RHS of (79)
is in the set, and the corresponding cost is positive. Hence,
we can always pick q′ such that (79) is satisfied.

G. Maxima of the reshaped distance function along geodesics

Consider the function

f̃ij(t) = f
(
θij
(
Ri(t), Rj(t)

))
= f

(
d
(
I,Rij(t)

))
(102)

where f is a reshaping function, Rij(t) = Ri(t)
TRj(t), Ri =

Ri0 exp(tv̂i) and Rj = Rj0 exp(tv̂j) are two geodesics in
SO(3) starting from rotations Ri0 and Rj0 and with tangents
vi and vj (using the identification of (1)). Note that the
tangent of Rij is given by

Ṙij(t) = Ṙi(t)
TRj(t) +Ri(t)

T Ṙj(t)

= v̂Ti Rij(t) +Rij(t)v̂j = Rij(t)
(
−Rij(t)T v̂iRij(t) + v̂j

)
= Rij(t)v̂ij(t), (103)

where vij(t) = vj − Rij(t)
T vi. In the following, we use

the shorthand notation vij0 = vij(0). The function f̃ij
is differentiable everywhere, except at the points where
d(I,Rij(t)) = π, for which it is continuous but not
differentiable. In this section, we want to show that at these
point the function has, in general, a strict maximum. More
in detail, assume that Rij(0) = RTi0Rj0

.
= Rij0 satisfies

d(I,Rij0) = 0. Then, we have the following proposition.

Proposition 23: With the notation defined above, let
uij0 ∈ R3 be a vector satisfying Rij0 = exp(πûij0). Then

˙̃
f−ij (0) =

√
2|vTij0uij0|ḟ(π) (104)

˙̃
f+
ij (0) = −

√
2|vTij0uij0|ḟ(π) (105)

(106)

Note that ˙̃
f−ij (0) ≥ 0 ≥ ˙̃

f+
ij (0) with equality if and only if

vTij0uij0 = 0.
Proof: We start from the closed formula for θij given in

(81) and we compute the left and right derivatives θ̇−ij(0) and
θ̇+
ij(0). Following the definition and computations in (89)–

(94), the Taylor expansion of the argument of arccos in (98)
around t = 0 is given by:

gD0(t) = −1 + (vTij0uij0)2t2 + o(t2). (107)

The Taylor expansion of arccos around t = −1 is given by

arccos(t) = π −
√

2
√
t− 1 + o(

√
t− 1). (108)

We can combine the two Taylor expansions in the following
limits

lim
t→0±

θij(t)− θij(0)

t
= lim
t→0±

−
√

2
√

(vTij0uij0)2t2 + o(|t|)

t

= lim
t→0±

−
√

2|vTij0uij0||t|+ o(|t|)
t

. (109)

The left and right derivatives of θij around t = 0 are therefore

θ̇−ij(0) = lim
t→0−

θij(t)− θij(0)

t
=
√

2|vTij0uij0| (110)

θ̇+
ij(0) = lim

t→0+

θij(t)− θij(0)

t
= −
√

2|vTij0uij0| (111)

The claim then easily follows.
The result of this lemma can be extended with the following
corollary.

Corollary 24: We can always choose vi and vj so that
˙̃
f−ij (0) > 0 >

˙̃
f+
ij (0) with a strict inequality.

Proof: In the proof of Prop. 23, pick vi = 0 and
vj = uij0. The claim then follows.
We now show that this corollary is in fact true for the more
general case with N > 2 rotations. Expanding the notation
defined in §II and in the proof of Prop. 8, let ϕ̃π(t) =

ϕπ
(
R̃
?
(ε)
)
. Then, we have the following proposition

Proposition 25: There always exists a tangent vector W ∈
TR?SO(3)N such that ˙̃ϕ−π (0) > ˙̃ϕ+

π (0) with strict inequality.
This implies that ϕ̃(0) > ϕ̃(t) for t 6= 0 and t in a
neighborhood of zero.

Proof: Let W = {wi}i∈V . For an arbitrary (̂ı, ̂) ∈ Eπ ,
pick wı̂ and w̂ so that ˙̃

f−ı̂̂ (0) >
˙̃
f+
ı̂̂ (0) (see Corol. 24).

Since ˙̃ϕ±π (0) =
∑

(i,j)∈Eπ
˙̃
f±ij (0), and from Prop. 23, the

claim follows.



H. Proof of Lemma 15

Proof: If ϕ̃ is differentiable at ε0, then ˙̃ϕ−(ε0) =
˙̃ϕ+(ε0) by definition. Then, assume that ϕ̃ is not differentiable

at ε0, and define ϕ̃π(ε) = ϕπ(R̃0) and ϕ̃π̄(ε) = ϕπ̄(R̃0),
where ϕπ and ϕπ̄ are defined as in (18). From Prop. 23
we have ˙̃ϕ−π (ε0) ≥ ˙̃ϕ+

π (ε0). At the same time, since ϕ̃π̄ is
differentiable at ε0, we have ˙̃ϕ−π̄ (ε0) = ˙̃ϕ+

π̄ (ε0). The claim
then follows from the fact that ϕ̃(ε) = ϕ̃π(ε) + ϕ̃π̄(ε).

I. Quadratic upper bounds

Proposition 26: Let ϕ̃(ε) be a continuous function which
is twice differentiable everywhere on R+ except for a
countable ordered set of isolated points {ε2, ε3, . . .} ⊂ R,
0 < ε2 < ε3, etc. By convention, let ε1 = 0. Assume
¨̃ϕ(ε) ≤ µ̃max for all ε > 0 where ϕ̃(ε) is twice differentiable
and with µ̃max > 0. Define

uε0(ε)
.
= ϕ̃(ε0) + ˙̃ϕ+(ε0)(ε− ε0) +

µ̃max

2
(ε− ε0)2, (112)

with ε0 > 0 arbitrary.
1) We have the bounds ϕ̃(ε) ≤ uε0(ε) and ˙̃ϕ(ε) ≤ u̇ε0(ε)

for ε ∈ [ε0; mini:εi>ε0 εi].
2) If ˙̃ϕ+(ε0) < 0, then uε0(ε) ≤ uε0(ε0) for ε ∈ [ε0; ε0−

2 ˙̃ϕ+(ε0)
µ̃max

].
3) uε0(ε) = uε0(ε?) + u̇ε0(ε?)(ε − ε?) + µ̃max

2 (ε − ε?)2

for any ε, ε? ∈ R.
4) If ˙̃ϕ+(εi) ≤ ˙̃ϕ−(εi) with i ∈ {2, 3, . . .}, then ϕ̃(ε) ≤

uεi−1
(ε) for ε ∈ [εi−1; εi+1].

Proof: We prove each claim separately.
1) By direct computation we have uε0(ε0) = ϕ̃(ε0),

u̇ε0(ε0) = ˙̃ϕ(ε0) and üε0(ε) ≥ ¨̃ϕ(ε), for all ε ∈
[ε0; mini:εi>ε0 εi]. Define r(ε) = uε0(ε)− ϕ̃(ε). Then
r is convex because r̈(ε) ≥ 0. Also, ṙ(ε0) = 0, hence r
reaches its minimum r(ε0) = 0 for ε = ε0. This implies
r(ε) ≥ 0 and ṙ(ε) ≥ 0 for all ε ∈ [ε0; mini:εi>ε0 εi],
and the claim follows.

2) Let εmin be the minimizer of uε0(ε). Since u is a
convex parabola and u̇ε0(ε0) = ˙̃ϕ+(ε0) < 0, we have
εmin > 0. Also, since parabolas are symmetric around
the minimizer, we can deduce that ϕ̃(ε) < ϕ̃(ε0) for
ε ∈

(
ε0, ε0 + 2(εmin − ε0)

)
(see Figure 4). From the

condition u̇ε0(εmin) = 0 we get εmin = ε0 −
˙̃ϕ+(ε0)
µ̃max

3) Can be verified by substitution and direct computation.
4) Notice that

uεi−1(ε) =

uεi−1
(εi) + u̇εi−1

(εi)(ε− εi) +
µ̃max

2
(ε− εi)2

≥ ϕ(εi) + ˙̃ϕ+(εi)(ε− εi) +
µ̃max

2
(ε− εi)2

= uεi(ε) (113)

for ε− εi ≥ 0. The first equality comes from claim 3,
while the inequality comes from the fact that, according
to claim 1 and the assumptions, u̇εi−1

(ε) ≥ ˙̃ϕ−(εi) ≥
˙̃ϕ+(εi). However, we already know that uεi−1(ε) ≥

ϕ̃(ε) for ε ∈ [εi−1, εi] and uεi(ε) ≥ ϕ̃(ε) for ε ∈
[εi, εi+1]. The claim follows.


