
DISTRIBUTED POSE AVERAGING IN CAMERA NETWORKS VIA CONSENSUS ON SE(3)

Roberto Tron, René Vidal

Center for Imaging Science
Johns Hopkins University

Baltimore MD 21218, USA

Andreas Terzis

Computer Science Department
Johns Hopkins University

Baltimore MD 21218, USA

ABSTRACT
In this paper, we propose distributed algorithms for esti-

mating the average pose of an object viewed by a localized
network of camera motes. To this effect, we propose dis-
tributed averaging consensus algorithms on the group of 3-D
rigid-body transformations, SE(3). We rigorously analyze
the convergence of the proposed algorithms, and show that
naive generalizations of Euclidean consensus algorithms fail to
converge to the correct solution. We also provide synthetic ex-
periments that confirm our analysis and validate our approach.

Index Terms— camera sensor networks; pose estimation;
consensus; optimization on manifolds.

1. INTRODUCTION

Recent hardware innovations have produced low-power, em-
bedded computers (i.e., motes), equipped with small cameras
that can self-organize into wireless mesh networks. These
disruptive technologies provide the opportunity to devise com-
pelling new applications at the intersection of sensor networks
and computer vision. In particular, one can rethink many of
the classical computer vision applications such as structure
from motion (SfM), target tracking and object recognition, in
the context of scenes observed by a large number of cameras.

A number of fundamental challenges must be addressed
for this promise to be fulfilled. Specifically, most computer
vision algorithms assume that all the data (i.e., the images) are
available on a single computer where centralized processing is
possible. However, this paradigm is inherently incompatible
with sensor networks for two reasons. First, it requires the
transmission of large volumes of raw data. Second, it demands
processing resources not available in mote-class devices.

One is thereby naturally drawn to distributed algorithms,
in which motes analyze the raw data locally and collaborate
to reach a shared, global analysis of the scene. This approach
is intuitively attractive, because it affords nodes to exchange
only distilled information that is relevant to the collaboration.
Because such information can be expressed in compact form
for most applications –the pose of an object, for example, lives
in a six-dimensional manifold– this approach can result in
radical energy savings.

Prior work. Unfortunately, existing distributed sensing algo-
rithms are not suited to our class of problems. For example,
distributed consensus algorithms1 that have been used exten-
sively in sensor networks (see [1, 2, 3, 4, 5] and the references
therein) operate on low-dimensional measurements (e.g., tem-
perature) which lie in a Euclidean space. On the other hand,
most of the quantities involved in the visual representation of a
scene are not directly measurable (i.e., they do not correspond
to the images that the nodes see) and belong to spaces with
rich and complex non-Euclidean structures (e.g., Lie groups).
Consequently, a principled treatment of such data requires
the use of optimization on manifolds. While optimization on
manifolds has been widely used in computer vision problems
such as 3D reconstruction [6], 3D motion segmentation [7],
and manifold clustering [8], relatively less work has been done
in extending consensus algorithms to non-Euclidean data [9].

Multiple papers address the localization of camera net-
works [10, 11, 12, 13, 14, 15, 16]. Semi-automatic calibration
methods use laser printed textures mounted on a board [10]
or modulated LED emissions [11, 12]. Automatic methods
perform local SfM via robust bundle adjustment [15], and
integrate the information using belief propagation [16].

Paper contributions. We posit that a natural framework for
obtaining a consistent estimate of the pose of an object is by us-
ing consensus. The key question is how to design a local SfM
algorithm that (1) replaces the local average algorithm in the
classical consensus problem and (2) converges to a consistent
global estimate of the 3D pose when iteratively applied. To
the best of our knowledge, there is no prior work on fully auto-
matic and distributed object pose estimation using extensions
of consensus algorithms. Also, there are no transcriptions of
SfM constraints into distributed averaging.

This paper makes the following three contributions. First,
we demonstrate that generalizing existing consensus algo-
rithms from the Euclidean to the non-Euclidean setting is
non-trivial. In fact, we show that naive extensions fail to con-
verge to the correct solution. Second, we present distributed
algorithms for solving a simple yet foundational computer
vision problem: estimating the pose of an object viewed by

1Consensus algorithms are also known as information consensus, consen-
sus averaging, agreement protocols, etc.

978-1-4244-2665-2/08/$25.00 c©2008 IEEE

all the cameras in a network. More specifically, we devise
distributed algorithms for performing consensus on the group
of 3-D rigid motions in order to average the pose of the object
in question. Our algorithms make use of the geodesic distance
in SE(3), in contrast to the Euclidean distance adopted by
traditional consensus approaches. As a result, our contribution
is precisely to propose algorithms for estimating the average
pose as the Karcher mean on this manifold in a distributed
fashion. These algorithms lay the foundation necessary for
future directions of research in this area. Finally, we evaluate
the convergence and performances of the proposed algorithms
both analytically and experimentally using simulations.
Why optimization on manifolds? As we will show later in
the paper, averaging the pose of an object requires computing
averages of rotations. To solve this problem, besides employ-
ing optimization on manifolds, other techniques have been
previously used in the literature. Popular approaches are:

• Normalized quaternions: all the rotations are converted
to quaternions which are subsequently averaged by con-
sidering them as Euclidean vectors. The resulting quater-
nion is then normalized and the corresponding rotation
is treated as the desired average.

• Euclidean average and projection: the rotations are
treated as 3× 3 matrices and averaged in the Euclidean
sense. Since, in general, the resulting matrix is not a
proper rotation, an additional projection step is required.

As noted in [17], these approaches use approximations
of the geodesic distance, which result in efficient ways for
computing approximations of the geometric mean of rotations.
However, applying these methods in a distributed setting is not
straightforward. In the case of quaternions, this is because of
a well-known ambiguity in which two quaternions q and −q
represent the same rotation. A centralized algorithm usually
overcomes this difficulty by choosing one of the quaternions as
a reference and then changing the signs of the others such that
their scalar product with the reference is positive. If and how
this may be done in a distributed fashion (i.e., without choosing
a central node as reference) is an open question. On the other
hand, using the projection of the Euclidean average of the
rotation matrices does not take into account the curvature of
the manifold. Hence, the convergence of distributed averaging
to the desired mean is not guaranteed, as we will show in §3.1.
Paper outline. The rest of the paper is organized as follows.
§2 presents a review of traditional consensus algorithms that
deal with Euclidean data. It also reviews the basics of differ-
ential geometry with a focus on optimization on manifolds.
Having introduced the necessary mathematical framework,
in §3 we propose generalizations of classical consensus ap-
proaches to SE(3) and study their convergence properties. §4
extends these algorithms to object pose estimation in a camera
sensor network. Finally, §5 presents results on synthetic data
that validate the different aspects of our proposed framework.

2. MATHEMATICAL BACKGROUND

In this section, we review some basic concepts related to Eu-
clidean consensus algorithms and differential geometry that
are relevant to our algorithms.

2.1. Review of Euclidean consensus algorithms

Consider a sensor network with N nodes. The communica-
tion in the sensor network can then be represented using an
undirected graph G = (V,E). The set V = {v1, . . . , vN}
contains the vertices of the graph, where vi ∈ V represents
the i-th camera sensor. The set E ⊂ V ×V contains the edges
of the graph and describes the communication links between
these nodes. More specifically, if nodes i and j can directly
communicate with each other, then the pair {i, j} ∈ E. Given
a graph G, we define its adjacency matrix A ∈ R|V |×|V | as

[A]ij =

{
1 if {i, j} ∈ E

0 otherwise
. (2.1)

Note that A is symmetric since G is undirected. We also define
the degree of a node vi as deg(vi) =

∑
j [A]ij , i.e., the number

of edges in which vi appears. The maximum degree of G is
defined as ∆G = maxi deg(vi).

In the Euclidean setting, we associate with each node i =
1, . . . , N , a scalar state xi ∈ R. We then say that the nodes
have reached consensus when the following condition holds

x1 = x2 = . . . = xN = α. (2.2)

The value α is called the collective decision of the network.
A consensus algorithm defines a protocol, i.e., a rule that

each node has to follow to update its state so that all the
nodes reach consensus. To this effect, the task of a distributed
consensus algorithm is to define a protocol that uses only
interactions between neighboring nodes.

A popular discrete time protocol for iteratively computing
the mean of the initial states α = 1

n

∑N
i=1 xi is given by

x
(k+1)
i = x

(k)
i + ε

∑
j∈Ni

aij(x
(k)
j − x

(k)
i), (2.3)

where Ni is the set of neighbors of the i-th node, x
(k)
i is the

state of the i-th node at the k-th iteration, and ε ≤ 1
∆G

is
the learning rate. Note that the sum over Ni can be safely
extended to {1, . . . , N}, because aij = 0 if i and j are not
neighbors. Eq. (2.3) can then be rewritten in terms of the
updates u

(k)
i = ε

∑
j∈Ni

aij(x
(k)
j − x

(k)
i), as

x
(k+1)
i = x

(k)
i + u

(k)
i . (2.4)

It is easy to see that (2.3) is in fact a gradient descent
algorithm that minimizes the function

ϕ(x1, x2, . . . , xN) =
1
2

∑
{i,j}∈E

aij(xi − xj)2. (2.5)

Also, it is easy to verify that the mean of the states is preserved
at each iteration, i.e.,

N∑
i=1

x
(k)
i =

N∑
i=1

x
(k+1)
i = Nα. (2.6)

Equivalently, the sum of the updates over all the nodes is zero:

N∑
i=1

u
(k)
i = 0. (2.7)

When the graph G is connected, the minimum of (2.5)
is achieved when the nodes reach a consensus, i.e., when all
the states are equal to the average of the initial states. More
information on this protocol can be found in [4]. Note that
this algorithm can be readily extended to the case xi ∈ Rn by
applying it to each coordinate separately.

2.2. Review of Riemannian geometry

Given a smooth manifold M, we define a smooth curve in
the manifold as a smooth function γ(t) : R → M. The
tangent space of M at a point x ∈ M, denoted as TxM,
is then defined as the span of the tangent vectors for all the
possible curves γ passing through x. A Riemannian metric is a
continuous collection of dot products 〈·|·〉x. Using this metric,
we define the length of a curve between two points x, y ∈ M
as

Lb
a(γ) =

∫ b

a

〈γ̇(t)|γ̇(t)〉
1
2
γ(t)dt, (2.8)

where γ(a) = x and γ(b) = y. A curve between x and y with
minimum length is called a geodesic. The distance between
two points in the manifold is subsequently defined as the length
of the geodesic curve between them.

d(x, y) = L1
0(γ), γ(0) = x, γ(1) = y. (2.9)

We can then define the exponential map expx(v) : TxM→
M, which maps each tangent vector v ∈ TxM to the point
in M obtained by following the geodesic passing through
x with direction v

‖v‖x
for a distance ‖v‖x = 〈v, v〉x. The

exponential map is a diffeomorphism between a sufficiently
small neighborhood of 0 in TxM and a neighborhood of x in
M. The logarithm map is the inverse of the exponential map
and is denoted as logx = exp−1

x . Note that if y = expx(v)
then

‖ logx(y)‖x = ‖v‖x = d(x, y). (2.10)

2.3. Lie groups

A Lie group G is an algebraic group which can also be con-
sidered as a differentiable Riemannian manifold. In particular,
the group is characterized by a unique identity element e ∈ G
and two group operations

multiplication g1g2 : G×G → G, and

inversion g−1 : G → G,

which are differentiable mappings. The tangent space at the
identity is called the Lie algebra of the group. We denote as
exp(·) and log(·), respectively, the exponential map and the
logarithm map at the identity e. These mappings at a generic
point X ∈ G can be computed using parallel transport as:

expX(A) = X exp(X−1A), (2.11)

logX(B) = X log(X−1B), (2.12)

with A ∈ TXG and B ∈ G.
In this paper, we are particularly interested in the special or-

thogonal group SO(3) = {R ∈ R3×3 : R>R = I,det(R) =
1}. This is the group of orthogonal 3 × 3 matrices having a
determinant equal to one, and essentially describes all possible
3-D rotations. The Lie algebra for this group is so(3), the
space of 3 × 3 skew-symmetric matrices. In this case, the
exponential map at the identity exp(ŵ), ŵ ∈ so(3), can be
defined using the well-known Rodrigues’ formula [18], as

exp(ŵ) = I +
ŵ

‖w‖
sin(‖w‖) +

ŵ2

‖w‖2

(
1− cos(‖w‖)

)
,

(2.13)
where ŵ ∈ so(3) is the matrix generating the cross product by
w ∈ R3, i.e., ŵv = w×u for all u ∈ R3. One can then derive
the logarithm map at the identity as

θ = arccos
(

tr(R)− 1
2

)
, (2.14)

log(R) =


1

2 sin θ
(R−R>) if θ 6= 0

0 if θ = 0
, (2.15)

where tr(R) is the trace of the matrix. It can then be shown
that the distance in SO(3) is given by

d2(R,Q) = −1
2

tr{[log(R>Q)]2} R,Q ∈ SO(3).
(2.16)

Let v ∈ TRSO(3) be a vector in the tangent space of
SO(3) at R and let γ(t) = R exp(tv) be the geodesic passing
through R and having v as its tangent. The covariant derivative
of a function f : SO(3) → R at R ∈ SO(3) (denoted as
∇Rf ∈ so(3)) is the unique vector defined as

tr(v>∇Rf) =
d

dt
f(γ(t))

∣∣∣∣
t=0

. (2.17)

Note that the covariant derivative of a function on the mani-
fold can be treated as the equivalent of the conventional deriva-
tive of a function defined on a Euclidean manifold. Therefore,
it can be used for performing optimization on M using algo-
rithms such as gradient descent. In particular, we will use the
covariant derivative of the squared distance with respect to one
of the arguments. This covariant derivative can be explicitly
evaluated as (see [19] for a proof)

∇Rd2(R,Q) = −R log(R>Q). (2.18)

2.4. Karcher mean

Let {xi}N
i=1 be a set of points in a smooth Riemannian mani-

foldM. The Riemannian metric can then be used to obtain the
geometric distance d(x, y) between any two points x, y ∈M.
The Karcher mean of this set is defined as the point x̄ ∈ M
for which the sum of squared distances

N∑
i=1

d2(xi, x̄) (2.19)

is minimized. It can be shown (see [19]) that a necessary and
sufficient condition for x̄ to be the Karcher mean is that

N∑
i=1

logx̄(xi) = 0. (2.20)

This condition leads to the following iterative algorithm for
computing the Karcher mean (see [20, 21, 22] for details)

1. Set initial mean in M as x̄ = x1.

2. Compute the mean in Tx̄M as w = 1
N

∑N
i=1 logx̄(xi).

3. While ‖w‖ < δ, update x̄ to x̄ = expx̄(εw), for ε ≤ 1
and go to step 2.

Conditions for the convergence of this algorithm in the case
of SO(3) are given in [21]. Essentially, a sufficient condition
for the Karcher mean to exist and be unique is that the N
rotations are “close enough” to each other.

3. DISTRIBUTED OBJECT POSE ESTIMATION
WITH RESPECT TO A FIXED REFERENCE

In what follows, we consider an object in a scene that is as-
sumed to be visible to all the N cameras in the network. Fur-
thermore, we assume that each of these i = 1, . . . , N nodes
can individually estimate the pose of the object relative to a
common reference frame as a pair of rotation and translation
gi = (Ri, Ti) ∈ SE(3) = {(R, T) : R ∈ SO(3), T ∈ R3}.
The case where each camera estimates the pose of the object
with respect to its own reference frame will be considered in
the next section. Our goal then is to estimate an average pose
ḡ from all the measurements in a distributed fashion, i.e., by
exchanging data only between neighboring pairs of nodes. We
propose to do so by using a consensus algorithm on SE(3).

Since any pose can be represented with a rotation and a
translation, SE(3) is homeomorphic to SO(3)× R3. In such
a scenario, one can use a standard result that when the data lie
on a manifold which is the direct product of two spaces, one
can separately consider the metrics and covariant derivatives
associated with the two spaces [23]. Therefore, we perform
our optimization on the individual spaces SO(3) and R3. Note
that in the case of R3, we can employ traditional Euclidean
consensus algorithms as discussed in §3. Hence, we focus our
attention on consensus algorithms for SO(3), i.e., the rotation
component of the pose of the object, using its Riemannian
metric.

3.1. Consensus in the manifold (SO(3))

Our first algorithm, which we refer to as consensus in the
manifold, can be considered as a direct extension of the classic
consensus algorithm to the non-Euclidean case. Essentially, we
follow a Riemannian gradient descent scheme for minimizing
the cost function in (3.1), as opposed to the traditional gradient
descent method. In particular, we substitute the derivatives of
the corresponding cost function in the Euclidean space (2.5),
with covariant derivatives on the manifold. Consequently, the
update step is modified so as to move along the geodesics
defined by the covariant derivatives of the objective function.
In this manner, we ensure that the solution estimated by the
optimization scheme always lies on the required manifold.

Let us denote the measurement of the object’s rotation from
the i-th node as Ri ∈ SO(3). We then define the potential
function ϕ that is to be minimized in order to estimate the
mean rotation, as

ϕ(R1, . . . , RN) =
1
2

N∑
i=1

N∑
j=1

aijd
2(Ri, Rj), (3.1)

where d(·, ·) is the distance between two elements of SO(3).
The covariant derivative of ϕ with respect to the k-th rotation,
can then be explicitly calculated as

∇Rk
ϕ = ∇Rk

∑
i 6=k

aikd2(Ri, Rk) =−
N∑

i=1

aikRk log(R>
k Ri).

(3.2)

In the simplification of the above equation, we used the facts
that aij = aji, d(·, ·) is symmetric and d(Rk, Rk) = 0.

Our proposed consensus protocol on SO(3) corresponds
to using a Riemannian gradient descent search for minimizing
the cost function ϕ. In what follows, we use R

(l)
k to denote

the estimate of Rk at the l-th iteration of our algorithm. Essen-
tially, R

(l)
k is updated along the geodesic corresponding to the

covariant derivative direction −∇
R

(l)
k

ϕ with a step size ε, as

R
(l+1)
k = exp

R
(l)
k

(−ε∇
R

(l)
k

ϕ)

= R
(l)
k exp

(
R

(l)
k

>
R

(l)
k ε

N∑
i=1

aik log(R(l)
k

>
R

(l)
i

)

= R
(l)
k exp

(
ε

N∑
i=1

aik log
(
R

(l)
k

>
R

(l)
i

))
. (3.3)

This update for R
(l)
k can be rewritten more compactly as

R
(l+1)
k = R

(l)
k U

(l)
k , (3.4)

where the update U
(l)
k is defined as

U
(l)
k = exp(ε

N∑
i=1

aik log(R(l)
k

>
R

(l)
i). (3.5)

The following proposition states the convergence properties of
the consensus in the manifold protocol.

Proposition 1. The consensus in the manifold protocol (3.3)
converges to a local minimum of ϕ.

Proof. Notice that all the terms in (3.1) are non-negative,
i.e., aij ≥ 0 and d2(Ri, Rj) ≥ 0. Therefore, the cost function
ϕ is non-negative for all R1, . . . , RN ∈ SO(3) and bounded
from below. Since our algorithm descends the potential func-
tion ϕ at each iteration, it is guaranteed to converge to a local
minimum of the function ϕ.

Although this proposition only guarantees convergence to
a local minimum, in our experiments we have noticed that our
protocol always converges to a global minimizer of ϕ. Our
ongoing research aims at investigating whether the proposed
protocol can converge to any of the potential local minimizers,
and if so, under what conditions this happens. Nevertheless,
we conjecture that, similarly to the centralized Karcher mean
algorithm, the proposed protocol does converge to a global
minimizer when the rotations Ri are “close enough” to each
other. The following proposition analyzes the properties of
such a global minimizer.

Proposition 2. If G is connected, the global minimizer of ϕ is
of the form (R1, R2, . . . , RN) = (Rc, Rc, . . . , Rc) for some
Rc ∈ SO(3).

Proof. As we have seen before, ϕ is non-negative. In addition,
we note that ϕ = 0 implies that for each pair {i, j} ∈ E,
we have either aij = 0 or d2(Ri, Rj) = 0. Also notice
that the distance d(Ri, Rj) = 0 if and only if the associated
rotations are equal, i.e., Ri = Rj . Since G is connected,
we can conclude from the above that ϕ achieves its global
minimum ϕ = 0, if and only if ∀i, j : Ri = Rj = Rc.

It is important to note that the global minimizer of ϕ is
not unique. This can be verified by observing that ϕ = 0
whenever ∀i = 1, . . . , N,Ri = Rc for any Rc ∈ SO(3). In
principle the same phenomena occurs in the Euclidean case,
as can be seen by setting xi = xj in Eq. (2.5). However, in
the Euclidean case the average consensus protocol converges
to the unique global mean, because the sum of the updates at
each step preserves the mean of the data, as shown in Eq. (2.7).

In the case of SO(3), by using the fact aij = aji and
log(R>Q) = − log(Q>R) when R,Q ∈ SO(3), we have
that the sum of the logarithms of the updates over the nodes is
zero:

N∑
k=1

log(U (l+1)
k) = ε

N∑
k=1

N∑
i=1

aik log(R(l)
k

>
R

(l)
i) = 0. (3.6)

However, this is not sufficient to make the protocol converge
to the global Karcher mean of the N rotations. To see this, let
us denote the Karcher mean of the rotations R

(l)
k at the l-th

iteration by R̄. From the definition of the Karcher mean we
have that

N∑
k=1

log(R̄>R
(l)
k) = 0. (3.7)

Now, recall the Campbell-Baker-Hausdorff (CBH) formula:

exp(A) exp(B) = exp(C), (3.8)

where A, B, and C are elements of the Lie algebra so(3), and

C =A+B+
1
2
[A,B]+

1
12

(
[A, [A,B]]+[B, [B,A]]

)
+...]

=A+B+O(|(A,B)|) (3.9)

From our consensus protocol, we see that after one iteration:
N∑

k=1

log(R̄>R
(l+1)
k) =

N∑
k=1

log(R̄>R
(l)
k U

(l)
k)

=
N∑

k=1

log(R̄>R
(l)
k) +

N∑
k=1

log(U (l)
k)

+O
(
|(R̄>R

(l)
k , log(U (l)

k)|
)

= 0 +O
(
|(R̄>R

(l)
k , log(U (l)

k)|
)

(3.10)

where we used (3.6) and (3.7) to arrive at the last equality.
Hence, we see that the Karcher mean at iteration l is equal to
the Karcher mean at iteration l + 1 only if the higher order
terms can be ignored. We have shown the following result.

Proposition 3. The consensus in the manifold protocol (3.3)
does not generally converge to the Karcher mean.

As a consequence, it is interesting to consider the particular
case where all the rotations have a common axis and belong to
a one-parameter family in SO(3). In this particular situation, it
is possible to write Ri = exp(θiŵ), where w ∈ R3 represents
the common rotation axis and θi ∈ R are the rotation angles.
Therefore, all the rotation updates U

(l)
k also belong to the

same family. Hence, they commute with each of the rotations,
i.e., R(l)

i U
(l)
j = U

(l)
j R

(l)
i , i, j ∈ 1, . . . , N . When this happens,

the Lie brackets and the other higher order terms of (3.10) are
zero and the algorithm therefore converges to the correct mean.

3.2. Consensus in the tangent space (so(3))

As we have seen above, the estimate of the global Karcher
mean obtained by the consensus in the manifold algorithm does
not necessarily remain constant at each iteration. To overcome
this issue, we propose a second method called consensus in the
tangent space that performs consensus on the tangent space
to the manifold rather than in the manifold itself. This new
method follows the same steps as the global iterative algorithm
for estimating the Karcher mean described in §2.4. Therefore,
it has the same convergence properties as the global algorithm,
except that it requires a common initialization for all the nodes.

In the consensus in the tangent space protocol, all the
nodes start with a common initialization R

(1)
i = Rc. At each

iteration l, every node i computes the covariant derivative of
the distance between the common estimate R

(l)
i and its own

rotation measurement Ri as

∇
R

(l)
i

d2(R(l)
i , Ri) = R

(l)
i log(R(l)

i

>
Ri). (3.11)

The rotation estimate at each node is then updated as

R
(l+1)
i = R

(l)
i U (l), (3.12)

where U (l) is a rotation matrix that is computed as

U (l) = exp
(

1
N

N∑
i=1

log
(
R

(l)
i

>
Ri

))
. (3.13)

Notice that (3.13) requires the computation of the quantity

w̄ = 1
N

∑N
i=1 log(R(l)

i

>
Ri) ∈ so(3), which involves mea-

surements from the entire network. In order to compute w̄ in a
distributed fashion, notice that each node can compute the ma-

trix wi = log(R(l)
i

>
Ri) ∈ so(3). Since so(3) is isometric to

R3, we can interpret each wi as a vector in R3, and compute w̄
using the Euclidean consensus algorithm. Upon convergence,
all the nodes share the same value of U (l) and we can compute
R

(l+1)
i using (3.12). Notice that since the initial rotations R

(1)
i

were set to the same value, the estimates R
(l)
i at the end of the

l-th step, will be the same for all the nodes. Therefore, we can
estimate the global Karcher mean by repeated application of
the consensus algorithm in the tangent space, as follows:

1. Set initial rotations as R
(1)
i = Rc ∀i = 1, . . . , N .

2. Compute the mean w̄ = 1
N

∑N
i=1 log(R(l)

i

>
Ri) across

the network using an Euclidean consensus algorithm.

3. While ‖w̄‖F < δ, compute the updates as R
(l+1)
i =

R
(l)
i exp(w̄), i = 1, . . . , N and goto step 2.

By comparing this procedure with the global algorithm
used for estimating the Karcher mean in §2.4, it is easy to see
that both algorithms modify the estimated mean through the
same sequence of updates. Therefore, the consensus algorithm
in the tangent space has the same convergence properties as
the global algorithm.

3.3. Combined algorithm

In summary, we have presented two consensus algorithm on
SO(3) with complimentary properties. The consensus in the
manifold algorithm is automatically initialized with the rota-
tion Ri at each node, as in the classical consensus algorithm.
Then, the rotations at each node are updated, and the estimates

of the different nodes converge to a common value. Unfortu-
nately, due to the curvature of SO(3), this common value is
only an approximation of the true global Karcher mean.

On the other hand, the consensus in the tangent space
algorithm is provably convergent to the true Karcher mean.
However, it requires a common initialization Rc, which is
independent from the actual data Ri. This is potentially a
problem, because Rc could be in the cut locus of one of the
Ri’s. In this case, the logarithm map is not defined and the
algorithm’s framework breaks down.

To overcome this issue, once could initialize the method
using Rc = Rk for some k = 1, . . . , N . Alternatively, one can
merge the two consensus algorithms in the following manner.
First, we run the consensus in the manifold until it converges,
thereby obtaining a set of rotations that are costant across the
network and close to the true Karcher mean. This result is
used to initialize the consensus in the tangent space, which
then converges to the Karcher mean.

4. DISTRIBUTED OBJECT POSE ESTIMATION IN A
LOCALIZED CAMERA NETWORK

In the discussion above, we have implicitly used the fact that all
the poses {(Ri, Ti)}N

i=1 are provided with respect to the same
reference frame. In this section, we relax this condition and
extend our algorithms to the case where each node measures
the object pose with respect to its own reference frame.

Let h0 = (S0, t0) ∈ SE(3) be an arbitrary reference
frame. For the sake of simplicity, we choose h0 = (I,0).
Let hi = (Si, ti), i = 1, . . . , N be the poses of the nodes
with respect to the reference frame. We will assume that the
network is localized, i.e., each node i = {1, . . . , N} knows
the pose of node j (where {i, j} ∈ E) with respect to its
frame of reference. We use hij = (Sij , tij) ∈ SE(3), with
i = {1, . . . , N}, {i, j} ∈ E, to indicate the pose of node i in
the reference system of node j. It can easily be verified that

hij = hjh
−1
i . (4.1)

This change of coordinates allows us to transform pose esti-
mates from coordinate frame i to coordinate frame j as

(Rj , Tj) = (SijRi, SijTi + tij). (4.2)

These simple considerations will enable us to modify the
consensus algorithms presented in the previous section in order
to relax the constraint that all the rotations need to be expressed
in the same coordinate system.

4.1. Consensus in the manifold

When the rotations are written with respect to different coor-
dinate systems, the cost function in (3.1) minimized by the
consensus in the manifold algorithm needs to be modified to

ϕ(R1, . . . , RN) =
1
2

N∑
i=1

N∑
j=1

aijd
2(Si0Ri, Sj0Rj). (4.3)

This is essentially the same cost function as the one in (3.1),
except that the Ri’s are transformed from frame i to a common
reference frame by the Si0’s. Notice that the distance d(·, ·) is
left-invariant with respect to the action of the rotation group,
i.e., d(R′, R′′) = d(RR′, RR′′), ∀R,R′, R′′ ∈ SO(3). As a
consequence, each summand in the cost function ϕ does not
depend on the choice of its coordinate system. In fact, since
Sij = S−1

j0 Si0, we can rewrite ϕ as

ϕ(R1, . . . , RN) =
1
2

N∑
i=1

N∑
j=1

aijd
2(SijRi, Rj), (4.4)

which brings the rotation at node i into the coordinate system
of node j as SijRi. It follows that the gradient of ϕ does not
depend on the choice of the coordinate system either.

Therefore, we can implement the consensus in the mani-
fold algorithm as before, i.e., R

(l+1)
k = R

(l)
k U

(l)
k , except that

the update matrices U
(l)
k are modified to

U
(l)
k = exp(ε

N∑
i=1

aik log(R(l)
k

>
SikR

(l)
i)). (4.5)

Notice that Eq. (4.5) is the same as Eq. (3.5), except that R
(l)
i

is now written with respect to the coordinate frame of node k.

4.2. Consensus in the tangent space

Adapting the consensus in the tangent space to the case where
the rotations are in different reference frames requires only
a modification in the initialization of the nodes. To see this,
recall that this algorithm proceeds by applying a common up-
date U (l) to all the nodes, i.e., R

(l+1)
i = R

(l)
i U (l). The update

is computed as in (3.13) by performing Euclidean consensus

on the quantities log
(
R

(l)
i

>
Ri

)
. Since log(R(l)

i

>
S>

i SiRi) =

log(R(l)
i

>
Ri) for any Si ∈ SO(3), the update does not de-

pend on the choice of the coordinate system at each node.
Therefore, U (l) can be still computed as in (3.13), as long
as Ri and R

(l)
i are expressed in the same coordinate system.

In order for this to be the case, we only need to modify the
initialization of the nodes. Specifically, the initial values R

(1)
i

have to be consistent with the localization of the network, so
that R

(1)
i and Ri are in the same reference frame.

In conclusion, we require a method to generate this con-
sistent initialization, bearing in mind the assumption that only
the relative transformations hij between neighbors are known.
This motivates our final algorithm which we propose below.

4.3. Combined algorithm

In order to initialize the consensus in the tangent space method,
we can set R

(1)
1 = R1 and then propagate its estimate to the

entire network as R
(1)
j = S1jR1, j = 2, . . . , N . Alternatively,

we can use the consensus in the manifold as an initialization

for the consensus in the tangent space, similarly to what we
did in Section 3.3. The latter solution has two advantages: first,
it provides a fully distributed way to obtain an initialization
consistent with the network localization (which is more robust
to the failure of single nodes). Second, the solution found by
the first stage is close to the true Karcher mean, therefore fewer
iterations are required for the convergence of the consensus in
the tangent space algorithm.

5. EXPERIMENTS

We tested our algorithms on synthetic data by simulating a
network with N = 20 nodes connected with a k-regular graph,
k = 6. We generated the measurements for the nodes by
adding noise to the ground truth pose

g = {I,
[
5 5 5

]>} ∈ SE(3). (5.1)

In SO(3) we used as noise term rotations around a random
axis (drawn from a uniform distribution on S2) by an angle
generated from a Gaussian distribution with zero mean and
variance 20◦. However, we rejected angles drawn outside the
interval [−90◦, 90◦] in order to ensure that the Karcher mean is
actually unique [21]. For the noise in the translation space, we
simply used Gaussian noise with a covariance matrix 0.35I .

For the consensus in the manifold, we used 70 iterations.
For the consensus in the tangent space, we used 4 iterations for
the main loop and 140 iterations for the Euclidean consensus.
We initialized this algorithm with Rc = I . For the combined
algorithm, we took the result of the consensus in the manifold
and added two iterations of the consensus in the tangent space,
again with 140 iterations for the Euclidean consensus.

In our experiments the number of iterations was fixed, but
a better implementation would stop when a given tolerance
for the convergence is satisfied. Note that the consensus in
the tangent space requires very few iterations for the main
loop, but it requires a really good convergence of the inner
Euclidean consensus (hence the high number of iterations) in
order to keep all the nodes aligned with high precision.

We have run two sets of experiments. In Experiment 1,
all the measurements are in a common reference frame. In
Experiment 2, we use a localized network where the reference
frames are randomly generated within a cube of dimension
20 × 20 × 20 and with uniform random orientations. We
assume that the transformations between neighboring nodes
hij are known without noise.

We repeated the experiments 100 times and collected the
initial errors for the rotations and translations, the final error
for the translations (common to all the algorithms) and the
final error for the rotations for the three algorithm. Figures 1
and 2 show histograms of these results, while Table 1 reports
the maximum errors. For the rotations, we measured the angle
of rotation in degrees, while for the translation we used the
Euclidean norm of the error. In both cases, we used the result
of the corresponding centralized algorithm as reference.

We see that the rotation errors for the consensus in the
manifold are on the order of 10−2. As expected they are not
zero but, as a first order approximation, they can be considered
sufficiently low for many applications. The errors for the
consensus in the tangent space and the combined algorithm are
on the order of 10−6 and 10−5, respectively, and are actually
zero for many of the trials, as one can see from the histograms.
In this case, the errors are mostly due to numerical issues.
The combined algorithm performs slightly worse than the
consensus in the tangent space algorithm because the residual
errors at the end of the first step (consensus in the manifold)
carry over to the second step (consensus in the tangent space).

We will now examine in more detail the trial for which the
consensus in the manifold algorithm gave the worst estimate.
Fig. 3 plots the angle between the estimate at each node and the
global Karcher mean as a function of the number of iterations.
Note that the final error is not zero, because the algorithm does
not preserve the mean of the data from one iteration to the next.
To better illustrate this point, Fig. 4 plots the error between
the Karcher mean of the R

(l)
i ’s and the global Karcher mean

at the beginning and after each iteration. As we can see, at the
beginning such error is zero, but it rapidly increases after few
iterations. This is not the case for the consensus in the tangent
space algorithm. Fig. 5 shows the error between the estimate
at each node and the global Karcher mean, with the same input
data as before. As expected, all the nodes have the same error,
because their estimates are aligned. The error decreases in a
small number of iterations (but remember that each iteration
requires to run the Euclidean consensus in the tangent space
until convergence) and the final error is zero.

6. CONCLUSION AND FUTURE WORK

We have presented a distributed consensus algorithm for com-
puting the average pose of an object from relative pose mea-
surements acquired by a localized camera sensor network. A
key contribution of our work was to demonstrate that naive
extensions of Euclidean consensus algorithms to SE(3) may
fail to converge to the correct average. To correct this issue, we
proposed a distributed consensus algorithm on SE(3), which
combines classical consensus on Euclidean spaces with op-
timization on SE(3). We also assessed the validity of our
approach through synthetic simulations.

The are a number of interesting directions in which our
work could be extended. A first direction is to apply our ap-
proach to real data, e.g., for estimating the pose of a face for
face recognition purposes. A second direction is to study con-
ditions for initializing our consensus algorithm that guarantee
convergence to the global minimum. We would like also to
modify our algorithm in order to improve its robustness to
errors in the localization of the network. Moreover, we would
like to extend our framework to the problem of network local-
ization itself and distributed bundle adjustment, by removing
the estimation of the pose at each node as an intermediate step

0 0.5 1 1.5 2
0

50

100

150

200

250

Norm of the error

C
o

u
n

ts

(a) Initial translation errors.

0 20 40 60 80
0

100

200

300

400

Angle error [degrees]

C
o
u
n
ts

(b) Initial rotation errors.

0 0.02 0.04 0.06 0.08
0

100

200

300

400

Angle error [degrees]

C
o
u
n
ts

(c) Final rotation errors for the consensus in the manifold.

0 0.5 1 1.5 2

x 10
−6

0

500

1000

1500

2000

Angle error [degrees]

C
o

u
n

ts

(d) Final rotation errors for the consensus in the tangent space.

0 0.5 1 1.5 2

x 10
−5

0

200

400

600

800

Angle error [degrees]

C
o

u
n

ts

(e) Final rotation errors for the combined algorithm.

Fig. 1. Experiment 1: initial and final translation and rotation
errors for all the proposed algorithms with measurements in a
common reference frame.

0 0.5 1 1.5
0

100

200

300

Norm of the error

C
o
u

n
ts

(a) Initial translation errors.

0 20 40 60 80
0

100

200

300

400

Angle error [degrees]

C
o
u
n
ts

(b) Initial rotation errors.

0 0.01 0.02 0.03 0.04 0.05 0.06
0

100

200

300

400

Angle error [degrees]

C
o
u
n
ts

(c) Final rotation errors for the consensus in the manifold.

0 0.5 1 1.5 2 2.5

x 10
−6

0

500

1000

1500

2000

Angle error [degrees]

C
o
u
n
ts

(d) Final rotation errors for the consensus in the tangent space.

0 0.2 0.4 0.6 0.8 1 1.2

x 10
−5

0

200

400

600

800

1000

Angle error [degrees]

C
o
u
n
ts

(e) Final rotation errors for the combined algorithm.

Fig. 2. Experiment 2: initial and final translation and rotation
errors for all the proposed algorithms with a localized network.

Experiment 1 Experiment 2
Consensus in SO(3) (rot) 7.19 · 10−2 5.08 · 10−2

Consensus in so(3) (rot) 1.71 · 10−6 2.41 · 10−6

Combined consensus (rot) 1.99 · 10−5 1.01 · 10−5

Translation 1.87 · 10−8 2.04 · 10−8

Table 1. Maximum errors for rotations and translations with
measurements in the same reference frame (Experiment 1) and
with localized network (Experiment 2).

10 20 30 40 50 60 70

10
−1

10
0

10
1

Iterations
A

n
g
le

s
 [
d
e
g
re

e
s
]

Fig. 3. Rotation errors between the estimate of each node and
the global Karcher mean for the worst trial of the consensus in
the manifold algorithm.

0 20 40 60 80
0

0.02

0.04

0.06

0.08

Iterations

A
n

g
le

 [
d

e
g

re
e

s
]

Fig. 4. Rotation errors between the Karcher mean of the
estimates after each iteration and the global Karcher mean
for the worst trial of the consensus in the manifold algorithm.

1 2 3 4 5
0

1

2

3

4

Iterations

A
n
g
le

s
 [
d
e
g
re

e
s
]

Fig. 5. Rotation errors between the estimate of each node and
the global Karcher mean for the consensus in the tangent space
algorithm.

and working directly with feature coordinates in the images.

7. ACKNOWLEDGEMENTS

The authors thank Avinash Ravichandran and Dheeraj Sin-
garaju for their valuable help during the writing of this paper.
The authors also thank the anonymous reviewers for their com-
ments and suggestions. This work was partially supported
by grants NSF CAREER 0447739, NSF EHS-0509101, ONR
N00014-05-1083 and WSE/APL Contract: Information Fusion
& Localization in Distributed Sensor Systems.

8. REFERENCES

[1] M. DeGroot, “Reaching a consensus,” Journal of the
American Statistical Association, vol. 69, no. 345, pp.
118–121, 1974.

[2] A. Jadbabaie, J. Lin, and A. Morse, “Coordination of
groups of mobile autonomous agents using nearest neigh-
bor rules,” IEEE Transactions on Automatic Control, vol.
48, no. 6, pp. 988–1001, 2003.

[3] R. Olfati-Saber and R. Murray, “Consensus problems
in networks of agents with switching topology and time-
delays,” IEEE Transactions on Automatic Control, vol.
49, no. 3, pp. 1520–1533, 2004.

[4] R. Olfati-Saber, J. Fax, and R. Murray, “Consensus and
cooperation in networked multi-agent systems,” Proceed-
ings of the IEEE, vol. 95, no. 1, pp. 215–233, 2007.

[5] W. Ren, R. Beard, and E. Atkins, “Information consen-
sus in multivehicle cooperative control,” IEEE Control
Systems Magazine, pp. 71–82, 2007.

[6] R. Vidal, Y. Ma, S. Hsu, and S. Sastry, “Optimal motion
estimation from the multiview normalized epipolar con-
straint,” in IEEE International Conference on Computer
Vision, 2001, vol. 1, pp. 34–41.

[7] R. Vidal and S. Sastry, “Optimal segmentation of dy-
namic scenes from two perspective views,” in Confer-
ence on Computer Vision and Pattern Recognition, 2003,
vol. 2, pp. 281–286.

[8] A. Goh and R. Vidal, “Clustering and dimensionality re-
duction on Riemannian manifolds,” in IEEE Conference
on Computer Vision and Pattern Recognition, 2008.

[9] R. Olfati-Saber, “Swarms on sphere: A programmable
swarm with synchronous behaviors like oscillator net-
works,” in IEEE Conference on Decision and Control,
2006, pp. 5060–5066.

[10] P. Baker and Y. Aloimonos, “Calibration of a multicam-
era network,” in CVPR Workshop on Omnidirectional
Vision and Camera Networks, 2000, pp. 134–141.

[11] A. Barton-Sweeney, D. Lymberopoulos, and A. Savvides,
“Sensor localization and camera calibration in distributed
camera sensor networks,” in International Conference
on Broadband Communications, Networks and Systems,
2006, pp. 1–10.

[12] R. Farrell, R. Garcia, D. Lucarelli, A. Terzis, and I-J.
Wang, “Localization in multi-modal sensor networks,”
in Third International Conference on Intelligent Sensors,
Sensor Networks and Information Processing, 2007.

[13] S. Sinha, M. Pollefeys, and L. McMillan, “Camera net-
work calibration from dynamic silhouettes,” in Inter-
national Conference on Computer Vision and Pattern
Recognition, 2004, vol. 1, pp. 195–202.

[14] S. Sinha and M. Pollefeys, “Synchronization and cali-
bration of a camera network for 3D event reconstruction
from live video,” in International Conference on Com-
puter Vision and Pattern Recognition, 2005, vol. 2, p.
1196.

[15] D. Devarajan, R. Radke, and H. Chung, “Distributed
metric calibration of ad hoc camera networks,” ACM
Transactions on Sensor Networks, vol. 2, no. 3, pp. 380–
403, 2006.

[16] D. Devarajan and R. Radke, “Calibrating distributed cam-
era networks using belief propagation,” EURASIP Jour-
nal of Applied Signal Processing, pp. 221–221, 2007.

[17] C. Gramkow, “On averaging rotations,” Journal of
Mathematical Imaging and Vision, vol. 15, no. 1-2, pp.
7–16, 2002.

[18] Y. Ma, S. Soatto, J. Kosecka, and S. Sastry, An Invita-
tion to 3D Vision: From Images to Geometric Models,
Springer Verlag, 2003.

[19] Maher Moakher, “Means and averaging in the group
of rotations,” SIAM Journal on Matrix Analysis and
Applications, vol. 24, no. 1, pp. 1–16, 2002.

[20] H. Karcher, “Riemannian center of mass and mollifier
smoothing,” Communications on Pure and Applied Math-
ematics, vol. 30, no. 5, pp. 509–541, 1977.

[21] J. Manton, “A globally convergent numerical algorithm
for computing the centre of mass on compact Lie groups,”
in International Conference on Automation, Robotics,
Control and Vision, 2004, vol. 3, pp. 2211–2216.

[22] M. Frechet, “Les elements aleatoires de nature quel-
conque dans un espace distancie,” Annales De L’Institut
Henri Poincare, vol. 10, pp. 235–310, 1948.

[23] Y. Ma, J. Košecká, and S. Sastry, “Optimization criteria
and geometric algorithms for motion and structure esti-
mation,” International Journal of Computer Vision, vol.
44, no. 3, pp. 219–249, 2001.

