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Riemannian Consensus for Manifolds
With Bounded Curvature
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Abstract—Consensus algorithms are popular distributed algo-
rithms for computing aggregate quantities, such as averages, in
ad-hoc wireless networks. However, existing algorithms mostly
address the case where the measurements lie in Euclidean space.
In this work we propose Riemannian consensus, a natural ex-
tension of existing averaging consensus algorithms to the case
of Riemannian manifolds. Unlike previous generalizations, our
algorithm is intrinsic and, in principle, can be applied to any
complete Riemannian manifold. We give sufficient convergence
conditions on Riemannian manifolds with bounded curvature and
we analyze the differences with respect to the Euclidean case. We
test the proposed algorithms on synthetic data sampled from the
space of rotations, the sphere and the Grassmann manifold.

Index Terms— Grassmann manifold, Riemannian manifold.

I. INTRODUCTION

C ONSIDER a set of low-power sensors, where each sensor
can collect measurements from the surrounding environ-

ment and can communicate with a subset of neighboring nodes
through wireless channels.We are interested in distributed algo-
rithms in which each node performs some local computation via
communication with a few neighboring nodes and all the nodes
collaborate to reach an agreement on a global quantity of interest
(e.g., the average of the measurements). Natural candidates for
this scenario are consensus algorithms, where each node main-
tains a local estimate of the global average, which is updated
with the estimates from the local neighbors. The interesting
characteristic of consensus algorithms is that they converge ex-
ponentially fast under very mild communication assumptions,
even in the case of a time-varying network topology. However,
traditional consensus algorithms have been mainly studied for
the case where the measurements and the state of each node lie
in Euclidean spaces.
Prior Work: In the last few years, there has been an in-

creasing interest in extending consensus algorithms to data
lying on manifolds. This problem arises in a number of applica-
tions, including distributed pose estimation [1], camera sensor
network localization [2] and satellite attitude synchronization
[3]. Early works consider specific manifolds such as the sphere
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[4] or the -torus [5], [6]. However, these approaches are
not easily generalizable to other manifolds. The work of [7]
considers the problems of consensus and balancing on the more
general class of compact homogeneous manifolds. However,
the approach is in part extrinsic, i.e., it is based on specific em-
beddings of the manifolds in Euclidean space (where classical
Euclidean consensus can be employed) and requires the ability
to project the updates of Euclidean consensus onto tangent
spaces. In this approach, convergence properties for both fixed
and time-varying network topologies follow directly from ex-
isting results in the Euclidean case. A similar approach is taken
in [8], where the extrinsic approach is extended to the case
where the mean is time-varying. To the best of our knowledge,
the work of [1] is the first one to propose a totally intrinsic
approach, which does not depend on specific embeddings of
the manifold and does not require the definition of projection
operations. Instead, it relies only on the intrinsic properties
of the manifold, such as geodesic distances and exponential
and logarithm maps. However, [1] focuses only on specific
manifolds ( and ) and does not provide a thorough
convergence analysis. The work of [6] on the circle, while
derived extrinsically, reduces to a special non-linear intrinsic
protocol. It considers issues with local convergence and local
minima on the circle, similarly to what we do for general
manifolds in the present work. Other works on distributed
algorithms for data lying in manifolds include [3], [9], which
address the problem of coordination on Lie groups, and [2],
which addresses the problem of camera localization. However,
these works do not apply to general manifolds, as we consider
in this paper.
Paper Contributions: In this paper, we propose a natural ex-

tension of consensus algorithms to measurements lying in a Rie-
mannian manifold for the case where the network topology is
fixed. We define a cost function which is the natural equivalent
to the one for averaging consensus in the Euclidean case. We
then obtain our Riemannian consensus algorithm as an applica-
tion of Riemannian gradient descent to this cost function. This
requires only the ability to compute the exponential and log-
arithm maps for the manifold of interest. We derive sufficient
conditions for the convergence of the proposed algorithms to a
consensus configuration (i.e., where all the nodes converge to
the same estimate). We also point out analogies and differences
with respect to the Euclidean case.
Our work makes several important contributions with respect

to the state of the art. First, our formulation is completely in-
trinsic, in the sense that it is not tied to a specific embedding
of the manifold. Second, we consider more general (complete
and not necessarily compact) Riemannian manifolds. Third, we
provide sufficient conditions for the local and, in special cases,
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global convergence to the sub-manifold of consensus configu-
rations. These conditions depend on the network connectivity,
the geometric configuration of the measurements and the cur-
vature of the manifold. We also provide stronger results that
hold when additional assumptions on the manifold and network
connectivity are made. Finally, we show that, while Euclidean
consensus converges to the Euclidean mean of the initial mea-
surements, the Riemannian extension does not converge to the
Fréchet mean, which is the Riemannian equivalent of the Eu-
clidean mean.
Paper Outline: In Section II we review Euclidean consensus

and relevant notions from Riemannian geometry and optimiza-
tion. In Section III we describe our extension of consensus
algorithms to data in manifolds. Our main contributions are
presented in Section IV and Section IV-F. We first give con-
vergence results for the case of general manifolds. We then
strengthen our results for the particular case of manifolds with
constant, non-negative curvature. In Section V we test the
proposed algorithm on manifolds such as the special orthog-
onal group, the sphere and the Grassmann manifold. In the
Appendix we report all the additional derivations and proofs
that support our claims.

II. MATHEMATICAL BACKGROUND

In this section, we review some basic concepts related to Eu-
clidean consensus, Riemannian geometry and optimization that
are relevant in the rest of the paper.

A. Review of Euclidean Consensus

Consider a network with nodes. We represent the network
as a connected, undirected graph . The vertices

represent the nodes of the network while the
edges represent the communication links
between nodes and . The set of neighbors of node is denoted
as and the number of neighbors or
degree of node as . The maximum degree of the graph
is denoted as .
Assume that each node measures a scalar quantity ,
. The goal is to obtain a distributed algorithm to compute

the average of these measurements . Note
that this is a global quantity, in the sense that involves infor-
mation from all the nodes. The well-known average consensus
algorithm, to which we refer as Euclidean consensus, computes
by iterating the difference equation

(1)

where is the state of node at iteration and
is the step-size. It is easy to verify that the mean of the states is
preserved at each iteration, i.e.,

(2)

It is also easy to see that (1) is in fact a gradient descent algo-
rithm that minimizes the function

(3)

where denotes the vectors of all states in the
network. From now on, we will use bold letters to denote -tu-
ples in which each element belongs to or another manifold
. The cost (3) is convex and its global minima are achieved

when the nodes reach a consensus configuration, i.e., when
for all . It can be shown that with the initial condi-

tions stated in (1) and when the graph is connected, we have
, for all (see, e.g., [10]). That is, all

the states converge to a unique global minimizer which corre-
sponds to the average of the initial measurements.
In addition, the average consensus algorithm can be easily

extended to multivariate data by applying the scalar
algorithm to each coordinate of . It can also be extended to
situations where the network topology changes over time [11].

B. Review of Concepts From Riemannian Geometry
In this section we present our notation for the Riemannian ge-

ometry concepts used throughout the paper. We refer the reader
to [12]–[14] for further details.
Let be a Riemannian manifold with metric . The

tangent space of at a point is denoted as .
Using the metric it is possible to define geodesic curves, which
are the generalization of straight lines in . For the remainder
of the paper, we assume that is geodesically complete, i.e.,
there always exists a minimal length geodesic between any two
points in . The length of this geodesic is said to be
the distance between the two points, and is denoted as .
The typical manifolds of practical interest (such as the one we
mention in Section II-C) are all complete.
Let be a unit-length tangent vector in , i.e.,

. We can define the exponential map
, which maps each tangent vector

to the point in obtained by following the
geodesic passing through with direction for a distance
. Let be the maximal open set on which is
a diffeomorphism and define the interior set [12, p. 216] as

. The exponential map is invertible on and we
can define the logarithm map as for .
We denote an open geodesic ball [14, p. 70] of radius
centered at as . We also denote as

the injectivity radius of at , i.e., the radius of
the maximal geodesic ball centered at entirely contained in
, and as the infimum of over all .
Given a smooth function and a tangent vector

, one can define the directional derivative of in the
direction at as , where is any curve
such that and . The gradient of at
is defined as the unique tangent vector such
that, for all

(4)
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Similarly, the Hessian is defined as the self-adjoint linear oper-
ator such that [14]

(5)

Intuitively, as in the Euclidean case, indicates the di-
rection along which increases the most, while indicates
the local, second-order behavior of . A point is called
a critical point [15] of if either , i.e., it is a
stationary point, or the gradient does not exist. In this paper,
we mainly need the gradient of the squared distance function,
which is given by

(6)

Note that the gradient might be undefined if .
Given a point , we denote the sectional curvature

of , a two-dimensional subspace in , as . From
now on we assume that the sectional curvature of the manifold

is bounded above by and below by . In other words,
for any point and any two-dimen-

sional subspace . If , then is said to
be of constant curvature . Intuitively, the curvature of a mani-
fold indicates if two geodesics with tangents in spread slower
(positive curvature) or faster (negative curvature) than in Eu-
clidean space (which has zero curvature). See the Appendix A
for a formal definition. For instance, on a sphere (which has con-
stant positive curvature) geodesics eventually meet at antipodal
points.
Related to the curvature and injectivity radius, we define the

convexity radius as

(7)

where we use the convention that, if , .
Any open ball with radius is guaranteed to be convex
[14]. The quantity will play an important in our convergence
conditions.
In the following, we also make use of the product manifold

, which is the -fold cartesian product
of with itself. We use the notation to
indicate a point in and to
indicate a tangent vector. We use the natural metric

. As a consequence, geodesics, exponential maps,
and gradients can be easily obtained by using the respective def-
initions on each copy of in . We will use this notation
to state results that involve the states of all the nodes.

C. Examples of Manifolds
We use the following manifolds as examples throughout this

paper.
Euclidean Space: The space is a Riemannian manifold

where the tangent space at a point is a copy of , the metric is
the usual inner product, and geodesics are straight lines. It has
constant curvature and .
Orthogonal and Special Orthogonal Groups: The -dimen-

sional orthogonal group is defined as the set of orthog-
onal matrices, . This group

has two connected components. One of them is the special or-
thogonal group , i.e., the set of all possible rotations in
, and has the additional property . The tangent

space at a point is , where
is the space of skew-symmetric matrices. The

standard bi-invariant Riemannian metric is given by
, . In this metric, the curva-

ture bounds are , and , except when ,
for which the curvature is constant and . Also,

and .
Grassmann Manifold: The Grassmann manifold

is the space of -dimensional subspaces in . It
can also be viewed as a quotient space ,
which provides a Riemannian structure for it through immer-
sion in [16]. The curvature bounds are , and .
The injectivity radius is and .
The Sphere: The -dimensional sphere is defined as

. The tangent space at a point is
defined as . As metric, we use
the standard inner product in . The geodesics follow great
circles and the curvature is constant and . Also,

and .
More details about these manifolds and about the computa-

tion of the exp and log maps can be found in [16], [17].

D. Review of Riemannian Gradient Descent

Let be a twice differentiable, bounded below
function defined on a Riemannian manifold . Given an initial
point , one can define a Riemannian steepest descent
algorithm, as shown by Alg. 1.

Algorithm 1 A Riemannian steepest gradient descent
algorithm

Input: An initial element , a sequence of step sizes

1) Initialize
2) For , repeat

a)
b)

At each iteration , the algorithm moves from the current es-
timate to a new estimate along the geodesic in the
direction of the negative gradient with a step size .
Alg. 1 gives only a basic version of a gradient-based descent

algorithm on Riemannian manifolds. Many variations are pos-
sible, e.g., in the computation of the descent direction and of the
step size or in the choice of the curve used to search for
(which does not need to be a geodesic). We refer to [15] and
[16] for some examples of such variations.
Choice of a Fixed Step Size and Convergence: Ideally, one

could compute the step size at each iteration by employing
methods based on a line search. However, it might be more ef-
ficient or necessary to employ a pre-determined fixed step size,
which is maintained constant throughout all the iterations, i.e.,

. This happens, for instance, when the evaluation of
the cost function is computationally expensive, as it is the case



924 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 58, NO. 4, APRIL 2013

for the distributed optimization problem in Section III. It is well
known that the choice of affects the convergence of Alg. 1. For
small step sizes, the algorithm will exhibit slow convergence.
On the other hand, if the step size is too large, the algorithm
might fail to converge at all.
In this section we review methods for choosing a fixed step

size for Alg. 1. These methods mostly rely on bounds for the
maximum eigenvalue of the Hessian of the cost function. The
results will be instrumental in our convergence proofs. The ideas
in this section are fairly standard for the case (see, for
instance, [18, p. 46]), but here we review the case where is
a general manifold (see also [19]).
We give the following definition of a bound on the Hessian.
Definition 1: Given a twice differentiable function de-

fined on an open subset of a manifold , we say that the
Hessian is uniformly bounded on if there exists a
finite, non-negative constant such that, for any
and any , the second derivative of along

satisfies

(8)

We can use this bound to obtain results on the step size and
on the convergence of Alg. 1.
Proposition 2: Let be a uniform bound on as

in Def. 1. Assume for all
and let . Then

for , with equality if and only if is a
stationary point of . In this case we say that is an admissible
step size.

Proof: Note that and
. Using a second order Taylor expansion of

around and using (8), one can show that

(9)

for all . From this we can derive

(10)

Note that the RHS of the inequality is strictly positive, because
. Also, we have equality throughout if and only

if .
Proposition 3: In Alg. 1, let , and

assume for all , and
all . Then any cluster point of the sequence is a
stationary point of .

Proof: We use a fairly standard argument. Since is
bounded below, from (10) we have

(11)

for all . Therefore, the series
converges, and the gradient van-
ishes, i.e., . Since is continuous,
any cluster point of is a stationary point of .
In the context of Alg. 1, Prop. 2 implies that, as long as

and , the cost function
decreases at every iteration, except at stationary points where it
remains constant. However, we stress here the fact that neither
Prop. 2, nor Alg. 1, imply that each new iterate belongs
to when . Therefore, additional considerations are
needed in order to derive complete results for the convergence of
Alg. 1 to a stationary point (see Section IV-C and Section IV-F).

E. Fréchet Mean

In order to compare the consensus algorithm that we will
propose to Euclidean consensus, we need a generalization of
the concept of empirical mean for Riemannian manifolds. Let

be a set of points in a Riemannian manifold . Sim-
ilar to the geometric definition of mean in the Euclidean case,
the Fréchet mean of the points is defined as the global mini-
mizer of the sum of squared geodesic distances, i.e.

(12)

If the points lie in a ball of radius smaller than , the global
minimizer is unique and belongs to the same ball [20]. More-
over, for spaces of constant, non-negative curvature the Fréchet
mean belongs to the closed convex hull of the measurements
[20].
Note that Alg. 1 can be used for the computation of

the Fréchet mean . In this case, the negative gradient is
, which is essentially a mean in

.
The conditions for the convergence to (as opposed to other

critical points) are, in general, only partially known [21]. These
conditions depend on the spread of the points , the step size
and the initialization of the algorithm.

III. RIEMANNIAN CONSENSUS

In this section we present our proposed algorithm, which we
call Riemannian consensus. This algorithm can be considered as
a direct extension of the Euclidean consensus to the Riemannian
case. The basic idea is to use the formulation of consensus as
an optimization problem and define a potential function on the
Riemannian manifold of interest which is equivalent to the cost
in (3). Riemannian gradient descent is then applied to obtain the
update rules for each node.
Following the notation introduced in Section II-A, let us de-

note the measurement and the state at node as and
, respectively. By a straightforward generalization of

the Euclidean case in (3), we define the potential function

(13)



TRON et al.: RIEMANNIAN CONSENSUS FOR MANIFOLDS WITH BOUNDED CURVATURE 925

The gradient of with respect to can be computed as

(14)
where we used the facts that the graph is undirected, is
symmetric and .
Node that is differentiable, and (14) well defined, at least

on where is the injectivity radius and

(15)

Alg. 2 is our proposed consensus protocol on and is ob-
tained by applying Alg. 1 (Riemannian gradient descent) to the
cost . As mentioned before, this protocol is a natural exten-
sion of the Euclidean case. In fact, when with the stan-
dard metric, the updates (16) reduce to the standard Euclidean
updates (1). On the one hand, the convergence analysis for Eu-
clidean consensus is simple: the cost (3) is a simple quadratic
function, and simple tools from optimization theory and linear
algebra are sufficient. On the other hand, a similar analysis for
Riemannian consensus is not trivial, because we need to take
into account the geometry of the manifold. In particular, Alg. 2
does not always converge to a consensus configuration, and the
algorithm is well defined only when for all

.

Algorithm 2 Riemannian consensus

Input: The measurements at each node
1) For each node in parallel

a) Initialize the state with the local measurement,

b) For , compute the update

(16)

IV. CONVERGENCE TO THE CONSENSUS SUB-MANIFOLD

In this section we analyze the convergence properties of Alg.
2. We divide our treatment in three parts:

Section IV-A) We notice that the cost can have multiple
local minima and we define a non-trivial subset
that contains all global minimizers but no other critical
point.
Section IV-B) We give a distributed method to choose a
step-size for such that the cost is non-increasing at every
iteration.
Section IV-C) We derive local, sufficient conditions
under which the algorithm is guaranteed to converge to
the consensus sub-manifold, i.e., the set of consensus
configurations.

These results pertain to general manifolds and general network
topologies. However, for special cases and under additional as-
sumptions, we also give results on:

Section IV-D) Global convergence to the set of global
minimizer.

Fig. 1. Construction of the geodesic for testing if has a local minimum at
.

Section IV-F) Local convergence to a single global
minimizer.

A. Global Minimizers of and the Set
We first show that the global minimizers of corresponds

to consensus configurations. Let us define the consensus sub-
manifold as the diagonal space of , i.e.

(17)

This set represents the manifold of all possible consensus con-
figurations of the network, where all the nodes agree on a state.
The following lemma shows that is exactly the set of global
minimizers of . It follows easily from the non-negativity of the
distance.
Lemma 4: If is connected, then if and only if is a

global minimizer of .
We now define the set as

(18)
where is the convexity radius given in (7). Intuitively, is a
tube in centered around the diagonal space and having
a “square” section (see Fig. 1). Note that is equivalent to
saying that there exists such that,
for all . As it happens, a sufficient condition for the

uniqueness of the Fréchet mean is [20].
We can now state our first main contribution.
Theorem 5: A point is a critical point for if and

only if . In other words, the set contains all the global
minima and no other critical points of .
Note that, outside of , the cost might have local minima

(e.g., see Section V, Fig. 3). However, as long as the iterates do
not leave , Alg. 2 will behave as in the Euclidean case insofar
as it convergences toward the set of global minima. In order to
prove Thm. 5, we need the following lemma, which is proven
in Appendix C.
Lemma 6: Let be three points in such that

, , 2. Define the unique minimal geodesics
such that and , , 2. Define

also . Then for
, with equality if and only if .

In Euclidean space, the result of Lemma 6 is trivial, because
the distance between the two geodesics is always non-de-
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creasing. However, the same is not true in general. On a sphere,
the distance between two geodesics starting from the north
pole with equal speed would start to decrease after passing the
equator (which is exactly at distance ).
Proof of Theorem 5: If , then, from Prop. 4, is a

global minimizer of and hence a critical point. On the other
hand, we will now show that cannot be a critical point
of because there exists a geodesic such that

and along which . Then, from
the definition in (4), .
In order to construct such a geodesic, notice that, since ,

there exists such that . De-
fine unique minimal geodesics such that and

. Then is a minimal
geodesic in (see also Fig. 1). It follows that:

(19)

Since , from Lemma 6 we know that each term
in the sum in (19) (i.e., each derivative) is positive except for
the case where , i.e., and .
If all the terms of the sum were zero, since is connected,
we would have that for all , i.e., .
However, by assumption , hence at least one of the terms
in (19), and therefore the entire sum in (19) is greater than zero
and is the desired geodesic.
Special CaseWhere is a Tree: In general, is not maximal,

because the result in Lemma 6 can be quite conservative: There
might exist a set containing and no other critical points which
is larger than . In fact, the following holds when is a tree.
Proposition 7: If is a tree, any stationary point of is a

global minimizer, i.e., .
Proof: We will now introduce some new notation exclu-

sively for the purposes of this proof. Pick an arbitrary node as
the root of the tree and denote as the state of the -th node
among the ones at hop-distance from the root (e.g., is the
state at the root). Also, denote as the single parent and

, the -th children of . Using
this notation we can rewrite (14) as

(20)
with the appropriate modifications for the leaves and the root of
. Now assume . For a leaf node, (20) becomes

(since leaves do not have any child) and
therefore . Now assume that, for a given hop-
distance , we have for all indeces and .
Then, according to (20), again . It is then simple
to show, by induction, that for any .
Therefore, implies .
We will use Thm. 5 to show local convergence in general

manifolds (Section IV-C) and manifolds of non-negative, con-
stant curvature (Section IV-F), while we will use Prop. 7 for
proving global convergence when has linear topology (Sec-
tion IV-D).

B. Choice of the Stepsize
In this section we provide results on the range of admissible

step sizes which can be computed in a distributed way, and
which guarantees convergence of Alg. 2. From Prop. 2, we al-
ready know that any is admissible, where
is a bound on , as per Def. 1. However, we need to
estimate a value for , and it should be possible to compute
this value in a distributed way. The following proposition breaks
the problem in two parts: one regarding the network topology,
and the other regarding the distance function.
Proposition 8: Given a graph , define as

(21)

where, for all , and, for all ,
and . Let be a

bound for on , . Then, a bound on
the Hessian of the complete function on is given by

(22)

where is the maximum node degree of the graph .
Proof: The gradient of (21) at a point

is given by where .
Define the cost function restricted to the geodesic along
the gradient descent direction as .
Similarly, define the restriction for each pairwise term

. Using Def. 1,
we have

(23)

The second derivative of , and hence the Hessian of ,
can be uniformly bound as

(24)

The claim of the theorem follows.
In our case, the global cost function is given by (13), and

where is given in (15) and we use
to represent the maximum allowed distance be-

tween the states of any two neighboring nodes. The bound
in (22) is given by the following.
Proposition 9: The Hessian of the function

can be bounded on by

(25)
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where , are defined as

(26)

The proof can be found in Appendix D. We remark that the
bound on is sharp, in the sense that it can be achieved
for manifolds with constant curvature [17]. In fact, for the Eu-
clidean space and for spaces of non-negative constant curvature
(e.g., the sphere or ) this bound is , and it is in-
dependent from . However, in general, the bound depends
on . Still, we might be able to use a uniform upper bound,
say, in terms of . In this case, for , we
get for both the Grassmann manifold and ,

.
Our second main contribution follows by combining Prop. 8,

9 and 2:
Theorem 10: Let . Then

is an admissible step size.
As a corollary, we have that the same bounds apply to both the

Euclidean case and the case of manifolds with positive constant
curvature (such as the sphere and ).
Corollary 11: For spaces of constant curvature ,

we can choose .
However, in general (e.g., in manifolds with negative curva-

ture) we need to reduce according to .
Computing at Every Node: We can devise a distributed

method to compute the same at every node. The maximum de-
gree can be computed using a consensus-like algorithm,
where each node initializes its state with its own degree, and re-
peatedly updates its estimate by taking the maximum of the esti-
mates in the local neighborhood [22]. Bounds on the maximum
distance can be precomputed (in the case of compactmanifolds),
or estimated by using consensus to bound the value of the cost
function for the measurements together with ideas similar
to the ones we will see in the proof of Thm. 12 (see [17] for de-
tails) before the stop.

C. Local Convergence to the Consensus Sub-Manifold

Thm. 10 together with Prop. 3, implies convergence of the
consensus algorithm to the set of critical points of , which in-
cludes local minima. However, we are interested in convergence
to the set of global minimizers , which is contained in . If we
could ensure that the iterates stay in , then we could de-
duce convergence to . With this goal in mind, our next main
contribution uses , a sub-level set of , to give local suf-
ficient conditions for convergence.
Theorem 12: Let denote the diameter of the

network graph and define
. Then, . Moreover, if the consensus pro-

tocol (16) is initialized with measurements and is
admissible, then converges to .

Proof: Consider any and consider a shortest path
in the graph from to . We will use this
path to bound the geodesic distance between states and
with the cost . Using the triangular and Jensen’s inequalities,
and the fact that , we have

(27)

This shows that if , then and
, for any . This implies .

Next, since is a sub-level set of and is ad-
missible, one can show by continuity that the geodesic

is always in for
all . Finally, since and

is non-increasing, the sequence generated by the
protocol will stay in . From this fact and from Prop.
3, any cluster point of the sequence will be a stationary
point in , i.e., a global minimizer.
Note that we have shown convergence to a set and not to a

single point. In principle, the proof does not exclude cases where
the sequence has multiple cluster points in . In practice,
we have convergence to a single global minimizer under much
more relaxed conditions. We can strengthen Thm. 12 by making
additional assumptions.

D. Cases of Global Convergence to the Consensus
Sub-Manifold

In general, the basin of attraction given by Thm.
12 can be quite small, because it depends on the diameter of the
network, which might be large. Moreover,

and, in general, might be much larger than
, especially when each node has a small number of neighbors.
In this section we show that the basin of attraction of the global
minimizers can be enlarged for particular manifolds and net-
work topologies.
For instance, the following is a special case for Thm. 12.
Corollary 13: If and is admissible, then the iterates
from the consensus protocol (16) converge to for any set

of initial measurements .
This corollary can be used for and some other manifold

with non-positive curvature (such as the hyperbolic space or the
space of positive definite matrices), and for any graph . On the
other hand, if has linear topology (i.e., it is a tree with a single
branch), the following holds for any manifold .
Proposition 14: Assume has linear topology, and the

consensus protocol (16) is initialized with measurements
. Then converges to .

Proof: First, notice that the edges of the network
are exactly for . Then
the assumptions imply . We will
now show that this same property is also satisfied by
all the iterates , i.e., for all

. For the sake of brevity, we will use the notation
, with the convention ,
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and . By using
the triangular inequality twice, notice that

(28)

with equality if and only if all lie in order on the
same geodesic. In such case, and

(29)

This shows that, at any iteration, the distance between any
two neighbors will be always less than , i.e., will always
be differentiable at . Combining this fact with Prop. 3 and
Prop. 7, the claim follows.

E. Lack of Convergence to the Fréchet Mean

As we mentioned in Section II-A, when we minimize in
Euclidean consensus, the states converge to a global minimizer
which corresponds to the average of the initial measurements.
In the Riemannian case one would expect a similar behavior,

where all the states converge to the Fréchet mean of the mea-
surements. However, in general this is not the case, as we will
see in the simulations in Section V. Intuitively, this is due to the
fact that the Fréchet mean of the states is not preserved after each
iteration [1] and, even if the algorithm converges to a global
minimizer (e.g., under the conditions of Thm. 12), this need not
correspond to the desired Fréchet mean.
For computing the exact Fréchet mean of the measurements,

one could extend the consensus in the tangent space algorithm
from [1] to general manifolds. However, the convergence anal-
ysis of such algorithm is out of the scope of this paper.

F. Cases of Convergence to a Single Consensus Configuration

In this section we prove local convergence for the specific
case of spaces with constant, non-negative curvature. We can
strengthen Thm. 12 under three aspects.
1) The set of initializations for which convergence is guaran-
teed is enlarged from to .

2) Convergence is to a single consensus state instead of the
entire consensus set.

3) The consensus state is shown to lie in the convex hull of
the initial measurements.

In the following, we define the convex hull of , , as
the minimal convex subset of containing (when it exists).
A sufficient condition for to exists is that is contained
in a convex ball. In this section, this will always be the case. Our
strategy will be to show that the convex hull of the states shrinks
at every iteration. This implies that the states stay in a compact
set which, together with results from previous sections, implies
convergence to single point. Before starting, we need a lemma
which follows easily from the definition of .

Lemma 15: Let be two sets such that .
Then .
We can then prove the following.
Proposition 16: Assume that has constant, non-negative

curvature, , and is computed according to (16)
with . Then . More-
over, this implies , where
are the initial measurements (see Alg. 2).

Proof: From [21, Thm. 5] and Lemma 15, we have
.

Then, we also have
and, iteratively,

. The claim is proven.
We are now ready to show an improved version of Thm. 12.
Theorem 17: Assume that has constant, non-negative cur-

vature and . Then the iterates given by protocol (16) with
satisfy, for all , , where

.
Proof: For the sake of brevity, let .

We show the claim in three steps. The first step is to show that
. By definition of in (18), implies that there

exists such that for all .
Hence . It follows that for any point , we
also have , whichmeans . Hence .
The second step of the proof is to show that the iterates
converge to a specific, bounded subset of . From Prop. 16,
we have that, for all , the sequence of iterates
remains in . Equivalently, we have that for
all . From this fact and Prop. 3 we have therefore that the
iterates converge to the set . The third and
final step of the proof is to show convergence to a single point.
Since is compact, there exists an infinite subsequence of
indeces such that , i.e., the
subsequence of iterates converges to a single point in

of the form where .
This implies that for any arbitrarily small there exists an

large enough such that . This in turn
implies that . Using Prop. 16 we therefore
get that, for all , , we have

. To summarize we have that
: , which, by definition,

means .
Note that Thm. 17 requires instead of

, as we used in Thm. 12. This is because we rely
on the fact that the iterates never leave ,
which might not be true if . Finally, by com-
bining Thm. 17 with Cor. 13, we obtain the known result that
Euclidean consensus with has global convergence to
a single consensus configuration.
While we conjecture that it should be possible to extend the

results of this section to manifolds with non-constant curvature,
extending Prop. 16 is not trivial. The problem is that, with non-
constant curvature, the convex hull of a set of point becomes
much more complex. For instance, in a sphere, the convex hull
of three points is a two-dimensional triangle. However, with
non-constant curvature, the convex hull is no more two-dimen-
sional. See [21] for details. Therefore, the strategy adopted here
cannot easily replace the one in Section IV-C.



TRON et al.: RIEMANNIAN CONSENSUS FOR MANIFOLDS WITH BOUNDED CURVATURE 929

Fig. 2. Results for the algorithm applied to data in , and . Top row: distances between each state and the Fréchet mean of the measure-
ments for the Riemannian consensus algorithm. Bottom row: distance between Fréchet mean of the states and the true Fréchet mean. (a) Consensus in ;
(b) consensus in ; (c) consensus in .

Fig. 3. Example where Riemannian consensus converges (a) or fails to converge (b) to a consensus configuration depending on the topology. These plots corre-
spond to initial configurations around a closed geodesic of , as portrayed on the right.

V. SIMULATIONS
In this section we evaluate the proposed algorithm on syn-

thetic data drawn from the special orthogonal group, the sphere
and the Grassmann manifold.
The simulations are performed using a synthetic network of

nodes with a 4-regular connectivity graph. To generate
the measurements, we choose an arbitrary element
and compute random tangent vectors in drawn
from an isotropic Gaussian distribution with standard deviation

. The measurement at each node is then defined
as . We then run our Riemannian consensus
algorithm for iterations. We use step sizes compatible with
the bounds found in Section IV-B. After each iteration, we com-
pute the distance between each state and the Fréchet mean of
the initial measurements (Fig. 2, top row). We also record the
distance between the Fréchet mean of the states at each itera-
tion and (Fig. 2, bottom row). We have selected ,
and Grass(7,3) as particular examples. While we show that our
algorithm can be applied to non-typical manifolds, similar re-
sults are obtained on manifolds such as , or .
A number of points can be made on the simulations. First,

in this experiment, the measurements that we have generated
are not too far one from the other, and the states converge to
a converge to a consensus configuration. Even if we were able
to theoretically show only convergence to a set, we can see here

that, in practice, we have convergence to a single point, even for
non-constant curvature spaces. Second, the algorithm modifies
the Fréchet mean of the states, especially in the first iterations.
When this algorithm terminates, the estimated Fréchet mean is
at a distance in the order of from the true Fréchet mean.
This error might be negligible in practical applications, but it is
much greater than the achievable machine precision.
We include also two simulations (Fig. 3) for which the mea-

surements are taken around a closed geodesic in and are
far apart, i.e., (see Thm. 5). With a linear network, the
algorithm converges to a consensus configuration, as expected
from Prop. 14. On the other hand, with a ring network, the al-
gorithm gets trapped in a local minima and fails. The work [6]
proposes strategies to avoid similar situations on the circle. It
would be interesting to study if they could be extended to our
general case.

VI. CONCLUSION

We proposed Riemannian consensus, a natural generaliza-
tion of classical consensus algorithms to Riemannianmanifolds.
Our main contribution is finding sufficient conditions that guar-
antee convergence of the algorithm to a consensus configura-
tion. These conditions depend on the curvature and topology of
the manifold as well as the connectivity of the network.
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APPENDIX

This appendix contains all the additional derivations and
proofs for the claims in the paper. An expanded version of
these results can be found in [17].

A. Additional Notation

In this section we review additional concepts and notation
from Riemannian geometry. We focus only on those definitions
and properties that are going to be applied in the reminder of
this Appendix. We refer the reader to standard texts (e.g., [12],
[14]) for the complete and precise definitions.
Following the notation introduced in Section II-B, let

be a Riemannian manifold with its Riemannian
metric. We denote the length of a curve be-
tween two points and as .
We denote as the Levi-Civita connection on . In the fol-
lowing, we use the symbols , and to denote
vector fields defined along a curve . Unless necessary,
we omit the dependency of curves and vector fields on the
parameter . Given and , the metric compatibility property
of implies , where we
use the notational convention . The field is said
to be parallel if . In this case is said to be the
parallel transport of from to along the curve,
and we use the notation . The curve is
said to be geodesic if it parallel transports its own tangent, i.e.,

.
The Riemannian curvature tensor is defined as

, where ,
and are smooth vector fields on . For brevity, we use the
notational convention . The
curvature tensor has many symmetry properties. In particular,

.
Therefore, whenever or

. Given a point and two linearly in-
dependent vectors spanning a two-dimen-
sional subspace , from the Riemannian curva-
ture tensor one can define the sectional curvature for as

.
We denote by a complete simply connected Rie-

mannian manifold with constant curvature and with the
same dimension as . Also, we define the shorthand notation

, , ,
.

A geodesic triangle in a Riemannian mani-
fold is a figure formed by three distinct points , and
, called the vertices, that are connected by three minimal

geodesics, called the sides. We denote as the side oppo-
site to the vertex and we denote its length as . We
indicate as the oriented angle be-
tween the tangent vectors of the two geodesics emanating from
. A geodesic hinge in is a figure formed by a

point and two minimal geodesics segments , emanating
from .
Given a vector field along a normal (i.e., unit speed)

geodesic , we define its tangential and perpendicular compo-
nents as and , respectively.

TABLE I
LAW OF COSINES FOR GEODESIC TRIANGLES
IN MANIFOLDS OF CONSTANT CURVATURE

A smooth vector field along a geodesic is said to be a
Jacobi field if it satisfies the second order differential equation

. Intuitively, Jacobi fields represent a
variation of under a perturbation of the endpoints. In fact, it is
known [12, Chapter 2, Lemma 2.4] that a Jacobi field is uniquely
determined by fixing the value of at the two endpoints of .
Moreover, if and are two Jacobi field along , then also

is a Jacobi field along .

B. General Results

In this section we collect useful results that can be easily ob-
tained from the existing literature.
Laws of Cosines: In manifolds with constant curvature , the

angles and sides of geodesic triangles are related by the laws
of cosines in Table I. Using these laws it is possible to show
the following Lemma on geodesic triangles in manifolds with
constant curvature [12, page 138].
Lemma 18: Let ,

be two geodesic triangles in . The side lengths for and
are denoted as and , respectively, , 2, 3 and let
, , 2. If , assume also , . Then

if and only if .
Comparison Theorems for Geodesic Triangles and Hinges:

We start by reporting a hinge version of the Alexander-
Toponogov theorem [13, Exercise IX.1].
Theorem 19: Given a complete Riemannian manifold
with curvature bounded above by and a geodesic

triangle in , assume
. Consider the hinge

and let be a geodesic hinge in such that
, and . Then

.
We will need the following triangle version of Thm. 19.
Theorem 20: For a geodesic triangle in

suppose that and are minimal and the perimeter
. Then, there exist a geodesic triangle

in with the same side lengths
and satisfying .

Proof: In addition to the triangles in and
in defined in the statement, define a hinge

such that and . Define
. From Theorem 19 just given above,

and, by assumption, , hence
. Using Lemma 18, it follows that

and hence .
A similar argument can be repeated for the other points and
.
Orthogonal Decomposition of Jacobi Fields: Let be a Ja-

cobi field along a normal geodesic . The following proposition
shows that can be decomposed in two orthogonal parts.
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Proposition 21: A Jacobi field along a geodesic can be
decomposed as , where and are Jacobi
fields which are, respectively, perpendicular and tangential to .

Proof: The projection of along is a function of the
form , because

(30)

In the above we used, in succession, the metric compatibility
property of , the definitions of geodesic and Jacobi field, and
the properties of the curvature tensor. The constants and can
be determined using boundary conditions. Similar calculations
show that is in fact a Jacobi field. Therefore,

is also a Jacobi field.
Comparison Theorems for Jacobi Fields: We now review

versions of the Rauch Comparison Theorems based on the pre-
sentation in [13, pages 388–389].
Theorem 22 [Rauch Comparison Theorem I]: Let ,

be a Jacobi field along and orthogonal to a normal
geodesic . If the curvature is bounded above by , then

(31)

for all between zero and the first conjugate value of . The
functions and are given in (26).
Note that here and in the following we omit, for the sake of

clarity, the explicit dependence of and on the distance
. The proof uses the following Lemma [13, p. 387].
Lemma 23: Let be a vector field along a geodesic

. If and are linearly dependent,
or if , then .
Proof of Theorem 22: The proof is simply an adaptation of

Thm. IX.2.1 in [13] to our goals, where we identify ,
and . In particular, that theorem states

that ,
which implies

(32)
With the above, the first equality of (31) follows by Lemma 23.
The results in [13] also state that , which is equiva-

lent to the second part of (31).
Theorem 24 [Rauch Comparison Theorem II]: Let ,

, be a Jacobi field along and orthogonal to a normal
geodesic . If the curvature is bounded below by , then

(33)

for all between zero and the first conjugate value of . The
functions and are given in (26).

Proof: This theorem is a restatement of Thm. IX.2.2 in [13]
with , and .

C. Derivative of the Distance and Proof of Lemma 6
This section is devoted to build results on the derivative of the

distance between two points moving on the sides of a geodesic
hinge, with the final goal of providing a proof for Lemma 6. We

first obtain expressions in terms of angles between geodesics for
general manifolds.
Let , , and be three points in such that

satisfies , , 2, where is defined in
(7). Define the geodesic hinge , where the sides are
defined by the conditions ,
and . For each value of , , define the
minimal geodesic segment joining to . Note
that, since , , 2, by the triangular inequality we
have that , therefore is uniquely
defined for , where is small enough (so that

, , 2). Denote the length of the geodesic
segment by , which is nothing but the
distance between and for a specific . Our goal is to
show that the derivative of is strictly positive on .
Notice that is defined for , hence the derivative
is well defined for .
The first step is to obtain an expression for .
Proposition 25: For a given , consider the geodesic

triangle and let be the angle at .
Then .

Proof: Let be the distance function on . By
the definition of gradient we have

(34)

Considering that , the claim follows.
The next step is to consider the particular case of manifolds

with constant curvature (for our purposes, the case
will be covered by the case ).
Proposition 26: Let be of constant curvature .

Using the same definitions given at the beginning of the section,
we have for .

Proof: Let , , 2. In the case
, from the cosine law in Table I, we have

. The claim then easily fol-
lows. For the case , as argued before, the trian-
gular inequality implies . In turn,
this means that . Instead of the deriva-
tive of , it is more convenient to use the derivative

. Note that
if and only if , hence

the two expressions are equivalent for our purposes.
Using the cosine law for , we get

(35)



932 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 58, NO. 4, APRIL 2013

Assume, without loss of generality, (if not, just swap
the indexes throughout) and recall that .
This implies that for , 2. Now, the
condition can be written as

(36)

(37)

At this point, note that the RHS is always less or equal to one.
Therefore, sufficient conditions for
are

(38)

Due to the monotonicity properties of the tan function,
this condition is always true under the assumptions above,
i.e., and . In other words,

, hence and the
claim follows.
We have now all the elements necessary to prove Lemma 6.
Proof of Lemma 6: We first consider the case where

the three points are all distinct. Notice that showing
is equivalent to showing

. For any consider the geodesic triangle
. Build a triangle

in having the same side lengths as . Define the geodesics
such that and , ,

2. Define also . Let and
, , 2. According to Thm. 20, , ,

2. Using Prop. 25 and Prop. 26 (if , use ), this
implies , and the claim is shown. Next,
consider the case , . Then
and the claim follows directly. The same applies by swapping
the roles of and . Finally, if , then trivially

.

D. Bounds on the Hessian of the Distance
In this section we compute and give bounds on the second

derivative of the distance (and distance squared) between two
points moving on geodesics. First, we derive a general expres-
sion that depends only on the relative velocities and angles be-
tween geodesics. Then, we compute concrete bounds for the
case of manifolds with bounded sectional curvature. We refer
to [17] for the case with constant curvature. From these bounds,
we can then obtain the bound on the Hessian of the squared dis-
tance, which is used in Prop. 9.
The General Case: Define two geodesics
such that there exist a minimal geodesic joining
to for all . Using the same notation as

in Appendix C, we denote the length of the geodesic segment
by , which is the distance between

and for a specific . In this section we will find bounds on
the second derivative of around .
Define the geodesic variation ,

such that the map traces the geodesic ,

. Define and , where
(resp., ) denotes the partial derivation operator with respect

to the variable (resp., ). Since traces geodesics, the
vector field is a Jacobi field [12, page 36].
We then have the following theorem.
Theorem 27: Using the notation above, we have

(39)

(40)

where .
Proof: From [13, page 76] we get

(41)

Then, notice that since is a Jacobi field (Prop.
21),

. Hence

(42)
which is (39). Equation (40) follows from the chain rule.
Notice that the second derivative of depends only on the

orthogonal component of the Jacobi field, . Therefore, any
two pairs of geodesics having the same and

, will have the same orthogonal Jacobi field
and will yeld the same second derivative of the distance .
However, the tangential components of and play
a role in the second derivative of the squared distance.
Manifolds With Bounded Curvature: In this section we give

bounds on the second derivative of the squared distance in terms
of the curvature bounds and . In particular, we show the
following.
Theorem 28: Define two geodesics

such that for all . Let
and define . Then

(43)
and

(44)

where .
By Def. 1, is a bound on the Hessian of the squared

distance evaluated at . These bounds are sharp, in
the sense that if , we obtain the same bounds as in
the constant curvature case [17].
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Proof: We start from (39). Since it is not easy to express
in terms of , we will use bounds. We decompose the Ja-

cobi field in two components where
and are Jacobi fields satisfying the conditions ,

, and . The fields
and vanish at one of the endpoints, and we can ex-

ploit results from standard Riemannian geometry texts. Note
that since , we have and, by
the Morse-Schönberg Theorem [13, p. 86] there are no conju-
gate point pairs on . We can therefore apply the Rauch com-
parison theorems from Appendix B. More concretely, we can
break down (39) as

(45)

We now bound each term. Using Thm. 24, we have

(46)

Note that for , in order to apply Thm. 24, we need to reverse
the parametrization of as . This has the effect
that . This
explains the negative sign in the second inequality of (46).
Using the Cauchy–Schwarz inequality, Thm. 22 and the in-

equality , we have

(47)

(48)

Combining (46), (47) and (48) into (45), and recalling that
, , we obtain (43). Combining this

with (39), we have

(49)

which, after using the inequality , becomes
(44).
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