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Abstract
State-of-the-art methods for clustering data drawn from a union of subspaces are based on sparse

and low-rank representation theory. Existing results guaranteeing the correctness of such methods
require the dimension of the subspaces to be small relative to the dimension of the ambient space.
When this assumption is violated, as is, for example, in the case of hyperplanes, existing methods
are either computationally too intense (e.g., algebraic methods) or lack theoretical support (e.g.,
K-hyperplanes or RANSAC). The main theoretical contribution of this paper is to extend the the-
oretical analysis of a recently proposed single subspace learning algorithm, called Dual Principal
Component Pursuit (DPCP), to the case where the data are drawn from of a union of hyperplanes.
To gain insight into the expected properties of the non-convex `1 problem associated with DPCP
(discrete problem), we develop a geometric analysis of a closely related continuous optimization
problem. Then transferring this analysis to the discrete problem, our results state that as long as the
hyperplanes are sufficiently separated, the dominant hyperplane is sufficiently dominant and the
points are uniformly distributed (in a deterministic sense) inside their associated hyperplanes, then
the non-convex DPCP problem has a unique (up to sign) global solution, equal to the normal vec-
tor of the dominant hyperplane. This suggests a sequential hyperplane learning algorithm, which
first learns the dominant hyperplane by applying DPCP to the data. In order to avoid hard thresh-
olding of the points which is sensitive to the choice of the thresholding parameter, all points are
weighted according to their distance to that hyperplane, and a second hyperplane is computed by
applying DPCP to the weighted data, and so on. Experiments on corrupted synthetic data show that
this DPCP-based sequential algorithm dramatically improves over similar sequential algorithms,
which learn the dominant hyperplane via state-of-the-art single subspace learning methods (e.g.,
with RANSAC or REAPER). Finally, 3D plane clustering experiments on real 3D point clouds
show that a K-Hyperplanes DPCP-based scheme, which computes the normal vector of each clus-
ter via DPCP, instead of the classic SVD, is very competitive to state-of-the-art approaches (e.g.,
RANSAC or SVD-based K-Hyperplanes).

1. Introduction

Subspace Clustering. Over the past fifteen years the model of a union of linear subspaces, also
called a subspace arrangement (Derksen, 2007), has gained significant popularity in pattern recog-
nition and computer vision (Vidal, 2011), often replacing the classical model of a single linear sub-
space, associated to the well-known Principal Component Analysis (PCA) (Hotelling, 1933; Pear-
son, 1901; Jolliffe, 2002). This has led to a variety of algorithms that attempt to cluster a collection
of data drawn from a subspace arrangement, giving rise to the challenging field of subspace cluster-
ing (Vidal, 2011). Such techniques can be iterative (Bradley and Mangasarian, 2000; Tseng, 2000;
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Zhang et al., 2009), statistical (Tipping and Bishop, 1999b; Gruber and Weiss, 2004), information-
theoretic (Ma et al., 2007), algebraic (Vidal et al., 2003, 2005; Tsakiris and Vidal, 2017c), spectral
(Boult and Brown, 1991; Costeira and Kanade, 1998; Kanatani, 2001; Chen and Lerman, 2009),
or based on sparse (Elhamifar and Vidal, 2009, 2010, 2013) and low-rank (Liu et al., 2010; Favaro
et al., 2011; Liu et al., 2013; Vidal and Favaro, 2014) representation theory.

Hyperplane Clustering. A special class of subspace clustering is that of hyperplane clustering,
which arises when the data are drawn from a union of hyperplanes, i.e., a hyperplane arrangement.
Prominent applications include projective motion segmentation (Vidal et al., 2006; Vidal and Hart-
ley, 2008), 3D point cloud analysis (Sampath and Shan, 2010) and hybrid system identification
(Bako, 2011; Ma and Vidal, 2005). Even though in some ways hyperplane clustering is simpler
than general subspace clustering, since, e.g., the dimensions of the subspaces are equal and known
a-priori, modern self-expressiveness-based subspace clustering methods, such as Liu et al. (2013);
Lu et al. (2012); Elhamifar and Vidal (2013), in principle do not apply in this case, because they
require small relative subspace dimensions. 1

From a theoretical point of view, one of the most appropriate methods for hyperplane clustering
is Algebraic Subspace Clustering (ASC) (Vidal et al., 2003, 2005, 2008; Tsakiris and Vidal, 2014,
2015b, 2017c,a), which gives closed-form solutions by means of factorization (Vidal et al., 2003)
or differentiation (Vidal et al., 2005) of polynomials. However, the main drawback of ASC is its
exponential complexity2 in the number n of hyperplanes and the ambient dimension D, which
makes it impractical in many settings. Another method that is theoretically justifiable for clustering
hyperplanes is Spectral Curvature Clustering (SCC) (Chen and Lerman, 2009), which is based on
computing a D-fold affinity between all D-tuples of points in the dataset. As in the case of ASC,
SCC is characterized by combinatorial complexity and becomes cumbersome for large D; even
though it is possible to reduce its complexity, this comes at the cost of significant performance
degradation. On the other hand, the intuitive classical method of K-hyperplanes (KH) (Bradley and
Mangasarian, 2000), which alternates between assigning clusters and fitting a new normal vector
to each cluster with PCA, is perhaps the most practical method for hyperplane clustering, since it
is simple to implement, it is robust to noise and its complexity depends on the maximal allowed
number of iterations. However, KH is sensitive to outliers and is guaranteed to converge only to
a local minimum; hence multiple restarts are in general required. Median K-Flats (MKF) (Zhang
et al., 2009) shares a similar objective function as KH, but uses the `1-norm instead of the `2-
norm, in an attempt to gain robustness to outliers. MKF minimizes its objective function via a
stochastic gradient descent scheme, and searches directly for a basis of each subspace, which makes
it slower to converge for hyperplanes. Finally, we note that any single subspace learning method,
such as RANSAC (Fischler and Bolles, 1981) or REAPER (Lerman et al., 2015), can be applied in
a sequential fashion to learn a union of hyperplanes, by first learning the first dominant hyperplane,
then removing the points lying close to it, then learning a second dominant hyperplane, and so on.

DPCP: A single subspace method for high relative dimensions. Recently, an `1 method was
introduced in the context of single subspace learning with outliers, called Dual Principal Compo-
nent Pursuit (DPCP) (Tsakiris and Vidal, 2015a, 2017b), which aims at recovering the orthogonal
complement of a subspace in the presence of outliers. Since the orthogonal complement of a hy-
perplane is one-dimensional, DPCP is particularly suited for hyperplanes. DPCP searches for the

1. The relative dimension of a linear subspace is the ratio d/D, where d is the dimension of the subspace and D is the
ambient dimension.

2. The issue of robustness to noise for ASC has been recently addressed in Tsakiris and Vidal (2015b, 2017c).
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normal to a hyperplane by solving a non-convex `1 minimization problem on the sphere, or alter-
natively a recursion of linear programming relaxations. Assuming the dataset is normalized to unit
`2-norm and consists of points uniformly distributed on the great circle defined by a hyperplane
(inliers), together with arbitrary points uniformly distributed on the sphere (outliers), Tsakiris and
Vidal (2015a, 2017b) gave conditions under which the normal to the hyperplane is the unique global
solution to the non-convex `1 problem, as well as the limit point of a recursion of linear program-
ming relaxations, the latter being reached after a finite number of iterations.

Contributions. Motivated by the robustness of DPCP to outliers–DPCP was shown to be the
only method capable of recovering the normal to the hyperplane in the presence of about 70% out-
liers inside a 30-dimensional ambient space 3 –one could naively use it for hyperplane clustering
by recovering the normal to a hyperplane one at a time, while treating points from other hyper-
planes as outliers. However, such a scheme is not a-priori guaranteed to succeed, since the outliers
are now clearly structured, contrary to the theorems of correctness of Tsakiris and Vidal (2015a,
2017b) that assume that the outliers are uniformly distributed on the sphere. It is precisely this
theoretical gap that we bridge in this paper: we show that as long as the hyperplanes are sufficiently
separated, the dominant hyperplane is sufficiently dominant and the points are uniformly distributed
(in a deterministic sense) inside their associated hyperplanes, then the non-convex DPCP problem
has a unique (up to sign) global solution, equal to the normal vector of the dominant hyperplane.
This suggests a sequential hyperplane learning algorithm, which first learns the dominant hyper-
plane, and weights all points according to their distance to that hyperplane. Then DPCP applied
on the weighted data yields the second dominant hyperplane, and so on. Experiments on corrupted
synthetic data show that this DPCP-based sequential algorithm dramatically improves over simi-
lar sequential algorithms, which learn the dominant hyperplane via state-of-the-art single subspace
learning methods (e.g., with RANSAC). Finally, 3D plane clustering experiments on real 3D point
clouds show that a K-Hyperplanes DPCP-based scheme, which computes the normal vector of each
cluster via DPCP, instead of the classic SVD, is very competitive to state-of-the-art approaches (e.g.,
RANSAC or SVD-based K-Hyperplanes).

Notation. For a positive integer n, [n] := {1, . . . , n}. For a vector w ∈ RD we let ŵ =
w/ ‖w‖2 if w 6= 0, and ŵ = 0 otherwise. SD−1 is the unit sphere of RD. For two vectors
w1,w2 ∈ SD−1, the principal angle between w1 and w2 is the unique angle θ ∈ [0, π/2] with
cos(θ) = |w>1 w2|. 1 denotes the vector of all ones, LHS stands for left-hand-side and RHS stands
for right-hand-side. Finally, for a set X we denote by Card(X ) the cardinality of X .

Paper Organization. The rest of the paper is organized as follows. In §2 we review the prior-
art in generic hyperplane clustering. In §3 we discuss the theoretical contributions of this paper;
proofs are given in §4. §5 describes the algorithmic contributions of this paper, and §6 contains
experimental evaluations of the proposed methods.

2. Prior Art

Suppose given a dataset X = [x1, . . . ,xN ] of N points of RD, such that Ni points of X , say
X i ∈ RD×Ni , lie close to a hyperplane Hi =

{
x : b>i x = 0

}
, where bi is the normal vector to

3. We note that the problem of robust PCA or subspace clustering for subspaces of large relative dimension becomes
very challenging as the ambient dimension increases; see Section 6.1.
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the hyperplane. Then the goal of hyperplane clustering is to identify the underlying hyperplane
arrangement

⋃n
i=1Hi and cluster the dataset X to the subsets (clusters) X 1, . . . ,X n.4

RANSAC. A traditional way of clustering points lying close to a hyperplane arrangement is
by means of the RANdom SAmpling Consensus algorithm (RANSAC) (Fischler and Bolles, 1981),
which attempts to identify a single hyperplaneHi at a time. More specifically, RANSAC alternates
between randomly selecting D − 1 points from X and counting the number of points in the dataset
that are within distance δ from the hyperplane generated by the selectedD−1 points. After a certain
number of trials is reached, a first hyperplane Ĥ1 is selected as the one that admits the largest number
of points in the dataset within distance δ. These points are then removed and a second hyperplane Ĥ2

is obtained from the reduced dataset in a similar fashion, and so on. Naturally, RANSAC is sensitive
to the thresholding parameter δ. In addition, its efficiency depends on how big the probability is, that
D − 1 randomly selected points lie close to the same underlying hyperplane Hi, for some i ∈ [n].
This probability depends on how large D is as well as how balanced or unbalanced the clusters are.
If D is small, then RANSAC is likely to succeed with few trials. The same is true if one of the
clusters, say X 1, is highly dominant, i.e., N1 >> Ni, ∀i ≥ 2, since in such a case, identifying H1

is likely to be achieved with only a few trials. On the other hand, if D is large and the Ni are of the
same order of magnitude, then exponentially many trials are required (see §6 for some numerical
results), and RANSAC becomes inefficient.

K-Hyperplanes (KH). Another very popular method for hyperplane clustering is the so-called
K-hyperplanes (KH), which was proposed by Bradley and Mangasarian (2000). KH attempts to
minimize the non-convex objective function

JKH(f1, . . . ,fn; s1, . . . , sN ) :=
n∑
i=1

 N∑
j=1

sj(i)
(
f>i xj

)2 , (1)

where sj : [n] → {0, 1} is the hyperplane assignment of point xj , i.e., sj(i) = 1 if and only if
point xj has been assigned to hyperplane i, and f i ∈ SD−1 is the normal vector to the estimated
i-th hyperplane. Because of the non-convexity of (1), the typical way to perform the optimization
is by alternating between assigning clusters, i.e., given the f i assigning xj to its closest hyperplane
(in the euclidean sense), and fitting hyperplanes, i.e., given the segmentation {sj}, computing the
best `2 hyperplane for each cluster by means of PCA on each cluster. Because of this iterative
refinement of hyperplanes and clusters, this method is sometimes also called Iterative Hyperplane
Learning (IHL). The theoretical guarantees of KH are limited to convergence to a local minimum
in a finite number of steps. Even though the alternating minimization in KH is computationally
efficient, in practice several restarts are typically used, in order to select the best among multiple
local minima. In fact, the higher the ambient dimension D is the more restarts are required, which
significantly increases the computational burden of KH. Moreover, KH is robust to noise but not to
outliers, since the update of the normal vectors is done by means of standard (`2-based) PCA.

Median K Flats (MKF). It is precisely the sensitivity to outliers of KH that Median K Flats
(MKF) or Median K Hyperplanes (Zhang et al., 2009) attempts to address, by minimizing the non-

4. We are assuming here that there is a unique hyperplane arrangement associated to the data X , for more details see
§3.1.
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convex and non-smooth objective function

JMKF(f1, . . . ,fn; s1, . . . , sN ) :=
n∑
i=1

 N∑
j=1

sj(i)
∣∣∣f>i xj∣∣∣

 . (2)

Notice that (2) is almost identical to the objective (1) of KH, except that the distances of the points
to their assigned hyperplanes now appear without the square. This makes the optimization problem
harder, and Zhang et al. (2009) propose to solve it by means of a stochastic gradient approach,
which requires multiple restarts, as KH does. Even though conceptually MKF is expected to be
more robust to outliers than KH, we are not aware of any theoretical guarantees surrounding MKF
that corroborate this intuition. Moreover, MKF is considerably slower than KH, since MKF searches
directly for a basis of the hyperplanes, rather than the normals to the hyperplanes. We note here that
MKF was not designed specifically for hyperplanes, rather for the more general case of unions of
equi-dimensional subspaces. In addition, it is not trivial to adjust MKF to search for the orthogonal
complement of the subspaces, which would be the efficient approach for hyperplanes.

Algebraic Subspace Clustering (ASC). ASC was originally proposed in Vidal et al. (2003)
precisely for the purpose of provably clustering hyperplanes, a problem which at the time was han-
dled either by the intuitive RANSAC or K-Hyperplanes. The idea behind ASC is to fit a polynomial
p(x1, . . . , xD) ∈ R[x1, . . . , xD] of degree n to the data, where n is the number of hyperplanes, and
x1, . . . , xD are polynomial indeterminates. In the absence of noise, this polynomial can be shown
to have up to scale the form

p(x) = (b>1 x) · · · (b>n x), x :=
[
x1 · · ·xD

]>
, (3)

where bi ∈ SD−1 is the normal vector to hyperplane Hi. This reduces the problem to that of
factorizing p(x) to the product of linear factors, which was elegantly done in Vidal et al. (2003).
When the data are contaminated by noise, the fitted polynomial need no longer be factorizable; this
apparent difficulty was circumvented in Vidal et al. (2005), where it was shown that the gradient
of the polynomial evaluated at point xj is a good estimate for the normal vector of the hyperplane
Hi that xj lies closest to. Using this insight, one may obtain the hyperplane clusters by applying
standard spectral clustering (von Luxburg, 2007) on the angle-based affinity matrix

Ajj′ =

∣∣∣∣∣〈 ∇p|xj

||∇p|xj ||2
,
∇p|xj′

||∇p|xj′ ||2
〉

∣∣∣∣∣ , j, j′ ∈ [N ]. (4)

The main bottleneck of ASC is computational: at least
(
n+D−1

n

)
− 1 points are required in order to

fit the polynomial, which yields prohibitive complexity in many settings when n or D are large. A
second issue with ASC is that it is sensitive to outliers; this is because the polynomial is fitted in an
`2 sense through SVD (notice the similarity with KH).

Spectral Curvature Clustering (SCC). Another yet conceptually distinct method from the
ones discussed so far is SCC, whose main idea is to build a D-fold tensor as follows. For each
D-tuple of distinct points in the dataset, say xj1 , . . . ,xjD , the value of the tensor is set to

A(j1, . . . , jD) = exp

(
−(cp(xj1 , . . . ,xjD))2

2σ2

)
, (5)
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where cp(xj1 , . . . ,xjD) is the polar curvature of the points xj1 , . . . ,xjD (see Chen and Lerman
(2009) for an explicit formula) and σ is a tuning parameter. Intuitively, the polar curvature is a
multiple of the volume of the simplex of the D points, which becomes zero if the points lie in the
same hyperplane, and the further the points lie from any hyperplane the larger the volume becomes.
SCC obtains the hyperplane clusters by unfolding the tensor A to an affinity matrix, upon which
spectral clustering is applied. As with ASC, the main bottleneck of SCC is computational, since
in principle all

(
N
D

)
entries of the tensor need to be computed. Even though the combinatorial

complexity of SCC can be reduced, this comes at the cost of significant performance degradation.
RANSAC/KH Hybrids. Generally speaking, any single subspace learning method that is robust

to outliers and can handle subspaces of high relative dimensions, can be used to perform hyperplane
clustering, either via a RANSAC-style or a KH-style scheme or a combination of both. For example,
ifM is a method that takes a dataset and fits to it a hyperplane, then one can useM to compute
the first dominant hyperplane, remove the points in the dataset lying close to it, compute a second
dominant hyperplane and so on (RANSAC-style). Alternatively, one can start with a random guess
for n hyperplanes, cluster the data according to their distance to these hyperplanes, and then use
M (instead of the classic SVD) to fit a new hyperplane to each cluster, and so on (KH-style). Even
though a large variety of single subspace learning methods exist, e.g., see references in Lerman
and Zhang (2014), only few such methods are potentially able to handle large relative dimensions
and in particular hyperplanes. In addition to RANSAC, in this paper we will consider two other
possibilities, i.e., REAPER and DPCP, which are described next.5

REAPER. A recently proposed single subspace learning method that admits an interesting the-
oretical analysis is the so-called REAPER (Lerman et al., 2015). REAPER is inspired by the non-
convex optimization problem

min

L∑
j=1

‖(ID −Π)xj‖2 , s.t. Π is an orthogonal projection, Trace (Π) = d, (6)

whose principle is to minimize the sum of the euclidean distances of all points to a single d-
dimensional linear subspace U ; the matrix Π appearing in (6) can be thought of as the product
Π = UU>, where U ∈ RD×d contains in its columns an orthonormal basis for U . As (6) is
non-convex, Lerman et al. (2015) relax it to the convex semi-definite program

min

L∑
j=1

‖(ID − P )xj‖2 , s.t. 0 ≤ P ≤ ID, Trace (P ) = d, (7)

which is the optimization problem that is actually solved by REAPER; the orthogonal projection
matrix Π∗ associated to U , is obtained by projecting the solution P ∗ of (7) onto the space of rank d
orthogonal projectors. A limitation of REAPER is that the semi-definite program (7) may become
prohibitively large even for moderate values ofD. This difficulty can be circumvented by solving (7)
in an Iteratively Reweighted Least Squares (IRLS) fashion, for which convergence of the objective
value to a neighborhood of the optimal value has been established in Lerman et al. (2015).

Dual Principal Component Pursuit (DPCP). Similarly to RANSAC (Fischler and Bolles,
1981) or REAPER (Lerman et al., 2015), DPCP (Tsakiris and Vidal, 2015a, 2017b) is another,
recently proposed, single subspace learning method that can be applied to hyperplane clustering.

5. Regression-type methods such as the one proposed in Wang et al. (2015) are also a possibility.
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The key idea of DPCP is to identify a single hyperplane H that is maximal with respect to the data
X . Such a maximal hyperplane is defined by the property that it must contain a maximal number of
points NH from the dataset, i.e., NH′ ≤ NH for any other hyperplaneH′ of RD. Notice that such a
maximal hyperplane can be characterized as a solution to the problem

min
b

∥∥∥X>b∥∥∥
0

s.t. b 6= 0, (8)

since
∥∥X>b∥∥

0
counts precisely the number of points in X that are orthogonal to b, and hence,

contained in the hyperplane with normal vector b. Problem (8) is naturally relaxed to

min
b

∥∥∥X>b∥∥∥
1

s.t. ‖b‖2 = 1, (9)

which is a non-convex non-smooth optimization problem on the sphere. In the case where there
is no noise and the dataset consists of N1 ≥ D inlier points X 1 drawn from a single hyperplane
H1 ∩ SD−1 with normal vector b1 ∈ SD−1, together with M outlier points O ⊂ SD−1 in general
position, i.e. X = [X 1 O] Γ, where Γ is an unknown permutation matrix, then there is a unique
maximal hyperplane that coincides with H1. Under certain uniformity assumptions on the data
points and abundance of inliers X 1, Tsakiris and Vidal (2015a, 2017b) asserted that b1 is the unique6

up to sign global solution of (9), i.e., the combinatorial problem (8) and its non-convex relaxation
(9) share the same unique global minimizer. Moreover, it was shown that under the additional
assumption that the principal angle of the initial estimate n̂0 from b1 is not large, the sequence
{n̂k} generated by the recursion of linear programs 7

nk+1 := argmin
b: b>n̂k=1

∥∥∥X>b∥∥∥
1
, (11)

converges up to sign to b1, after finitely many iterations. Alternatively, one can attempt to solve
problem (9) by means of an IRLS scheme, in a similar fashion as for REAPER. Even though no
theory has been developed for this approach, experimental evidence in Tsakiris and Vidal (2017b)
indicates convergence of such an IRLS scheme to the global minimizer of (9).

Other Methods. In general, there is a large variety of clustering methods that can be adapted
to perform hyperplane clustering, and the above list is by no means exhaustive; rather contains the
methods that are intelluctually closest to the proposal of this paper. Important examples that we
do not compare with in this paper are the statistical-theoretic Mixtures of Probabilistic Principal
Component Analyzers (Tipping and Bishop, 1999a), as well as the information-theoretic Agglomer-
ative Lossy Compression (Ma et al., 2007). For an extensive account of these and other methods the
reader is referred to Vidal et al. (2016).

6. The theorems in Tsakiris and Vidal (2015a, 2017b) are given for inliers lying in a proper subspace of arbitrary
dimension d; the uniqueness follows from specializing d = D − 1.

7. Notice that problem

min
b

∥∥∥X>b∥∥∥
1
, s.t. b>n̂k = 1 (10)

may admit more than one global minimizer. Here and in the rest of the paper we denote by nk+1 the solution obtained
via the simplex method.
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3. Theoretical Contributions

In this section we develop the main theoretical contributions of this paper, which are concerned with
the properties of the non-convex `1 minimization problem (9), as well as with the recursion of linear
programs (11) in the context of hyperplane clustering. More specifically, we are particularly inter-
ested in developing conditions under which every global minimizer of the non-convex problem (9)
is the normal vector to one of the hyperplanes of the underlying hyperplane arrangement. Towards
that end, it is insightful to study an associated continuous problem, which is obtained by replacing
each finite cluster within a hyperplane by the uniform measure on the unit sphere of the hyperplane
(§3.2). The main result in that direction is Theorem 4. Next, by introducing certain uniformity
parameters which measure the deviation of discrete quantities from their continuous counterparts,
we adapt our analysis to the discrete case of interest (§3.1). This furnishes Theorem 6, which is the
discrete analogue of Theorem 4, and gives global optimality conditions for the `1 non-convex DPCP
problem (9) (§3.3). Finally, Theorem 7 gives convergence guarantees for the linear programming
recursion (11). The proofs of all results are deferred to §4.

3.1 Data model and the problem of hyperplane clustering

Consider given a collection X = [x1, . . . ,xN ] ∈ RD×N ofN points of the unit sphere SD−1 of RD,
that lie in an arrangement A of n hyperplanes H1, . . . ,Hn of RD, i.e., X ⊂ A =

⋃n
i=1Hi, where

each hyperplaneHi is the set of points of RD that are orthogonal to a normal vector bi ∈ SD−1, i.e.,
Hi =

{
x ∈ RD : x>bi = 0

}
, i ∈ [n] := {1, . . . , n}. We assume that the data X lie in general

position inA, by which we mean two things. First, we mean that there are no linear relations among
the points other than the ones induced by their membership to the hyperplanes. In particular, every
(D − 1) points coming from Hi form a basis for Hi and any D points of X that come from at
least two distinct Hi,Hi′ are linearly independent. Second, we mean that the points X uniquely
define the hyperplane arrangement A, in the sense that A is the only arrangement of n hyperplanes
that contains X . This can be verified computationally by checking that there is only one up to
scale homogeneous polynomial of degree n that fits the data, see Vidal et al. (2005); Tsakiris and
Vidal (2017c) for details. We assume that for every i ∈ [n], precisely Ni points of X , denoted by
X i = [x

(i)
1 , . . . ,x

(i)
Ni

], belong toHi, with
∑n

i=1Ni = N . With that notation, X = [X 1, . . . ,X n]Γ,
where Γ is an unknown permutation matrix, indicating that the hyperplane membership of the points
is unknown. Moreover, we assume an ordering N1 ≥ N2 ≥ · · · ≥ Nn, and we refer to H1 as the
dominant hyperplane. After these preparations, the problem of hyperplane clustering can be stated
as follows: given the data X , find the number n of hyperplanes associated to X , a normal vector to
each hyperplane, and a clustering of the data X =

⋃n
i=1X i according to hyperplane membership.

3.2 Theoretical analysis of the continuous problem

As it turns out, certain important insights regarding problem (9) with respect to hyperplane cluster-
ing can be gained by examining an associated continuous problem. To see what that problem is, let
Ĥi = Hi ∩ SD−1, and note first that for any b ∈ SD−1 we have

1

Ni

Ni∑
j=1

∣∣∣b>x(i)
j

∣∣∣ ' ∫
x∈Ĥi

∣∣∣b>x∣∣∣ dµĤi
, (12)
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where the LHS of (12) is precisely 1
Ni

∥∥X>i b∥∥1 and can be viewed as an approximation (') via
the point set X i of the integral on the RHS of (12), with µĤi

denoting the uniform measure on Ĥi.
Letting θi be the principal angle between b and bi, i.e., the unique angle θi ∈ [0, π/2] such that
cos(θi) = |b>bi|, and πHi : RD → Hi the orthogonal projection ontoHi, for any x ∈ Hi we have

b>x = b>πHi(x) = (πHi(b))
> x = h>i,bx = sin(θi) ĥ

>
i,bx. (13)

Hence, ∫
x∈Ĥi

∣∣∣b>x∣∣∣ dµĤi
=

[∫
x∈Ĥi

∣∣∣ĥ>i,bx∣∣∣ dµĤi

]
sin(θi) (14)

=

[∫
x∈SD−2

|x1|dµSD−2

]
sin(θi) (15)

= c sin(θi). (16)

In the second equality above we made use of the rotational invariance of the sphere, as well as the
fact that Ĥi ∼= SD−2, which leads to (for details see the proof of Proposition 4 and Lemma 7 in
Tsakiris and Vidal (2017b))∫

x∈Ĥi

∣∣∣ĥ>i,bx∣∣∣ dµĤi
=

∫
x∈SD−2

|x1|dµSD−2 =: c, (17)

where x1 is the first coordinate of x and c is the average height of the unit hemisphere in RD. As a
consequence, we can view the objective function of (9), which is given by

∥∥∥X>b∥∥∥
1

=

n∑
i=1

∥∥∥X>i b∥∥∥
1

=

n∑
i=1

Ni

 1

Ni

Ni∑
j=1

∣∣∣b>x(i)
j

∣∣∣
 , (18)

as a discretization via the point set X of the function

J (b) :=
n∑
i=1

Ni

(∫
x∈Ĥi

∣∣∣b>x∣∣∣ dµĤi

)
(16)
=

n∑
i=1

Ni c sin(θi). (19)

In that sense, the continuous counterpart of problem (9) is

min
b
J (b) = N1 c sin(θ1) + · · ·+Nn c sin(θn), s.t. b ∈ SD−1. (20)

Note that sin(θi) is the distance between the line spanned by b and the line spanned by bi.8 Thus, ev-
ery global minimizer b∗ of problem (20) minimizes the sum of the weighted distances of Span(b∗)
from Span(b1), . . . ,Span(bn), and can be thought of as representing a weighted median of these
lines. Medians in Riemmannian manifolds, and in particular in the Grassmannian manifold, are an
active subject of research (Draper et al., 2014; Ghalieh and Hajja, 1996). However, we are not aware
of any work in the literature that defines a median by means of (20), nor any work that studies (20).

The advantage of working with (20) instead of (9), is that the solution set of the continuous
problem (20) depends solely on the weights N1 ≥ N2 ≥ · · · ≥ Nn assigned to the hyperplane

8. Recall that θi is a principal angle, i.e., θi ∈ [0, π/2].
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arrangement, as well as on the geometry of the arrangement, captured by the principal angles θij
between bi and bj . In contrast, the solutions of the discrete problem (9) may also depend on the
distribution of the points X . From that perspective, understanding when problem (20) has a unique
solution that coincides with the normal ±b1 to the dominant hyperplane H1 is essential for under-
standing the potential of (9) for hyperplane clustering. Towards that end, we next provide a series
of results pertaining to (20). The first configuration that we examine is that of two hyperplanes. In
that case the weighted geometric median of the two lines spanned by the normals to the hyperplanes
always corresponds to one of the two normals:

Theorem 1 Let b1, b2 be an arrangement of two hyperplanes in RD, with weights N1 ≥ N2. Then
the set B∗ of global minimizers of (20) satisfies:

1. If N1 = N2, then B∗ = {±b1,±b2}.

2. If N1 > N2, then B∗ = {±b1}.

Notice that when N1 > N2, problem (20) recovers the normal b1 to the dominant hyperplane, irre-
spectively of how separated the two hyperplanes are, since, according to Proposition 1, the principal
angle θ12 between b1, b2 does not play a role. The continuous problem (20) is equally favorable
in recovering normal vectors as global minimizers in the dual situation, where the arrangement
consists of up to D perfectly separated (orthogonal) hyperplanes, as asserted by the next Theorem.

Theorem 2 Let b1, . . . , bn be an orthogonal hyperplane arrangement (θij = π/2, ∀i 6= j) of RD,
with n ≤ D, and weights N1 ≥ N2 ≥ · · · ≥ Nn. Then the set B∗ of global minimizers of (20) can
be characterized as follows:

1. If N1 = Nn, then B∗ = {±b1, . . . ,±bn}.

2. If N1 = · · · = N` > N`+1 ≥ · · ·Nn, for some ` ∈ [n− 1], then B∗ = {±b1, . . . ,±b`}.

Theorems 1 and 2 are not hard to prove, since for two hyperplanes the objective can be shown
to be a strictly concave function, while for orthogonal hyperplanes the objective is separable. In
contrast, the problem becomes considerably harder for n > 2 non-orthogonal hyperplanes. Even
when n = 3, characterizing the global minimizers of (20) as a function of the geometry and the
weights seems challenging. Nevertheless, when the three hyperplanes are equiangular and their
weights are equal, the symmetry of the configuration allows to analytically characterize the median
as a function of the angle of the arrangement.

Theorem 3 Let b1, b2, b3 be an equiangular hyperplane arrangement of RD, D ≥ 3, with θ12 =
θ13 = θ23 = θ ∈ (0, π/2] and weights N1 = N2 = N3. Let B∗ be the set of global minimizers of
(20). Then B∗ satisfies the following phase transition:

1. If θ > 60◦, then B∗ = {±b1,±b2,±b3}.

2. If θ = 60◦, then B∗ =
{
±b1,±b2,±b3,± 1√

3
1
}

.

3. If θ < 60◦, then B∗ =
{
± 1√

3
1
}

.

10



Proposition 3, whose proof uses nontrivial arguments from spherical and algebraic geometry, is par-
ticularly enlightening, since it suggests that the global minimizers of (20) are associated to normal
vectors of the underlying hyperplane arrangement when the hyperplanes are sufficiently separated,
while otherwise they seem to be capturing the median hyperplane of the arrangement. This is
in striking similarity with the results regarding the Fermat point of planar and spherical triangles
(Ghalieh and Hajja, 1996). However, when the symmetry in Theorem 3 is removed, by not requiring
the principal angles θij or/and the weights Ni to be equal, then our proof technique no longer ap-
plies, and the problem seems even harder. Even so, one intuitively expects an interplay between the
angles and the weights of the arrangement under which, if the hyperplanes are sufficiently separated
and H1 is sufficiently dominant, then (20) should have a unique global minimizer equal to b1. Our
next theorem formalizes this intuition.

Theorem 4 Let b1, . . . , bn be an arrangement of n ≥ 3 hyperplanes in RD, with pairwise principal
angles θij . Let N1 ≥ N2 ≥ · · · ≥ Nn be positive integer weights assigned to the arrangement.
Suppose that N1 is large enough, in the sense that

N1 >
√
α2 + β2, (21)

where

α :=
∑
i>1

Ni sin(θ1,i)−
√∑

i>1

N2
i − σmax

(
[NiNj cos(θij)]i,j>1

)
≥ 0, (22)

β :=

√∑
i>1

N2
i + 2

∑
i 6=j, i,j>1

NiNj cos(θij), (23)

with σmax

(
[NiNj cos(θij)]i,j>1

)
denoting the maximal eigenvalue of the (n−1)× (n−1) matrix,

whose (i − 1, j − 1) entry is NiNj cos(θij) and 1 < i, j ≤ n. Then any global minimizer b∗ of
problem (20) must satisfy b∗ = ±bi, for some i ∈ [n]. If in addition,

γ := min
i′ 6=1

∑
i 6=i′

Ni sin(θi′,i)−
∑
i>1

Ni sin(θ1,i) > 0, (24)

then problem (20) admits a unique up to sign global minimizer b∗ = ±b1.

Let us provide some intuition about the meaning of the quantities α, β and γ in Theorem 4. To begin
with, the first term in α is precisely equal to J (b1), while the second term in α is a lower bound on
the objective function N2 sin(θ2) + · · · + Nn sin(θn), if one discards hyperplane H1. Moving on,
under the hypothesis that N1 >

√
α2 + β2, the quantity β

N1
admits a nice geometric interpretation:

cos−1
(
β
N1

)
is a lower bound on how small the principal angle of a critical point b† from b1 can be,

if b† 6= ±b1. Interestingly, this means that the larger N1 is, the larger this minimum angle is, which
shows that critical hyperplanes H† (i.e., hyperplanes defined by critical points b†) that are distinct
from H1, must be sufficiently separated from H1. Finally, the first term in γ is J (b1), while the
second term is the smallest objective value that corresponds to b = bi, i > 1, and so (24) simply
guarantees that J (b1) < J (bi), ∀i > 1.

11



Next, notice that condition N1 >
√
α2 + β2 of Theorem 4 is easier to satisfy when H1 is

close to the rest of the hyperplanes (which leads to small α), while the rest of the hyperplanes are
sufficiently separated (which leads to small α and small β). Here the notion of close and separated
is to be interpreted relatively toH1 and its assigned weight N1. Regardless, one can show that

√
2
∑
i>1

Ni ≥
√
α2 + β2, (25)

and so if

N1 >
√

2
∑
i>1

Ni, (26)

then any global minimizer of (20) has to be one of the normals, irrespectively of the θij . Finally,
condition (24) is consistent with condition (21) in that it requires H1 to be close to Hi, i > 1 and
Hi,Hj to be sufficiently separated for i, j > 1. Once again, (24) can always be satisfied irrespec-
tively of the θij , by choosing N1 sufficiently large, since only the positive term in the definition of
γ depends on N1, once again manifesting that the terms close and separated are used relatively to
H1 and its assigned weight N1.

Removing the term N1 sin(θ1) from the objective function, which corresponds to having iden-
tified H1 and removing its associated points, one may re-apply Theorem 4 to the remaining hyper-
planes H2, . . . ,Hn to obtain conditions for recovering b2 and so on. Notice that these conditions
will be independent of N1, rather they will be relative to H2 and its assigned weight N2, and can
always be satisfied for large enough N2. Finally, further recursive application of Theorem 4 can
furnish conditions for sequentially recovering all normals b1, . . . , bn. However, we should point
out that the conditions of Theorem 4 are readily seen to be stronger than necessary. For example,
we already know from Theorem 2 that when the arrangement is orthogonal, i.e., θij = π/2, ∀i 6= j,
then problem (20) has a unique minimizer ±b1 as soon as N1 > Ni,∀i > 1. On the contrary,
Theorem 4 applied to that case requires N1 to be unnecessarily large, i.e., condition (21) becomes

N2
1 >

(∑
i>1

Ni

)2

+ 2
∑
i>1

N2
i − 2

(∑
i>1

Ni

)(∑
i>1

N2
i

)1/2

, (27)

which in the special case N2 = · · · = Nn reduces to N1 > (n− 1)N2. This is clearly an artifact of
the techniques used to prove Theorem 4, and not a weakness of problem (20) in terms of its global
optimality properties. Improving the proof technique of Theorem 4 is an open problem.

3.3 Theoretical analysis of the discrete problem

We now turn our attention to the discrete problem of hyperplane clustering via DPCP, i.e., to prob-
lems (9) and (11), for the case where X = [X 1, . . . ,X n]Γ, with X i being Ni points in Hi, as
described in §3.1. As a first step of our analysis we define certain uniformity parameters εi, which
serve as link between the continuous and discrete domains. Towards that end, note that for any
i ∈ [n] and b ∈ SD−1, the quantity ||X>i b||1 can be written as

∥∥∥X>i b∥∥∥
1

=

Ni∑
j=1

∣∣∣b>x(i)
j

∣∣∣ = b>
Ni∑
j=1

Sign
(
b>x

(i)
j

)
x
(i)
j = Ni b

>χi,b, (28)

12



where

χi,b :=
1

Ni

Ni∑
j=1

Sign
(
b>x

(i)
j

)
x
(i)
j (29)

is the average point of X i with respect to the orthogonal projection hi,b := πHi(b) of b onto Hi.
Notice that χi,b can be seen as an average of the function y ∈ Ĥi 7→ Sign

(
b>y

)
y ∈ Ĥi through

the point sent X i ⊂ Ĥi. In other words, χi,b can be seen as an approximation of the integral9∫
x∈Ĥi

Sign
(
b>x

)
x dµĤi

= c ĥi,b, (30)

where c was defined in (17). To remove the dependence on b we define the approximation error εi
associated to hyperplaneHi as

εi := max
b∈SD−1

∥∥∥χi,b − c ĥi,b∥∥∥
2
. (31)

Then it can be shown (see Tsakiris and Vidal (2017b) §4.2) that when the points X i are uniformly
distributed in a deterministic sense (Grabner et al., 1997; Grabner and Tichy, 1993), εi is small and
in particular εi → 0 as Ni →∞.

We are now almost ready to state our main results, before doing so though we need a rather
technical, yet necessary, definition.

Definition 5 For a set Y = [y1, . . . ,yL] ⊂ SD−1 and positive integer K ≤ L, define RY,K to be

the maximum circumradius among the circumradii of all polytopes
{∑K

i=1 αjiyji : αji ∈ [−1, 1]
}

,
where j1, . . . , jK are distinct integers in [L], and the circumradius of a closed bounded set is the
minimum radius among all spheres that contain the set. We now define the quantity of interest as

R := max
K1+···+Kn=D−1

0≤Ki≤D−2

n∑
i=1

RX i,Ki . (32)

We note that it is always the case that RX i,Ki ≤ Ki, with this upper bound achieved when X i

contains Ki colinear points. Combining this fact with the constraint
∑

iKi = D−1 in (32), we get
that R ≤ D − 1, and the more uniformly distributed are the points X inside the hyperplanes, the
smallerR is (even thoughR does not go to zero).

Recalling the definitions of c, εi andR in (17), (31) and (32), respectively, we have the following
result about the non-convex problem (9).

Theorem 6 Let b∗ be a solution of (9) with X = [X 1, . . . ,X n]Γ, and suppose that c >
√

2ε1. If

N1 >

√
ᾱ2 + β̄2, where (33)

ᾱ := α+ c−1

(
ε1N1 + 2

∑
i>1

εiNi

)
, and (34)

β̄ := β + c−1
(
R+

∑
εiNi

)
, (35)

9. For details regarding the evaluation of this integral see Lemma 9 and its proof in Tsakiris and Vidal (2017b).
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with α, β as in Theorem 4, then b∗ = ±bi for some i ∈ [n]. Furthermore, b∗ = ±b1, if

γ̄ := γ − c−1
(
ε1N1 + ε2N2 + 2

∑
i>2

εiNi

)
> 0. (36)

Notice the similarity of conditions N1 >
√
ᾱ2 + β̄2, γ̄ > 0 of Theorem 6 with conditions N1 >√

α2 + β2, γ > 0 of Theorem 4. In fact ᾱ > α, β̄ > β, γ̄ < γ, which implies that the conditions
of Theorem 6 are strictly stronger than those of Theorem 4. This is no surprise since, as we have
already remarked, the solution set of (9) depends not only on the geometry (θij) and the weights
(Ni) of the arrangement, but also on the distribution of the data points (parameters εi andR).

We note that in contrast to condition (21) of Theorem 4, N1 now appears in both sides of
condition (33) of Theorem 6. Nevertheless, under the assumption c >

√
2ε1, (33) is equivalent to

the positivity of a quadratic polynomial in N1, whose leading coefficient is positive, and hence it
can always be satisfied for sufficiently large N1.

Another interesting connection of Theorem 4 to Theorem 6, is that the former can be seen as
a limit version of the latter : dividing (33) and (36) by N1, letting N1, . . . , Nn go to infinity while
keeping each ratio Ni/N1 fixed, and recalling that εi → 0 as Ni →∞ andR ≤ D − 1, we recover
the conditions of Theorem 4.

Next, we consider the linear programming recursion (11). At a conceptual level, the main dif-
ference between the linear programming recursion in (11) and the continuous and discrete problems
(20) and (9), respectively, is that the behavior of (11) depends highly on the initialization n̂0. Intu-
itively, the closer n̂0 is to b1, the more likely the recursion will converge to b1, with this likelihood
becoming larger for larger N1. The precise technical statement is as follows.

Theorem 7 Let {n̂k} be the sequence generated by the linear programming recursion (11) by
means of the simplex method, where n̂0 ∈ SD−1 is an initial estimate for b1, with principal an-
gle from bi equal to θi,0. Suppose that c >

√
5ε1, and let θ(1)min = mini>1 {θ1i}. If θ1,0 is small

enough, i.e.,

sin(θ1,0) < min
{

sin
(
θ
(1)
min

)
− 2ε1,

√
1− (c−1ε1)2 − 2c−1ε1

}
, (37)

and N1 is large enough in the sense that

N1 > max

{
µ,
ν +

√
ν2 + 4ρτ

2τ

}
, where (38)

µ := max
j 6=1

{∑
i>1Ni sin(θi,0) + c−1εjNj +

∑
i 6=1,j Ni

[
2c−1εi − sin(θij)

]
sin(θ1j)− sin(θ1,0)− 2c−1ε1

}
, (39)

ν := 2c−1ε1

(
β + c−1R+ c−1

∑
i>1

εiNi

)
+ 2

[
sin(θ1,0) + 2c−1ε1

](
α+ 2c−1

∑
i>1

εiNi

)
,

(40)

ρ :=

(
α+ 2c−1

∑
i>1

εiNi

)2

+

(
β + c−1R+ c−1

∑
i>1

εiNi

)2

, (41)

τ := cos2(θ1,0)− 4c−1ε1 sin(θ1,0)− 5(c−1ε1)
2, (42)
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with α, β as in Theorem 4, then {nk} converges to either b1 or −b1 in a finite number of steps.

The quantities appearing in Theorem 7 are harder to interpret than those of Theorem 6, but we can
still give some intuition about their meaning. To begin with, the two inequalities in (38) represent
two distinct requirements that we enforced in our proof, which when combined, guarantee that the
limit point of (11) is ±b1.

The first requirement is that no ±bi can be the limit point of (11) for i > 1; this is captured by
a linear inequality of the form

µN1 + (terms not depending on N1) > 0, (43)

which is satisfied either for N1 sufficiently large (if µ > 0) or for N1 sufficiently small (if µ < 0).
To avoid pathological situations where N1 is required to be negative or less than D− 1, it is natural
to enforce µ to be positive. This is precisely achieved by inequality sin(θ1,0) < sin

(
θ
(1)
min

)
− 2ε1

in (37), which is a quite natural condition itself: the initial estimate n̂0 needs to be closer to b1 than
any other normal bi for i > 1, and the more well-distributed the data X 1 are insideH1 (smaller ε1),
the further n̂0 can be from b1.

The second requirement that we employed in our proof is that the limit point of (11) is one of
the ±b1, . . . ,±bn; this is captured by requiring that a certain quadratic polynomial

p(N1) := τ N2
1 − ν N1 − ρ (44)

in N1 is positive. To avoid situations where the positivity of this polynomial contradicts the relation
N1 > µ, it is important that we ask its leading coefficient τ to be positive, so that the second
requirement is satisfied for N1 large enough, and thus is compatible with N1 > µ. As it turns
out, τ is positive only if the data X 1 are sufficiently well distributed in H1, which is captured
by condition c >

√
5ε1 of Theorem 7. Even so, this latter condition is not sufficient; instead

sin(θ1,0) <
√

1− (c−1ε1)2 − 2c−1ε1 is needed (as in (37)), which is once again very natural: the
more well-distributed the data X 1 are insideH1 (smaller ε1), the further n̂0 from b1 can be.

Next, notice that the conditions of Theorem 7 are not directly comparable to those of Theorem
6. Indeed, it may be the case that ±b1 is not a global minimizer of the non-convex problem (9), yet
the recursions (11) do converge to b1, simply because n̂0 is close to b1. In fact, by (37) n̂0 must
be closer to b1 than bi to b1 for any i > 1, i.e., θ(1)min > θ1,0. Similarly to Theorems 4 and 6, the
more separated the hyperplanes Hi,Hj are for i, j > 1, the easier it is to satisfy condition (38).
In contrast, H1 needs to be sufficiently separated from Hi for i > 1, since otherwise µ becomes
large. This has an intuitive explanation: the less separated H1 is from the rest of the hyperplanes,
the less resolution the linear program (11) has in distinguishing b1 from bi, i > 1. To increase this
resolution, one needs to either select n̂0 very close to b1, or select N1 very large. The acute reader
may recall that the quantity α appearing in (41) becomes larger when H1 becomes separated from
Hi, i > 1. Nevertheless, there are no inconsistency issues in controlling the size of µ and ρ. This is
because α is always bounded from above by

∑
i>1Ni, i.e., α does not increase arbitrarily as the θ1i

increase. Another way to look at the consistency of condition (38), is that its RHS does not depend
on N1; hence one can always satisfy (38) by selecting N1 large enough.
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4. Proofs

In this Section we prove Theorems 1-3 associated to the continuous problem (20), as well as Theo-
rems 6 and 7 associated to the discrete non-convex `1 minimization problem (9) and the recursion
of linear programs (11) respectively.

4.1 Preliminaries on the continuous problem

We start by noting that the objective function (20) is everywhere differentiable except at the points
±b1, . . . ,±bn, where its partial derivatives do not exist. For any b ∈ SD−1 distinct from ±bi, the
gradient at b is given by

∇bJ = −
n∑
i=1

b>i b(
1− (b>i b)

2
) 1

2

bi. (45)

Now let b∗ be a global solution of (20) and suppose that b∗ 6= ±bi, ∀i ∈ [n]. Then b∗ must satisfy
the first order optimality condition

∇bJ |b∗ + λ∗ b∗ = 0, (46)

where λ∗ is a Lagrange multiplier. Equivalently, we have

−
n∑
i=1

Ni

(
b>i b

∗
)(

1−
(
b>i b

∗
)2)− 1

2

bi + λ∗ b∗ = 0, (47)

which implies that

n∑
i=1

Ni

(
b>i b

∗
)2(

1−
(
b>i b

∗
)2)− 1

2

b∗ =
n∑
i=1

Ni

(
b>i b

∗
)(

1−
(
b>i b

∗
)2)− 1

2

bi, (48)

from which the next Lemma follows.

Lemma 8 Let b∗ be a global solution of (20). Then b∗ ∈ Span (b1, . . . , bn).

Proof If b∗ is equal to some ±bi, then the statement of the Lemma is certainly true. If b∗ 6=
±bi, ∀i ∈ [n], then b∗ satisfies (48), from which again the statement is true.

4.2 Proof of Theorem 1

By Lemma 8 any global solution must lie in the plane Span(b1, b2), and so our problem becomes
planar, i.e., we may as well assume that the hyperplane arrangement b1, b2 is a line arrangement
of R2. Note that b1, b2 ∈ S1 partition S1 in two arcs, and among these, only one arc has length θ
strictly less than π; we denote this arc by a. Next, recall that the continuous objective function for
two hyperplanes can be written as

J (b) = N1

(
1− (b>1 b)

2
) 1

2
+N2

(
1− (b>2 b)

2
) 1

2
, b ∈ S1. (49)
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Let b∗ be a global solution, and suppose that b∗ 6∈ a. If −b∗ ∈ a, then we can replace b1, b2 by
−b1,−b2, an operation that does not change neither the arrangement nor the objective. After this
replacement, we have that b∗ ∈ a. Finally suppose that neither b∗ nor −b∗ are inside a. Then
replacing either b1 with −b1 or b2 with −b2, leads to b∗ ∈ a. Consequently, without loss of
generality we may assume that b∗ lies in a. Moreover, subject to a rotation and perhaps exchanging
b1 with b2, we can assume that b1 is aligned with the positive x-axis and that the angle θ between
b1 and b2, measured counter-clockwise, lies in (0, π). Then b∗ is a global solution to

J (b) = N1

(
1− (b>1 b)

2
) 1

2
+N2

(
1− (b>2 b)

2
) 1

2
, b ∈ S1 ∩ a. (50)

Now, for any vector b ∈ S1 ∩ a, let θ1, θ2 = θ − θ1 be the angle between b and b1, b2 respectively.
Then our objective can be written as

J (b) = J̃ (θ1) = N1 sin(θ1) +N2 sin(θ − θ1), θ1 ∈ [0, θ]. (51)

Taking first and second derivatives, we have

∂J̃
∂θ1

= N1 cos(θ1)−N2 cos(θ − θ1) (52)

∂2J̃
∂θ21

= −N1 sin(θ1)−N2 sin(θ − θ1). (53)

Since the second derivative is everywhere negative on [0, θ], J̃ (θ1) is strictly concave on [0, θ] and
so its minimum must be achieved at the boundary θ1 = 0 or θ1 = θ. This means that either b∗ = b1
or b∗ = b2.

4.3 Proof of Theorem 2

For the sake of simplicity we assume n = 3, the general case follows in a similar fashion. Letting

xi := b>i b and yi :=
√

1− x2i , (48) can be written as(
N1

x21
y1

+N2
x22
y2

+N3
x23
y3

)
b∗ = N1

x1
y1
b1 +N2

x2
y2
b2 +N3

x3
y3
b3. (54)

Taking inner products of (54) with b1, b2, b3 we respectively obtain(
N1

x21
y1

+N2
x22
y2

+N3
x23
y3

)
x1 = N1

x1
y1

+N2
x2
y2

(b>1 b2) +N3
x3
y3

(b>1 b3), (55)(
N1

x21
y1

+N2
x22
y2

+N3
x23
y3

)
x2 = N1

x1
y1

(b>2 b1) +N2
x2
y2

+N3
x3
y3

(b>2 b3), (56)(
N1

x21
y1

+N2
x22
y2

+N3
x23
y3

)
x3 = N1

x1
y1

(b>3 b1) +N2
x2
y2

(b>3 b2) +N3
x3
y3
. (57)

Since by Lemma 8 b∗ is a linear combination of b1, b2, b3, we can assume that D = 3. Suppose
that b∗ 6= ±bi, ∀i ∈ [n]. Now, suppose that x3 = 0. Then we can not have either x1 = 0 or x2 = 0,
otherwise b∗ = b2 or b∗ = b1 respectively. Hence x1, x2 6= 0. Then equations (55)-(57) imply that

N1

y1
=
N2

y2
and x21 + x22 = 1. (58)
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Taking into consideration the relations x2i + y2i = 1, we deduce that

y1 =
N1√

N2
1 +N2

2

, y2 =
N2√

N2
1 +N2

2

. (59)

Then

J (b∗) = N1y1 +N2y2 +N3y3 =
√
N2

1 +N2
2 +N3 > J (b1) = N2 +N3, (60)

which is a contradiction on the optimality of b∗. Similarly, none of the x1, x2 can be zero, i.e.
x1, x2, x3 6= 0. Then equations (55)-(57) imply that

x21 + x22 + x23 = 1,
N1

y1
=
N2

y2
=
N3

y3
, (61)

which give

yi =
Ni

√
2√

N2
1 +N2

2 +N2
3

, i = 1, 2, 3. (62)

But then J (b∗) =
√

2
(
N2

1 +N2
2 +N2

3

)
> J (b1) = N2 +N3. This contradiction shows that our

hypothesis b∗ 6= ±bi, ∀i ∈ [n] is not valid, i.e., B∗ ⊂ {±b1,±b2,±b3}. The rest of the theorem
follows by comparing the values J (bi), i ∈ [3].

4.4 Proof of Theorem 3

Without loss of generality, we can describe an equiangular arrangement of three hyperplanes of RD,
with an equiangular arrangement of three planes of R3, with normals b1, b2, b3 given by

b1 := µ
[
1 + α α α

]> (63)

b2 := µ
[
α 1 + α α

]> (64)

b3 := µ
[
α α 1 + α

]> (65)

µ :=
[
(1 + α)2 + 2α2

]− 1
2 , (66)

with α a positive real number that determines the angle θ ∈ (0, π/2] of the arrangement, given by

cos(θ) :=
2α(1 + α) + α2

(1 + α)2 + 2α2
=

2α+ 3α2

1 + 2α+ 3α2
. (67)

Since N1 = N2 = N3, so our objective function essentially becomes

J (b) =
(

1− (b>1 b)
2
) 1

2
+
(

1− (b>2 b)
2
) 1

2
+
(

1− (b>3 b)
2
) 1

2
, b ∈ S2 (68)

= sin(θ1) + sin(θ2) + sin(θ3), (69)

where θi is the principal angle of b from bi. The next Lemma shows that any global minimizer b∗

must have equal principal angles from at least two of the b1, b2, b3.
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Lemma 9 Let b1, b2, b3 be an arrangement of equiangular planes in R3, with angle θ and weights

N1 = N2 = N3. Let b∗ be a global minimizer of (20) and let xi := b>i b
∗, yi =

√
1− x2i i =

1, 2, 3. Then either y1 = y2 or y1 = y3 or y2 = y3.

Proof If b∗ is one of ±b1,±b2,±b3, then the statement clearly holds, since if say b∗ = b1, then
y2 = y3 = sin(θ). So suppose that b∗ 6= ±bi, ∀i ∈ [3]. Then xi, yi must satisfy equations
(55)-(57), together with x2i + y2i = 1. Allowing for yi to take the value zero, the xi, yi must satisfy

p1 := x1y1y2y3 + x2y3[z − x1x2] + x3y2[z − x1x3] = 0, (70)

p2 := x1y3[z − x1x2] + x2y1y2y3 + x3y1[z − x2x3] = 0, (71)

p3 := x1y2[z − x1x3] + x2y1[z − x2x3] + x3y1y2y3 = 0, (72)

q1 := x21 + y21 − 1, (73)

q2 := x22 + y22 − 1, (74)

q3 := x23 + y23 − 1, (75)

where z := cos(θ). Viewing the above system of equations as polynomial equations in the variables
x1, x2, x3, y1, y2, y3, z, standard Groebner basis (Cox et al., 2007) computations reveal that the
polynomial

g := (1− z)(y21 − y22)(y21 − y23)(y22 − y23)(y1 + y2 + y3) (76)

lies in the ideal generated by pi, qi, i = 1, 2, 3. In simple terms, this means that b∗ must satisfy
g(xi, yi, z = cos(θ)) = 0. However, the yi are by construction non-negative and can not be all zero.
Moreover, θ > 0 so 1− z 6= 0. This implies that

(y21 − y22)(y21 − y23)(y22 − y23) = 0, (77)

which in view of the non-negativity of the yi implies

(y1 − y2)(y1 − y3)(y2 − y3) = 0. (78)

The next Lemma says that a global minimizer of J (b) is not far from the arrangement.

Lemma 10 Let b1, b2, b3 be an arrangement of equiangular planes in R3, with angle θ and weights
N1 = N2 = N3. Let Ci be the spherical cap with center bi and radius θ. Then any global minimizer
of (69) must lie (up to a sign) either on the boundary or the interior of C1 ∩ C2 ∩ C3.

Proof First of all notice that b1, b2, b3 lie on the boundary of C1 ∩ C2 ∩ C3. Let b∗ be a global
minimizer. If θ = π/2, we have already seen in Proposition 2 that b∗ has to be one of the vertices
b1, b2, b3 (up to a sign); so suppose that θ < π/2. Let θ∗i be the principal angle of b∗ from bi.
Then at least two of θ∗1, θ

∗
2, θ
∗
3 must be less or equal to θ; for if say θ∗1, θ

∗
2 > θ, then b3 would give

a smaller objective than b∗. Hence, without loss of generality we may assume that θ∗1, θ
∗
2 ≤ θ. In

addition, because of Lemma 9, we can further assume without loss of generality that θ∗1 = θ∗2. Let
ζ be the vector in the small arc that joins 1√

3
1 and b3 and has angle from b1, b2 equal to θ∗1. Since
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J (b∗) ≤ J (ζ), it must be the case that the principal angle θ∗3 is less or equal to θ (because the angle
of ζ from b3 is ≤ θ). We conclude that θ∗1, θ

∗
2, θ
∗
3 ≤ θ. Consequently, there exist i 6= j such that up

to a sign b∗ ∈ Ci ∩ Cj . Let us assume without loss of generality that b∗ ∈ C1 ∩ C2, i.e., θ∗1, θ
∗
2 are

the angles of b∗ from b1, b2 (notice that now it may no longer be the case that θ∗1 = θ∗2).
Notice that the boundaries of C1 and C2 intersect at two points: b3 and its reflection b̃3 with

respect to the plane H12 spanned by b1, b2. In fact, H12 divides C1 ∩ C2 in two halves, Y, Ỹ , with
Y being the reflection of Ỹ with respect to H12. Letting C̃3 be the spherical cap of radius θ around
b̃3, we can write

C1 ∩ C2 = (C1 ∩ C2 ∩ C3) ∪ (C1 ∩ C2 ∩ C̃3). (79)

If b∗ ∈ C1 ∩C2 ∩C3 we are done, so let us assume that b∗ ∈ C1 ∩C2 ∩ C̃3. Let b̃
∗

be the reflection
of b∗ with respect to H12. This reflection preserves the angles from b1 and b2. We will show that
b̃
∗

has a smaller principal angle θ̃∗3 from b3 than b∗. In fact the spherical angle of b̃
∗

from b3 is θ̃∗3
itself, and this is precisely the angle of b∗ from b̃3. Denote by H3,3̃ the plane spanned by b3 and b̃3,
b̄
∗ the spherical projection of b∗ onto H3,3̃, γ the angle between b̄∗ and b∗, α the angle between b̄∗

and b3, and α̃ the angle between b̄∗ and b̃3. Then the spherical law of cosines gives

cos(θ̃∗3) = cos(α̃) cos(γ), (80)

cos(θ∗3) = cos(α) cos(γ). (81)

Letting 2ψ be the angle between b3 and b̃3, we have that

α = ψ + (ψ − α̃). (82)

By hypothesis α̃ < ψ and so α > ψ. If 2ψ ≤ π/2, then α is an acute angle and cos(α̃) > cos(α). If
2ψ > π/2, then cos(α̃) ≤ cos(α) only when π − (2ψ − α̃) ≤ α̃⇔ ψ ≥ π/2. But by construction
ψ ≤ π/2 and equality is achieved only when θ = π/2. Hence, we conclude that cos(α̃) > |cos(α)|,
which implies that cos(θ̃3) > |cos(θ3)|. This in turn means that J (b̃

∗
) < J (b∗), which is a contra-

diction.

Lemma 11 Let b1, b2, b3 be an arrangement of equiangular planes in R3, with angle θ and weights
N1 = N2 = N3. Let b∗ be a global minimizer of (20) and let xi := b>i b

∗, i = 1, 2, 3. Then either
x1, x2, x3 are all non-negative or they are all non-positive.

Proof By Lemma 10, we know that either b∗ ∈ C1 ∩ C2 ∩ C3 or −b∗ ∈ C1 ∩ C2 ∩ C3. In the first
case, the angles of b∗ from b1, b2, b3 are less or equal to θ ≤ π/2.

Now, Lemmas 9 and 11 show that b∗ is a global minimizer of problem

min
b∈S2

{√
1− (b>1 b)

2 +

√
1− (b>2 b)

2 +

√
1− (b>3 b)

2

}
(83)

if and only if it is a global minimizer of problem

min
b∈S2

{√
1− (b>1 b)

2 +

√
1− (b>2 b)

2 +

√
1− (b>3 b)

2

}
, (84)

s.t. b>i b = b>j b, for some i 6= j ∈ [3]. (85)
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So suppose without loss of generality that b∗ is a global minimizer of (85) corresponding to indices
i = 1, j = 2. Then b∗ lives in the vector space

V12 = Span

1
1
0

 ,
0

0
1

 , (86)

which consists of all vectors that have equal angles from b1 and b2. Taking into consideration that
b∗ also lies in S2, we have the parametrization

b∗ =
1√

2v2 + w2

vv
w

 . (87)

The choice v = 0, corresponding to b∗ = e3 (the third standard basis vector), can be excluded,
since b3 always results in a smaller objective: moving b from e3 to b3 while staying in the plane
V12 results in decreasing angles of b from b1, b2, b3. Consequently, we can assume v = 1, and our
problem becomes an unconstrained one, with objective

J (w) =
2
[
(2 + w2)(1 + 2α+ 3α2)− (αw + 2α+ 1)2

]1/2
+
√

2 |a− aw + 1|
[(2 + w2)(1 + 2α+ 3α2)]1/2

. (88)

Now, it can be shown that:

• The following quantity is always positive

u := (2 + w2)(1 + 2α+ 3α2)− (αw + 2α+ 1)2. (89)

• The choice w = 1 + 1/α corresponds to b∗ = b3, and that is precisely the only point where
J (w) is non-differentiable.

• The choice w = 1 corresponds to b∗ = 1√
3
1.

• The choice α = 1/3 corresponds to θ = 60◦.

• J (b3) = J
(

1√
3
1
)

precisely for α = 1/3.

Since for α = 0 the theorem has already been proved (orthogonal case), we will assume that α > 0.
We proceed by showing that for α ∈ (0, 1/3) and for w 6= 1 + 1/a, it is always the case that
J (w) > J (1 + 1/a). Expanding this last inequality, we obtain

2
[
(2 + w2)(1 + 2α+ 3α2)− (αw + 2α+ 1)2

]1/2
+
√

2 |a− aw + 1|
[(2 + w2)(1 + 2α+ 3α2)]

1/2
>

2
√

1 + 4α+ 6α2

1 + 2α+ 3α2
, (90)

which can be written equivalently as

p1 < 4
√

2u1/2 |α− αw + 1| (1 + 2α+ 3α2), where (91)

p1 := 4(2 + w2)(1 + 4α+ 6α2)− (1 + 2α+ 3α2)
[
4u+ 2(α− αw + 1)2

]
, (92)
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and u has been defined in (89). Viewing p1 as a polynomial in w, p1 has two real roots given by

r(1)p1 := 1 + 1/α > r(2)p1 :=
−1− 7α+ α2 + 15α3

α(7 + 22α+ 15α2)
. (93)

Since the leading coefficient of p1 is always a negative function of α (for α > 0), (91) will always
be true for w 6∈ [r

(2)
p1 , r

(1)
p1 ], in which interval p1 is strictly negative. Consequently, we must show

that as long as α ∈ (0, 1/3), (91) is true for every w ∈ [r
(2)
p1 , r

(1)
p1 ). For such w, p1 is non-negative

and by squaring (91), we must show that

p2 >0, ∀w ∈ [r(2)p1 , r
(1)
p1 ), ∀α ∈ (0, 1/3), (94)

p2 :=32u(α− αw + 1)2(1 + 2α+ 3α2)− p21. (95)

Interestingly, p2 admits the following factorization

p2 =− 4(−1− α+ αw)2p3, (96)

p3 :=− 7− 18α− 49α2 − 204α3 − 441α4 − 162α5 + 81α6

+ (30α+ 238α2 + 612α3 + 468α4 − 162α5 − 162α6)w

+ (−8− 48α− 111α2 − 12α3 + 270α4 + 324α5 + 81α6)w2 (97)

The discriminant of p3 is the following 10-degree polynomial in α:

∆(p3) = 32(−7− 60α− 226α2 − 312α3 + 782α4 + 5160α5 + 13500α6+

+ 21816α7 + 22761α8 + 14580α9 + 4374α10). (98)

By Descartes rule of signs, ∆(p3) has precisely one positive root. In fact this root is equal to 1/3.
Since the leading coefficient of ∆(p3) is positive, we must have that ∆(p3) < 0, ∀α ∈ (0, 1/3),
and so for such α, p3 has no real roots, i.e. it will be either everywhere negative or everywhere
positive. Since p3(α = 1/4, w = 1) = −80327/4096, we conclude that as long as α ∈ (0, 1/3), p3
is everywhere negative and as long as w 6= 1 + 1/α, p2 is positive, i.e. we are done.

Moving on to the case α = 1/3, we have

p2(α = 1/3, w) =
128

9
(w − 4)2(w − 1)2, (99)

which shows that for such α the only global minimizers are ±b3 and ± 1√
3
1.

In a similar fashion, we can proceed to show that J (w) > J
(

1√
3
1
)

, for all w 6= 1 and all
α ∈ (1/3,∞). However, the roots of the polynomials that arise are more complicated functions
of α and establishing the inequality J (w) > J

(
1√
3
1
)

analytically, seems intractable; instead this
can be done if one allows for numeric computation of polynomial roots.

4.5 Proof of Theorem 4

We begin with two Lemmas.
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Lemma 12 Let b1, . . . , bn be vectors of SD−1, with pairwise principal angles θij . Then

max
b>b=1

[
N1

∣∣∣b>1 b∣∣∣+ · · ·+Nn

∣∣∣b>n b∣∣∣] ≤
∑

i

N2
i + 2

∑
i 6=j

NiNj cos(θij)

1/2

. (100)

Proof Let b† be a maximizer of N1

∣∣b>1 b∣∣ + · · · + Nn

∣∣b>n b∣∣. Then b† must satisfy the first order
optimality condition, which is

λ†b† =
∑
i

Ni Sgn(b>i b
†)bi, (101)

where λ† is a Lagrange multiplier and Sgn(b>i b
†) is the subdifferential of

∣∣b>i b†∣∣. Then

λ†b† = N1s
†
1b1 + · · ·+Nns

†
nbn, (102)

where s†i = Sign(b>i b
†), if b>i b

† 6= 0, and s†i ∈ [−1, 1] otherwise. Recalling that
∥∥b†∥∥

2
= 1, and

taking equality of 2-norms on both sides of (103), we get

b† =
N1s

†
1b1 + · · ·+Nns

†
nbn∥∥∥N1s

†
1b1 + · · ·+Nns

†
nbn

∥∥∥
2

. (103)

Now

∑
i

Ni

∣∣∣b>i b†∣∣∣ =
∑

i:b† 6⊥bi

Ni

∣∣∣b>i b†∣∣∣ =
∑

i:b† 6⊥bi

Nis
†
ib
>
i b
† =

(
b†
)> ∑

i:b† 6⊥bi

Nis
†
ibi


=
(
b†
)> ∑

i:b† 6⊥bi

Nis
†
ibi +

∑
i:b†⊥bi

Nis
†
ibi

 =
(
b†
)>(∑

i

Nis
†
ibi

)

(103)
=
∥∥∥N1s

†
1b1 + · · ·+Nns

†
nbn

∥∥∥
2

=

∑
i

(
s†iNi

)2
+ 2

∑
i 6=j

NiNjs
†
is
†
jb
>
i bj

1/2

≤

∑
i

N2
i + 2

∑
i 6=j

NiNj cos(θij)

1/2

. (104)

Lemma 13 Let b1, . . . , bn be a hyperplane arrangement of RD with integer weights N1, . . . , Nn

assigned. For b ∈ SD−1, let θi be the principal angle between b and bi. Then

min
b∈SD−1

∑
Ni sin(θi) ≥

√∑
N2
i − σmax

(
[NiNj cos(θij)]i,j

)
, (105)

where σmax

(
[NiNj cos(θij)]i,j

)
denotes the maximal eigenvalue of the n× n matrix, whose (i, j)

entry is NiNj cos(θij) and 1 ≤ i, j ≤ n.
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Proof For any vector ξ we have that ‖ξ‖1 ≥ ‖ξ‖2. Let ψi ∈ [0, 180◦] be the angle between b and
bi. Then ∑

Ni sin(θi) =
∑

Ni |sin(ψi)|
‖·‖1≥‖·‖2
≥

√∑
N2
i sin2(ψi) (106)

=
√∑

N2
i −

∑
N2
i cos2(ψi). (107)

Hence Ni sin(θi) is minimized when
∑
N2
i cos2(ψi) is maximized. But∑

N2
i cos2(ψi) = b>

(∑
N2
i bib

>
i

)
b, (108)

and the maximum value of
∑
N2
i cos2(ψi) is equal to the maximal eigenvalue of the matrix∑

N2
i bib

>
i =

[
N1b1 · · · Nnbn

] [
N1b1 · · · Nnbn

]>
, (109)

which is the same as the maximal eigenvalue of the matrix[
N1b1 · · · Nnbn

]> [
N1b1 · · · Nnbn

]
= [NiNj cos(ψij)]i,j , (110)

where ψij is the angle between bi, bj . Now, if A is a matrix and we denote by |A| the matrix that
arises by taking absolute values of each element in the matrixA, then it is known that σmax(|A|) ≥
σmax(A). Hence the result follows by recalling that |cos(ψij)| = cos(θij).

Now, let b∗ be a global solution of (20). Suppose for the sake of a contradiction that b∗ 6⊥ Hi, ∀i ∈
[n], i.e., b∗ 6= ±bi, ∀i ∈ [n]. Consequently, J is differentiable at b∗ and so b∗ must satisfy (47),
which we repeat here for convenience:

−
n∑
i=1

Ni

(
b>i b

∗
)(

1−
(
b>i b

∗
)2)− 1

2

bi + λ∗ b∗ = 0. (111)

Projecting (111) orthogonally onto the hyperplaneH∗ defined by b∗ we get

−
n∑
i=1

Ni

(
b>i b

∗
)(

1−
(
b>i b

∗
)2)− 1

2

πH∗ (bi) = 0. (112)

Since b∗ 6= bi, ∀i ∈ [n], it will be the case that hi := πH∗ (bi) 6= 0, ∀i ∈ [n]. Since

‖πH∗ (bi)‖2 =

(
1−

(
b>i b

∗
)2) 1

2

> 0, (113)

equation (112) can be written as
n∑
i=1

Ni

(
b>i b

∗
)
ĥi = 0, (114)

which in turn gives

N1

∣∣∣b>1 b∗∣∣∣ ≤
∥∥∥∥∥∑
i>1

Ni

(
b>i b

∗
)
ĥi

∥∥∥∥∥
2

≤
∑
i>1

Ni

∣∣∣b>i b∗∣∣∣ ≤ max
b>b=1

∑
i>1

Ni

∣∣∣b>i b∣∣∣ Lem.12≤ β. (115)
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Since by hypothesis N1 > β, we can define an angle θ†1 by

cos(θ†1) :=
β

N1
, (116)

and so (115) says that θ1 can not drop below θ†1. Hence J (b∗) can be bounded from below as
follows:

J (b∗) = N1 sin(θ∗1) +
∑
i>1

Ni sin(θ∗i ) ≥ N1 sin(θ†1) + min
b>b=1

∑
i>1

Ni sin(θi) (117)

Lem.13
≥ N1 sin(θ†1) +

√∑
i>1

N2
i − σmax

(
[NiNj cos(θij)]i,j>1

)
. (118)

By the optimality of b∗, we must also have J (b1) ≥ J (b∗), which in view of (118) gives∑
i>1

Ni sin(θ1i) ≥ N1 sin(θ†1) +

√∑
i>1

N2
i − σmax

(
[NiNj cos(θij)]i,j>1

)
. (119)

Now, a little algebra reveals that this latter inequality is precisely the negation of hypothesis N1 >√
α2 + β2. This shows that b∗ has to be ±bi, for some i ∈ [n]. For the last statement of the

Theorem, notice that condition γ > 0 is equivalent to saying that J (b1) < J (bi), ∀i > 1.

4.6 Proof of Theorem 6

Let us first derive an upper bound θ(1)max on how large θ∗1 can be. Towards that end, we derive a lower
bound on the objective function J (b) in terms of θ1: For any vector b ∈ SD−1 we can write

J (b) =
∥∥∥X>b∥∥∥

1
=
∑∥∥∥X>i b∥∥∥

1
=
∑

Nib
>χi,b (120)

=
∑

cNi sin(θi) +
∑

Nib
>ηi,b,

∥∥ηi,b∥∥2 ≤ εi (121)

≥ c
∑

Ni sin(θi)−
∑

εiNi (122)

= cN1 sin(θ1) + c
∑
i>1

Ni sin(θi)−
∑

εiNi (123)

≥ cN1 sin(θ1) + c min
b>b=1

[∑
i>1

Ni sin(θi)

]
−
∑

εiNi (124)

Lem.13
≥ cN1 sin(θ1) + c

√∑
i>1

N2
i − σmax

(
[NiNj cos(θij)]i,j>1

)
−
∑

εiNi. (125)

Next, we derive an upper bound on J (b1):

J (b1) =
∑
i>1

∥∥∥X>i b1∥∥∥
1

=
∑
i>1

Nib
>
1 χi,b1 (126)

=
∑
i>1

cNi sin(θ1i) +
∑
i>1

Nib
>
1 ηi,b1 ,

∥∥ηi,b1∥∥2 ≤ εi (127)

≤ c
∑
i>1

Ni sin(θ1i) +
∑
i>1

εiNi. (128)
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Since any vector b for which the corresponding lower bound (125) on J (b) is strictly larger than
the upper bound (128) on J (b1), can not be a global minimizer (because it gives a larger objective
than b1), θ∗1 must be bounded above by θ(1)max, where the latter is defined, in view of (33), by

sin
(
θ(1)max

)
:=

α+ c−1
(
ε1N1 + 2

∑
i>1 εiNi

)
N1

, (129)

where α is as in Theorem 6. Now let b∗ be a global minimizer, and suppose for the sake of con-
tradiction that b∗ 6⊥ Hi,∀i ∈ [n]. We will show that there exists a lower bound θ(1)min on θ1, such
that θ(1)min > θ

(1)
max, which is of course a contradiction. Towards that end, the first order optimality

condition for b∗ can be written as

0 ∈ X Sgn(X>b∗) + λb∗, (130)

where λ is a Lagrange multiplier and Sgn(α) = Sign(α) if α 6= 0 and Sgn(0) = [−1, 1], is the
subdifferential of the function | · |. Since the points X are general, any hyperplaneH of RD spanned
by D − 1 points of X such that at most D − 2 points come from X i, ∀i ∈ [n], does not contain
any of the remaining points of X . Consequently, by Lemma 14 b∗ will be orthogonal to precisely
D− 1 points

{
ξ1, . . . , ξD−1

}
⊂ X , from which at most Ki ≤ D− 2 lie inHi. Thus, we can write

relation (130) as
D−1∑
j=1

αjξj +

n∑
i=1

Niχi,b∗ + λb∗ = 0, (131)

for real numbers −1 ≤ αj ≤ 1, ∀j ∈ [D − 1]. Using the definition of εi, we can write

χi,b∗ = c ĥi,b∗ + ηi,b∗ , ∀i ∈ [n], (132)

with
∥∥ηi,b∗∥∥2 ≤ εi. Note that since b∗ 6⊥ Hi, ∀i ∈ [n], we have ĥi,b∗ 6= 0. Substituting (132) in

(131) we get

D−1∑
j=1

αjξj + c

n∑
i=1

Ni ĥi,b∗ +

n∑
i=1

Ni ηi,b∗ + λb∗ = 0, (133)

and projecting (133) onto the hyperplaneHb∗ with normal b∗, we obtain

πHb∗

D−1∑
j=1

αjξj

+ c
n∑
i=1

NiπHb∗

(
ĥi,b∗

)
+

n∑
i=1

Ni πHb∗

(
ηi,b∗

)
= 0. (134)

Let us analyze the term πHb∗

(
ĥi,b∗

)
. We have

πHb∗

(
ĥi,b∗

)
= πHb∗

(
πHi(b

∗)

‖πHi(b
∗)‖2

)
= πHb∗

(
b∗ −

(
b>i b

∗) bi∥∥b∗ − (b>i b∗) bi∥∥2
)

(135)

= πHb∗

(
b∗ −

(
b>i b

∗) bi
sin(θi)

)
=
b∗ −

(
b>i b

∗) bi
sin(θi)

−
(

1− cos2(θi)

sin(θi)

)
b∗ (136)

=

(
b>i b

∗) ((b>i b∗) b∗ − bi)
sin(θi)

= −
(
b>i b

∗
)
ζ̂i, ζi = πHb∗ (bi). (137)
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Using (137), (134) becomes

πHb∗

D−1∑
j=1

αjξj

− n∑
i=1

Ni c
(
b>i b

∗
)
ζ̂i +

n∑
i=1

Ni πHb∗

(
ηi,b∗

)
= 0. (138)

Isolating the term that depends on i = 1 to the LHS and moving everything else to the RHS, and
taking norms, we get

cN1 cos(θ1) ≤
n∑
i>1

cNi cos(θi)+

+

∥∥∥∥∥∥πHb∗

 K∑
j=1

αjξj

∥∥∥∥∥∥
2

+
n∑
i=1

Ni

∥∥πHb∗

(
ηi,b∗

)∥∥
2
. (139)

Since
∥∥ηi,b∗∥∥2 ≤ εi, we have that

∥∥πHb∗

(
ηi,b∗

)∥∥
2
≤ εi. Next, the quantity

∑K
j=1 αjξj can be

decomposed along the index i, based on the hyperplane membership of the ξj . For instance, if

ξ1 ∈ H1, then replace the term α1ξ1 with α(1)
1 ξ

(1)
1 , where the superscript ·(1) denotes association to

hyperplaneH1. Repeating this for all ξj and after a possible re-indexing, we have

D−1∑
j=1

αjξj =

n∑
i=1

Ki∑
j=1

α
(i)
j ξ

(i)
j . (140)

Now, by Definition 5 we have that ∥∥∥∥∥∥
Ki∑
j=1

α
(i)
j ξ

(i)
j

∥∥∥∥∥∥
2

≤ Ri,Ki , (141)

and as a consequence, the upper bound (139) can be extended to

cN1 cos(θ1) ≤
n∑
i>1

cNi cos(θi) +
∑
i

εiNi +R. (142)

Finally, Lemma 12 provides a bound
n∑
i>1

Ni cos(θi) ≤ β, (143)

where β is as in Theorem 4. In turn, this can be used to extend (142) to

cos(θ1) ≤ β + c−1 (R+
∑
εiNi)

N1
=: cos

(
θ
(1)
min

)
. (144)

Note that the angle θ(1)min of (144) is well-defined, since by hypothesis N1 > β̄, and that what (144)
effectively says, is that θ1 never drops below θ

(1)
min. It is then straightforward to check that hypothesis

N1 >
√
ᾱ2 + β̄2 implies θ(1)min > θ

(1)
max, which is a contradiction. In other words, b∗ must be equal

up to sign to one of the bi, which proves the first part of the Theorem. The second part follows from
noting that condition γ̄ > 0 guarantees that J (b1) < mini>1 J (bi).
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4.7 Proof of Theorem 7

First of all, it follows from the theory of the simplex method, that ifnk+1 is obtained via the simplex
method, then it will satisfy the conclusion of Lemma 15 in Appendix A. Then Lemma 16 guarantees
that {nk} converges to a critical point of problem (9) in a finite number of steps; denote that point
by n∞. In other words, n∞ will satisfy equation (111) and it will have unit `2 norm. Now, if
n∞ = ±bj for some j > 1, then

J (n̂0) ≥ J (bj), (145)

or equivalently ∑
Nin̂

>
0 χi,n̂0

≥
∑
i 6=j

Nib
>
j χi,bj . (146)

Substituting the concentration model

χi,n̂0
= c ̂πHi (n0) + ηi,0,

∥∥ηi,0∥∥2 ≤ εi, (147)

χi,bj = c ̂πHi (bj) + ηij ,
∥∥ηij∥∥2 ≤ εi, (148)

into (146), we get∑
Nic sin(θi,0) +

∑
Nin̂

>
0 ηi,0 ≥

∑
i 6=j

Nic sin(θij) +
∑

Nib
>
j ηij . (149)

Bounding the LHS of (149) from above and the RHS from below, we get∑
Ni c sin(θi,0) +

∑
εiNi ≥

∑
i 6=j

Ni c sin(θij)−
∑

εiNi. (150)

But this very last relation is contradicted by hypothesis N1 > µ, i.e., none of the ±bj for j > 1
can be n∞. We will show that n∞ has to be ±b1. So suppose for the sake of a contradiction
that that n∞ is not colinear with b1, i.e., n∞ 6⊥ Hi, ∀i ∈ [n]. Since n∞ satisfies (111), we can
use part of the proof of Theorem 6, according to which the principal angle θ1,∞ of n∞ from b1

does not become less than θ(1)min, where θ(1)min is as in (144). Consequently, and using once again the
concentration model, we obtain∑

Ni c sin(θi,0) +
∑

εiNi ≥ J (n̂0) ≥ J (n∞) ≥
∑

Ni c sin(θi,∞)−
∑

εiNi

≥ N1 c sin
(
θ
(1)
min

)
+ c

√∑
i>1

N2
i − σmax

(
[NiNj cos(θij)]i,j>1

)
−
∑

εiNi. (151)

Now, a little algebra reveals that the outermost inequality in (151) contradicts (38).

5. Algorithmic Contributions

There are at least two ways in which DPCP can be used to learn a hyperplane arrangement; either
through a sequential (RANSAC-style) scheme, or through an iterative (K-Subspaces-style) scheme.
These two cases are described next.
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Algorithm 1 Sequential Hyperplane Learning via DPCP
1: procedure SHL-DPCP(X = [x1, x2, . . . , xN ] ∈ RD×N , n)
2: i← 0;
3: wj ← 1, j = 1, . . . , N ;
4: for i = 1 : n do
5: Y ← [w1x1 · · · wNxN ];
6: bi ← argminb∈RD

[∥∥Y>b∥∥
1
, s.t. b>b = 1

]
;

7: wj ← mink=1,...,i

∣∣b>k xj∣∣ , j = 1, . . . , N ;
8: end for
9: Ci ←

{
xj ∈ X : i = argmink=1,...,n

∣∣b>k xj∣∣} , i = 1, . . . , n;
10: return {(bi,Ci)}ni=1;
11: end procedure

5.1 Sequential hyperplane learning via DPCP

Since at its core DPCP is a single subspace learning method, we may as well use it to learn n hy-
perplanes in the same way that RANSAC (Fischler and Bolles, 1981) is used: learn one hyperplane
from the entire dataset, remove the points close to it, then learn a second hyperplane and so on.
The main weakness of this technique is well known, and consists of its sensitivity to the threshold-
ing parameter, which is necessary in order to remove points. To alleviate the need of knowing a
good threshold, we propose to replace the process of removing points by a process of appropriately
weighting the points. In particular, suppose we solve the DPCP problem (9) on the entire dataset
X and obtain a unit `2-norm vector b1. Now, instead of removing the points of X that are close to
the hyperplane with normal vector b1 (which would require a threshold parameter), we weight each
and every point xj of X by its distance

∣∣b>1 xj∣∣ from that hyperplane. Then to compute a second
hyperplane with normal b2 we apply DPCP on the weighted dataset

{∣∣b>1 xj∣∣xj}. To compute a
third hyperplane, the weight of point xj is chosen as the smallest distance of xj from the already
computed two hyperplanes, i.e., DPCP is now applied to

{
mini=1,2

∣∣b>i xj∣∣xj}. After n hyper-
planes have been computed, the clustering of the points is obtained based on their distances to the
n hypeprlanes; see Algorithm 1.

5.2 Iterative hyperplane learning via DPCP

Another way to do hyperplane clustering via DPCP, is to modify the classic K-Subspaces (Bradley
and Mangasarian, 2000; Tseng, 2000; Zhang et al., 2009) by computing the normal vector of each
cluster by DPCP. We call the resulting method IHL-DPCP; see Algorithm 2. It is worth noting
that since DPCP minimizes the `1-norm of the distances of the points to a hyperplane, consistency
dictates that the stopping criterion for IHL-DPCP be governed by the sum over all points of the
distance of each point to its assigned hyperplane (instead of the traditional sum of squares (Bradley
and Mangasarian, 2000; Tseng, 2000)); in other words the global objective function minimized by
IHL-DPCP is the same as that of Median K-Flats (Zhang et al., 2009).
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Algorithm 2 Iterative Hyperplane Learning via Dual Principal Component Pursuit
1: procedure IHL-DPCP(X = [x1, x2, . . . , xN ] , b1, . . . , bn, ε, Tmax)
2: Jold ←∞, ∆J ← ∞, t← 0;
3: while t < Tmax and ∆J > ε do
4: Jnew ← 0, t = t+ 1;
5: Ci ←

{
xj ∈ X : i = argmink=1,...,n

∣∣b>k xj∣∣} , i = 1, . . . , n;
6: Jnew =

∑n
i=1

∑
xj∈Ci

∣∣b>i xj∣∣;
7: ∆J ← (Jold − Jnew)/(Jold + 10−9), Jold ← Jnew ;
8: bi ← argminb

[∥∥C>i b∥∥1 , s.t. b>b = 1
]
, i = 1, . . . , n;

9: end while
10: return {(bi,Ci)}ni=1;
11: end procedure

Algorithm 3 Relaxed Dual Principal Component Pursuit
1: procedure DPCP-r(X , ε, Tmax)
2: k ← 0; ∆J ← ∞;
3: n̂0 ← argmin‖b‖2=1

∥∥X>b∥∥
2
;

4: while k < Tmax and ∆J > ε do
5: k ← k + 1;
6: nk ← argminb>n̂k−1=1

∥∥X>b∥∥
1
;

7: ∆J ←
(∥∥X>n̂k−1∥∥1 − ∥∥X>n̂k∥∥1) / (∥∥X>n̂k−1∥∥1 + 10−9

)
;

8: end while
9: return n̂k;

10: end procedure

Algorithm 4 Dual Principal Component Pursuit via Iteratively Reweighted Least Squares
1: procedure DPCP-IRLS(X , c, ε, Tmax, δ)
2: k ← 0; ∆J ← ∞;
3: B0 ← argminB∈RD×c

∥∥X>B∥∥
2
, s.t. B>B = Ic;

4: while k < Tmax and ∆J > ε do
5: k ← k + 1;
6: wx ← 1/max

{
δ,
∥∥B>k−1x∥∥2} , x ∈ X ;

7: Bk ← argminB∈RD×c

∑
x∈X wx

∥∥B>x∥∥2
2

s.t. B>B = Ic;
8: ∆J ←

(∥∥X>Bk−1
∥∥
1
−
∥∥X>Bk

∥∥
1

)
/
(∥∥X>Bk−1

∥∥
1

+ 10−9
)
;

9: end while
10: returnBk;
11: end procedure

5.3 Solving the DPCP problem

Recall that the DPCP problem (9) that appears in Algorithms 1 and 2 (with data matrices Y andCi,
respectively) is non-convex. In Tsakiris and Vidal (2017b) we described four distinct methods for
solving it, which we briefly review here.
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Algorithm 5 Denoised Dual Principal Component Pursuit
1: procedure DPCP-d(X , ε, Tmax, δ, τ )
2: Compute a Cholesky factorization LL> = XX> + δID;
3: k ← 0; ∆J ← ∞;
4: b← argminb∈RD: ‖b‖2=1

∥∥X>b∥∥
2
;

5: J0 ← τ
∥∥X>b∥∥

1
;

6: while k < Tmax and ∆J > ε do
7: k ← k + 1;
8: y ← Sτ

(
X>b

)
;

9: b← solution of LL>ξ = Xy by backward/forward propagation;
10: b← b/ ‖b‖2;
11: Jk ← τ ‖y‖1 + 1

2

∥∥y −X>b
∥∥2
2
;

12: ∆J ← (Jk−1 − Jk) /
(
Jk−1 + 10−9

)
;

13: end while
14: return (y, b);
15: end procedure

The first method, which was first proposed in Späth and Watson (1987), consists of solving the
recursion of linear programs (11) using any standard solver, such as Gurobi (Gurobi Optimization,
2015); we refer to such a method as DPCP-r, standing for relaxed DPCP (see Algorithm 3). A
second approach, called DPCP-IRLS, is to solve (9) using a standard Iteratively Reweighted Least-
Squares (IRLS) technique ((Candès et al., 2008; Daubechies et al., 2010; Chartrand and Yin, 2008))
as in Algorithm 4. A third method, first proposed in Qu et al. (2014), is to solve (9) approximately
by applying alternative minimization on its denoised version

min
b,y: ||b||2=1

[
τ ‖y‖1 +

1

2

∥∥∥y −X>b
∥∥∥2
2

]
. (152)

We refer to such a method as DPCP-d, standing for denoised DPCP; see Algorithm 5. Finally,
the fourth method is relaxed and denoised DPCP (DPCP-r-d), which replaces each problem of
recursion (11) with its denoised version

min
y,b

[
τ ‖y‖1 +

1

2

∥∥∥y −X>b
∥∥∥2
2

]
, s.t. b>n̂k−1 = 1; (153)

which is in turn solved via alternating minimization; see Tsakiris and Vidal (2017b) for details.

6. Experimental evaluation

In this section we evaluate experimentally Algorithms 1 and 2 using both synthetic (§6.1) and real
data (§6.2).

6.1 Synthetic data

Dataset design. We begin by evaluating experimentally the sequential hyperplane learning Algo-
rithm 1 using synthetic data. The coordinate dimension D of the data is inspired by major applica-
tions where hyperplane arrangements appear. In particular, we recall that
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Figure 1: Sequential Hyperplane Learning: Clustering accuracy as a function of the number of
hyperplanes n vs relative-dimension d/D vs data balancing (α). White corresponds to 1,
black to 0.

• In 3D point cloud analysis, the coordinate dimension is 3, but since the various planes do not
necessarily pass through a common origin, i.e., they are affine, one may work with homoge-
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Figure 2: Sequential Hyperplane Learning: Clustering accuracy as a function of the number of
hyperplanes n vs relative-dimension d/D. Data balancing parameter is set to α = 0.8.

neous coordinates, which increases the coordinate dimension of the data by 1 (see Tsakiris
and Vidal (2017a)), i.e., D = 4.

• In two-view geometry one works with correspondences between pairs of 3D points. Each
such correspondence is treated as a point itself, equal to the tensor product of the two 3D
corresponding points, thus having coordinate dimension D = 9.

As a consequence, we choose D = 4, 9 as well as D = 30, where the choice of 30 is a-posteriori
justified as being sufficiently larger than 4 or 9, so that the clustering problem becomes more chal-
lenging. For each choice of D we randomly generate n = 2, 3, 4 hyperplanes of RD and sample
each hyperplane as follows. For each choice of n the total number of points in the dataset is set to
300n, and the number Ni of points sampled from hyperplane i > 1 is set to Ni = αi−1Ni−1, so
that

n∑
i=1

Ni = (1 + α+ · · ·+ αn−1)N1 = 300n. (154)

Here α ∈ (0, 1] is a parameter that controls the balancing of the clusters: α = 1 means the clusters
are perfectly balanced, while smaller values of α lead to less balanced clusters. In our experiment
we try α = 1, 0.8, 0.6. Having specified the size of each cluster, the points of each cluster are
sampled from a zero-mean unit-variance Gaussian distribution with support in the corresponding
hyperplane. To make the experiment more realistic, we corrupt points from each hyperplane by
adding white Gaussian noise of standard deviation σ = 0.01 with support in the direction orthogonal
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Figure 3: Sequential Hyperplane Learning: Clustering accuracy as a function of the number of
hyperplanes n vs outlier ratio vs data balancing (α). White corresponds to 1, black to 0.

to the hyperplane. Moreover, we corrupt the dataset by adding 10% outliers sampled from a standard
zero-mean unit-variance Gaussian distribution with support in the entire ambient space.

Algorithms and parameters. In Algorithm 1 we solve the DPCP problem by using all four
variations DPCP-r, DPCP-r-d, DPCP-d and DPCP-IRLS (see Section 5.3), thus leading to four
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Figure 4: Sequential Hyperplane Learning: Clustering accuracy as a function of the number of
hyperplanes n vs outlier ratio. Data balancing parameter is set to α = 0.8.

different versions of the algorithm. All DPCP algorithms are set to terminate if either a maximal
number of 20 iterations for DPCP-r or 100 iterations for DPCP-r-d,DPDP-d, DPCP-IRLS is reached,
or if the algorithm converges within accuracy of 10−3. We also compare with the REAPER analog of
Algorithm 1, where the computation of each normal vector is done by the IRLS version of REAPER
(see Section 2) instead of DPCP. As with the DPCP algorithms, its maximal number of iterations is
100 and its convergence accuracy is 10−3.

Finally, we compare with RANSAC, which is the predominant method for clustering hyper-
planes in low ambient dimensions (e.g., for D = 4, 9). For fairness, we implement a version of
RANSAC which involves the same weighting scheme as Algorithm 1, but instead of weighting the
points, it uses the normalized weights as a discrete probability distribution on the data points; thus
points that lie close to some of the already computed hyperplanes, have a low probability of being
selected. Moreover, we control the running time of RANSAC so that it is as slow as DPCP-r, the
latter being the slowest among the four DPCP algorithms.

Results. Since not all results can fit in a single figure, we show the mean clustering accuracy
over 50 independent experiments in Fig. 1 only for RANSAC, REAPER, DPCP-r and DPDP-IRLS
(i.e., not including DPCP-r-d and DPCP-d), but for all values α = 1, 0.8, 0.6, as well as in Fig.
2 for all methods but only for α = 0.8. The accuracy is normalized to range from 0 to 1, with 0
corresponding to black color, and 1 corresponding to white.

First, observe that the performance of almost all methods improves as the clusters become more
unbalanced (α = 1→ α = 0.6). This is intuitively expected, as the smaller α is the more dominant
is the i-th hyperplane with respect to hyperplanes i + 1, . . . , n, and so the more likely it is to be
identified at iteration i of the sequential algorithm. The only exception to this intuitive phenomenon
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Table 1: Mean running times in seconds, corresponding to the experiment of Fig. 1 for data balanc-
ing parameter α = 1.

n = 2 n = 4

D = 4 D = 9 D = 30 D = 4 D = 9 D = 30

RANSAC 1.18 1.25 1.76 8.27 11.61 16.00
REAPER 0.05 0.04 0.04 0.18 0.17 0.19
DPCP-r 1.18 1.24 1.75 8.21 11.55 15.89
DPCP-d 0.02 0.02 0.05 0.10 0.16 0.42
DPCP-IRLS 0.12 0.14 0.21 0.77 0.81 0.82

is RANSAC, which appears to be insensitive to the balancing of the data. This is because RANSAC
is configured to run a relatively long amount of time, approximately equal to the running time of
DPCP-r, and as it turns out this compensates for the unbalancing of the data, since many different
samplings take place, thus leading to approximately constant behavior across different α.

In fact, notice that RANSAC is the best among all methods when D = 4, with mean clustering
accuracy ranging from 99% when n = 2, to 97% when n = 4. On the other hand, RANSAC’s
performance drops dramatically when we move to higher coordinate dimensions and more than 2
hyperplanes. For example, for α = 0.8 and n = 4, the mean clustering accuracy of RANSAC drops
from 97% for D = 4, to 44% for D = 9, to 28% for D = 30. This is due to the fact that the
probability of sampling D − 1 points from the same hyperplane decreases as D increases.

Secondly, the proposed Algorithm 1 using DPCP-r is uniformly the best method (and using
DPCP-IRLS is the second best), with the slight exception of D = 4, where its clustering accuracy
ranges for α = 0.8 from 99% for n = 2 (same as RANSAC), to 89% for n = 4, as opposed to
the 97% of RANSAC for the latter case. In fact, all DPCP variants were superior than RANSAC or
REAPER in the challenging scenario of D = 30, n = 4, where for α = 0.6, DPCP-r, DPCP-IRLS,
DPCP-d and DPCP-r-d gave 86%, 81%, 74% and 52% accuracy respectively, as opposed to 28% for
RANSAC and 42% for REAPER.

Table 1 reports running times in seconds for α = 1 and n = 2, 4. It is readily seen that DPCP-
r is the slowest among all methods (recall that RANSAC has been configured to be as slow as
DPCP-r). Remarkably, DPCP-d and REAPER are the fastest among all methods with a difference
of approximately two orders of magnitude from DPCP-r. However, as we saw above, none of these
methods performs nearly as well as DPCP-r. From that perspective, DPCP-IRLS is interesting,
since it seems to be striking a balance between running time and performance.

Moving on, we fix D = 9 and vary the outlier ratio as 10%, 30%, 50% (in the previous exper-
iment the outlier ratio was 10%). Then the mean clustering accuracy over 50 independent trials
is shown in Fig. 3 and Fig. 4. In this experiment the hierarchy of the methods is clear: Algo-
rithm 1 using DPCP-r and using DPCP-IRLS are the best and second best methods, respectively,
while the rest of the methods perform equally poorly. As an example, in the challenging scenario
of n = 4, D = 30 and 50% outliers, for α = 0.6, DPCP-r gives 74% accuracy, while the next best
method is DPCP-IRLS with 58% accuracy; in that scenario RANSAC and REAPER give 38% and
41% accuracy respectively, while DPCP-r-d and DPCP-d give 41% and 40% respectively. More-
over, for n = 2, D = 30 and α = 0.8 DPCP-r and DPCP-IRLS give 95% and 86% accuracy, while
all other methods give about 65%.
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6.2 3D Plane clustering of real Kinect data

Dataset and objective. In this section we explore various Iterative Hyperplane Clustering10 (IHL)
algorithms using the benchmark dataset NYUdepthV2 Silberman et al. (2012). This dataset con-
sists of 1449 RGBd data instances acquired using the Microsoft kinect sensor. Each instance of
NYUdepthV2 corresponds to an indoor scene, and consists of the 480× 640× 3 RGB data together
with depth data for each pixel, i.e., a total of 480 · 640 depth values. In turn, the depth data can be
used to reconstruct a 3D point cloud associated to the scene. In this experiment we use such 3D
point clouds to learn plane arrangements and segment the pixels of the corresponding RGB images
based on their plane membership. This is an important problem in robotics, where estimating the
geometry of a scene is essential for successful robot navigation.

Manual annotation. While the coarse geometry of most indoor scenes can be approximately
described by a union of a few (≤ 9) planes, many points in the scene do not lie in these planes,
and may thus be viewed as outliers. Moreover, it is not always clear how many planes one should
select or which these planes are. In fact, NYUdepthV2 does not contain any ground truth annotation
based on planes, rather the scenes are annotated semantically with a view to object recognition. For
this reason, among a total of 1449 scenes, we manually annotated 92 scenes, in which the dominant
planes are well-defined and capture most of the scene; see for example Figs. 7(a)-7(b) and 5(a)-5(b).
Specifically, for each of the 92 images, at most 9 dominant planar regions were manually marked
in the image and the set of pixels within these regions were declared inliers, while the remaining
pixels were declared outliers. For each planar region a ground truth normal vector was computed
using DPCP-r. Finally, two planar regions that were considered distinct during manual annotation,
were merged if the absolute inner product of their corresponding normal vectors was above 0.999.

Pre-processing. For computational reasons, the hyperplane clustering algorithms that we use
(to be described in the next paragraph) do not act directly on the original 3D point cloud, rather on
a weighted subset of it, corresponding to a superpixel representation of each image. In particular,
each 480 × 640 × 3 RGB image is segmented to about 1000 superpixels and the entire 3D point
sub-cloud corresponding to each superpixel is replaced by the point in the geometric center of the
superpixel. To account for the fact that the planes associated with an indoor scene are affine, i.e.,
they do not pass through a common origin, we work in homogeneous coordinates, i.e., we append
a fourth coordinate to each 3D point representing a superpixel and normalize it to unit `2-norm.
Finally, a weight is assigned to each representative 3D point, equal to the number of pixels in the
underlying superpixel. The role of this weight is to regulate the influence of each point in the
modeling error (points representing larger superpixels should have more influence).

Algorithms. The first algorithm that we test is the sequential RANSAC algorithm (SHL-
RANSAC), which identifies one plane at a time. Secondly, we explore a family of variations of
the IHL algorithm (see §2) based on SVD, DPCP, REAPER and RANSAC. In particular, IHL(2)-
SVD indicates the classic IHL algorithm which computes normal vectors through the Singular
Value Decomposition (SVD), and minimizes an `2 objective (this is K-Hyperplanes). IHL(1)-
DPCP-r-d, IHL(1)-DPCP-d and IHL(1)-DPCP-IRLS, denote IHL variations of DPCP according
to Algorithm 2, depending on which method is used to solve the DPCP problem (9) 11. Similarly,

10. Recall from §2 and §5.2 that by iterative hyperplane clustering, we mean the process of estimating n hyperplanes,
then assigning each point to its closest hyperplane, then refining the hyperplanes associated to a cluster only from the
points of the cluster, re-assigning points to hyperplanes and so on.

11. IHL(1)-DPCP-r was not included since it was slowing down the experiment considerably, while its performance was
similar to the rest of the DPCP methods.
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Table 2: 3D plane clustering error for a subset of the real Kinect dataset NYUdepthV2. n is the
number of fitted planes. GC(0) and GC(1) refer to clustering error without or with spatial
smoothing, respectively.

n ≤ 2 n ≤ 4 all
GC(0) GC(1) GC(0) GC(1) GC(0) GC(1)

(τ = 10−1) IHL-ASC-RANSAC 16.25 12.68 28.22 19.56 32.95 19.83
SHL-RANSAC 16.01 12.89 29.63 23.96 36.00 28.70
IHL(1)-RANSAC 12.73 9.12 22.16 14.56 28.61 18.22
IHL(1)-DPCP-r-d 12.25 8.72 19.78 13.15 24.37 15.55
IHL(1)-DPCP-d 12.45 8.95 19.91 13.30 24.66 16.04

(τ = 10−2) IHL-ASC-RANSAC 9.50 5.19 19.72 10.29 25.15 12.18
SHL-RANSAC 6.27 3.29 12.84 6.75 19.17 9.81
IHL(1)-RANSAC 7.97 5.06 14.37 8.78 20.34 12.43
IHL(1)-DPCP-r-d 12.70 9.07 21.46 13.98 25.94 16.20
IHL(1)-DPCP-d 12.70 9.08 21.50 14.03 26.04 16.22

(τ = 10−3) IHL-ASC-RANSAC 8.75 4.80 20.35 10.72 24.46 11.95
SHL-RANSAC 15.26 8.34 25.89 11.49 33.08 13.90
IHL(1)-RANSAC 7.48 4.79 13.86 8.79 19.39 12.07
IHL(1)-DPCP-r-d 12.93 9.33 21.06 13.60 25.65 16.27
IHL(1)-DPCP-d 12.93 9.33 21.06 13.59 25.63 16.23

(mean) IHL-ASC-RANSAC 11.50 7.56 22.76 13.52 27.52 14.65
(mean) SHL-RANSAC 12.51 8.17 22.78 14.07 29.42 17.47
(mean) IHL(1)-RANSAC 9.39 6.32 16.80 10.71 22.78 14.24
(mean) IHL(1)-DPCP-r-d 12.63 9.04 20.77 13.58 25.32 16.01
(mean) IHL(1)-DPCP-d 12.69 9.12 20.83 13.64 25.45 16.16

IHL(2)-SVD 13.36 9.96 21.85 14.40 26.22 16.71
IHL(1)-REAPER 12.45 8.98 20.94 13.71 25.52 16.27
IHL(1)-DPCP-IRLS 12.47 9.01 20.77 13.64 25.38 16.10

IHL(1)-REAPER and IHL(1)-RANSAC denote the obvious adaptation of IHL where the normals
are computed with REAPER and RANASC, respectively, and an `1 objective is minimized.

A third method that we explore is a hybrid between Algebraic Subspace Clustering (ASC),
RANSAC and IHL, (IHL-ASC-RANSAC). First, the vanishing polynomial associated to ASC (see
§2) is computed with RANSAC instead of SVD, which is the traditional way; this ensures robustness
to outliers. Then spectral clustering applied on the angle-based affinity associated to ASC (see
equation (4)) yields n clusters. Finally, one iteration of IHL-RANSAC refines these clusters and
yields a normal vector per cluster (the normal vectors are necessary for the post-processing step).

Post-processing. The algorithms described above, are generic hyperplane clustering algorithms.
On the other hand, we know that nearby points in a 3D point cloud have a high chance of lying in
the same plane, simply because indoor scenes are spatially coherent. Thus to associate a spatially
smooth image segmentation to each algorithm, we use the normal vectors b1, . . . , bn that the al-
gorithm produced to minimize a Conditional-Random-Field (Sutton and McCallum, 2006) type of
energy function, given by

E(y1, . . . , yN ) :=

N∑
j=1

d(byj ,xj) + λ
∑
k∈Nj

w(xj ,xk)δ(yj 6= yk). (155)
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(a) original image (b) annotation

(c) IHL-ASC-RANSAC (24.7%) (d) SHL-RANSAC (9.11%) (e) IHL(1)-RANSAC (11.9%)

(f) IHL(1)-DPCP-r-d (9.88%) (g) IHL(1)-DPCP-d (10.24%) (h) IHL(2)-SVD (9.78%)

(i) IHL(1)-REAPER (9.05%) (j) IHL(1)-DPCP-IRLS (9.78%)

Figure 5: Segmentation into planes of image 5 in dataset NYUdepthV2 without spatial smoothing.
Numbers are segmentation errors.

In (155) yj ∈ {1, . . . , n} is the plane label of point xj , d(byj
,xj) is a unary term that measures

the cost of assigning 3D point xj to the plane with normal byj
, w(xj ,xk) is a pairwise term that

measures the similarity between points xj and xk, λ > 0 is a chosen parameter, Nj indexes the
neighbors of xj , and δ(·) is the indicator function. The unary term is defined as d(byj ,xj) =

|b>yjxj |, which is the Euclidean distance from pointxj to the plane with normal byj , and the pairwise
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(a) original image (b) annotation

(c) IHL-ASC-RANSAC (7.98%) (d) SHL-RANSAC (3.24%) (e) IHL(1)-RANSAC (8.36%)

(f) IHL-DPCP-ADM (8.36%) (g) IHL(1)-DPCP-d (8.057%) (h) IHL(2)-SVD (8.36%)

(i) IHL(1)-REAPER (8.07%) (j) IHL(1)-DPCP-IRLS (8.36%)

Figure 6: Segmentation into planes of image 5 in dataset NYUdepthV2 with spatial smoothing.
Numbers are segmentation errors.

term is defined as

w(xj ,xk) := CBj,k exp

(
−‖xj − xk‖

2
2

2σ2d

)
, (156)
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(a) original image (b) annotation

(c) IHL-ASC-RANSAC (23.6%) (d) SHL-RANSAC (7.9%) (e) IHL(1)-RANSAC (8.6%)

(f) IHL(1)-DPCP-r-d (12.24%) (g) IHL(1)-DPCP-d (12.73%) (h) IHL(2)-SVD (43.0%)

(i) IHL(1)-REAPER (22.82%) (j) IHL(1)-DPCP-IRLS (13.9%)

Figure 7: Segmentation into planes of image 2 in dataset NYUdepthV2 without spatial smoothing.
Numbers are segmentation errors.

where ‖xj − xk‖2 is the Euclidean distance from xj to xk, and CBj,k is the length of the common
boundary between superpixels j and k. The minimization of the energy function is done via Graph-
Cuts (Boykov et al., 2001).

Parameters. For the thresholding parameter of SHL-RANSAC, denoted by τ , we test the values
0.1, 0.01, 0.001. For the parameter τ of IHL(1)-DPCP-d and IHL(1)-DPCP-r-d we test the values
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(a) original image (b) annotation

(c) IHL-ASC-RANSAC (12.3%) (d) SHL-RANSAC (5.91%) (e) IHL(1)-RANSAC (9.39%)

(f) IHL(1)-DPCP-r-d (10.05%) (g) IHL(1)-DPCP-d (10.05%) (h) IHL(2)-SVD (32.37%)

(i) IHL(1)-REAPER (13.70%) (j) IHL(1)-DPCP-IRLS (10.0%)

Figure 8: Segmentation into planes of image 2 in dataset NYUdepthV2 with spatial smoothing.
Numbers are segmentation errors.

0.1, 0.01, 0.001. We also use the same values for the thresholding parameter of SHL-RANSAC,
which we also denote by τ . The rest of the parameters of DPCP and REAPER are set as in Section
6.1. The convergence accuracy of the IHL algorithms is set to 10−3. Moreover, the IHL algorithms
are configured to allow for a maximal number of 10 random restarts and 100 iterations per restart,
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but the overall running time of each IHL algorithm should not exceed 5 seconds; this latter constraint
is also enforced to SHL-RANSAC and IHL-ASC-RANSAC.

The parameter σd in (155) is set to the mean distance between 3D points representing neighbor-
ing superpixels. The parameter λ in (155) is set to the inverse of twice the maximal row-sum of the
pairwise matrix {w(xj ,xk)}; this is to achieve a balance between unary and pairwise terms.

Evaluation. Recall that none of the algorithms considered in this section is explicitly configured
to detect outliers, rather it assigns each and every point to some plane. Thus we compute the
clustering error as follows. First, we restrict the output labels of each algorithm to the indices of the
dominant ground-truth cluster, and measure how far are these restricted labels from being identical
(identical labels would signify that the algorithm identified perfectly well the plane); this is done
by computing the ratio of the restricted labels that are different from the dominant label. Then the
dominant label is disabled and a similar error is computed for the second dominant ground-truth
plane, and so on. Finally the clustering error is taken to be the weighted sum of the errors associated
with each dominant plane, with the weights proportional to the size of the ground-truth cluster.

We evaluate the algorithms in several different settings. First, we test how well the algorithms
can cluster the data into the first n dominant planes, where n is 2, 4 or equal to the total number of
annotated planes for each scene. Second, we report the clustering error before spatial smoothing,
i.e., without refining the clustering by minimizing (155), and after spatial smoothing. The former
case is denoted by GC(0), indicating that no graph-cuts takes place, while the latter is indicated by
GC(1). Finally, to account for the randomness in RANSAC as well as the random initialization of
IHL, we average the clustering errors over 10 independent experiments.

Results. The results are reported in Table 2, where the clustering error of the methods that
depend on τ is shown for each value of τ individually, as well as averaged over all three values.

Notice that spatial smoothing improves the clustering accuracy considerably (GC(0) vs GC(1));
e.g., the clustering error of the traditional IHL(2)-SVD for all ground-truth planes drops from
26.22% to 16.71%, when spatial smoothing is employed. Moreover, as it is intuitively expected, the
clustering error increases when fitting more planes (larger n) is required; e.g., for the GC(1) case,
the error of IHL(2)-SVD increases from 9.96% for n = 2 to 16.71% for all planes (n ≈ 9).

Next, we note the remarkable insensitivity of the DPCP-based methods IHL(1)-DPCP-d and
IHL(1)-DPCP-r-d to variations of the parameter τ . In sharp contrast, SHL-RANSAC is very sen-
sitive to τ ; e.g., for τ = 0.01 and n = 2, SHL-RANSAC is the best method with 6.27%, while
for τ = 0.1, 0.001 its error increases to 16.01% and 15.26% respectively. Interestingly, the hy-
brid IHL(1)-RANSAC is significantly more robust; in fact, in terms of clustering error it is the best
method. On the other hand, by looking at the lower part of Table 2, we conclude that on average the
rest of the methods have very similar behavior.

Figs. 5-8 show some segmentation results for two scenes, with and without spatial smoothing.
It is remarkable that, even though the segmentation in Fig. 5 contains artifacts, which are expected
due to the lack of spatial smoothing, its quality is actually very good, in that most of the dominant
planes have been correctly identified. Indeed, applying spatial smoothing (Fig. 6) further drops the
error for most methods only by about 1%.

7. Conclusions

We studied theoretically and algorithmically the application of the recently proposed single sub-
space learning method Dual Principal Component Pursuit (DPCP) to the problem of clustering
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data that lie close to a union of hyperplanes. We gave theoretical conditions under which the non-
convex cosparse problem associated with DPCP admits a unique (up to sign) global solution equal
to the normal vector of the underlying dominant hyperplane. We proposed sequential and parallel
hyperplane clustering methods, which on synthetic data dramatically improved upon state-of-the-art
methods such as RANSAC or REAPER, while were competitive to the latter in the case of learning
unions of 3D planes from real Kinect data. Future research directions include analysis in the pres-
ence of noise, generalizations to unions of subspaces of arbitrary dimensions, even more scalable
algorithms, and applications to deep networks.
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Appendix A. Results on Problems (9) and (11) following Späth and Watson (1987)

In this Section we state three results that are important for our mathematical analysis, already known
in Späth and Watson (1987); detailed proofs can be found in Tsakiris and Vidal (2017b). Let Y be
a D ×N matrix of full rank D. Then we have the following.

Lemma 14 Any global solution b∗ to minb>b=1

∥∥Y>b∥∥
1
, must be orthogonal to (D − 1) linearly

independent points of Y .

Lemma 15 Problem minb>n̂k=1

∥∥Y>b∥∥
1

admits a computable solution nk+1 that is orthogonal
to (D − 1) linearly independent points of Y .

Lemma 16 Suppose that for each problem minb>n̂k=1

∥∥Y>b∥∥
1
, a solution nk+1 is chosen such

that nk+1 is orthogonal to D − 1 linearly independent points of Y , in accordance with Lemma
15. Then the sequence {nk} converges to a critical point of problem minb>b=1

∥∥Y>b∥∥
1

in a finite
number of steps.
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