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Abstract

We consider the problem of outlier rejection in single
subspace learning. Classical approaches work directly with
a low-dimensional representation of the subspace. Our ap-
proach works with a dual representation of the subspace
and hence aims to find its orthogonal complement. We pose
this problem as an `1-minimization problem on the sphere
and show that, under certain conditions on the distribution
of the data, any global minimizer of this non-convex prob-
lem gives a vector orthogonal to the subspace. Moreover,
we show that such a vector can still be found by relaxing
the non-convex problem with a sequence of linear programs.
Experiments on synthetic and real data show that the pro-
posed approach, which we call Dual Principal Component
Pursuit (DPCP), outperforms state-of-the art methods, es-
pecially in the case of high-dimensional subspaces.

1. Introduction
Principal Component Analysis (PCA) is one of the old-

est [16, 11] and most fundamental techniques in data analy-
sis, enjoying ubiquitous applications in modern science and
engineering [12]. Given a data matrix X ∈ RD×L of L
data points of dimension D, PCA gives a closed form so-
lution to the problem of fitting, in the Euclidean sense, a
d-dimensional linear subspace to the columns of X . Even
though the optimization problem associated with PCA is
non-convex, it does admit a simple solution by means of
the Singular Value Decomposition (SVD) of X . In fact, the
d-dimensional subspace V̂ of RD that is closest to the col-
umn span of X is precisely the subspace spanned by the
first d left singular vectors of X .

Using V̂ as a model for the data is meaningful when
the data are known to have an approximately linear struc-
ture of underlying dimension d, i.e. they lie close to a d-
dimensional subspace V . In practice, the principal compo-
nents of X are known to be well-behaved under mild levels
of noise, i.e., the angle between V̂ and V is relatively small
and more importantly V̂ is optimal when the noise is Gaus-

sian [12]. However, in the presence of even a few outliers
in X , i.e., points whose angle from the underlying ground
truth subspace V is large, the angle between V and its es-
timate V̂ will in general be large. This is to be expected
since, by definition, the principal components are orthogo-
nal directions of maximal correlation with all the points of
X . This phenomenon, together with the fact that outliers
are almost always present in real datasets, has given rise to
the important problem of outlier detection in PCA.

Traditional outlier detection approaches come from ro-
bust statistics and include Influence-based Detection, Mul-
tivariate Trimming,M -Estimators, Iteratively Weighted Re-
cursive Least Squares and Random Sampling Consensus
(RANSAC) [12]. These methods are usually based on
non-convex optimization problems, admit limited theoret-
ical guarantees and have high computational complexity;
for example, in the case of RANSAC many trials are re-
quired. Recently, two attractive methods have appeared
[23, 19] with tight connections to compressed sensing [3]
and low-rank representation [14]. Both of these meth-
ods are based on convex optimization problems and admit
theoretical guarantees and efficient implementations. Re-
markably, the self-expressiveness method of [19] does not
require an upper bound on the number of outliers as the
method of [23] does. However, they are both guaranteed to
succeed only in the low-rank regime: the dimension d of
the underlying subspace V associated to the inliers should
be small compared to the ambient dimension D.

In this paper we adopt a dual approach to the problem
of robust PCA in the presence of outliers, which allows us
to transcend the low-rank regime of modern methods such
as [23, 19]. The key idea of our approach comes from the
fact that, in the absence of noise, the inliers lie inside any
hyperplane H1 = Span(b1)⊥ that contains the underlying
linear subspace V . This suggests that, instead of attempt-
ing to fit directly a low-dimensional linear subspace to the
entire data set, as done e.g. in [23], we can search for a
hyperplane H1 that contains as many points of the dataset
as possible. When the inliers are in general position inside
the subspace, and the outliers are in general position out-
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side the subspace, this hyperplane will ideally contain the
entire set of inliers together with possibly a few outliers.
After removing the points that do not lie in that hyperplane,
the robust PCA problem is reduced to one with a potentially
much smaller outlier percentage than in the original dataset.
In fact, the number of outliers in the new dataset will be at
most D − 2, an upper bound that can be used to dramat-
ically facilitate the outlier detection process using existing
methods. We think of the direction b1 of the normal to the
hyperplaneH1 as a dual principal component of X , as ide-
ally it is an element of V⊥. Naturally, one can continue by
finding a second dual principal component by searching for
a hyperplane H2 = Span(b2)⊥, with b2 ⊥ b1, that con-
tains as many points as possible from X ∩ H1, and so on,
leading to a Dual Principal Component Analysis of X .

We pose the problem of searching for such hyperplanes
as an `0 cosparsity-type problem, which we relax to a non-
convex `1 problem on the sphere. We provide theoretical
guarantees under which every global solution of that prob-
lem is a dual principal component. More importantly, we re-
lax this non-convex optimization problem to a sequence of
linear programming problems, which, after a finite number
of steps, yields a dual principal component. Experiments on
synthetic data demonstrate that the proposed method is able
to handle more outliers and higher dimensional subspaces
than the state-of-the-art methods [23, 19].

2. Problem Formulation
We begin by establishing our data model in Section 2.1,

then we formulate our DPCP problem conceptually and
computationally in Sections 2.2 and 2.3, respectively.

2.1. Data Model

We employ a deterministic noise-free data model, under
which the inliers consist of N points X = [x1, . . . ,xN ] ∈
RD×N that lie in the intersection of the unit sphere SD−1
with an unknown proper subspace V of RD of unknown di-
mension d. Accordingly, the outliers consist of M arbitrary
points O = [o1, . . . ,oM ] ∈ RD×M that lie on SD−1. The
dataset, that we assume given, is X̃ = [X O]Γ ∈ RD×L,
where L = N + M and Γ is some permutation, indicat-
ing that the partition of the columns of X̃ into X and O is
unknown. We further assume that the columns of X̃ are in
general position in the following sense: First, any d-tuple
of inliers and any D-tuple of outliers is linearly indepenent.
Second, for any

{
ξ1, . . . , ξD−1

}
⊂ X̃ , of which at most

d − 1 come from X , the hyperplane of RD spanned by
ξ1, . . . , ξD−1 does not contain any of the remaining points.

2.2. Conceptual Formulation

Notice that in our data model we have made no assump-
tion about the dimension of V: indeed, V can be anything
from a line to a (D − 1)-dimensional hyperplane. Ideally,

we would like to be able to partition the columns of X̃ into
those that lie in V and those that don’t. But under such gen-
erality, this is not a well-posed problem since X lies inside
every subspace that contains V , which in turn may contain
some elements of O. In other words, given X̃ and without
any other a-priori knowledge, it may be impossible to cor-
rectly partition X̃ into X and O. Instead, we formulate the
following well-posed problem:

Problem 1 Partition the columns of X̃ ∈ RD×L into two
groups, such that one of the groups is a subset of X̃ with
maximal cardinality, with respect to the property of lying
inside a (D − 1)-dimensional hyperplane of RD.

The usefulness of this formulation is that for large values of
γ := M/N , where known methods for outlier detection
in PCA fail, one of the groups, say X̃ 1 will contain the
entire X together with precisely D − d− 1 columns of O,
while the other group, say X̃ 2, will contain the remaining
M − (D−d−1) columns of O. Note that the first group is
structured in the sense that it must lie in a hyperplane and
so in general dim Span(X̃ 1) = D−1. Having the partition
X̃ = X̃ 1 ∪ X̃ 2, we can reject the unstructured group X̃ 2

and reconsider the Robust PCA problem on the group X̃ 1.
But now the number of outliers has decreased from γ N to
D − d − 1. In fact, we can use the upper bound D − 2 on
the number of outliers to dramatically facilitate the outlier
detection process using other existing methods.

2.3. Computational Formulation

A natural approach towards solving Problem 1 is to solve

min
b
||X̃
>
b||0 s.t. b 6= 0. (1)

The idea behind (1) is that a hyperplane H = Span(b)⊥

contains a maximal number of columns of X̃ if and only
if X̃

>
b is as sparse as possible. Since (1) is intractable,

consider

min
b
||X̃
>
b||1 s.t. ‖b‖2 = 1. (2)

Notice that the objective in (2) is convex, while the con-
straint b ∈ SD−1 is non-convex, thus leading to a non-
smooth and non-convex optimization problem.

Problem 2 When is every global solution b∗ of (2) orthog-
onal to Span(X )? How can we efficiently solve (2)?

In this paper, we propose to relax (2) by a sequence of
linear programs of the form

nk+1 := argmin
b>n̂k=1

∥∥∥X̃>b∥∥∥
1
, (3)

where n0 is some arbitrary vector and ·̂ indicates normal-
ization to unit `2-norm. We naturally ask:

Problem 3 Under what conditions does the sequence of (3)
converge to a vector n̂∞ that is orthogonal to Span(X )?
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3. Related Work
In this section, we aim to familiarize the reader with the

state-of-the-art of outlier detection in modern single sub-
space learning (Section 3.1), as well as give a brief overview
(Section 3.2) of existing work, that relates technically to the
problems of interest of this paper, i.e. problems (2) and (3).

3.1. Outlier Rejection in PCA

One of the oldest and most popular outlier detec-
tion methods in PCA is Random Sampling Consensus
(RANSAC) [12]. The idea behind RANSAC is simple: alter-
nate between randomly sampling d̂ points from the dataset
and computing a subspace model for these points, until a
model is found that fits a maximal number of points in
the entire dataset within some error ε. RANSAC is usu-
ally characterized by high performance, when not both d̂
and the oultier percentage are large; otherwise it requires a
high computational time, particularly when d is unknown
and d̂ is allowed to vary, since exponentially many trials are
required in order to sample outlier-free subsets, and thus
obtain reliable models. Moreover, its performance is very
sensitive on in the input parameters d̂ and ε.

Among many other outlier detection methods (see Sec-
tion 1), in the remaining of this section we will focus on
the modern low-rank/sparse-representation theoretic meth-
ods of [23] and [19], which we will later use experimentally
to compare against our proposed method.

The first method [23], referred to as L21, is a variation
of the Robust PCA algorithm of [13, 2], which computes a
(`∗ + `21)-norm decomposition1 of the data matrix, instead
of the (`∗ + `1)-decomopsition in [2]. More specifically,
L21 solves the convex optimization problem

min
L,E: X̃=L+E

‖L‖∗ + λ ‖E‖21 . (4)

It is shown in [23] that, under certain conditions, the optimal
solution to this problem is of the form L = [X 0D×M ]Γ
and E = [0D×N O]Γ. That is, the nonzero columns of the
L matrix give the inliers and the nonzero columns of the E
matrix give the outliers. However, the theoretical conditions
require the intrinsic dimension d = dimV and the outlier
percentage to be small enough.

The second method that we consider, referred to as SE, is
based on the self-expressiveness property of the data matrix,
a notion popularized by the work of [4, 5] in the area of sub-
space clustering [22]. More specifically, if a column of X̃
is an inlier, then it can in principle be expressed as a linear
combination of d other columns of X̃ , which are inliers. If
the column is instead an outlier, then it will in principle be

1Here `∗ denotes the nuclear norm of a matrix, i.e., the sum of its sin-
gular values, and `21 is defined as the sum of the Euclidean norms of the
columns of a matrix.

expressible as a linear combination of not less than D other
columns. To encourage each point to express itself as a lin-
ear combination of the smallest number of other data points,
the following convex optimization problem is solved:

min
C
‖C‖1 , s.t. X̃ = X̃C, Diag(C) = 0. (5)

If d is small enough with respect to D, an element is de-
clared as an outlier if the `1 norm of its coefficient vector
in C is large; see [19] for an explicit formula. SE admits
theoretical guarantees [19] and efficient ADMM implemen-
tations [5]. However, as it is clear from its description, it is
expected to succeed only when d is sufficiently small. In
contrast though to L21, SE has the remarkable property that
it can, in principle, handle an arbitrary number of outliers.

3.2. Connections with Compressed Sensing and Dic-
tionary Learning

Problems of the form

min
b
||Ωb||0 s.t. b 6= 0, (6)

and variants of its relaxations have appeared on several oc-
casions and in diverse contexts in the literature, but are
much less understood than the now classic sparse [1] and
cosparse [15] problems of the form

min
x
||x||0 s.t. Ax = b (7)

min
x
||Ωx||0 s.t. Ax = b, (8)

respectively. The main source of difficulty is that, in con-
trast to (8), obtaining tight convex relaxations of (6) is a
hard problem. One of the first instances where (6) was con-
sidered was in the context of blind source separation [24],
where it was proposed to relax it with the problem

min
b
||Ωb||1 s.t. ‖b‖2 ≥ 1. (9)

This is still a non-convex problem, and a heuristic based on
quadratic programming was proposed to solve it.

It was not until very recently, that the convex relaxation

min
b
||Ωb||1 s.t. b>w = 1 (10)

was proposed, with w taken to be a row or a sum of two
rows of Ω, and theorems of correctness were given in the
context of dictionary learning [20]. Notice that our pro-
posed convex relaxations (3) can be seen as a generalization
of (10). In the context of finding the sparsest vector in a sub-
space, which is intrinsically related to dictionary learning,
an alternating direction minimization scheme was proposed
in [17, 18] to solve a relaxation of the form

min
b,x: ||b||2=1

||Ωb− x||22 + λ ‖x‖1 . (11)
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Remarkably, under some mild conditions, this was shown
to converge with high probability to a global solution of

min
b
||Ωb||1 s.t. ‖b‖2 = 1. (12)

The geometry of (12) was further studied in a probabilistic
framework in the recent [21], after replacing the `1-norm
with a smooth surrogate.

4. Theoretical Analysis
In this section we state and discuss our main theoretical

results2, regarding problems (2) and (3). Before doing so
though, we need to introduce additional notation and draw
some interesting connections with the field of numerical in-
tegration on the sphere (Section 4.1).

4.1. An Integration Perspective

To begin with, for a vector b ∈ SD−1, denote by fb :

SD−1 → R+ the function y 7→
∣∣∣b>y∣∣∣. Then given a set of

L points Y ⊂ SD−1, the quantity

1

L

∥∥∥Y >b∥∥∥
1

=
1

L

L∑
j=1

∣∣∣b>yj∣∣∣ =
1

L

L∑
j=1

fb(yj) (13)

is a discrete approximation of the integral∫
y∈SD−1

fb(y)dµ =

∫
y∈SD−1

|y>b|dµ, (14)

where µ is the uniform measure on SD−1 and cD is the
mean height of the unit hemisphere of RD, given in closed
form by

cD =
(D − 2)!!

(D − 1)!!
·
{

2
π if D even
1 if D odd , (15)

where the double factorial is defined as

k!! :=

{
k(k − 2)(k − 4) · · · 4 · 2 if k even
k(k − 2)(k − 4) · · · 3 · 1 if k odd (16)

A useful fact is that cD is a decreasing function of D and in
fact tends to zero as D goes to infinity.

Now, observe that because of the symmetry of SD−1,
the integral in (14) does not depend on b. However, the
integration error ∣∣∣∣∣∣cD − 1

L

L∑
j=1

fb(y)

∣∣∣∣∣∣ (17)

does depend both on the direction of b as well as the dis-
tribution of the points Y on SD−1. It is clear though, that

2All proofs are omitted due to space limitations.

the more uniformly the points are distributed, the smaller
will be the dependence of the integration error on the di-
rection of b. We note here that the notion of uniform point
set distribution on the sphere is a non-trivial one. In a de-
terministic setting, this is an active subject of study in the
fields of combinatorial geometry and numerical integration
on the sphere [9, 8]. A widely used measure of the uni-
formity of a point set on the sphere is the so-called point
set discrepancy DSL(Y ) of the set, which can be defined in
terms of spherical harmonics as

DSL(Y ) := sup
m≥1

1

mD
max

i=1,...,Z(D,m)

∣∣∣∣∣∣ 1L
L∑
j=1

Sm,i(yj)

∣∣∣∣∣∣ ,
(18)

where Z(D,m) is the dimension of the vector space of
spherical harmonics of order m, and Sm,i is the i-th basis
element. It is then a fact that the integration error is small if
and only if DSL(Y ) is small.

As before, for any b ∈ SD−1 we define a vector valued

function fb : SD−1 → RD by y
fb7−→ Sign(b>y)y. Note

that the image of fb is SD−1 ∪ 0 and that points that are
orthogonal to b are mapped to 0. Moreover,

Lemma 1
∫
y∈SD−1 Sign(b>y)ydµ = cD b, ∀b ∈ SD−1.

This result suggests that the quantity yb :=
1
L

∑L
j=1 Sign(b>yj)yj can be interpreted as a dis-

crete approximation of the integral
∫
y∈SD−1 fb(y)dµ and

so the more uniformly distributed are the points Y , the
closer yb is to the quantity cD b.

The above discussion motivates defining the quantities
εO and εX , to capture the uniformity of outliers and inliers,
respectively:

εO := max
b∈SD−1

‖cD b− ob‖2 , (19)

ob :=
1

M

M∑
j=1

Sign(b>oj)oj , (20)

εX := max
v∈SD−1∩V

‖cd v − χv‖2 (21)

χv :=
1

N

N∑
j=1

Sign(v>xj)xj . (22)

4.2. The Non-Convex Problem

Before we consider the discrete non-convex problem (2),
it is instructive to examine its continuous counterpart

min
b>b=1

M

∫
o∈SD−1

∣∣∣b>o∣∣∣ dµ+

+N

∫
x∈V∩SD−1

∣∣∣b>x∣∣∣ dσ, (23)
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where σ is the uniform measure on V ∩ SD−1. Of course
this problem is only of theoretical interest and serves in es-
tablishing a first intuition for the idea behind (2). In fact,

Theorem 1 Any global solution to problem (23) must be
orthogonal to V .

The proof of the above theorem follows easily from the
symmetry of the sphere, since the first integral appearing
in (23) does not depend on b, while the second integral de-
pends only on the angle of b from V .

Theorem 1 suggests that under sufficiently well-
distributed point sets of inliers and outliers, any global so-
lution to the discrete problem (2) should also be orthogonal
to the span of the inliers. Before stating the precise result,
we need one last piece of notation:

Definition 1 For a set Y = [y1, . . . ,yL] ⊂ SD−1 and
integer K, define RY ,K to be the maximum circumradius
among all polytopes Conv

(
±yj1 ± yj2 ± · · · ± yjK

)
,

where j1, . . . , jK are distinct integers in [L], and Conv(·)
indicates the convex hull operator.

Theorem 2 Suppose that the quantity γ := M
N satisfies

γ < min

{
cd − εX
2 εO

,
cd − εX − (RO,K1 +RX ,K2) /N

εO

}
,

(24)

for all positive integers K1,K2 such that K1 +K2 ≤ D −
1,K2 ≤ d − 1. Then any global solution b∗ to (2) will be
orthogonal to Span(X ).

Towards interpreting this result, consider first the asymp-
totic case where we allow N and M to go to infinity, while
keeping the ratio γ constant. Under point set uniformity,
i.e. under the hypothesis that limN→∞DS

N (X ) = 0 and
limM→∞DS

M (O) = 0, we will have that limN→∞ εX = 0
and limM→∞ εO = 0, in which case (24) is satisfied. This
suggests the interesting fact that when the number of in-
liers is a linear function of the number of outliers, then (2)
will always give a normal to the inliers even for arbitrarily
large number of outliers and irrespectively of the subspace
dimension d. Along the same lines, for a given γ and under
the point set uniformity hypothesis, we can always increase
the number of inliers and outliers (thus decreasing εX and
εO), while keeping γ constant, until (24) is satisfed, once
again indicating that (2) is possible to yield a normal to the
space of inliers irrespectively of their intrinsic dimension.

4.3. The Sequence of Convex Relaxations
In this section we consider the sequence of convex relax-

ations (3); in particular, there are two important issues to be
addressed. First, note that relaxing the constraint b>b = 1
in (2) with a linear constraint b>n̂ = 1 as in (10), has
already been found to be of limited theoretical guarantees
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Figure 1. Experimental analysis of DPCP (see subsection 6.1). (a):
Empirical probability of (24) being true. (b): Angle from inlier
space of the vector b computed by DPCP, with n̂0 initialized with
φ0 > φ∗0, when (24) is true. (c): Empirical probability of a random
n̂0 satisfying φ0 > φ∗0. (d): As in (b) but with n̂0 initialized at
random. (e): As in (c) but with n̂0 initialized with SVD. (f): As in
(d) but with n̂0 initialized with SVD. (g): φ∗0 as given by (26).

[20]. So it is natural to ask whether the idea of considering a
sequence of such relaxations b>n̂k = 1, k = 0, 1, . . . has
an intrinsic merit or not, irrespectively of the data distribu-
tion. For example, if the data is perfectly well distributed,
yet the sequence does not yield vectors orthogonal to the
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Figure 2. Outlier/Inlier separation for the 5 compared methods.

inlier space, then we will know that a-priori the method is
limited. Fortunately, this is not the case: when the data is
perfectly well distributed, i.e. when we restrict our attention
to the continuous analog of (3), given by

nk+1 = argmin
b>n̂k=1

[
M

∫
o∈SD−1

∣∣∣b>o∣∣∣ dµ
+ N

∫
x∈V∩SD−1

∣∣∣b>x∣∣∣ dσ] , (25)

then the sequence {nk} achieves the property of interest:

Theorem 3 Consider the sequence of vectors {nk} gener-
ated by recursion (25), where n̂0 ∈ SD−1 is arbitrary. Let
{φk} be the corresponding sequence of angles from V . Then
limk→∞ φk = π

2 , provided that n0 6∈ V .

This result suggests that relaxing b>b = 1 with the se-
quence b>n̂k = 1, k ≥ 0 is intrinsically the right idea.

The second issue is how the distribution of the data af-
fects the ability of this sequence of relaxations to give vec-
tors orthogonal to V . The answer is given by Theorem
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Figure 3. ROC curves as functions of noise percentage η, outlier
percentage R, and subspace dimension d.

4, which says that when the angle between n0 and V is
large enough and the data points are well distributed, the
sequence (3) will consist of vectors orthogonal to the inlier
space, for sufficiently large indices k.

Theorem 4 Let φ0 be the angle between n0 and V . Sup-
pose that condition (24) on the outlier ratio γ holds true
and consider the vector sequence {n̂k} generated by recur-
sion (3). Then after a finite number of terms n̂0, . . . , n̂K ,
for some K, every term of {n̂k} will be orthogonal to
Span(X ), providing that

φ0 > cos−1
(
cd − εX − 2 γ εO

cd + εX

)
=: φ∗0. (26)

First note that if (24) is true, then the expression of (26)
always defines an angle between 0 and π/2. Second, The-
orem 4 can be interpreted using the same asymptotic argu-
ments as Theorem 2. In particular, notice that the lower
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Figure 4. ROC curves for different number of outliers. Inliers are
face images of a single individual and outliers are images chosen
randomly among different object categories.

bound on the angle φ0 tends to zero as M,N go to infinity
with γ constant. Note also that this result does not show
convergence of the sequence n̂k: it only shows that this se-
quence will eventually satisfy the desired property of being
orthogonal to the space of inliers; a convergence result re-
mains yet to be established.

5. Dual Principal Component Pursuit

So far we have established a mechanism of obtaining
an element b1 of V⊥, where V = Span(X ): run the se-

quence of linear programs (3) until the function
∥∥∥X̃>b̂k∥∥∥

1
converges within some small ε; then assuming no patholog-
ical point set distributions, any vector n̂k can be taken as
b1. There are two possibilities: either V is a hyperplane of
dimension D − 1 or dimV < D − 1. In the first case, b1
is the unique up to scale element of V⊥, which proves that
in this case the sequence of (3) in fact converges. In such
a case, we can identify our subspace model with the hyper-
plane defined by the normal b1. Next, if dimV < D − 1,
we can proceed to find a second element b2 of V⊥ that is
orthogonal to b1 and so on. This naturally leads to the Dual
Principal Component Pursuit shown in Algorithm 1.

A few comments are in order. In Algorithm 1, c is an
estimate for the codimension D − d of the inlier subspace
Span(X ). If c is rather large, then in the computation of
each bi, it is more efficient to reduce the coordinate rep-

Algorithm 1 Dual Principal Component Pursuit

1: procedure DPCP(X̃ , c, ε, Tmax)
2: B ← ∅;
3: for i = 1 : c do
4: k ← 0; ∆J0 ←∞;
5: n0 ← argminn̂:‖n̂‖2=1, n̂⊥b1,...,bi−1

∥∥∥X̃>n̂∥∥∥
2
;

6: while k ≤ Tmax and ∆J0 > ε do
7: k ← k + 1;
8: nk ← argminn:n>n̂k−1=1,n⊥B

∥∥∥X̃>n∥∥∥
1

;

9: ∆Jk ←
∥∥∥X̃>n̂k−1∥∥∥

1
−
∥∥∥X̃>n̂k∥∥∥

1
;

10: end while
11: bi ← n̂k;
12: B ← B ∪ {bi};
13: end for
14: return B;
15: end procedure

resentation of the data by replacing X̃ with πi(X̃ ), where
πi : RD → RD−(i−1), i ≥ 2, is the orthogonal projection
onto Span(b1, . . . , bi−1)⊥, and solve the linear program in
step 8 in the projected space.

Notice further how the algorithm initializes n0: This is
effectively the right singular vector of πi(X̃ )>, that corre-
sponds to the smallest singular value. As it will be demon-
strated in Section 6, this choice has the effect that the angle
of n0 from the inlier subspace is typically large, in partic-
ular, larger than the smallest initial angle (26) required for
the success of the principal component pursuit of (3).

6. Experiments
In this section we investigate experimentally the pro-

posed DPCP Alg. 1. Using both synthetic (subsection 6.1)
and real data (subsection 6.2), we compare DPCP to the
three methods SE, L21 and RANSAC discussed in Section
3.1 as well as to the method of eq. (11) discussed in Sec-
tion 3.2, which we will refer to as SVS (Sparsest Vector in
a Subspace). The parameters of the methods are set to fixed
values, chosen such that the methods work well across all
tested dimension and outlier configurations. In particular,
we use αSE = 100, τL21 = 100 and λL21 = 3/(7

√
M);

see [19] and [23] for details. Regarding DPCP, we fix
Tmax = 10, ε = 10−6, and unless otherwise noted, we set
c equal to the true codimension of the subspace.

6.1. Synthetic Data

To begin with, we evaluate the performance of DPCP
in the absence of noise, for various subspace dimensions
d = 1 : 1 : 29 and outlier percentagesR := M/(M+N) =
0.1 : 0.1 : 0.9. We fix the ambient dimensionD = 30, sam-
ple N = 200 inliers uniformly at random from V ∩ SD−1
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andM outliers uniformly at random from SD−1. We are in-
terested in examining the ability of DPCP to recover a single
normal vector (c = 1) to the subspace, by means of recur-
sion (3). The results are shown in Fig. 1 for 10 independent
trials. Fig. 1(a) shows whether the theoretical conditions
of (24) are satisfied or not. In checking these conditions,
we estimate the abstract quantities εO, εX ,RO,K1 ,RX ,K2

by Monte-Carlo simulation. Whenever these conditions are
satisfied, we choose b0 in a controlled fashion, so that its
angle φ0 from the subspace is larger than the minimal angle
φ∗0 of (26), and then we run DPCP; if the conditions are not
true, we do not run DPCP and report a 0. Fig 1(b) shows the
angle of b10 from the subspace. We see that whenever (24)
is true, DPCP returns a normal after only 10 iterations. Fig
1(c) shows that if we initialize b0 randomly, then its angle
φ0 from the subspace becomes less than the minimal angle
φ∗0, as d increases. Even so, Fig. 1(d) shows that DPCP still
yields a numerical normal, except for the regime where both
d andR are very high. Notice that this is roughly the regime
where we have no theoretical guarantees in Fig. 1(a). Fig.
1(e) shows that if we initialize b0 as the right singular vec-
tor of X̃

>
corresponding to the smallest singular value, then

φ0 > φ∗0 is true for most cases, and the corresponding per-
formance of DPCP in Fig. 1(f) improves further. Finally,
Fig. 1(g) plots φ∗0. We see that for very low d this angle
is almost zero, i.e. DPCP does not depend on the initial-
ization, even for large R. As d increases though, so does
φ∗0, and in the extreme case of the upper rightmost regime,
where d and R are very high, φ∗0 is close to 90o, indicating
that DPCP will succeed only if b0 is very close to V⊥.

Next, for the same range of R and d, and still in the ab-
sence of noise, we examine the potential of each of SE, L21,
SVS, RANSAC and DPCP to perfectly distinguish outliers
from inliers. Note that each of these methods returns a sig-
nal α ∈ RN+M

+ , which can be thresholded for the purpose
of declaring outliers and inliers. For SE, α is the `1-norm
of the columns of the coefficient matrix C, while for L21 it
is the `2-norm of the columns of E. Since RANSAC, SVS
and DPCP directly return subspace models, for these meth-
ods α is simply the distances of all points to the estimated
subspace model. In Fig. 2 we depict success versus failure,
where success is interpreted as the existence of a thresh-
old on α that perfectly separates outliers and inliers. As
expected, the low-rank methods SE and L21 can not cope
with large dimensions even in the presence of 10 − 20%
outliers. As expected, RANSAC is very successful irrespec-
tively of dimension, when R is small, since the probability
of sampling outlier-free subsets is high. But as soon as R
increases, its performance drops dramatically. Moving on,
SVS is the worst performing method, which we attribute to
its approximate nature. Remarkably, DPCP performs per-
fectly irrespectively of dimension for up to 50% outliers.
Note that we use the true codimension c of the subspace

as input to DPCP; this is to ascertain the true limits of the
method. Certainly, in practice only an estimate for c can be
used. As we have observed from experiments, the perfor-
mance of DPCP typically does not change much if the codi-
mension is underestimated; however performance can dete-
riorate significantly if the true c is overestimated. Moreover,
we note that while SE, L21 and SVS are extremely fast,
as they rely on ADMM implementations, DPCP is much
slower, even if we use an optimizer such as Gurobi [10].
Speeding up DPCP is the subject of current research.

Finally, in Fig. 3 we show ROC curves associated with
the thresholding of α for varying levels of noise and out-
liers. When d is small, Fig. 3(a) shows that SE, L21
and DPCP are equally robust giving perfect separation be-
tween outliers and inliers, while SVS and RANSAC per-
form poorly. Interestingly, for large d (Fig. 3(a)), DPCP
gives considerably less False Positives (FP) than all other
methods across all cases, indicating once again its unique
property of being able to handle large subspace dimensions
in the presence of many outliers.

6.2. Real Data

In this subsection we consider an outlier detection sce-
nario in PCA using real images. The inliers are taken to
be all N = 64 face images of a single individual from the
Extended Yale B dataset [7], while the M outliers are ran-
domly chosen from Caltech101 [6]. All images are cropped
to size 48 × 42 as was done in [5]. For a fair comparison,
we run SE on the raw 2016-dimensional data, while all other
methods use projected data onto dimension D = 50. Since
it is known that face images of a single individual under
different lighting conditions lie close to an approximately
9-dimensional subspace [5], we choose the codimension pa-
rameter of DPCA to be c = 41. We perform 10 independent
trials for each individual across all 38 individuals for a dif-
ferent number of outliers M = 32, 64, 128 and report the
ensemble ROC curves in Fig. 4. As is evident, DPCA is the
most robust among all methods.

7. Conclusions
We presented Dual Principal Component Pursuit

(DPCP), a novel `1 outlier detection method, which is based
on solving an `1 problem on the sphere by linear programs
over a sequence of tangent spaces on the sphere. DPCP
is able to handle subspaces of as low codimension as 1 in
the presence of as many outliers as 50%. Future research
will be concerned with speeding up the method as well as
extending it to multiple subspaces and other types of data
corruptions, such as missing entries and entry-wise errors.
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