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Abstract
We consider the problem of outlier rejection in single subspace learning. Classical approaches

work with a direct representation of the subspace, and are thus efficient when the subspace dimen-
sion is small. Our approach works with a dual representation of the subspace and hence aims to
find its orthogonal complement; as such it is particularly suitable for high-dimensional subspaces.
We pose the problem of computing normal vectors to the subspace as a non-convex `1 minimiza-
tion problem on the sphere, which we call Dual Principal Component Pursuit (DPCP). We provide
theoretical guarantees, under which every global solution of DPCP is a vector in the orthogonal
complement of the inlier subspace. Moreover, we relax the non-convex DPCP problem to a recur-
sion of linear programming problems, which, as we show, converges in a finite number of steps to
a vector orthogonal to the subspace. In particular, when the inlier subspace is a hyperplane, then
the linear programming recursion converges in a finite number of steps to the global minimum of
the non-convex DPCP problem. We propose algorithms based on alternating minimization and It-
eratively Reweighted Least-Squares, that are suitable for dealing with large-scale data. Extensive
experiments on synthetic data show that the proposed methods are able to handle more outliers and
higher-dimensional subspaces than the state-of-the-art methods, while experiments with real face
and object images show that our DPCP-based methods are competitive to the state-of-the-art.

1. Introduction

Principal Component Analysis (PCA) is one of the oldest (Pearson, 1901; Hotelling, 1933) and
most fundamental techniques in data analysis, with ubiquitous applications in engineering (Moore,
1981), economics and sociology (Vyas and Kumaranayake, 2006), chemistry (Ku et al., 1995),
physics (Loyd et al., 2014) and genetics (Price et al., 2006) to name a few; see (Jolliffe, 2002) for
more applications. Given a data matrix X ∈ RD×L of L data points of coordinate dimension D,
PCA gives a closed form solution to the problem of fitting, in the Euclidean sense, a d-dimensional
linear subspace to the columns of X . Even though the optimization problem associated with PCA is
non-convex, it does admit a simple solution by means of the Singular Value Decomposition (SVD)
of X . In fact, the d-dimensional subspace Ŝ of RD that is closest to the columns of X in the
Euclidean sense, is precisely the subspace spanned by the first d left singular vectors of X .

Using Ŝ as a model for the data is meaningful when the data X are known to have an approx-
imately linear structure of underlying dimension d, i.e., they lie close to a d-dimensional subspace
S. In practice, the principal components of X are known to be well-behaved under mild levels of
noise, i.e., the principal angles between Ŝ and S are relatively small, and in fact, Ŝ is optimal when
the noise is Gaussian (Jolliffe, 2002). However, very often in applications the dataset is corrupted
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by outliers, i.e., it has the form X̃ = [X O] Γ, where O ∈ RD×M are M points of RD whose
angles from the underlying ground truth subspace S associated with the inlier points X are large,
and Γ is an unknown permutation. In such cases, the principal angles between S and its estimate
Ŝ given by PCA will in general be large, even when M is small. This is to be expected since, by
definition, the principal components of X̃ are orthogonal directions of maximal correlation with all
the points of X̃ . This phenomenon, together with the fact that outliers are almost always present in
real datasets, has given rise to the important problem of outlier detection in PCA.

Traditionally, outlier detection has been a major area of study in robust statistics with no-
table methods being Influence-based Detection, Multivariate Trimming, M -Estimators, Iteratively
Reweighted Least-Squares and Random Sampling Consensus (RANSAC) (Huber, 1981; Jolliffe,
2002). These methods are usually based on non-convex optimization problems, and in practice,
converge only to a local minimum. In addition, their theoretical analysis is usually limited and their
computational complexity may be large (e.g. in the case RANSAC). Recently, two attractive meth-
ods have appeared (Xu et al., 2010; Soltanolkotabi and Candès, 2012) that are directly based on
convex optimization, and are inspired by low-rank representation (Liu et al., 2010) and compressed
sensing (Candès and Wakin, 2008). Even though both of these methods admit theoretical guaran-
tees and efficient implementations, they are in principle applicable only in the low-rank regime: the
dimension d of the underlying subspace S associated to the inliers should be small compared to
the ambient dimension D. Interestingly, the even more recent method of (Lerman et al., 2015) is
a first step towards surpassing this limitation. Indeed, (Lerman et al., 2015) apply a tight convex
relaxation to a non-convex problem, and obtain a subspace learning method that is robust to outliers,
and whose theorems of correctness do not explicitly require the subspace dimension d to be small.

In this paper we adopt a dual approach to the problem of robust PCA in the presence of outliers,
which allows us to explicitly transcend the low-rank regime of modern methods such as (Xu et al.,
2010) or (Soltanolkotabi and Candès, 2012). The key idea of our approach comes from the fact that,
in the absence of noise, the inliers X lie inside any hyperplane H1 = Span(b1)

⊥ that contains the
underlying linear subspace S associated to the inliers. This suggests that, instead of attempting to
fit directly a low-dimensional linear subspace to the entire dataset X̃ , as done e.g. in (Xu et al.,
2010), we can search for a maximal hyperplane H1 that contains as many points of the dataset as
possible. When the inliers X are in general position (to be made precise shortly) inside S, and
the outliers O are in general position in RD, such a maximal hyperplane will contain the entire set
of inliers together with possibly a few outliers. Then one may remove all points that lie outside
this hyperplane and be left with an easier robust PCA problem that could potentially be addressed
by existing methods. Alternatively, one can continue by finding a second maximal hyperplane
H2 = Span(b2)

⊥, with the new dual principal component b2 perpendicular to the first one, i.e.,
b2 ⊥ b1, and so on, until c := D − d such maximal hyperplanes H1, . . . ,Hc have been found,
leading to a Dual Principal Component Analysis (DPCA) of X̃ . In such a case, the inlier subspace
is precisely equal to

⋂c
i=1Hi, and a point is an outlier if and only if it lies outside this intersection.

We formalize the problem of searching for maximal hyperplanes with respect to X̃ as an `0
cosparsity-type problem (Nam et al., 2013), which we relax to a non-convex `1 problem on the
sphere, referred to as the DPCP problem. We provide theoretical guarantees under which every
global solution of the DPCP problem is a vector orthogonal to the linear subspace associated to the
inliers, i.e., it is a dual principal component. Moreover, we relax the non-convex DPCP problem to a
recursion of linear programming problems, which we show that, under mild conditions, it converges
to a dual principal component in a finite number of steps. In particular, when the inlier subspace is
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a hyperplane, i.e., when it has dimension equal to D − 1, then the linear programming recursions
converge to the global minimum of the non-convex problem in a finite number of steps. Further-
more, we propose algorithms based on alternating minimization and Iteratively Reweighted Least-
Squares, that are suitable for dealing with large-scale data. Extensive experiments on synthetic data
show that the proposed methods are able to handle more outliers and higher-dimensional subspaces
than the state-of-the-art methods (Fischler and Bolles, 1981; Xu et al., 2010; Soltanolkotabi and
Candès, 2012; Lerman et al., 2015), while experiments with real face and object images show that
our DPCP-based methods are competitive to the state-of-the-art.

Notation. The symbol ∼= stands for isomorphism in whatever category the objects lying to the
left and right of the symbol belong to. For a positive integer n let [n] := {1, 2, . . . , n}. For a
positive real number α let dαe denote the smallest integer that is greater than α. If T1, T2 are sets,
T1 \ T2 denotes the elements of T1 which are not elements of T2. Moreover, T1 t T2 represents the
union of the T1, T2 and at the same time provides the information that T1 ∩ T2 = ∅ (disjoint union).
SD−1 denotes the unit sphere of RD. For a vector w ∈ RD we define ŵ := w/ ‖w‖2, if w 6= 0,
and ŵ := 0 otherwise. For S a linear subspace of RD, πS : RD → S denotes the orthogonal
projection of RD onto S , and S⊥ the orthogonal complement of S. If y1, . . . ,ys are elements of
RD, Span(y1, . . . ,ys) is the subspace of RD spanned by these elements. With a mild abuse of
notation we will be treating on several occasions matrices as sets, e.g., if X is D×N and x a point
of RD, the notation x ∈ X signifies that x is a column of X . Similarly, if O is a D ×M matrix,
the notation X ∩O signifies the points of RD that are common columns of X and O. Sign denotes
the sign function Sign : R→ {−1, 0, 1} defined as

Sign(x) =

{
x/|x| if x 6= 0,
0 if x = 0.

(1)

The subdifferential of the `1-norm

z = (z1, . . . , zD)> 7→ ‖z‖1 =
D∑
i=1

|zi| (2)

is a set-valued function on RD defined as

Sgn(x) =

{
Sign(x) if x 6= 0,
[−1, 1] if x = 0.

(3)

The shorthand RHS stands for Right-Hand-Side, and similarly LHS stands for Left-Hand-Side.

2. Prior Art

In this Section we briefly review some state-of-the-art methods for learning a linear subspace from
data X̃ = [X O] Γ in the presence of outliers. The literature on this subject is vast, and our account
is far from exhaustive; with a few exceptions, we mainly focus on modern methods that are based
on convex optimization. For methods from robust statistics see (Huber, 1981; Jolliffe, 2002), for
online subspace learning methods see (Balzano et al., 2010; Feng et al., 2013), while for fast and
other methods the reader is referred to the excellent literature review of (Lerman and Zhang, 2014).

RANSAC. One of the oldest and most popular outlier detection methods in PCA is Random
Sampling Consensus (RANSAC) (Fischler and Bolles, 1981). The idea behind RANSAC is simple:
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alternate between randomly sampling a small subset of the dataset and computing a subspace model
for this subset, until a model is found that maximizes the number of points in the entire dataset
that fit to it within some error. RANSAC is usually characterized by high performance. However,
it requires a high computational time, since it is often the case that exponentially many trials are
required in order to sample outlier-free subsets, and thus obtain reliable models. Additionally,
RANSAC requires as input an estimate for the dimension of the subspace as well as a thresholding
parameter, which is used to distinguish outliers from inliers; naturally the performance of RANSAC
is very sensitive to these two parameters.

`2,1-RPCA. Contrary to the classic principles that underlie RANSAC, modern methods for out-
lier detection in PCA are primarily based on convex optimization. One of the earliest and most
important such methods, to be referred to as `2,1-RPCA, is the method of (Xu et al., 2010), which
is in turn inspired by the Robust PCA algorithm of (Candès et al., 2011). `2,1-RPCA computes
a (`∗ + `2,1)-norm decomposition1 of the data matrix, instead of the (`∗ + `1)-decomposition in
(Candès et al., 2011). More specifically, `2,1-RPCA solves the optimization problem

min
L,E: X̃=L+E

‖L‖∗ + λ ‖E‖2,1 , (4)

which attempts to decompose the data matrix X̃ = [X O]Γ into the sum of a low-rank matrix L,
and a matrix E that has only a few non-zero columns. The idea is that L is associated with the
inliers, having the form L = [X 0D×M ]Γ, and E is associated with the outliers, having the form
E = [0D×N O]Γ. The optimization problem (4) is convex and admits theoretical guarantees and
efficient ADMM (Boyd et al., 2010) implementations. However, it is expected to succeed only when
the intrinsic dimension d of the inliers is small enough (otherwise [X 0D×M ] will not be low-rank),
and the outlier ratio is not too large (otherwise [0D×N O] will not be column-sparse). Finally,
notice that `2,1-RPCA does not require as input the subspace dimension d, because it does not
directly compute an estimate for the subspace. Rather, the subspace can be obtained subsequently
by doing classic PCA on L, and now one does need an estimate for d.

SE-RPCA. Another state-of-the-art method, referred to as SE-RPCA, is based on the self-
expressiveness property of the data matrix, a notion popularized by the work of (Elhamifar and
Vidal, 2011, 2013) in the area of subspace clustering (Vidal, 2011). More specifically, observe that
if a column of X̃ is an inlier, then it can in principle be expressed as a linear combination of d other
columns of X̃ , which are inliers. If the column is instead an outlier, then it will in principle require
D other columns to express it as a linear combination. The self expressiveness matrix C can be
obtained as the solution to the convex optimization problem

min
C
‖C‖1 s.t. X̃ = X̃C, Diag(C) = 0. (5)

Having computed the matrix of coefficientsC, and under the hypothesis that d/D is small, a column
of X̃ is declared as an outlier, if the `1 norm of the corresponding column of C is large; see
(Soltanolkotabi and Candès, 2012) for an explicit formula. SE-RPCA admits theoretical guarantees
(Soltanolkotabi and Candès, 2012) and efficient ADMM implementations (Elhamifar and Vidal,
2013). However, as is clear from its description, it is expected to succeed only when the relative
dimension d/D is sufficiently small. Nevertheless, in contrast to `2,1-RPCA, which in principle

1. Here `∗ denotes the nuclear norm, which is the sum of the singular values of the matrix. Also, `2,1 is defined as the
sum of the euclidean norms of the columns of a matrix.
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fails in the presence of a very large number of outliers, SE-RPCA is still expected to perform well,
since the existence of sparse subspace-preserving self-expressive patterns does not depend on the
number of outliers present. Also, similarly to `2,1-RPCA, SE-RPCA does not directly require an
estimate for the subspace dimension d. Nevertheless, knowledge of d is necessary if one wants to
furnish an actual subspace estimate. This would entail removing the outliers (a judiciously chosen
threshold would also be necessary here) and doing PCA on the remaining points.

REAPER. A recently proposed single subspace learning method that admits an interesting the-
oretical analysis is the REAPER (Lerman et al., 2015), which is conceptually associated with the
optimization problem

min
Π

L∑
j=1

‖(ID −Π)x̃j‖2 , s.t. Π is an orthogonal projection, Trace (Π) = d, (6)

where x̃j is the j-th column of X̃ . The matrix Π appearing in (6) can be thought of as the product
Π = UU>, where U ∈ RD×d contains in its columns an orthonormal basis for a d-dimensional
linear subspace S. As (6) is non-convex, (Lerman et al., 2015) relaxes it to the convex semi-definite
program

min
P

L∑
j=1

‖(ID − P )x̃j‖2 , s.t. 0 ≤ P ≤ ID, Trace (P ) = d, (7)

whose global solution P ∗ is subsequently projected in an `∗ sense onto the space of rank-d or-
thogonal projectors. It is shown in (Lerman et al., 2015) that the orthoprojector Π∗ obtained in
this way is within a neighborhood of the orthoprojector corresponding to the true underlying inlier
subspace. One advantage of REAPER with respect to `2,1-RPCA and SE-RPCA, is that its theo-
retical conditions do not explicitly require the inlier dimension d to be small. On the other hand,
contrary to `2,1-RPCA, REAPER does require a-priori knowledge of the inlier dimension d. More-
over, the semi-definite program (7) may become prohibitively expensive to solve even for moderate
values of the ambient dimension D. As a consequence, (Lerman et al., 2015) proposed an Itera-
tively Reweighted Least Squares (IRLS) scheme to obtain a numerical solution of (7). Interestingly,
it was shown in (Lerman et al., 2015) that the objective value of this IRLS scheme converges to a
neighborhood of the optimal objective value of problem (7); nevertheless no other properties of this
scheme seem to be known.

R1-PCA. A related method is R1-PCA (Ding et al., 2006), which attempts to solve the problem

min
U ,V

∥∥∥X̃ −UV ∥∥∥
2,1
, s.t. U>U = I, (8)

where U is an orthonormal basis for the estimated subspace, and V contains in its columns the
low-dimensional representations of the points. Besides for alternating minimization with a power
iteration scheme that converges to a local minimum, little else is known about how to solve the
non-convex problem (8) to global optimality.

L1-PCA∗. Finally, the method L1-PCA∗ of (Brooks et al., 2013) works with the orthogonal
complement of the subspace, but it is slightly unusual in that it learns `1 hyperplanes, i.e., hyper-
planes that minimize the `1 distance to the points, as opposed to the Euclidean distance, e.g., used
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by the classic PCA, R1-PCA, or REAPER. More specifically, an `1 hyperplane learned by the data
is a hyperplane with normal vector b that solves the problem

min
b∈SD−1;yj∈RD, j∈[L]

L∑
j=1

∥∥x̃j − yj∥∥1 s.t. y>j b = 0, ∀j ∈ [L], (9)

where yj is the representation of point x̃j in the hyperplane. Overall, no theoretical guarantees
seem to be known for L1-PCA∗, as far as the subspace learning problem is concerned. In addition,
L1-PCA∗ requires the solution to quadratically many linear programs of size equal to the ambient
dimension, which makes it computationally expensive.

3. Problem Formulation

In this Section we describe the problem of interest of this paper. We begin by establishing our data
model in Section 3.1, while in Section 3.2 we motivate the problem on a conceptual level. Finally,
in Section 3.3 we formulate our problem as an optimization problem.

3.1 Data model

We employ a deterministic noise-free data model, under which the given data is

X̃ = [X O]Γ = [x̃1, . . . , x̃L] ∈ RD×L, (10)

where the inliers X = [x1, . . . ,xN ] ∈ RD×N lie in the intersection of the unit sphere SD−1 with an
unknown proper subspace S of RD of unknown dimension 1 ≤ d ≤ D− 1, and the outliers consist
of M points O = [o1, . . . ,oM ] ∈ RD×M that lie on the sphere SD−1. The unknown permutation
Γ indicates that we do not know which point is an inlier and which point is an outlier. Finally, we
assume that the points X̃ are in general position, in the sense that there are no relations between the
columns of X̃ except the ones implied by the inclusions X ⊂ S and X̃ ⊂ RD. In particular, every
D-tuple of columns of X̃ such that at most d points come frorm X is linearly independent. Notice
that as a consequence every d-tuple of inliers and everyD-tuple of outliers are linearly independent,
and also X ∩O = ∅. Finally, to avoid degenerate situations we will assume that N ≥ d + 1 and
M ≥ D − d.2

3.2 Conceptual formulation

Notice that we have made no assumption on the dimension of S: indeed, S can be anything from
a line to a (D − 1)-dimensional hyperplane. Ideally, we would like to be able to partition the
columns of X̃ into those that lie in S and those that don’t. But under such generality, this is not a
well-posed problem since X lies inside every subspace that contains S , which in turn may contain
some elements of O. In other words, given X̃ and without any other a priori knowledge, it may be
impossible to correctly partition X̃ into X and O. Instead, it is meaningful to search for a linear
subspace of RD that contains all of the inliers and perhaps a few outliers. Since we do not know
the intrinsic dimension d of the inliers, a natural choice is to search for a hyperplane of RD that
contains all the inliers.

2. If the number of outliers is less than D − d, then the entire dataset is degenerate, in the sense that it lies in a proper
hyperplane of the ambient space. In such a case we can reduce the coordinate representation of the data and eventually
satisfy the stated condition.

6



DUAL PRINCIPAL COMPONENT PURSUIT

Problem 1 Given the dataset X̃ = [X O] Γ, find a hyperplaneH that contains all the inliers X .

Notice that hyperplanes that contain all the inliers always exist: any non-zero vector b inside the
orthogonal complement S⊥ of the linear subspace S associated to the inliers defines a hyperplane
(with normal vector b) that contains all inliers X . Having such a hyperplane H1 at our disposal,
we can partition our dataset as X̃ = X̃ 1 t X̃ 2, where X̃ 1 are the points of X̃ that lie in H1 and
X̃ 2 are the remaining points. Then by definition of H1, we know that X̃ 2 will consist purely of
outliers, in which case we can safely replace our original dataset X̃ with X̃ 1 and reconsider the
problem of robust PCA on X̃ 1. We emphasize that X̃ 1 will contain all the inliers X together with
at most D− d− 1 outliers 3, a number which may be dramatically smaller than the original number
of outliers. Then one may apply existing methods such as (Xu et al., 2010), (Soltanolkotabi and
Candès, 2012) or (Fischler and Bolles, 1981) to finish the task of identifying the remaining outliers,
as the following example demonstrates.

Example 1 Suppose we have N = 1000 inliers lying in general position inside a 90-dimensional
linear subspace of R100. Suppose that the dataset is corrupted by M = 1000 outliers lying in gen-
eral position in R100. LetH be a hyperplane that contains all 1000 inliers. Since the dimensionality
of the inliers is 90 and the dimensionality of the hyperplane is 99, there are only 99−90 = 9 linearly
independent directions left for the hyperplane to fit, i.e., H will contain at most 9 outliers (it can
not contain more outliers since this would violate the general position hypothesis). If we remove the
points of the dataset that do not lie in H, then we are left with 1000 inliers and at most 9 outliers.
Interestingly, a simple application of RANSAC is expected to identify the remaining outliers in only
a few trials.

Alternatively, one may repeat the above process c = codimS = D − d times, until c linearly
independent maximal hyperplanes H1, . . . ,Hc have been found 4. Then a point is an inlier if and
only if the point lies in the intersection of these c hyperplanes; this is true because it must be the
case that

⋂c
k=1Hk = S.

3.3 Hyperplane pursuit by `1 minimization

In this Section we propose an optimization framework for the computation of a hyperplane that
solves Problem 1, i.e., a hyperplane that contains all the inliers. To proceed, we need a definition.

Definition 2 A hyperplane H of RD is called maximal with respect to the dataset X̃ , if it contains
a maximal number of data points in X̃ , i.e., if for any other hyperplane H† of RD we have that
Card(X̃ ∩H) ≥ Card(X̃ ∩H†).

In principle, hyperplanes that are maximal with respect to X̃ , always solve Problem 1.

Proposition 3 Suppose thatN ≥ d+1 andM ≥ D−d, and letH be a hyperplane that is maximal
with respect to the dataset X̃ . ThenH contains all the inliers X .

3. This comes from the general position hypothesis.
4. By the hyperplanes being linearly independent we mean their normal vectors being linearly independent.
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Proof By the general position hypothesis on X and O, any hyperplane that does not contain X can
contain at mostD−1 points from X̃ . We will show that there exists a hyperplane that contains more
than D − 1 points of X̃ . Indeed, take d inliers and D − d− 1 outliers and let H be the hyperplane
generated by theseD−1 points. Denote the normal vector to that hyperplane by b. SinceH contains
d inliers, bwill be orthogonal to these inliers. Since X is in general position, every d-tuple of inliers
is a basis for Span(X ). As a consequence, b will be orthogonal to Span(X ), and in particular
b ⊥ X . This implies that X ⊂ H and soH will containN+D−d−1 ≥ d+1+D−d−1 > D−1
points of X̃ .

In view of Proposition 3, we may restrict our search for hyperplanes that contain all the inliers X
to the subset of hyperplanes that are maximal with respect to the dataset X̃ . The advantage of this
approach is immediate: the set of hyperplanes that are maximal with respect to X̃ is in principle
computable, since it is precisely the set of solutions of the following optimization problem

min
b

∥∥∥X̃>b∥∥∥
0
s.t. b 6= 0. (11)

The idea behind (11) is that a hyperplane H = Span(b)⊥ contains a maximal number of columns
of X̃ if and only if its normal vector b has a maximal cosparsity level with respect to the matrix
X̃>, i.e., the number of non-zero entries of X̃>b is minimal. Since (11) is a combinatorial problem
admitting no efficient solution, we consider its natural relaxation

min
b

∥∥∥X̃>b∥∥∥
1
s.t. ‖b‖2 = 1, (12)

which in our context we will be referring to as Dual Principal Component Pursuit (DPCP). A major
question that arises, to be answered in Theorem 10, is under what conditions every global solution
of (12) is orthogonal to the inlier subspace Span(X ). A second major question, raised by the non-
convexity of the constraint b ∈ SD−1, is how to efficiently solve (12) with theoretical guarantees.

We emphasize here that the optimization problem (12) is far from new; interestingly, its earliest
appearance in the literature that we are aware of is in (Späth and Watson, 1987), where the authors
proposed to solve it by means of the recursion of convex problems given by 5

nk+1 := argmin
b>n̂k=1

∥∥∥X̃>b∥∥∥
1
. (13)

Notice that at each iteration of (13) the problem that is solved is computationally equivalent to a
linear program; this makes the recursion (13) a very appealing candidate for solving the non-convex
(12). Even though (Späth and Watson, 1987) proved the very interesting result that (13) converges
to a critical point of (12) in a finite number of steps (see Appendix A), there is no reason to believe
that in general (13) converges to a global minimum of (12).

Other works in which optimization problem (12) appears are (Spielman et al., 2013; Qu et al.,
2014; Sun et al., 2015c,d,b,a). More specifically, (Spielman et al., 2013) propose to solve (12) by
replacing the quadratic constraint b>b = 1 with a linear constraint b>w = 1 for some vector w.
In (Qu et al., 2014; Sun et al., 2015b) (12) is approximately solved by alternating minimization,
while a Riemannian trust-region approach is employed in (Sun et al., 2015a). Finally, we note that

5. Being unaware of the work of (Späth and Watson, 1987), we independently proposed the same recursion in (Tsakiris
and Vidal, 2015).
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problem (12) is closely related to the non-convex problem (6) associated with REAPER. To see this,
suppose that the REAPER orthoprojector Π appearing in (6), represents the orthogonal projection
to a hyperplane U with unit-`2 normal vector b. In such a case ID − Π = bb>, and it readily
follows that problem (6) becomes identical to problem (12).

4. Theoretical Contributions

In this section we establish our analysis framework and discuss our main theoretical results regard-
ing the non-convex problem (12) as well as the recursion of convex relaxations (13). We begin our
theoretical investigation in §4.1 by establishing a connection between the discrete problems (12)
and (13) and certain underlying continuous problems. The continuous problems do not depend on
a finite set of inliers and outliers, rather on uniform distributions on the respective inlier and outlier
spaces, and as such, are easier to analyze. The analysis reveals that both the continuous analogue
of (12) as well the continuous recursion corresponding to (13) are naturally associated with vectors
orthogonal to the inlier subspace S. This suggests that under certain conditions on the distribution
of the data, the same must be true for the discrete problem (12) and recursion (13). Indeed, in §4.2
we obtain discrete analogues of the theorems of §4.1, which in particular show that both (12) and
(13) are natural formulations for computing the orthogonal complement of a linear subspace in the
presence of outliers.

4.1 The underlying continuous problem

In this section we show that the problems of interest (12) and (13) can be viewed as discrete versions
of certain continuous problems, which we analyze. To begin with, consider given outliers O =
[o1, . . . ,oM ] ⊂ SD−1 and inliers X = [x1, . . . ,xN ] ⊂ S ∩ SD−1, and recall the notation X̃ =
[X O]Γ, where Γ is an unknown permutation. Next, for any b ∈ SD−1 define the function fb :
SD−1 → R by fb(z) =

∣∣b>z∣∣. Define also discrete measures µO and µX on SD−1 associated with
the outliers and inliers respectively, as

µO(z) =
1

M

M∑
j=1

δ(z − oj) and µX (z) =
1

N

N∑
j=1

δ(z − xj), (14)

where δ(·) is the Dirac function on SD−1, satisfying∫
z∈SD−1

g(z)δ(z − z0)dµSD−1 = g(z0), (15)

for every g : SD−1 → R and every z0 ∈ SD−1; µSD−1 is the uniform measure on SD−1.

With these definitions, we have that the objective function
∥∥∥X̃>b∥∥∥

1
appearing in (12) and (13)

is the sum of the weighted expectations of the function fb under the measures µO and µX , i.e.,

∥∥∥X̃>b∥∥∥
1

=
∥∥∥O>b∥∥∥

1
+
∥∥∥X>b∥∥∥

1
=

M∑
j=1

∣∣∣b>oj∣∣∣+

N∑
j=1

∣∣∣b>xj∣∣∣ (16)

9
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=
M∑
j=1

∫
z∈SD−1

∣∣∣b>z∣∣∣ δ(z − oj)dµSD−1 +
N∑
j=1

∫
z∈SD−1

∣∣∣b>z∣∣∣ δ(z − xj)dµSD−1 (17)

=

∫
z∈SD−1

∣∣∣b>z∣∣∣
 M∑
j=1

δ(z − oj)

 dµSD−1 +

∫
z∈SD−1

∣∣∣b>z∣∣∣
 N∑
j=1

δ(z − xj)

 dµSD−1 (18)

= M EµO(fb) +N EµX (fb). (19)

Hence, the optimization problem (12), which we repeat here for convenience,

min
b

∥∥∥X̃>b∥∥∥
1

s.t. b>b = 1, (20)

is equivalent to the problem

min
b

[M EµO(fb) +N EµX (fb)] s.t. b>b = 1. (21)

Similarly, the recursion (13), repeated here for convenience,

nk+1 = argmin
b

∥∥∥X̃>b∥∥∥
1

s.t. b>n̂k = 1, (22)

is equivalent to the recursion

nk+1 = argmin
b

[M EµO(fb) +N EµX (fb)] s.t. b>n̂k = 1. (23)

Now, the discrete measures µO, µX of (14), are discretizations of the continuous measures µSD−1 ,
and µSD−1∩S respectively, where the latter is the uniform measure on SD−1∩S. Hence, for the pur-
pose of understanding the properties of the global minimizer of (21) and the limiting point of (23),
it is meaningful to replace in (21) and (23) the discrete measures µO and µX by their continuous
counterparts µSD−1 and µSD−1∩S , and study the resulting continuous problems

min
b

[
M EµSD−1 (fb) +N EµSD−1∩S

(fb)
]

s.t. b>b = 1, (24)

nk+1 = argmin
b

[
M EµSD−1 (fb) +N EµSD−1∩S

(fb)
]

s.t. b>n̂k = 1. (25)

It is important to note that if these two continuous problems have the geometric properties of interest,
i.e., if every global solution of (24) is a vector orthogonal to the inlier subspace, and similarly, if
the sequence of vectors {nk} produced by (25) converges to a vector nk∗ orthogonal to the inlier
subspace, then this correctness of the continuous problems can be viewed as a first theoretical
verification of the correctness of the discrete formulations (12) and (13). The objective of the rest
of this section is to establish that this is precisely the case.

Before discussing our main two results in this direction, we note that the continuous objective
function

J (b) = M EµSD−1 (fb) +N EµSD−1∩S
(fb) (26)

10
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can be re-written in a simple form. Writing b = ‖b‖2 b̂, and letting R be a rotation that takes b̂ to
the first standard basis vector e1, we see that the first expectation in (26) becomes equal to

EµSD−1 (fb) =

∫
z∈SD−1

fb(z)dµSD−1 (27)

=

∫
z∈SD−1

∣∣∣b>z∣∣∣ dµSD−1 (28)

= ‖b‖2
∫
z∈SD−1

∣∣∣b̂>z∣∣∣ dµSD−1 (29)

= ‖b‖2
∫
z∈SD−1

∣∣∣z>R−1Rb̂∣∣∣ dµSD−1 (30)

= ‖b‖2
∫
z∈SD−1

|z>e1|dµSD−1 (31)

= ‖b‖2
∫
z∈SD−1

|z1|dµSD−1 = ‖b‖2 cD, (32)

where z = (z1, . . . , zD)> is the coordinate representation of z, and cD is the mean height of the
unit hemisphere of RD, given in closed form by

cD =
(D − 2)!!

(D − 1)!!
·
{

2
π if D even,
1 if D odd,

(33)

where the double factorial is defined as

k!! :=

{
k(k − 2)(k − 4) · · · 4 · 2 if k even,
k(k − 2)(k − 4) · · · 3 · 1 if k odd.

(34)

To see what the second expectation in (26) evaluates to, decompose b as b = πS(b) + πS⊥(b), and
note that because the support of the measure µSD−1∩S is contained in S, we must have that

EµSD−1∩S
(fb) =

∫
z∈SD−1

∣∣∣b>z∣∣∣ dµSD−1∩S (35)

=

∫
z∈SD−1∩S

∣∣∣b>z∣∣∣ dµSD−1∩S (36)

=

∫
z∈SD−1∩S

∣∣∣(πS(b))> z
∣∣∣ dµSD−1∩S (37)

= ‖πS(b)‖2
∫
z∈SD−1∩S

∣∣∣∣(π̂S(b)
)>
z

∣∣∣∣ dµSD−1∩S . (38)

Writing z′ and b′ for the coordinate representation of z and π̂S(b) with respect to a basis of S, and
noting that µSD−1∩S

∼= µSd−1 , we have that∫
z∈SD−1∩S

∣∣∣∣(π̂S(b)
)>
z

∣∣∣∣ dµSD−1∩S =

∫
z′∈Sd−1

∣∣∣z′>b′∣∣∣ dµSd−1 = cd, (39)

where now cd is the average height of the unit hemisphere of Rd. Finally, noting that

‖πS(b)‖2 = ‖b‖2 cos(φ), (40)

11
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where φ is the principal angle of b from the subspace S, we have that

EµSD−1∩S
(fb) = ‖b‖2 cd cos(φ). (41)

Putting everything together, we arrive at the final form of our continuous objective function:

J (b) = M EµSD−1 (fb) +N EµSD−1∩S
(fb) = ‖b‖2 (McD +Ncd cos(φ)) . (42)

We are finally in a position to state our main results about the continuous problems (24) and
(25); the proofs can be found in §5.1 and §5.2 respectively.

Theorem 4 Any global solution to problem (24) must be orthogonal to S.

Theorem 5 Consider the sequence {nk}k≥0 generated by recursion (25), n̂0 ∈ SD−1. Let φ0 be
the principal angle of n0 from S, and define α := Ncd/McD. Then, as long as φ0 > 0, the
sequence {nk}k≥0 converges to a unit `2-norm element of S⊥ in a finite number k∗ of iterations,

where k∗ = 0 if φ0 = π/2, k∗ = 1 if tan(φ0) ≥ 1/α, and k∗ ≤
⌈

tan−1(1/α)−φ0
sin−1(α sin(φ0))

⌉
+ 1 otherwise.

Notice the remarkable fact that according to Theorem 5, the continuous recursion (25) converges to
a vector orthogonal to the inlier subspace S in a finite number of steps. Moreover, if the relation

tan(φ0) ≥ 1/α, (43)

holds true, then this convergence occurs in a single step. One way to interpret (43) is to notice that
as long as the angle φ0 of the initial estimate n̂0 from the inlier subspace is positive, and for any
arbitrary but fixed number of outliers M , there is always a sufficiently large number N of inliers,
such that (43) is satisfied and thus convergence occurs in one step. Conversely, for any fixed number
of inliers N and outliers M , there is always a sufficiently large angle φ0 such that (43) is true, and
thus (25) again converges in a single step. More generally, even when (43) is not true, the larger
φ0, N are, the smaller the quantity ⌈

tan−1(1/α)− φ0
sin−1(α sin(φ0))

⌉
(44)

is, and thus according to Theorem 4 the faster (25) converges.

4.2 The discrete problem

In this section we analyze the discrete problem (12) and the associated discrete recursion (13),
where the adjective discrete refers to the fact that (12) and (13) depend on a finite set of points
X̃ = [X O]Γ sampled from the union of the space of outliers SD−1 and the space of inliers SD−1∩
S. In §4.1 we showed that these problems are discrete versions of the continuous problems (24)
and (25), for which we further showed that they possess the geometric property of interest, i.e.,
every global minimizer of (24) must be an element of S⊥ ∩ SD−1 (Theorem 4) and the recursion
(25) produces a sequence of vectors which converges in a finite number of steps to an element of
S⊥ ∩ SD−1 (Theorem 5). In this section we show that under some conditions on the uniformity of
X = [x1, . . . ,xN ] and O = [o1, . . . ,oM ], a similar statement holds for problems (12) and (13).

12
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The heart of our analysis framework is to bound the deviation of some underlying geometric
quantities, which we call the average outlier and the average inlier with respect to b, from their
continuous counterparts. To begin with, recall our discrete objective function

Jdiscrete(b) =
∥∥∥X̃>b∥∥∥

1
=
∥∥∥O>b∥∥∥

1
+
∥∥∥X>b∥∥∥

1
(45)

and its continuous counterpart

Jcontinuous(b) = ‖b‖2 (McD +Ncd cos(φ)) , (46)

the latter derived in §4.1, equation (42). Now, notice that the term of the discrete objective that
depends on the outliers O can be written as∥∥∥O>b∥∥∥

1
=

M∑
j=1

∣∣∣o>j b∣∣∣ =
M∑
j=1

b> Sign(o>j b)oj = M b> ob, (47)

where Sign(·) is the sign function and

ob :=
1

M

M∑
j=1

Sign(b>oj)oj (48)

is the average outlier with respect to b. Defining a vector valued function fb : SD−1 → RD by

z ∈ SD−1 fb7−→ Sign(b>z)z, we notice that

ob =
1

M

M∑
j=1

fb(oj), (49)

and so ob is a discrete approximation to the integral
∫
z∈SD−1 fb(z)dµSD−1 . The value of that

integral is given by the next Lemma, whose proof can be found in §5.3.

Lemma 6 For any b ∈ SD−1 we have∫
z∈SD−1

fb(z)dµSD−1 =

∫
z∈SD−1

Sign(b>z)zdµSD−1 = cD b, (50)

where cD is defined in (33).

We define εO to be the maximum among all possible approximation errors as b varies on SD−1, i.e.,

εO := max
b∈SD−1

‖cD b− ob‖2 , (51)

and we establish that the more uniformly distributed O is the smaller εO becomes.
The notion of uniformity of O = [o1, . . . ,oM ] ⊂ SD−1 that we employ here is a deterministic

one, and is captured by the spherical cap discrepancy of the set O, defined as (Grabner et al., 1997;
Grabner and Tichy, 1993)

SD(O) := sup
C

∣∣∣∣∣∣ 1

M

M∑
j=1

IC(oj)− µSD−1(C)

∣∣∣∣∣∣ . (52)

13
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In (52) the supremum is taken over all spherical caps C of the sphere SD−1, where a spherical cap
is the intersection of SD−1 with a half-space of RD, and IC(·) is the indicator function of C, which
takes the value 1 inside C and zero otherwise. The spherical cap discrepancy SD(O) is precisely
the supremum among all errors in approximating integrals of indicator functions of spherical caps
via averages of such indicator functions on the point set O. Intuitively, SD(O) captures how close
is the discrete measure µO (see equation (14)) associated with O to the measure µSD−1 , and we will
be referring to O as being uniformly distributed on SD−1, when SD(O) is small.

As a consequence, to show that uniformly distributed points O correspond to small εO, it suf-
fices to bound the maximum integration error εO from above by a quantity proportional to the
spherical cap discrepancy SD(O). Inequalities that bound from above the approximation error of
the integral of a function in terms of the variation of the function and the discrepancy of a finite
set of points (not necessarily the spherical cap discrepancy; there are several types of discrepan-
cies) are widely known as Koksma-Hlawka inequalites (Kuipers and Niederreiter, 2012; Hlawka,
1971). Even though such inequalities exist and are well-known for integration of functions on the
unit hypercube [0, 1]D (Kuipers and Niederreiter, 2012; Hlawka, 1971; Harman, 2010), similar in-
equalities for integration of functions on the unit sphere SD−1 seem not to be known in general
(Grabner and Tichy, 1993), except if one makes additional assumptions on the distribution of the
finite set of points (Grabner et al., 1997; Brauchart and Grabner, 2015). Nevertheless, the function
fb : z 7−→ |b>z| that is associated to εO is simple enough to allow for a Koksma-Hlawka inequality
of its own, as described in the next lemma, whose proof can be found in §5.4.

Lemma 7 Let O = [o1, . . . ,oM ] be a finite subset of SD−1. Then

εO = max
b∈SD−1

‖cDb− ob‖2 ≤
√

5SD(O), (53)

where cD,ob and SD(O) are defined in (33), (48) and (52) respectively.

We now turn our attention to the inlier term
∥∥∥X̃>b∥∥∥

1
of the discrete objective function (45),

which is slightly more complicated than the outlier term. We have

∥∥∥X>b∥∥∥
1

=
N∑
j=1

∣∣∣x>j b∣∣∣ =
N∑
j=1

b> Sign(x>j b)xj = N b> xb, (54)

where

xb :=
1

N

N∑
j=1

Sign(b>xj)xj =
1

N

N∑
j=1

fb(xj) (55)

is the average inlier with respect to b. Thus, xb is a discrete approximation of the integral∫
x∈SD−1∩S

fb(x)dµSD−1 , (56)

whose value is given by the next lemma, proved in §5.5.
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Lemma 8 For any b ∈ SD−1 we have∫
x∈SD−1∩S

fb(x)dµSD−1 =

∫
x∈SD−1∩S

Sign(b>x)xdµSD−1 = cd v̂, (57)

where cd is given by (33) after replacing D with d, and v is the orthogonal projection of v onto S.

Next, we define εX to be the maximum among all possible approximation errors as b varies on
SD−1, which is the same as the maximum of all approximation errors as b varies on SD−1 ∩ S , i.e.,

εX := max
b∈SD−1

∥∥∥cd π̂S(b)− xb
∥∥∥
2

= max
b∈SD−1∩S

‖cd b− xb‖2 . (58)

Then an almost identical argument as the one that established Lemma 7 gives that

εX ≤
√

5Sd(X ), (59)

where now the discrepancy Sd(X ) of the inliers X is defined exactly as in (52) with the only
difference that the supremum is taken over all spherical caps of SD−1 ∩ S ∼= Sd−1.

Finally, to state our main two results about the discrete problems (12) and (13) we need a
definition.

Definition 9 Given a set Y = [y1, . . . ,yL] ⊂ SD−1 and an integer K, define RY ,K to be the
maximum circumradius among all polytopes Conv

({
±yj1 ± yj2 ± · · · ± yjK

})
, where j1, . . . , jK

are distinct integers in [L], Conv(·) indicates the convex hull operator, and the circumradius of a
bounded subset of RD is the infimum over the radii of all euclidean balls of RD that contain that
subset.

The next theorem, proved in §5.6, says that if both inliers and outliers are sufficiently uniformly
distributed, i.e., if the uniformity parameters εX , εO are sufficiently small, then every global solution
of (12) must be orthogonal to the inlier subspace S . More precisely,

Theorem 10 Suppose that the condition

γ :=
M

N
< min

{
cd − εX

2 εO
,
cd − εX − (RO,K1 +RX ,K2) /N

εO

}
, (60)

holds for all positive integers K1,K2 such that K1 + K2 = D − 1,K2 ≤ d − 1. Then any global
solution b∗ to (12) must be orthogonal to Span(X ).

Towards interpreting Theorem 10, consider first the asymptotic case where we allow N and
M to go to infinity, while keeping the ratio γ constant. Assuming that both inliers and outliers
are perfectly well distributed in the limit, i.e., under the hypothesis that limN→∞Sd(X ) = 0 and
limM→∞SD(O) = 0, Lemma 7 and inequality (59) give that limN→∞ εX = 0 and limM→∞ εO =
0, in which case (60) is satisfied. This suggests the interesting fact that (12) is possible to give a
normal to the inliers even for arbitrarily many outliers, and irrespectively of the subspace dimension
d. Along the same lines, for a given γ and under the point set uniformity hypothesis, we can always
increase the number of inliers and outliers (thus decreasing εX and εO), while keeping γ constant,
until (60) is satisfied, once again indicating that (12) is possible to yield a normal to the space of
inliers irrespectively of their intrinsic dimension. Notice that the intrinsic dimension d of the inliers
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manifests itself through the quantity cd, which we recall is a decreasing function of d. Consequently,
the smaller d is the larger the RHS of (60) becomes, and so the easier it is to satisfy (60).

A similar phenomenon holds for the case of the recursion of convex relaxations (13). Notice
that according to Theorem 4, the continuous recursion converges in a finite number of iterations
to a vector that is orthogonal to Span(X ) = S, as long as the initialization n̂0 does not lie in S
(equivalently φ0 > 0). Intuitively, one should expect that in passing to the discrete case, the condi-
tions for the discrete recursion (13) to be successful, should be at least as strong as the conditions of
Theorem 10, and strictly stronger than the condition φ0 > 0 of Theorem 5. Our next result, proved
in §5.7, formalizes this intuition.

Theorem 11 Suppose that condition (60) holds true and consider the vector sequence {n̂k}k≥0
generated by the recursion (13). Let φ0 be the principal angle of n̂0 from Span(X ) and suppose
that

φ0 > cos−1
(
cd − εX − 2 γ εO

cd + εX

)
. (61)

Then after a finite number of iterations the sequence {n̂k}k≥0 converges to a unit `2-norm vector
that is orthogonal to Span(X ).

First note that if (60) is true, then the expression of (61) always defines an angle between 0 and
π/2. Moreover, Theorem 11 can be interpreted using the same asymptotic arguments as Theorem
10; notice in particular that the lower bound on the angle φ0 tends to zero as M,N go to infinity
with γ constant, i.e., the more uniformly distributed inliers and outliers are, the closer n0 is allowed
to be to Span(X ).

We also emphasize that Theorem 11 asserts the correctness of the linear programming recursions
(13) as far as recovering a vector nk∗ orthogonal to S := Span(X ) is concerned. Even though this
was our initial motivation for posing problem (12), Theorem 11 does not assert in general that nk∗
is a global minimizer of problem (12). However, this is indeed the case, when the inlier subspace S
is a hyperplane, i.e., d = D − 1. This is because, up to a sign, there is a unique vector b ∈ SD−1
that is orthogonal to S (the normal vector to the hyperplane), which, under conditions (60) and (61),
is the unique global minimizer of (12), as well as the limit point nk∗ of Theorem 11.

5. Proofs

In this section we provide the proofs of all lemmas and theorems stated in section 4.

5.1 Proof of Theorem 4

Because of the constraint b>b = 1 in (24), and using (42), problem (24) can be written as

min
b

[McD +Ncd cos(φ)] s.t. b>b = 1. (62)

It is then immediate that the global minimum is equal to McD and it is attained if and only if
φ = π/2, which corresponds to b ⊥ S.
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5.2 Proof of Theorem 5

At iteration k the optimization problem associated with (25) is

min
b∈RD

J (b) = ‖b‖2 (McD +Ncd cos(φ)) s.t. b>n̂k = 1, (63)

where φ is the principal angle of b from the subspace S.
Let φk be the principal angle of n̂k from S, and let nk+1 be a global minimizer of (63), with

principal angle from S equal to φk+1. We show that φk+1 ≥ φk. To see this, note that the decrease
in the objective function at iteration k is

J (n̂k)− J (nk+1) :=M cD ‖n̂k‖2 +N cd ‖n̂k‖2 cos(φk)

−M cD ‖nk+1‖2 −N cd ‖nk+1‖2 cos(φk+1). (64)

Since n>k+1n̂k = 1, we must have that ‖nk+1‖2 ≥ 1 = ‖n̂k‖2. Now if φk+1 < φk, then
cos(φk+1) > cos(φk). But then (64) implies that J (nk+1) > J (n̂k), which is a contradiction
on the optimality of nk+1. Hence it must be the case that φk+1 ≥ φk, and so the sequence {φk}k
is non-decreasing. In particular, since φ0 > 0 by hypothesis, we must also have φk > 0, i.e.,
n̂k 6∈ S, ∀k ≥ 0.

Letting ψk be the angle of b from n̂k, the constraint b>n̂k = 1 gives 0 ≤ ψk < π/2 and
‖b‖2 = 1/ cos(ψk), and so we can write the optimization problem (63) equivalently as

min
b∈RD

McD +Ncd cos(φ)

cos(ψk)
s.t. b>n̂k = 1. (65)

If n̂k is orthogonal to S, i.e., φk = π/2, then J (n̂k) = McD ≤ J (b), ∀b : b>n̂k = 1, with
equality only if b = n̂k. As a consequence, nk′ = n̂k, ∀k′ > k, and in particular if φ0 = π/2, then
k∗ = 0.

So suppose that φk < π/2 and let n̂⊥k be the normalized orthogonal projection of n̂k onto S⊥.
We will prove that every global minimizer of problem (65) must lie in the two-dimensional plane
H := Span(n̂k, n̂

⊥
k ). To see this, let b have norm 1/ cos(ψk) for some ψk < π/2. If ψk > π/2−

φk, then such a b can not be a global minimizer of (65), as the feasible vector n̂⊥k / sin(φk) ∈ H
already gives a smaller objective, since

J (n̂⊥k / sin(φk)) =
McD

sin(φk)
=

McD
cos(π/2− φk)

<
McD +Ncd cos(φ)

cos(ψk)
= J (b). (66)

Thus, without loss of generality, we may restrict to the case where ψk ≤ π/2 − φk. Denote by ĥk
the normalized projection of n̂k onto S and by n̂† the vector that is obtained from n̂k by rotating it
towards n̂⊥k by ψk. Note that both ĥk and n̂†k lie in H. Letting Ψk ∈ [0, π] be the spherical angle
between the spherical arc formed by n̂k, b̂ and the spherical arc formed by n̂k, ĥk, the spherical law
of cosines gives

cos(∠b, ĥk) = cos(φk) cos(ψk) + sin(φk) sin(ψk) cos(Ψk). (67)

Now, Ψk is equal to π if and only if n̂k, ĥk, b are coplanar, i.e., if and only if b ∈ H. Suppose that
b 6∈ H. Then Ψk < π, and so cos(Ψk) > −1, which implies that

cos(∠b, ĥk) > cos(φk) cos(ψk)− sin(φk) sin(ψk) = cos(φk + ψk). (68)
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This in turn implies that the principal angle φ of b from S is strictly smaller than φk + ψk, and so

J (b) =
McD +Ncd cos(φ)

cos(ψk)
>
McD +Ncd cos(φk + ψk)

cos(ψk)
= J (n̂†k/ cos(ψk)), (69)

i.e., the feasible vector n̂†k/ cos(ψk) ∈ H gives strictly smaller objective than b.
To summarize, for the case where φk < π/2, we have shown that any global minimizer b of

(65) must i) have angle ψk from n̂k less or equal to π/2− φk, and ii) it must lie in Span(n̂k, n̂
⊥
k ).

Hence, we can rewrite (65) in the equivalent form

min
ψ∈[−π/2+φk,π/2−φk]

Jk(ψ) :=
McD +Ncd cos(φk + ψ)

cos(ψk)
, (70)

where now ψk takes positive values as b approaches n̂⊥k and negative values as it approaches ĥk.
The function Jk is continuous and differentiable in the interval [−π/2+φk, π/2−φk], with deriva-
tive given by

∂Jk
∂ψ

=
McD sin(ψ)−Ncd sin(φk)

cos2(ψ)
. (71)

Setting the derivative to zero gives

sin(ψ) = α sin(φk). (72)

If α sin(φk) ≥ sin(π/2 − φk) = cos(φk), or equivalently tan(φk) ≥ 1/α, then Jk is strictly
decreasing in the interval [−π/2 + φk, π/2 − φk], and so it must attain its minimum precisely at
ψ = π/2−φk, which corresponds to the choice nk+1 = n̂⊥k / sin(φk). Then by an earlier argument
we must have that n̂k′ ⊥ S, ∀k′ ≥ k + 1. If, on the other hand, tan(φk) < 1/α, then the equation
(72) defines an angle

ψ∗k := sin−1(α sin(φk)) ∈ (0, π/2− φk), (73)

at which Jk must attain its global minimum, since

∂2Jk
∂ψ2

(ψ∗k) =
1

cos(ψ∗k)
> 0. (74)

As a consequence, if tan(φk) < 1/α, then

φk+1 = φk + sin−1(α sin(φk)) < π/2. (75)

We then see inductively that as long as tan(φk) < 1/α, φk increases by a quantity which is bounded
from below by sin−1(α sin(φ0)). Thus, φk will keep increasing until it becomes greater than the
solution to the equation tan(φ) = 1/α, at which point the global minimizer will be the vector
nk+1 = n̂⊥k / sin(φk), and so n̂k′ = n̂k+1, ∀k′ ≥ k + 1. Finally, under the hypothesis that
φk < tan−1(1/α), we have

φk = φ0 +

k−1∑
j=0

sin−1(α sin(φj)) ≥ φ0 + k sin−1(α sin(φ0)), (76)

from where it follows that the maximal number of iterations needed for φk to become larger than

tan−1(1/α) is
⌈

tan−1(1/α)−φ0
sin−1(α sin(φ0))

⌉
, at which point at most one more iteration will be needed to achieve

orthogonality to S.
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5.3 Proof of Lemma 6

LettingR be a rotation that takes b to the first canonical vector e1, i.e.,Rb = e1, we have that∫
z∈SD−1

Sign(b>z)zdµSD−1 =

∫
z∈SD−1

Sign(b>R>Rz)zdµSD−1 (77)

=

∫
z∈SD−1

Sign(e>1 z)R>zdµSD−1 (78)

= R>
∫
z∈SD−1

Sign(z1)zdµSD−1 , (79)

where z1 is the first cartesian coordinate of z. Recalling the definition of cD in equation (33), we
see that ∫

z∈SD−1

Sign(z1)z1dµSD−1 =

∫
z∈SD−1

|z1| dµSD−1 = cD. (80)

Moreover, for any i > 1, we have∫
z∈SD−1

Sign(z1)zidµSD−1 = 0. (81)

Consequently, the integral in (79) becomes∫
z∈SD−1

Sign(b>z)zdµSD−1 = R>
∫
z∈SD−1

Sign(z1)zdµSD−1 (82)

= R> (cDe1) = cDb. (83)

5.4 Proof of Lemma 7

For any b ∈ SD−1 we can write

cDb− ob = ρ1b+ ρ2ζ, (84)

for some vector ζ ∈ SD−1 orthogonal to b, and so it is enough to show that
√
ρ21 + ρ22 ≤

√
5SD(O).

Let us first bound from above |ρ1| in terms of SD(O). Towards that end, observe that

ρ1 = b>(cDb− ob) = cD −
1

M

M∑
j=1

∣∣∣b>oj∣∣∣ (85)

=

∫
z∈SD−1

fb(z)dµSD−1 −
1

M

M∑
j=1

fb(oj), (86)

where the equality follows from the definition of cD in (33) and recalling that fb(z) =
∣∣b>z∣∣. In

other words, ρ1 is the error in approximating the integral of fb on SD−1 by the average of fb on the
point set O.

Now, notice that each super-level set
{
z ∈ SD−1 : fb(z) ≥ α

}
for α ∈ [0, 1], is the union of

two spherical caps, and also that

sup
z∈SD−1

fb(z)− inf
z∈SD−1

fb(z) = 1− 0 = 1. (87)

19



TSAKIRIS AND VIDAL

We these in mind, repeating the entire argument of the proof of Theorem 1 in (Harman, 2010) that
lead to inequality (9) in (Harman, 2010), but now for a measurable function with respect to µSD−1

(that would be fb), leads directly to

|ρ1| ≤ SD(O). (88)

For ρ2 we have that

ρ2 = ζ> (cDb)− ζ>ob (89)

=

∫
z∈SD−1

Sign
(
b>z

)
ζ>zdµSD−1 −

1

M

M∑
j=1

Sign
(
b>oj

)
ζ>oj (90)

=

∫
z∈SD−1

gb,ζ(z)dµSD−1 −
1

M

M∑
j=1

gb,ζ(oj), (91)

where gb,ζ : SD−1 → R is defined as gb,ζ(z) = Sign
(
b>z

)
ζ>z. Then a similar argument as for

ρ1, with the difference that now

sup
z∈SD−1

gb,ζ(z)− inf
z∈SD−1

gb,ζ(z) = 1− (−1) = 2, (92)

leads to

|ρ2| ≤ 2SD(O). (93)

In view of (88), inequality (93) establishes that
√
ρ21 + ρ22 ≤

√
5SD(O), which concludes the proof

of the lemma.

5.5 Proof of Lemma 8

Since x lies in S, we have fb(x) = fv(x) = f v̂(x), so that∫
x∈SD−1∩S

Sign(b>x)xdµSD−1 =

∫
x∈SD−1∩S

Sign(v̂>x)xdµSD−1 . (94)

Now express x and v̂ on a basis of S, use Lemma 6 replacing D with d, and then switch back to the
standard basis of RD.

5.6 Proof of Theorem 10

To prove the theorem we need two lemmas.

Lemma 12 Let b ∈ SD−1 \ S⊥, and let φ < π/2 be its principal angle from S. Then

M(cD + εO) ≥
∥∥∥O>b∥∥∥

1
≥M(cD − εO), (95)

N(cd + εX ) cos(φ) ≥
∥∥∥X>b∥∥∥

1
≥ N(cd − εX ) cos(φ). (96)
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Proof We only prove the second inequality as the first is even simpler. Let v 6= 0 be the orthogonal
projection of b onto S. By definition of εX , there exists a vector ξ ∈ S of `2 norm less or equal to
εX , such that

xv = xb =
1

N

N∑
j=1

Sign(b>xj)xj = cdv̂ + ξ. (97)

Taking inner product of both sides with b gives

1

N

∥∥∥X>b∥∥∥
1

= cd cos(φ) + b>ξ. (98)

Now, the result follows by noting that
∣∣b>ξ∣∣ ≤ εX cos(φ), since the principal angle of b from

Span(ξ) can not be less then φ.

Lemma 13 Let y1, . . . ,yK , be K non-zero points of RD. Then the set of all points of the form∑
αkyk, where αk ∈ [−1, 1], is precisely the convex hull of all points of the form ±y1± · · · ± yK ,

i.e., {
K∑
k=1

αkyk : αk ∈ [−1, 1]

}
= Conv ({±y1 ± · · · ± yK}) . (99)

Proof Let e1, . . . , eK be the standard basis vectors of RK . Then the hypercube of RK with center
the origin is precisely the set

{∑K
k=1 αkek : αk ∈ [−1, 1]

}
, which is equal to the convex hull of its

vertices ±e1 ± · · · ± eK . Now, letA : RK → RD be the linear transformation that takes ek to yk.
Let y =

∑
k αkyk, for some αk ∈ [−1, 1]. Then y = A (

∑
k αkek). But we already know that∑

k

αkek =
∑

σk∈{−1,1}
k∈[K]

γσ1,...,σK (σ1e1 + · · ·+ σKeK), (100)

where ∑
σk∈{−1,1}
k∈[K]

γσ1,...,σK = 1, γσ1,...,σK > 0, (101)

and so

y =
∑
k

αkyk = A

(∑
k

αkek

)
(102)

= A

 ∑
σk∈{−1,1}
k∈[K]

γσ1,...,σK (σ1e1 + · · ·+ σKeK)

 (103)

=
∑

σk∈{−1,1}
k∈[K]

γσ1,...,σK (σ1y1 + · · ·+ σKyK), (104)
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which proves one direction. The other direction is proved in a similar manner.

Now, let b∗ be an optimal solution of (12), then b∗ must satisfy the first order optimality relation

0 ∈ X̃ Sgn(X̃>b∗) + λb∗, (105)

where λ is a scalar Lagrange multiplier parameter, and Sgn is the sub-differential of the `1 norm.
For the sake of contradiction, suppose that b∗ 6⊥ S. Then by the general position hypothesis as well
as Lemma 14, b∗ will be orthogonal to precisely D − 1 points, among which K1 points belong to
O, say o1, . . . ,oK1 , and 0 ≤ K2 ≤ d − 1 points belong to X , say x1, . . . ,xK2 . Then there must
exist real numbers −1 ≤ αj , βj ≤ 1, such that

K1∑
j=1

αjoj +

M∑
j=K1+1

Sign(o>j b
∗)oj +

K2∑
j=1

βjxj +

N∑
j=K2+1

Sign(x>j b
∗)xj + λb∗ = 0. (106)

Since Sign(o>j b
∗) = 0,∀j ≤ K1 and similarly Sign(x>j b

∗) = 0, ∀j ≤ K2, we can equivalently
write

K1∑
j=1

αjoj +
M∑
j=1

Sign(o>j b
∗)oj +

K2∑
j=1

βjxj +
N∑
j=1

Sign(x>j b
∗)xj + λb∗ = 0 (107)

or more compactly

ξO +M ob∗ + ξX +N xv̂∗ + λb∗ = 0, (108)

where by Lemma 13 we have

ξO :=

K1∑
j=1

αjoj ∈ Conv ({±o1 ± · · · ± oK1}) (109)

ξX :=

K2∑
j=1

βjxj ∈ Conv ({±x1 ± · · · ± xK2}) , (110)

v̂∗ is the normalized projection of b∗ onto S (which is nonzero since b∗ 6⊥ S by hypothesis), and

ob∗ :=
1

M

M∑
j=1

Sign(o>j b
∗), xv∗ :=

1

N

N∑
j=1

Sign(x>j v
∗). (111)

Now, from the definitions of εO and εX in (51) and (58) respectively, we have that

ob∗ = cD b
∗ + ηO, ||ηO||2 ≤ εO (112)

xv̂∗ = cd v̂
∗ + ηX , ||ηX ||2 ≤ εX , (113)

and so (108) becomes

ξO +M cD b
∗ +M ηO + ξX +N cd v̂

∗ +N ηX + λb∗ = 0. (114)
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Define U := Span (b∗, v̂∗) and project (114) onto U to get

πU (ξO) +M cD b
∗ +M πU (ηO) + πU (ξX ) +N cd v̂

∗ +N πU (ηX ) + λb∗ = 0. (115)

Now suppose that b∗ ∈ S, in which case b∗ = v̂∗. Then using Lemma 12, we have

M cD +M εO ≥ min
b⊥S,b>b=1

∥∥∥O>b∥∥∥
1
≥
∥∥∥O>b∗∥∥∥

1
+
∥∥∥X>b∗∥∥∥

1

≥M cD −M εO +N cd −N εX , (116)

which violates hypothesis (60). Consequently, it must be the case that b∗ 6∈ S , and so there exists a
vector ζ̂ ∈ U that is orthogonal to b∗ but not orthogonal to v̂∗.

Notice that every vector u in the image of πU can be written as a linear combination of b∗ and
v̂∗: u = [u]b∗ b

∗ + [u]v̂∗ v̂
∗. Using this decomposition, we can write (115) as

[πU (ξO)]b∗ b
∗ + [πU (ξO)]v̂∗ v̂

∗ +M cD b
∗

+M [πU (ηO)]b∗ b
∗ +M [πU (ηO)]v̂∗ v̂

∗

+ [πU (ξX )]b∗ b
∗ + [πU (ξX )]v̂∗ v̂

∗ +N cd v̂
∗

+N [πU (ηX )]b∗ b
∗ +N [πU (ηX )]v̂∗ v̂

∗ + λb∗ = 0. (117)

Projecting the above equation onto the line spanned by ζ̂, we obtain the one-dimensional equation

([πU (ξO)]v̂∗ +M [πU (ηO)]v̂∗ + [πU (ξX )]v̂∗ +N cd +N [πU (ηX )]v̂∗) · ζ̂
>
v̂∗ = 0. (118)

Since ζ̂ is not orthogonal to v̂∗, the above equation implies that

[πU (ξO)]v̂∗ +M [πU (ηO)]v̂∗ + [πU (ξX )]v̂∗ +N cd +N [πU (ηX )]v̂∗ = 0, (119)

which, together with ‖ξO‖2 ≤ RO,K1 , ‖ξX ‖2 ≤ RX ,K2 , ‖ηO‖2 ≤ εO and ‖ηX ‖2 ≤ εX , implies
that

N cd ≤ RO,K1 +M εO +RX ,K2 +N εX , (120)

which violates the hypothesis (60). Consequently, the initial hypothesis of the proof that b∗ 6⊥ S
can not be true, and the theorem is proved.
A Geometric View of the Proof of Theorem 10. Let us provide some geometric intuition that
underlies the proof of Theorem 10. It is instructive to begin our discussion by considering the case
d = 1, D = 2, i.e. the inlier space is simply a line and the ambient space is a 2-dimensional plane.
Since all points have unit `2-norm, every column of X will be of the form x̂ or −x̂ for a fixed
vector x̂ ∈ S1 that spans the inlier space S . In this setting, let us examine a global solution b∗ of
the optimization problem (12). We will start by assuming that such a b∗ is not orthogonal to S, and
intuitively arrive at the conclusion that this can not be the case as long as there are sufficiently many
inliers.

We will argue on an intuitive level that if b∗ 6⊥ S, then the principal angle φ of b∗ from S needs
to be small. To see this, suppose b∗ 6⊥ S; then b∗ will be non-orthogonal to every inlier, and by
Lemma 14 orthogonal to D − 1 = 1 outlier, say o1. The optimality condition (105) specializes to

α1o1 +

M∑
j=1

Sign(o>j b
∗)oj︸ ︷︷ ︸

Mob∗

+
N∑
j=1

Sign(x>j b
∗)xj + λb∗ = 0, (121)
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where −1 ≤ α1 ≤ 1. Notice that the third term is simply N Sign(x̂>b∗)x̂, and so

α1o1 +M ob∗ + λb∗ = −N Sign(x̂>b∗)x̂. (122)

Now, what (122) is saying is that the point −N Sign(x̂>b∗)x̂ must lie inside the set

Conv(±o1) + {Mob∗}+ Span(b∗) = {α1o1 +Mob∗ + λb∗ : |α1| ≤ 1, λ ∈ R} , (123)

where the + operator on sets is the Minkowski sum. Notice that the set Conv(±o1) +Mob∗ is the
translation of the line segment (polytope) Conv(±o1) by Mob∗ . Then (122) says that if we draw
all affine lines that originate from every point of Conv(±o1) + Mob∗ and have direction b∗, then
one of these lines must meet the point −N Sign(x̂>b∗)x̂. Let us illustrate this for the case where
M = N = 5 and say it so happens that b∗ has a rather large angle φ from S, say φ = 45◦. Recall
that ob∗ is concentrated around cD b∗ and for the case D = 2 we have cD = 2

π . As illustrated in

Mob∗ + Conv(±o1) + Span(b∗)

S −N Sign(x̂>b∗)x̂

Mob∗ + Conv(±o1)

Mob∗

b∗

φ

o1

Figure 1: Geometry of the optimality condition (105) and (122) for the case d = 1, D =
2,M = N = 5. The polytope Mob∗ + Conv(±o1) + Span(b∗) misses the point
−N Sign(x̂>b∗)x̂ and so the optimality condition can not be true for both b∗ 6⊥ S =
Span(x̂) and φ large.

Figure 1, because φ is large, the unbounded polytope Mob∗ + Conv(±o1) + Span(b∗) misses the
point −N Sign(x̂>b∗)x̂ thus making the optimality equation (122) infeasible. This indicates that
critical vectors b∗ 6⊥ S having large angles from S are unlikely to exist.

On the other hand, critical points b∗ 6⊥ S may exist, but their angle φ from S needs to be small,
as illustrated in Figure 2. However, such critical points can not be global minimizers, because small
angles from S yield large objective values.6

Hence the only possibility that critical points b∗ 6⊥ S that are also global minimizers do exist
is that the number of inliers is significantly less than the number of outliers, i.e. N << M , as
illustrated in Figure 3. The precise notion of how many inliers should exist with respect to outliers
is captured by condition (60) of Theorem 10.

6. On a more techincal level, it can be verified that if such a critical point is a global minimizer, then its angle φ must
be large in the sense that cos(φ) ≤ 2εO , contradicting the necessary condition that φ be small in the first place.
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Mob∗ + Conv(±o1) + Span(b∗)

S −N Sign(x̂>b∗)x̂

Mob∗ + Conv(±o1)

Mob∗b∗
o1

Figure 2: Geometry of the optimality condition (105) and (122) for the case d = 1, D = 2,M =
N = 5. A critical b∗ 6⊥ S exists, but its angle from S is small, so that the polytope
Mob∗ + Conv(±o1) + Span(b∗) can contain the point −N Sign(x̂>b∗)x̂. However, b∗

can not be a global minimizer, since small angles from S yield large objective values.

Mob∗ + Conv(±o1) + Span(b∗)

−N Sign(x̂>b∗)x̂

Mob∗ + Conv(±o1)

Mob∗

b∗o1

Figure 3: Geometry of the optimality condition (105) and (122) for the case d = 1, D = 2, N <<
M . Critical points b∗ 6⊥ S do exist and moreover they can have large angle from S. This
is because N is small and so the polytope Mob∗ + Conv(±o1) + Span(b∗) contains
the point −N Sign(x̂>b∗)x̂. Moreover, such critical points can be global minimizers.
Condition (60) of Theorem 10 prevents such cases from occuring.

We should note here that the picture for the general setting is analogous to what we described
above, albeit harder to visualize: with reference to equation (107), the optimality condition says that
every feasible point b∗ 6⊥ S must have the following property: there exist 0 ≤ K2 ≤ d − 1 inliers
x1, . . . ,xK2 and 0 ≤ K1 ≤ D − 1 −K2 outliers o1, . . . ,oK1 to which b∗ is orthogonal, and two
points ξO ∈ Conv(±o1 ± · · · ± oK1) + ob∗ and ξX ∈ Conv(±x1 ± · · · ± xK2) + xb∗ that are
joined by an affine line that is parallel to the line spanned by b∗. In fact in our proof of Theorem 10
we reduced this general case to the case d = 1, D = 2 described above: this reduction is precisely
taking place in equation (115), where we project the optimality equation onto the 2-dimensional
subspace U . The arguments that follow this projection consist of nothing more than a technical
treatment of the intuition given above.
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5.7 Proof of Theorem 11

We start by establishing that n̂k does not lie in the inlier space S . For the sake of contradiction
suppose that n̂k ∈ S for some k > 0. Note that∥∥∥X̃>n̂0

∥∥∥
1
≥
∥∥∥X̃>n1

∥∥∥
1
≥
∥∥∥X̃>n̂1

∥∥∥
1
≥ · · · ≥

∥∥∥X̃>n̂k∥∥∥
1
. (124)

Suppose first that n̂0 ⊥ S. Then (124) gives∥∥∥O>n̂0

∥∥∥
1
≥
∥∥∥O>n̂k∥∥∥

1
+
∥∥∥X>v̂k∥∥∥

1
, (125)

where v̂k is the normalized projection of n̂k onto S (and since n̂k ∈ S, these two are equal). Using
Lemma 12, we take an upper bound of the LHS and a lower bound of the RHS of (125), and obtain

M cD +M εO ≥M cD −M εO +N cd −N εX , (126)

or equivalently

γ ≥ cd − εX
2 εO

, (127)

which contradicts (60). Consequently, n̂0 6⊥ S. Then (124) implies that∥∥∥O>n̂0

∥∥∥
1

+
∥∥∥X>n̂0

∥∥∥
1
≥
∥∥∥O>n̂k∥∥∥

1
+
∥∥∥X>n̂k∥∥∥

1
, (128)

or equivalently ∥∥∥O>n̂0

∥∥∥
1

+ cos(φ0)
∥∥∥X>v̂0∥∥∥

1
≥
∥∥∥O>n̂k∥∥∥

1
+
∥∥∥X>v̂k∥∥∥

1
, (129)

where v̂0 is the normalized projection of n̂0 onto S. Once again, Lemma 12 is used to furnish an
upper bound of the LHS and a lower bound of the RHS of (129), and yield

M cD +M εO + (N cd +N εX ) cos(φ0) ≥M cD −M εO +N cd −N εX , (130)

which contradicts (61).
Now let us complete the proof of the theorem. We know by Lemma 16 that the sequence {nk}

converges to a critical point nk∗ of problem (12) in a finite number of steps, and we have already
shown that nk∗ 6∈ S (see the beginning of the current proof). Then an identical argument as in the
proof of Theorem 10 (with nk∗ in place of b∗) shows that nk∗ must be orthogonal to S.

6. Algorithmic Contributions

In this section we discuss algorithmic formulations based on the ideas presented so far. Specifi-
cally, Section 6.1 contains the basic Dual Principal Component Pursuit and Analysis algorithms,
which can be implemented by linear programming, while Section 6.2 discusses alternative DPCP
algorithms suitable for noisy or high-dimensional data.
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Algorithm 1 Relaxed Dual Principal Component Pursuit

1: procedure DPCP-r(X̃ , ε, Tmax)
2: k ← 0; ∆J ← ∞;
3: n̂0 ← argmin‖b‖2=1

∥∥∥X̃>b∥∥∥
2
;

4: while k < Tmax and ∆J > ε do
5: k ← k + 1;
6: nk ← argminb>n̂k−1=1

∥∥∥X̃>b∥∥∥
1
;

7: ∆J ←
(∥∥∥X̃>n̂k−1∥∥∥

1
−
∥∥∥X̃>n̂k∥∥∥

1

)
/
(∥∥∥X̃>n̂k−1∥∥∥

1
+ 10−9

)
;

8: end while
9: return n̂k;

10: end procedure

6.1 Relaxed DPCP and DPCA algorithms

Theorem 11 suggests a mechanism for obtaining an element b1 of S⊥, where S = Span(X ):
run the sequence of linear programs (13) until the sequence n̂k converges and identify the limit
point with b1. Due to computational constraints, in practice one usually terminates the recursions
when the objective value

∥∥∥X̃>n̂k∥∥∥
1

converges within some small ε, or a maximal number Tmax of
recursions is reached, and obtains an approximately normal vector b1. The resulting Algorithm 1 is
referred to as DPCP-r, which stands for relaxed DPCP.

We emphasize that step 6 of Algorithm 1 can be canonically solved by linear programming.
More specifically, we can rewrite it in the form

min
b,u+,u−

[
11×N 11×N

] [u+

u−

]
, such that (131)[

IN −IN −X̃>

01×N 01×N n̂>k

]u+

u−

b

 =

[
0N×1

1

]
, u+,u− ≥ 0, (132)

and solve it efficiently with an optimized general purpose linear programming solver, such as Gurobi
(Gurobi Optimization, 2015).

Having computed a b1 with Algorithm 1, there are two possibilities: either V is a hyperplane of
dimension D − 1 or dimS < D − 1. In the first case we can identify our subspace model with the
hyperplane defined by the normal b1. If on the other hand dimS < D − 1, we can proceed to find
a b2 ⊥ b1 that is approximately orthogonal to S, and so on; this naturally leads to the relaxed Dual
Principal Component Analysis of Algorithm 2.

In Algorithm 2, c is an estimate for the codimension D− d of the inlier subspace Span(X ). If c
is rather large, then in the computation of each bi, it is more efficient to be reducing the coordinate
representation of the data to D − (i − 1) coordinates, by projecting the data orthogonally onto
Span(b1, . . . , bi−1)

⊥ and solving the linear program in the projected space.

Notice further how the algorithm initializesn0: This is precisely the right singular vector of X̃>

that corresponds to the smallest singular value, after projection of X̃ onto Span(b1, . . . , bi−1)
⊥. As

it will be demonstrated in Section 7, this choice has the effect that the angle of n0 from the inlier
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Algorithm 2 Relaxed Dual Principal Component Analysis

1: procedure DPCA-r(X̃ , c, ε, Tmax)
2: B ← ∅;
3: for i = 1 : c do
4: k ← 0; ∆J ← ∞;
5: n̂0 ← argminb⊥B

∥∥∥X̃>b∥∥∥
2
;

6: while k ≤ Tmax and ∆J > ε do
7: k ← k + 1;
8: nk ← argminb>n̂k−1=1,b⊥B

∥∥∥X̃>b∥∥∥
1
;

9: ∆J ←
(∥∥∥X̃>n̂k−1∥∥∥

1
−
∥∥∥X̃>n̂k∥∥∥

1

)
/
(∥∥∥X̃>n̂k−1∥∥∥

1
+ 10−9

)
;

10: end while
11: bi ← n̂k;
12: B ← B ∪ {bi};
13: end for
14: return B;
15: end procedure

Algorithm 3 Denoised Dual Principal Component Pursuit

1: procedure DPCP-d(X̃ , ε, Tmax, δ, τ )
2: Compute a Cholesky factorization LL> = X̃ X̃> + δID;
3: k ← 0; ∆J ← ∞;
4: b← argminb∈RD: ‖b‖2=1

∥∥∥X̃>b∥∥∥
2
;

5: J0 ← τ
∥∥∥X̃>b∥∥∥

1
;

6: while k < Tmax and ∆J > ε do
7: k ← k + 1;
8: y ← Sτ

(
X̃>b

)
;

9: b← solution of LL>ξ = X̃y by backward/forward propagation;
10: b← b/ ‖b‖2;

11: Jk ← τ ‖y‖1 + 1
2

∥∥∥y − X̃>b
∥∥∥2
2
;

12: ∆J ← (Jk−1 − Jk) /
(
Jk−1 + 10−9

)
;

13: end while
14: return (y, b);
15: end procedure

subspace is typically large; more precisely, it is often larger than the smallest initial angle (61)
required for the success of the linear programming recursions.
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Algorithm 4 Dual Principal Component Pursuit via Iteratively Re-weighted Least Squares

1: procedure DPCP-IRLS(X̃ , c, ε, Tmax, δ)
2: k ← 0; ∆J ← ∞;
3: B0 ← argminB∈RD×c

∥∥∥X̃>B∥∥∥
2
, s.t. B>B = Ic;

4: while k < Tmax and ∆J > ε do
5: k ← k + 1;
6: Bk ← argminB∈RD×c

∑
x̃∈X̃

∥∥B>x̃∥∥2
2
/max

{
δ,
∥∥B>k−1x̃∥∥2} s.t. B>B = Ic;

7: ∆J ←
(∥∥∥X̃>Bk−1

∥∥∥
1
−
∥∥∥X̃>Bk

∥∥∥
1

)
/
(∥∥∥X̃>Bk−1

∥∥∥
1

+ 10−9
)

;
8: end while
9: returnBk;

10: end procedure

6.2 Dealing with noisy or high-dimensional data: Alternative algorithms

DPCP-r-d. When the data are corrupted by noise, one no longer expects the product X̃>b to be
sparse, even if b is orthogonal to the underlying inlier space. Instead, our expectation is that, for
such a b, X̃>b should be the sum of a sparse vector with a dense vector of small euclidean norm.
This motivates us to replace the optimization problem

min
b

∥∥∥X̃>b∥∥∥
1
, s.t. b>n̂k−1 = 1, (133)

which appears in Algorithm 1, with the denoised optimization problem

min
y,b

[
τ ‖y‖1 +

1

2

∥∥∥y − X̃>b
∥∥∥2
2

]
, s.t. b>n̂k−1 = 1, (134)

where τ is a positive parameter. Observe, that if the optimal b were known, then y would be given
by the element-wise soft thresholding Sτ (X̃>b), where the function Sτ : R → R is defined by
Sτ (α) = Sign(α) · max(0, |α| − τ). If on the other hand y were known, then b would be given
by b = n̂k−1 + Uk−1z, where Uk−1 is a D × (D − 1) matrix containing in its columns an
orthonormal basis for the orthogonal complement of n̂k−1, and z is the solution to the standard
least-squares problem

min
z∈RD−1

∥∥∥y − X̃>n̂k−1 − X̃>Uk−1z
∥∥∥2
2
. (135)

Observe that solving problem (135) requires solving a linear system of equations with coefficient

matrix
(
X̃>Uk−1

)>
X̃>Uk−1. The dependence of this matrix on the iteration index k, may be-

come a computational issue when D is large. This dependence can be circumvented as follows.
First, we treat the computation of b given y as a constrained problem

min
b

∥∥∥y − X̃>b
∥∥∥2
2
, s.t. b>n̂k−1 = 1, (136)

and thinking in terms of a Lagrange multiplier λ associated to the constraint b>n̂k−1 = 1, we see
that λ, b must satisfy the relation

X̃y − X̃ X̃>b− λn̂k−1 = 0. (137)
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Noting that X̃ X̃> is always invertible under our data model, we must have that

b =
(
X̃ X̃>

)−1
y − λ

(
X̃ X̃>

)−1
n̂k−1. (138)

Now, multiplying the above equation from the left with n̂>k−1, we obtain

1 = n̂>k−1

(
X̃ X̃>

)−1
y − λn̂>k−1

(
X̃ X̃>

)−1
n̂k−1, (139)

or equivalently

λ =
n̂>k−1

(
X̃ X̃>

)−1
y − 1

n̂>k−1

(
X̃ X̃>

)−1
n̂k−1

, (140)

which upon substitution into (138) gives our final formula for b:

b =
(
X̃ X̃>

)−1
y −

 n̂>k−1
(
X̃ X̃>

)−1
y − 1

n̂>k−1

(
X̃ X̃>

)−1
n̂k−1

(X̃ X̃>
)−1

n̂k−1. (141)

Notice that the quantities
(
X̃ X̃>

)−1
y and

(
X̃ X̃>

)−1
n̂k−1 can be obtained as solutions to linear

systems of equations with common coefficient matrix X̃ X̃>, which themselves can be solved very
efficiently by backward and forward substitution, assuming that a pre-computed Cholesky factor-
ization of X̃ X̃> is available.

To summarize, we have shown how to approximately solve problem (133) by a very efficient
alternating minimization scheme, which involves soft-thresholding and forward-backward substitu-
tion; we will be referring to the resulting DPCP algorithm as DPCP-r-d, which stands for relaxed
and denoised DPCP.
DPCP-d. Interestingly, DPCP-r-d is very closely related to the scheme proposed in (Qu et al.,
2014), where the authors study problem (12) in the very different context of dictionary learning. To
approximately solve (12), the authors of (Qu et al., 2014) solve its denoised version

min
b,y: ||b||2=1

[
τ ‖y‖1 +

1

2

∥∥∥y − X̃>b
∥∥∥2
2

]
, (142)

by alternating minimization. Given b, the optimal y is given by Sτ
(
X̃>b

)
, where Sτ is the soft-

thresholding operator applied element-wise on the vector X̃>b. Given y the optimal b is a solution
to the quadratically constrained least-squares problem

min
b∈RD

∥∥∥y − X̃>b
∥∥∥2
2
, s.t. ‖b‖2 = 1. (143)

In the context of (Qu et al., 2014), the coefficient matrix of the least-squares problem (X̃> in our
notation) has orthonormal columns. As a consequence, the solution to (143) is obtained in closed
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form by projecting the solution of the unconstrained least-squares problem minb∈RD ||y−X̃>b||2
onto the unit sphere. However, in our context the assumption that X̃> has orthonormal columns is
strongly violated, so that the optimal b is no longer available in closed form.

In fact, problem (143) is well known in the literature (Elden, 2002; Golub and Von Matt, 1991;
Gander, 1980), and the standard way to solve it is by means of Lagrange multipliers. This involves
solving a non-linear equation for the Lagrange multiplier, which is known to be challenging (Elden,
2002). For this reason we leave exact approaches for solving (143) to future investigations, and
we instead propose to obtain an approximate b as in (Qu et al., 2014). We will call the resulting
Algorithm 3 DPCP-d, which stands for denoised DPCP.

Notice that DPCP-d is very efficient, since the least-squares problems that appear in the various
iterations have the same coefficient matrix X̃ X̃>, a factorization of which can be precomputed 7.
As we will see in Section 7, the performance of DPCP-d is remarkably close to that of DPCP-r,
for which we have guarantees of global optimality, suggesting that DPCP-d converges to a global
minimum. We leave theoretical investigations of DPCP-d to future research.

Finally, notice that Algorithm 3 computes a single normal vector b1. As with DPCP-r, it is trivial
to adjust Algorithm 3 to compute a second normal vector b2, since one only needs to incorporate
the linear constraint b>b1 = 0, and so on. We will again refer to such an algorithm that computes
c ≥ 1 normals as DPCP-d.

DPCP-IRLS. Even though DPCP-d and DPCP-r-d are very attractive from a computational
point of view, they only produce approximate normal vectors (even in the absence of noise), and
have the additional disadvantage that their performance depends on the parameter τ , whose tuning
is not well understood. On the other hand, DPCP-r was shown to produce exact normal vectors,
yet solving linear programs of the form (131)-(132) can be inefficient when the data are high-
dimensional. This motivates us to propose a direct IRLS algorithm for solving the DPCP problem
(12). In fact, since we are interested in obtaining an orthonormal basis for the orthogonal comple-
ment of the inlier subspace, we propose an Iteratively Reweighted Least-Squares (IRLS) scheme for
solving problem

min
B∈RD×c

∥∥∥X̃>B∥∥∥
1,2
, s.t. B>B = Ic, (144)

which is a generalization of the DPCP problem for multiple normal vectors. More specifically, given
a D × c orthonormal matrixBk−1, we define for each point x̃j a weight

wj,k :=
1

max
{
δ,
∥∥B>k−1x̃j∥∥2} , (145)

where δ > 0 is a small constant that prevents division by zero. Then we obtain Bk as the solution
to the quadratic problem

min
B∈RD×c

L∑
j=1

wj,k

∥∥∥B>x̃j∥∥∥2
2
, s.t. B>B = Ic, (146)

which is readily seen to be the c right singular vectors corresponding to the c smallest singular values
of the weighted data matrix W kX̃

>
, where W is a diagonal matrix with √wj,k at position (j, j).

7. The parameter δ in Algorithm 3 is a small positive number, typically 10−6, which helps avoiding solving ill-
conditioned linear systems.
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We refer to the resulting Algorithm 4 as DPCP-IRLS; a study of its theoretical properties is deferred
to future work. We note here that the technique of solving an optimization problem (convex or non-
convex) through IRLS is a common one. In fact, REAPER (Lerman et al., 2015) solves through
IRLS a convex relaxation of precisely problem (144). Other prominent instances of IRLS schemes
from compressed sensing are (Candès et al., 2008; Daubechies et al., 2010; Chartrand and Yin,
2008).

7. Experiments

In this Section we evaluate the proposed algorithms experimentally. In Section 7.1 we investigate
the performance of our principal algorithmic proposal, i.e., DPCP-r, described in Algorithm 1. In
Section 7.2 we compare DPCP-r, DPCP-d, DPCP-r-d 8 and DPCP-IRLS with state-of-the-art robust
PCA algorithms using synthetic data, and similarly in Section 7.3 using real images.

7.1 Computing a single dual principal component

We begin by investigating the behavior of the DPCP-r Algorithm 1 in the absence of noise, for
random subspaces S of varying dimensions d = 1 : 1 : 29 and varying outlier percentages R :=
M/(M + N) = 0.1 : 0.1 : 0.9. We fix the ambient dimension D = 30, sample N = 200 inliers
uniformly at random from S ∩ SD−1 and M outliers uniformly at random from SD−1. We set
ε = 10−3 and Tmax = 10 in Algorithm 1. Our main interest is in examining the ability of DPCP-r
in recovering a single normal vector to the subspace (c = 1). The results over 10 independent
trials are shown in Fig. 4, in which the vertical axis denotes the relative dimension of the subspace,
defined as d/D.

Fig. 4(a) shows whether the theoretical condition (60) is satisfied (white) or not (black). In
checking this condition, we estimate the abstract quantities εO, εX ,RO,K1 ,RX ,K2 by Monte-Carlo
simulation. Whenever the condition is true, we choose n̂0 in a controlled fashion, so that its angle
φ0 from the subspace is larger than the minimal angle φ∗0 of (61); then we run DPCP-r. If on the
other hand (60) is not true, we do not run DPCP-r and report a 0 (black). Fig 4(b) shows the angle
of n̂10 from the subspace. We see that whenever (60) is true, DPCP-r returns a normal after only
10 iterations. Fig 4(c) shows that if we initialize randomly n̂0, then its angle φ0 from the subspace
tends to become less than the minimal angle φ∗0, as d increases. Even so, Fig. 4(d) shows that
DPCP-r still yields a numerical normal, except for the regime where both d and R are very high.
Notice that this is roughly the regime where we have no theoretical guarantees, according to Fig.
4(a). Fig. 4(e) shows that if we initialize n̂0 as the right singular vector of X̃> corresponding to
the smallest singular value, then φ0 > φ∗0 is true for most cases, and the corresponding performance
of DPCP-r in Fig. 4(f) improves further. Finally, Fig. 4(g) plots φ0∗. We see that for very low d
this angle is almost zero, i.e. DPCP-r does not depend on the initialization, even for large R. As d
increases though, so does φ∗0, and in the extreme case of the upper rightmost regime, where d and
R are very high, φ∗0 is close to 90o, verifying our expectation that DPCP-r will succeed only if n̂0

is very close to S⊥.

8. To avoid confusion, we will slightly abuse our terminology and refer to DPCA-r (DPCA-d, DPCA-r-d) as DPCP-r
(DPCP-d, DPCP-r-d), even when c > 1. The distinction of whether a single versus multiple dual principal compo-
nents are being computed will be clear from the context.
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(a) eq. (60)
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(b) DPCP-r(φ0 > φ∗0)
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(c) φ0 > φ∗0
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(d) DPCP-r(random φ0)
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(e) φ0,SVD > φ∗0
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(f) DPCP-r(φ0,SVD)
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(g) φ∗0

Figure 4: Various quantities associated to the performance of DPCP-r. Fig. 4(a) shows whether the
sufficient condition (60) is true (white) or not (black). Fig. 4(b) shows the angle from S
of the vector n̂10 produced after 10 iterations of DPCP-r for the cases where (60) is true;
the other cases are mapped to black. Fig. 4(c) shows whether n̂0, when chosen uniformly
at random, satisfies the sufficient condition φ0 > φ∗0, where φ∗0 is the minimal angle
appearing in Theorem 11. Fig. 4(d) shows the angle from S of n̂10 for randomly chosen
n̂0. Fig. 4(e) shows the angle from S of the right singular vector of X̃ corresponding to
the smallest singular value, and Fig. 4(f) shows the corresponding angle of n̂10. Finally,
Fig. 4(g) plots φ∗0. For more details see Section 7.2.

7.2 Comparative Analysis Using Synthetic Data

In this Section we begin by using the same synthetic experimental set-up as in Section 7.1 (except
that now N = 300) to demonstrate the behavior of several methods relative to each other under
uniform conditions, in the context of outlier rejection in single subspace learning. In particular,
we test DPCP-r, DPCP-d, DPCP-r-d, DPCP-IRLS, the IRLS version of REAPER (Lerman et al.,
2015), RANSAC (Fischler and Bolles, 1981), SE-RPCA (Soltanolkotabi and Candès, 2012), and
`21-RPCA (Xu et al., 2010); see Section 2 for details on existing methods.

33



TSAKIRIS AND VIDAL

0.1 0.3 0.5 0.7 0.9

outlier ratio

0.03

0.17

0.33

0.5 

0.67

0.83

0.97

re
la

ti
v
e
 d

im
e
n
s
io

n

(a) REAPER
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(b) RANSAC
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(c) SE-RPCA
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(d) `21-RPCA
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(e) DPCP-IRLS
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(f) DPCP-r

Figure 5: Outlier/Inlier separation in the absence of noise over 10 independent trials. The horizontal
axis is the outlier ration defined as M/(N +M), where M is the number of outliers and
N is the number of inliers. The vertical axis is the relative inlier subspace dimension
d/D; the dimension of the ambient space is D = 30. Success (white) is declared by
the existence of a threshold that, when applied to the output of each method, perfectly
separates inliers from outliers.

For the methods that require an estimate of the subspace dimension d, such as REAPER,
RANSAC, and all DPCP variants, we provide as input the true subspace dimension. The con-
vergence accuracy of all methods is set to 10−3. For REAPER we set the regularization param-
eter δ equal to 10−6 and the maximal number of iterations equal to 100. For DPCP-r we set
τ = 1/

√
N +M as suggested in Qu et al. (2014) and maximal number of iterations 1000. For

RANSAC we set its thresholding parameter equal to 10−3, and for fairness, we do not let it termi-
nate earlier than the running time of DPCP-r. Both SE-RPCA and `21-RPCA are implemented with
ADMM, with augmented Lagrange parameters 1000 and 100 respectively. For `21-RPCA λ is set
to 3/(7

√
M), as suggested in (Xu et al., 2010). DPCP variants are given the same initialization, as

in Algorithm 2, and the parameters of DPCP-r are as in Section 7.1.
Absence of Noise. We investigate the potential of each of the above methods to perfectly dis-

tinguish outliers from inliers in the absence of noise 9. Note that each method returns a signal
α ∈ RN+M

+ , which can be thresholded for the purpose of declaring outliers and inliers. For SE-
RPCA, α is the `1-norm of the columns of the coefficient matrix C, while for `21-RPCA it is the
`2-norm of the columns of E. Since REAPER, RANSAC, DPCP-r and DPCP-IRLS directly return
subspace models, for these methodsα is simply the distances of all points to the estimated subspace.

9. We do not include the results of DPCP-d and DPCP-r-d for this experiment, since they only approximately solve
the DPCP optimization problem, and hence they can not be expected to perfectly separate inliers from outliers, even
when there is no noise.
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In Fig. 5 we depict success (white) versus failure (black), where success is interpreted as the
existence of a threshold on α that perfectly separates outliers and inliers. First observe that, as
expected, SE-RPCA and `21-RPCA succeed only when the subspace dimension d is small. In
particular, the more outliers are present the lower the dimension of the subspace needs to be for the
methods to succeed. The same is true for RANSAC, except when there are only very few outliers
(10%), in which case the probability of sampling outlier-free points is high. Finally notice that SE-
RPCA is the best method among these three in dealing with large percentages of outliers (> 70%).
This is not a surprise, because the theoretical guarantees of SE-RPCA do not place an explicit upper
bound on the number of outliers, in contrast to `21-RPCA and RANSAC. Next, notice that REAPER
performs uniformly better than RANSAC, SE-RPCA and `21-RPCA. In particular REAPER can
handle higher dimensions and higher outlier percentages; for example it succeeds over all trials for
hyperplanes when there are 10% outliers.

In summary, none of REAPER, RANSAC, SE-RPCA, and `21-RPCA can deal with hyperplanes
with more than 20% outliers or with subspaces of medium relative dimension (d > 13) for as many
as 90% outliers. This gap is filled by the two proposed methods DPCP-r and DPCP-IRLS. Notice
that DPCP-r is the only method that succeeds irrespectively of subspace dimension with almost 70%
outliers, while DPCP-IRLS is the only method that succeeds when d ≤ 19 and R = 90%.

Presence of Noise. Next, we keep D = 30 and investigate the performance of the methods,
adding DPCP-d and DPCP-r-d in the mix, in the presence of varying levels of noise and outliers for
two cases of high-dimensional subspaces, i.e., d = 25 and d = 29. The inliers are corrupted by
additive white gaussian noise of zero mean and standard deviation σ = 0.02, 0.06, 0.1, with support
in the orthogonal complement of the inlier subspace. Finally, the percentage of outliers varies as
R = 20%, 33%, 50%. For ADM methods we set τ = max

{
σ, 1/
√
N +M

}
, while for RANSAC

we set its threshold equal to σ.
We evaluate the performance of each method by its corresponding ROC curve. Each point of an

ROC curve corresponds to a certain value of a threshold, with the vertical coordinate of the point
giving the percentage of inliers being correctly identified as inliers (True Positives), and the hori-
zontal coordinate giving the number of outliers erroneously identified as inliers (False Positives).
As a consequence, an ideal ROC curve should be concentrated to the top left of the first quadrant,
i.e., the area over the curve should be zero.

The ROC curves for the case d = 25 are given in Fig. 6, where for each curve we also report
the area over the curve. As expected, the low-rank methods RANSAC, SE-RPCA and `21-RPCA
perform poorly with RANSAC being the worst method for 50% outliers and SE-RPCA being the
weakest method otherwise. On the other hand REAPER, DPCP-d, DPCP-IRLS, DPCP-r-d and
DPCP-r perform almost perfectly well, with DPCP-IRLS actually giving zero error across all cases.
Notice the interesting fact that DPCP-r performs slightly better across all cases than both DPCP-d
and DPCP-r-d, despite the fact that DPCP-d and DPCP-r-d are intuitively more suitable for noisy
data than DPCP-r.

The ROC curves for the case d = 29 are given in Fig. 7. As expected, the low-rank methods
RANSAC, SE-RPCA and `21-RPCA fail even for low noise (σ = 0.02) and moderate outliers
(20%). Notice that for 50% outliers and for any threshold, there is roughly an equal chance of
identifying a point as inlier or as outlier, i.e., the performance of the methods is almost the same as
that of a random guess. On the other hand, DPCP-r, DPCP-d, and DPCP-IRLS are very robust to
variations of the noise level and outlier percentages and are the best methods. DPCP-r-d performs
almost identically with these methods, except in the case of 50% outliers, where it performs less
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Figure 6: ROC curves as a function of noise standard deviation σ and outlier percentage R, for
subspace dimension d = 25 in ambient dimension D = 30. The horizontal axis is False
Positives ratio and the vertical axis is True Positives ratio. The number associated with
each curve is the area above the curve; smaller numbers reflect more accurate perfor-
mance.

accurately. Finally, notice that the performance of REAPER degrades significantly as soon as the
outlier percentage exceeds 20%, indicating that REAPER is not the best method for subspaces of
very low codimension.

7.3 Comparative Analysis Using Real Data

In this section we use the Extended-Yale-B real face dataset (Georghiades et al., 2001) as well as the
real image dataset Caltech101 (Fei-Fei et al., 2007) to compare the proposed algorithms DPCP-r,
DPCP-d, DPCP-r-d and DPCP-IRLS to REAPER, RANSAC, `21-RPCA, and SE-RPCA. We recall
that the Extended-Yale-B dataset contains 64 face images for each of 38 distinct individuals. We use
the first 19 individuals from the Extended-Yale-B dataset and the first half images of each category
in Caltech101 for gaining intuition and tuning the parameters of each method (training set), while
the remaining part of the datasets serve as a test set.
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Figure 7: ROC curves as a function of noise standard deviation σ and outlier percentage R, for
subspace dimension d = 29 in ambient dimension D = 30. The horizontal axis is False
Positives ratio and the vertical axis is True Positives ratio. The number associated with
each curve is the area above the curve; smaller numbers reflect more accurate perfor-
mance.

In the Extended-Yale-B dataset, all face images correspond to the same fixed pose, while the
illumination conditions vary. Such images are known to lie in a 9-dimensional linear subspace, with
each individual having its own corresponding subspace (Basri and Jacobs, 2003). In this experiment
we use the 42 × 48 cropped images that were also used in (Elhamifar and Vidal, 2013). Thus, the
images of each individual lie approximately in a 9-dimensional linear subspace of R42×48 ∼= R2016.
It is then natural to take as inliers all the images of one individual. For outliers, we consider two
possibilities: either the outliers consist of images randomly chosen from the rest of the individuals,
or they consist of images randomly chosen from Caltech101; we recall here that Caltech101 is a
database of 101 image categories, such as images of airplanes or images of brains. We will consider
three different levels of outliers: 20%, 33% and 50%.

There are three important preprocessing steps that one may or may not chose to perform. The
first such step is dimensionality reduction. In our case, we choose to use projection of the data
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Figure 8: For each experimental trial the inliers consist of all 64 images of some individual in the
test set, while the outliers are randomly chosen images from the remaining 18 individuals
of the test set. The notation C0 means that the data are centered (C0 for non-centered),
while N1 means that they are normalized to unit `2-norm (N0 indicates no such normal-
ization takes place). Average ROC curves and average areas over the curves are reported
for different percentages R of outliers.

matrix X̃ onto its first D = 50 principal components. This choice is justified by noting that, since
the inliers and outliers are each at most 64, the data matrix is at most of rank 128. The choice d = 50
avoids situations where the entire data matrix is of low-rank to begin with, or cases where the outliers
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Figure 9: For each experimental trial the inliers consist of all 64 images of some individual in the
test set, while the outliers are randomly chosen images from the second half of the images
in each category in Caltech101. The notation C0 means that the data are centered (C0 for
non-centered), while N1 means that they are normalized to unit `2-norm (N0 indicates no
such normalization takes place). Average ROC curves and average areas over the curves
are reported for different percentages R of outliers.

themselves span a low-dimensional subspace; e.g., this would be true if we were working with the
original dimensionality of 2016. These instances would be particularly unfavorable for methods
such as SE-RPCA and `21-RPCA. On the other hand, methods such as REAPER, DPCP-IRLS,
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Figure 10: ROC curves for three different projection dimensions, when there are 33% face outliers;
data are centered but not normalized (C1 −N0).
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Figure 11: ROC curves for three different projection dimensions, when there are 33% outliers from
Caltech101; data are centered but not normalized (C1 −N0).

DPCP-d, DPCP-r-d and DPCP-r work with the orthogonal complement of the subspace, and so the
lower the codimension the more efficient these methods are. We will shortly see how the methods
behave for varying projection dimensions.

Another pre-processing step is that of centering the data, i.e., forcing the entire dataset X̃ to
have zero mean; we will be writing C0 to denote that no centering takes place and C1 otherwise.
Note here that we do not consider centering the inliers separately, as was done in (Lerman et al.,
2015); this is unrealistic, since it requires knowledge of the ground truth, i.e., which image is an
inlier and which is an outlier. Finally, one may normalize the columns of X̃ to have unit norm or
not. We will denote these two possibilities as N1 and N0 respectively.

Various possibilities for the parameters of all algorithms were considered by experimenting
with the training set, and the ones that minimize the average area under the corresponding ROC
curves were chosen, for the case of 33% outliers, for 50 independent experimental instances (which
individual plays the role of the inlier subspace is a random event). The results for the two different
choices of outliers and all four pre-processing C0 −N0, C0 −N1, C1 −N0 and C1 −N1, over 50
independent trials on the test set, are reported in Figs. 8 and 9.

Our first observation is on the average all methods perform about the same, with REAPER being
the best method and RANSAC the worse. Evidently, normalizing the data without centering them,
leads to uniform performance degradation for all methods, for both outlier scenarios. On the other
hand, all methods seem to be robust to the remaining three combinations of centering and normal-
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ization, with perhaps C1 −N0 being the best for this experiment. A second observation is that the
ROC curves are better for all methods, when the outliers come from Caltech101. This is indeed ex-
pected, since, in that case, not only the inliers and outliers live in different datasets, but their content
is on the average very different. On the other hand, when the outliers are face images themselves,
it is intuitively expected that the inlier/outlier separation problem becomes harder, simply because
the outliers are of similar content with the inliers.

Notice also the interesting phenomenon of all methods behaving worse when the outliers are
minimal. For example, when R = 20%, the area over the curves for all methods in Fig. 9(a) is
bigger than whenR = 33% (Fig. 9(b)). In fact, REAPER, RANSAC and DPCP-IRLS are becoming
better as the number of outliers increases from 20% to 50% (Figs. 9(a)-9(c)). This phenomenon
is partially explained by our theory: separating inliers from outliers is easier when the outliers are
uniformly distributed in the ambient space, and this latter condition is more easily achieved when
the outliers are large in number.

Finally, figures 10 and 11 show how the methods behave if we vary the projection dimension
to D = 15 or D = 150, without adjusting any parameters. Evidently, REAPER is once again the
most robust method, while `21-RPCA is the least robust. Interestingly, when going from D = 50 to
D = 150 for the case of face outliers, only SE-RPCA shows a slight improvement; the rest of the
methods become slightly worse.

8. Conclusions

We presented and studied a solution to the problem of robust principal component analysis in the
presence of outliers, called Dual Principal Component Pursuit (DPCP). The heart of the proposed
method consisted of a non-convex `1 optimization problem on the sphere, for which a solution
strategy based on a recursion of linear programs was analyzed. Rigorous mathematical analysis
revealed that DPCP is a natural method for detecting outliers, particularly when both the number of
outliers and the subspace dimension are large. In fact, experiments on synthetic data showed that
DPCP was the only method that could handle 70% outliers inside a 30-dimensional ambient space,
irrespectively of the subspace dimension. Moreover, experiments with real data showed that DPCP
and related variants are competitive with state-of-the-art robust PCA methods. Future research will
be concerned with extending the theory and algorithms of DPCP to multiple subspaces as well as
investigating big-data applications.
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Appendix A. Results on Problems (12) and (13) following (Späth and Watson, 1987)

In this Section we state three results that are important for our mathematical analysis, already known
in (Späth and Watson, 1987). For the sake of clarity and convenience, we have also taken the liberty
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of writing complete proofs of the statements, as not all of them can be found in (Späth and Watson,
1987).

Lemma 14 Any global solution b∗ to minb>b=1

∥∥X>b∥∥
1
, must be orthogonal to (D − 1) linearly

independent points of X .

Proof Suppose that b∗ is orthogonal to elements ξ1, . . . , ξK ⊂ X , whose span is of dimension less
than D− 1. Then there exists a unit norm vector ζ ∈ SD−1 that is orthogonal to all ξ1, . . . , ξK , b

∗.
Moreover, we can choose ζ such that∑

j: b∗ 6⊥xj

Sign(x>j b
∗)ζ>xj ≤ 0. (147)

Furthermore, we can choose a sufficiently small ε > 0, such that

Sign(x>j b
∗ + εx>j ζ) = Sign(x>j b

∗), ∀j ∈ [N ]. (148)

Consequently, we can write∣∣∣x>j (b∗ + εζ)
∣∣∣ =

∣∣∣x>j b∗∣∣∣+ ε Sign(x>j b
∗)x>j ζ, (149)

and so ∥∥∥X>(b∗ + εζ)
∥∥∥
1

=
∥∥∥X>b∗∥∥∥

1
+ ε

∑
j: b∗ 6⊥xj

Sign(x>j b
∗)ζ>xj ≤

∥∥∥X>b∗∥∥∥
1
. (150)

However,

‖b∗ + εζ‖2 =
√

1 + ε2 > 0, (151)

and normalizing b∗+εζ to have unit `2 norm, we get a contradiction on b∗ being a global solution.

Lemma 15 Problem minb>n̂k=1

∥∥X>b∥∥
1

admits a computable solution nk+1 that is orthogonal
to (D − 1) linearly independent points of X .

Proof Let nk+1 be a solution to minb>n̂k=1

∥∥X>b∥∥
1

that is orthogonal to less than D− 1 linearly
independent points of X . Then we can find a unit norm vector ζ that is orthogonal to the same points
of X that nk+1 is orthogonal to, and moreover ζ ⊥ nk+1. In addition, we can find a sufficiently
small ε > 0 such that∥∥∥X>(nk+1 + εζ)

∥∥∥
1

=
∥∥∥X>nk+1

∥∥∥
1

+ ε
∑

j:nk+1 6⊥xj

Sign(x>j nk+1)ζ>xj , (152)

where ∑
j:nk+1 6⊥xj

Sign(x>j nk+1)ζ
>xj ≤ 0. (153)
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Since nk+1 is optimal, it must be the case that∑
j:nk+1 6⊥xj

Sign(x>j nk+1)ζ
>xj = 0, (154)

and so ∥∥∥X>(nk+1 + εζ)
∥∥∥
1

=
∥∥∥X>nk+1

∥∥∥
1
. (155)

By (155) we see that as we vary ε the objective remains unchanged. Notice also that varying ε pre-
serves all zero entries appearing in the vector X>nk+1. Furthermore, because of (154), it is always
possible to either decrease or increase ε until an additional zero is achieved, i.e., until nk+1 + εζ
becomes orthogonal to a point of X that nk+1 is not orthogonal to. Then we can replace nk+1

with nk+1 + εζ and repeat the process, until we get some nk+1 that is orthogonal to D− 1 linearly
independent points of X .

Lemma 16 Suppose that for each problem minb>n̂k=1

∥∥X>b∥∥
1
, a solution nk+1 is chosen such

that nk+1 is orthogonal to D− 1 linearly independent points of X , in accordance with Proposition
15. Then the sequence {nk} converges to a critical point of problem minb>b=1

∥∥X>b∥∥
1

in a finite
number of steps.

Proof If nk+1 = n̂k, then inspection of the first order optimality conditions of the two problems,
reveals that n̂k is a critical point of minb>b=1

∥∥X>b∥∥
1
. If nk+1 6= n̂k, then ‖nk+1‖2 > 1, and so∥∥X>n̂k+1

∥∥
1
<
∥∥X>n̂k∥∥1. As a consequence, if nk+1 6= n̂k, then n̂k can not arise as a solution

for some k′ > k. Now, because of Proposition 15, for each k, there is a finite number of candidate
directionsnk+1. These last two observations imply that the sequence {nk}must converge in a finite
number of steps to a critical point of minb>b=1

∥∥X>b∥∥
1
.
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