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Abstract. Subspace clustering is the problem of clustering data that lie close to a union of
linear subspaces. Existing algebraic subspace clustering methods are based on fitting the data with
an algebraic variety and decomposing this variety into its constituent subspaces. Such methods are
well suited to the case of a known number of subspaces of known and equal dimensions, where a
single polynomial vanishing in the variety is sufficient to identify the subspaces. While subspaces
of unknown and arbitrary dimensions can be handled using multiple vanishing polynomials, current
approaches are not robust to corrupted data due to the difficulty of estimating the number of poly-
nomials. As a consequence, the current practice is to use a single polynomial to fit the data with a
union of hyperplanes containing the union of subspaces, an approach that works well only when the
dimensions of the subspaces are high enough. In this paper, we propose a new algebraic subspace
clustering algorithm, which can identify the subspace S passing through a point x by constructing a
descending filtration of subspaces passing containing S. First, a single polynomial vanishing in the
variety is identified and used to find a hyperplane containing S. After intersecting this hyperplane
with the variety to obtain a sub-variety, a new polynomial vanishing in the sub-variety is found and
so on until no non-trivial vanishing polynomial exists. In this case, our algorithm identifies S as
the intersection of the hyperplanes identified thus far. By repeating this procedure for other points,
our algorithm eventually identifies all the subspaces. Alternatively, by constructing a filtration at
each data point and comparing any two filtrations using a suitable affinity, we propose a spectral
version of our algebraic procedure based on spectral clustering, which is suitable for computations
with noisy data. We show by experiments on synthetic and real data that the proposed algorithm
outperforms state-of-the-art methods on several occasions, thus demonstrating the merit of the idea
of filtrations1.
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1. Introduction. Given a set of points lying close to a union of linear subspaces,
subspace clustering refers to the problem of identifying the number of subspaces, their
dimensions, a basis for each subspace, and the clustering of the data points accord-
ing to their subspace membership. This is an important problem with widespread
applications in computer vision [38], systems theory [24] and genomics [17].

1.1. Existing work. Over the past 15 years, various subspace clustering meth-
ods have appeared in the literature [36]. Early techniques, such as K-subspaces [2, 34]
or Mixtures of Probabilistic PCA [30, 13], rely on solving a non-convex optimization
problem by alternating between assigning points to subspaces and re-estimating a
subspace for each group of points. As such, these methods are sensitive to initializa-
tion. Moreover, these methods require a-priori knowledge of the number of subspaces
and their dimensions. This motivated the development of a family of purely alge-
braic methods, such as Generalized Principal Component Analysis or GPCA [41],
which feature closed form solutions for various subspace configurations, such as hy-
perplanes [40, 39]. A little later, ideas from spectral clustering [44] led to a family of
algorithms based on constructing an affinity between pairs of points. Some methods
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utilize local geometric information to construct the affinities [47]. Such methods can
estimate the dimension of the subspaces, but cannot handle data near the intersec-
tions. Other methods use global geometric information to construct the affinities,
such as the spectral curvature [3]. Such methods can handle intersecting subspaces,
but require the subspaces to be low-dimensional and of equal dimensions. In the
last five years, methods from sparse representation theory, such as Sparse Subspace
Clustering [8, 9, 10], low-rank representation, such as Low-Rank Subspace Clustering
[22, 11, 20, 37], and least-squares, such as Least-Squares-Regression Subspace Clus-
tering [23], have provided new ways for constructing affinity matrices using convex
optimization techniques. Among them, sparse-representation based methods have
become extremely attractive because they have been shown to provide affinities with
guarantees of correctness as long as the subspaces are sufficiently separated and the
data are well distributed inside the subspaces [10, 28]. Moreover, they have also been
shown to handle noise [45] and outliers [29]. However, existing results require the sub-
space dimensions to be small compared to the dimension of the ambient space. This is
in sharp contrast with algebraic methods, which can handle the case of hyperplanes.

1.2. Motivation. This paper is motivated by the highly complementary proper-
ties of Sparse Subspace Clustering (SSC) and Algebraic Subspace Clustering (ASC),
priorly known as GPCA:2 On the one hand, theoretical results for SSC assume that
the subspace dimensions are small compared to the dimension of the ambient space.
Furthermore, SSC is known to be very robust in the presence of noise in the data.
On the other hand, theoretical results for ASC are valid for subspaces of arbitrary
dimensions, with the easiest case being that of hyperplanes, provided that an upper
bound on the number of subspaces is known. However, all known implementations
of ASC for subspaces of different dimensions, including the recursive algorithm pro-
posed in [16], are very sensitive to noise and are thus considered impractical. As a
consequence, our motivation for this work is to develop an algorithm that enjoys the
strong theoretical guarantees associated to ASC, but it is also robust to noise.

1.3. Paper contributions. This paper features two main contributions.
As a first contribution, we propose a new ASC algorithm, called Filtrated Algebraic

Subspace Clustering (FASC), which can handle an unknown number of subspaces of
possibly high and different dimensions, and give a rigorous proof of its correctness.3

Our algorithm solves the following problem:

Definition 1 (Algebraic subspace clustering problem). Given a finite set of
points X = {x1, . . . ,xN} lying in general position4 inside a transversal subspace ar-
rangement5 A =

⋃n
i=1 Si, decompose A into its irreducible components, i.e., find the

number of subspaces n and a basis for each subspace Si, i = 1, . . . , n.

Our algorithm approaches this problem by selecting a suitable polynomial van-
ishing on the subspace arrangement A. The gradient of this polynomial at a point
x ∈ A gives the normal vector to a hyperplane V1 containing the subspace S passing
through the point. By intersecting the subspace arrangement with the hyperplane,

2Following the convention introduced in [42], we have taken the liberty to change the name from
GPCA to ASC for two reasons. First, to have a consistent naming convention across many subspace
clustering algorithms, such as ASC, SSC, LRSC, which is indicative of the its type (algebraic, sparse,
low-rank). Second, we believe that GPCA is a more general name that is best suited for the entire
family of subspace clustering algorithms, which are all generalizations of PCA.

3Partial results from the present paper have been presented without proofs in [32].
4We will define formally the notion of points in general position in Definition 12.
5We will define formally the notion of a transversal subspace arrangement in Definition 4.
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we obtain a subspace sub-arrangement A1 ⊂ A, which lives in an ambient space V1
of dimension one less than the original ambient dimension and still contains S. By
choosing another suitable polynomial that vanishes on A1, computing the gradient of
this new polynomial at the same point, intersecting again with the new hyperplane V2,
and so on, we obtain a descending filtration V1 ⊃ V2 ⊃ · · · ⊃ S of subspace arrange-
ments, which eventually gives us the subspace S containing the point. This happens
precisely after c steps, where c is the codimension of S, when no non-trivial vanishing
polynomial exists, and the ambient space Vc, which is the orthogonal complement
of the span of all the gradients used in the filtration, can be identified with S. By
repeating this procedure at another point not in the first subspace, we can identify
the second subspace and so on, until all subspaces have been identified. Using results
from algebraic geometry, we rigorously prove that this algorithm correctly identifies
the number of subspaces, their dimensions and a basis for each subspace.

As a second contribution, we extend the ideas behind the purely abstract FASC al-
gorithm to a working algorithm called Filtrated Spectral Algebraic Subspace Clustering
(FSASC), which is suitable for computations with noisy data.6 The first modification
is that intersections with hyperplanes are replaced by projections onto them. In this
way, points in the subspace contained by the hyperplane are preserved by the pro-
jection, while other points are generally shrank. The second modification is that we
compute a filtration at each data point and use the norm of the projection of point
xj onto one of the hyperplanes associated with the filtration at point xi to define an
affinity between these two points. The intuition is that if points xi and xj belong to
the same subspace, the projection of xj onto the hyperplane associated with xi will
preserve xj and its norm. This process leads to an affinity matrix of high intra-class
and low cross-class connectivity, upon which spectral clustering is applied to obtain
the clustering of the data. By experiments on real and synthetic data we demonstrate
that the idea of filtrations leads to affinity matrices of superior quality, i.e., affinities
with high intra- and low inter-cluster connectivity, and as a result to better clustering
accuracy. In particular, FSASC is shown to be superior to state-of-the-art methods
in the problem of motion segmentation using the Hopkins155 dataset [31].

Finally, we have taken the liberty of presenting in an appendix the foundations
of the algebraic geometric theory of subspace arrangements relevant to Algebraic
Subspace Clustering, in a manner that is both rigorous and accessible to the interested
audience outside the algebraic geometry community, thus complementing existing
reviews such as [25].

1.4. Notation. For any positive integer n, we define [n] := {1, 2, . . . , n}. We
denote by R the real numbers. The right null space of a matrixB is denoted by N (B).
If S is a subspace of RD, then dim(S) denotes the dimension of S and πS : RD → S
is the orthogonal projection of RD onto S. The symbol ⊕ denotes direct sum of
subspaces. We denote the orthogonal complement of a subspace S in RD by S⊥.
If y1, . . . ,ys are elements of RD, we denote by Span(y1, . . . ,ys) the subspace of
RD spanned by these elements. For two vectors x,y ∈ RD, the notation x ∼= y
means that x and y are colinear. We let R[x] = R[x1, . . . , xD] be the polynomial
ring over the real numbers in D indeterminates. We use x to denote the vector of
indeterminates x = (x1, . . . , xD), while we reserve x to denote a data point x =
(χ1, . . . , χD) of RD. We denote by R[x]` the set of all homogeneous7 polynomials

6A preliminary description of this method appeared in a workshop paper [33].
7A polynomial in many variables is called homogeneous if all monomials appearing in the poly-

nomial have the same degree.
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of degree ` and similarly R[x]≤` the set of all homogeneous polynomials of degree
less than or equal to `. R[x] is an infinite dimensional real vector space, while R[x]`
and R[x]≤` are finite dimensional subspaces of R[x] of dimensionsM`(D) :=

(
`+D−1

`

)
and

(
`+D
`

)
, respectively. We denote by R(x) the field of all rational functions over

R and indeterminates x1, . . . , xD. If {p1, . . . , ps} is a subset of R[x], we denote by
〈p1, . . . , ps〉 the ideal generated by p1, . . . , ps (see Definition 29). If A is a subset of
RD, we denote by IA the vanishing ideal of A, i.e., the set of all elements of R[x] that
vanish on A and similarly IA,` := IA ∩ R[x]` and IA,≤` := IA ∩ R[x]≤`. Finally, for
a point x ∈ RD, and a set I ⊂ R[x] of polynomials, ∇I|x is the set of gradients of all
the elements of I evaluated at x.

1.5. Paper organization. The remainder of the paper is organized as follows:
section 2 provides a careful, yet concise review of the state-of-the-art in algebraic
subspace clustering. In section 3 we discuss the FASC algorithm from a geometric
viewpoint with as few technicalities as possible. Throughout Sections 2 and 3, we
use a running example of two lines and a plane in R3 to illustrate various ideas; the
reader is encouraged to follow these illustrations. We save the rigorous treatment of
FASC for section 4, which consists of the technical heart of the paper. In particular,
the listing of the FASC algorithm can be found in Algorithm 3 and the theorem
establishing its correctness is Theorem 28. In section 5 we describe FSASC, which is
the numerical adaptation of FASC, and compare it to other state-of-the-art subspace
clustering algorithms using both synthetic and real data. Finally, appendices A, B
and C cover basic notions and results from commutative algebra, algebraic geometry
and subspace arrangements respectively, mainly used throughout section 4.

2. Review of Algebraic Subspace Clustering (ASC). This section reviews
the main ideas behind ASC. For the sake of simplicity, we first discuss ASC in the case
of hyperplanes (section 2.1) and subspaces of equal dimension (section 2.2), for which
a closed form solution can be found using a single polynomial. In the case of subspaces
of arbitrary dimensions, the picture becomes more involved, but a closed form solution
from multiple polynomials is still available when the number of subspaces n is known
(section 2.3) or an upper bound m for n is known (section 2.4). In section 2.5 we
discuss one limitation of ASC due to computational complexity and a partial solution
based on a recursive ASC algorithm. In section 2.6 we discuss another limitation of
ASC due to sensitivity to noise and a practical solution based on spectral clustering.
We conclude in section 2.7 with the main challenge that this paper aims to address.

2.1. Subspaces of codimension 1. The basic principles of ASC can be intro-
duced more smoothly by considering the case where the union of subspaces is the
union of n hyperplanes A =

⋃n
i=1Hi in RD. Each hyperplane Hi is uniquely defined

by its unit length normal vector bi ∈ RD as Hi = {x ∈ RD : b>i x = 0}. In the lan-
guage of algebraic geometry this is equivalent to saying that Hi is the zero set of the
polynomial b>i x or equivalently Hi is the algebraic variety defined by the polynomial
equation b>i x = 0, where b>i x = bi,1x1 + · · · bi,DxD with bi := (bi,1, . . . , bi,D)>, x :=

(x1, . . . , xD)>. We write this more succinctly as Hi = Z(b>i x). We then observe
that a point x of RD belongs to

⋃n
i=1Hi if and only if x is a root of the polyno-

mial p(x) = (b>1 x) · · · (b>n x), i.e., the union of hyperplanes A is the algebraic variety
A = Z(p) (the zero set of p). Notice the important fact that p is homogeneous of
degree equal to the number n of distinct hyperplanes and moreover it is the product
of linear homogeneous polynomials b>i x, i.e., a product of linear forms, each of which
defines a distinct hyperplane Hi via the corresponding normal vector bi.
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Given a set of points X = {xj}Nj=1 ⊂ A in general position in the union of hyper-

planes, the classic polynomial differentiation algorithm proposed in [39, 41] recovers
the correct number of hyperplanes as well as their normal vectors by

1. embedding the data into a higher-dimensional space via a polynomial map,
2. finding the number of subspaces by analyzing the rank of the embedded data

matrix,
3. finding the polynomial p from the null space of the embedded data matrix,
4. finding the hyperplane normal vectors from the derivatives of p at a nonsin-

gular point x of A.8

More specifically, observe that the polynomial p(x) = (b>1 x) · · · (b>n x) can be writ-
ten as a linear combination of the set of all monomials of degree n in D variables,
{xn1 , xn−11 x2, x

n−1
1 x3 . . . , x1x

n−1
D , . . . , xnD} as:

p(x) =
∑

n1+n2+···nD=n

cn1,n2,...,nD
xn1
1 xn2

2 · · ·x
nD

D = c>νn(x).(1)

In the above expression, c ∈ RMn(D) is the vector of all coefficients cn1,n2,...,nD
, and νn

is the Veronese or Polynomial embedding of degree n, as it is known in the algebraic
geometry and machine learning literature, respectively. It is defined by taking a point
of RD to a point of RMn(D) under the rule

(x1, . . . , xD)>
νn7−→
(
xn1 , x

n−1
1 x2, x

n−1
1 x3 . . . , x1x

n−1
D , . . . , xnD

)>
,(2)

whereMn(D) is the dimension of the space of homogeneous polynomials of degree n
in D indeterminates. The image of the data set X under the Veronese embedding is
used to form the so-called embedded data matrix

ν`(X ) :=
[
ν`(x1) · · · ν`(xN )

]>
.(3)

It is shown in [41] that when there are sufficiently many data points that are sufficiently
well distributed in the subspaces, the correct number of hyperplanes is the smallest
degree ` for which ν`(X ) drops rank by 1: n = min`≥1{` : rank(ν`(X )) = M`(D)−1}.
Moreover, it is shown in [41] that the polynomial vector of coefficients c is the unique
up to scale vector in the one-dimensional null space of νn(X ).

It follows that the task of identifying the normals to the hyperplanes from p is
equivalent to extracting the linear factors of p. This is achieved9 by observing that if
we have a point x ∈ Hi − ∪i′ 6=iHi′ , then the gradient ∇p|x of p evaluated at x

∇p|x =

n∑
j=1

bj
∏
j′ 6=j

(b>j′x)(4)

is equal to bi up to a scale factor because b>i x = 0 and hence all the terms in the sum
vanish except for the ith (see Proposition 56 for a more general statement). Having
identified the normal vectors, the task of clustering the points in X is straightforward.

8A nonsingular point of a subspace arrangement is a point that lies in one and only one of the
subspaces that constitute the arrangement.

9A direct factorization has been shown to be possible as well [40]; however this approach has not
been generalized yet to the case of subspaces of different dimensions.
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2.2. Subspaces of equal dimension. Let us now consider a more general case,
where we know that the subspaces are of equal and known dimension d. Such a case
can be reduced to the case of hyperplanes, by noticing that a union of n subspaces of
dimension d of RD becomes a union of hyperplanes of Rd+1 after a generic projection
πd : RD → Rd+1. We note that any random orthogonal projection will almost surely
preserve the number of subspaces and their dimensions, as the set of projections
πd that do not have this preserving property is a zero measure subset of the set of
orthogonal projections

{
πd ∈ R(d+1)×D : πdπ

>
d = I(d+1)×(d+1)

}
.

When the common dimension d is unknown, it can be estimated exactly by an-
alyzing the right null space of the embedded data matrix, after projecting the data
generically onto subspaces of dimension d′+ 1, with d′ = D− 1, D− 2, . . . [35]. More
specifically, when d′ > d, we have that dimN (νn(πd′(X ))) > 1, while when d′ < d we
have dimN (νn(πd′(X ))) = 0. On the other hand, the case d′ = d is the only case for
which the null space is one-dimensional, and so d = {d′ : dimN (νn(πd′(X ))) = 1}.

Finally, when both n and d are unknown, one can first recover d as the smallest d′

such that there exists an ` for which dimN (ν`(πd′(X ))) > 0, and subsequently recover
n as the smallest ` such that dimN (ν`(πd(X ))) > 0; see [35] for further details.

2.3. Known number of subspaces of arbitrary dimensions. When the
dimensions of the subspaces are unknown and arbitrary, the problem becomes much
more complicated, even if the number n of subspaces is known, which is the case
examined in this subsection. In such a case, a union of subspaces A = S1 ∪ · · · ∪ Sn
of RD, henceforth called a subspace arrangement, is still an algebraic variety. The
main difference with the case of hyperplanes is that, in general, multiple polynomials
of degree n are needed to define A, i.e., A is the zero set of a finite collection of
homogeneous polynomials of degree n in D indeterminates.

Example 2. Consider the union A of a plane S1 and two lines S2,S3 in general
position in R3 (Fig. 1). Then A = S1 ∪ S2 ∪ S3 is the zero set of the degree-3

S1

b1

S2S3

Fig. 1. A union of two lines and one plane in general position in R3.

homogeneous polynomials

p1 := (b>1 x)(b>2,1x)(b>3,1x), p2 := (b>1 x)(b>2,1x)(b>3,2x),(5)

p3 := (b>1 x)(b>2,2x)(b>3,1x), p4 := (b>1 x)(b>2,2x)(b>3,2x),(6)

where b1 is the normal vector to the plane S1 and bi,j , j = 1, 2, are two linearly
independent vectors that are orthogonal to the line Si, i = 2, 3. These polynomials
are linearly independent and form a basis for the vector space IA,3 of the degree-3
homogeneous polynomials that vanish on A.10

10The interested reader is encouraged to prove this claim.
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In contrast to the case of hyperplanes, when the subspace dimensions are different,
there may exist vanishing polynomials of degree strictly less than the number of
subspaces.

Example 3. Consider the setting of Example 2. Then there exists a unique up
to scale vanishing polynomial of degree 2, which is the product of two linear forms:
one form is b>1 x, where b1 is the normal to the plane S1, and the other linear form
is f>x, where f is the normal to the plane defined by the lines S2 and S3 (Fig. 2).

S1

f

H23

b1

S2S3

Fig. 2. The geometry of the unique degree-2 polynomial p(x) = (b>1 x)(f>x) that vanishes on
S1 ∪ S2 ∪ S3. b1 is the normal vector to plane S1 and f is the normal vector to the plane H23

spanned by lines S2 and S3.

As Example 2 shows, all the relevant geometric information is still encoded in
the factors of some special basis11 of IA,n, that consists of degree-n homogeneous
polynomials that factorize into the product of linear forms. However, computing such
a basis remains, to the best of our knowledge, an unsolved problem. Instead, one can
only rely on computing (or be given) a general basis for the vector space IA,n. In our
example such a basis could be

p1 + p4, p1 − p4, p2 + p3, p2 − p3(7)

and it can be seen that none of these polynomials is factorizable into the product
of linear forms. This difficulty was not present in the case of hyperplanes, because
there was only one vanishing polynomial (up to scale) of degree n and it had to be
factorizable.

In spite of this difficulty, a solution can still be achieved in an elegant fashion
by resorting to polynomial differentiation. The key fact that allows this approach
is that any homogeneous polynomial p of degree n that vanishes on the subspace
arrangement A is a linear combination of vanishing polynomials, each of which is a
product of linear forms, with each distinct subspace contributing a vanishing linear
form in every product (Theorem 58). As a consequence (Proposition 56), the gradient
of p evaluated at some point x ∈ Si − ∪i′ 6=iSi′ lies in S⊥i and the linear span of the
gradients at x of all such p is precisely equal to S⊥i . We can thus recover Si, remove
it from A and then repeat the procedure to identify all the remaining subspaces.
As stated in Theorem 6, this process is provably correct as long as the subspace
arrangement A is transversal, as defined next.

Definition 4 (Transversal subspace arrangement [5]). A subspace arrangement
A =

⋃n
i=1 Si ⊂ RD is called transversal, if for any subset I of [n], the codimension of⋂

i∈I Si is the minimum between D and the sum of the codimensions of all Si, i ∈ I.

11Strictly speaking, this is not always true. However, it is true if the subspace arrangement is
general enough, in particular if it is transversal; see Definition 4 and Theorem 58.
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Remark 5. Transversality is a geometric condition on the subspaces, which in
particular requires the dimensions of all possible intersections among subspaces to be
as small as the dimensions of the subspaces allow (see Appendix C for a discussion).

Theorem 6 (ASC by polynomial differentiation when n is known, [41, 25]). Let
A =

⋃n
i=1 Si be a transversal subspace arrangement of RD, let x ∈ Si −

⋃
i′ 6=i Si′ be a

nonsingular point in A, and let IA,n be the vector space of all degree-n homogeneous
polynomials that vanish on A. Then Si is the orthogonal complement of the subspace
spanned by all vectors of the form ∇p|x, where p ∈ IA,n, i.e., Si = Span (∇IA,n|x)

⊥
.

Theorem 6 and its proof are illustrated in the next example.

Example 7. Consider Example 2 and recall that p1 = (b>1 x)(b>2,1x)(b>3,1x), p2 =

(b>1 x)(b>2,1x)(b>3,2x), p3 = (b>1 x)(b>2,2x)(b>3,1x), and p4 = (b>1 x)(b>2,2x)(b>3,2x). Let x2

be a generic point in S2 − S1 ∪ S3. Then

∇p1|x2
∼= ∇p2|x2

∼= b2,1, ∇p3|x2
∼= ∇p4|x2

∼= b2,2.(8)

Hence b2,1, b2,2 ∈ Span(∇IA,3|x2) and so S2 ⊃ Span (∇IA,3|x2)
⊥

. Conversely, let

p ∈ IA,3. Then there exist αi ∈ R, i = 1, . . . , 4, such that p =
∑4
i=1 αipi and so

∇p|x2
=

4∑
i=1

αi∇pi|x2
∈ Span(b2,1, b2,2) = S⊥2 .(9)

Hence ∇IA,3|x2
⊂ S⊥2 , and so Span(∇IA,3|x2

)⊥ ⊃ S2.

2.4. Unknown number of subspaces of arbitrary dimensions. As it turns
out, when the number of subspaces n is unknown, but an upper bound m ≥ n is given,
one can obtain the decomposition of the subspace arrangement from the gradients of
the vanishing polynomials of degree m, precisely as in Theorem 6, simply by replacing
n with m.

Theorem 8 (ASC by polynomial differentiation when an upper bound on n is
known, [41, 25]). Let A =

⋃n
i=1 Si be a transversal subspace arrangement of RD, let

x ∈ Si −
⋃
i′ 6=i Si′ be a nonsingular point in A, and let IA,m be the vector space of

all degree-m homogeneous polynomials that vanish on A, where m ≥ n. Then Si is
the orthogonal complement of the subspace spanned by all vectors of the form ∇p|x,

where p ∈ IA,m, i.e., Si = Span (∇IA,m|x)
⊥

.

Example 9. Consider the setting of Examples 2 and 3. Suppose that we have the
upper bound m = 4 on the number of underlying subspaces (n = 3). It can be shown
that the vector space IA,4 has12 dimension 8 and is spanned by the polynomials

q1 := (b>1 x)(f>x)3, q5 := (b>1 x)(f>x)(b>3 x)2,(10)

q2 := (b>1 x)2(f>x)2 q6 := (b>1 x)(b>2 x)2(f>x),(11)

q3 := (b>1 x)3(f>x), q7 := (b>1 x)(b>2 x)2(b>3 x),(12)

q4 := (b>1 x)(f>x)2(b>3 x), q8 := (b>1 x)(b>2 x)(b>3 x)2,(13)

where b1 is the normal to S1, f is the normal to the plane defined by lines S2 and
S3, and bi is a normal to line Si that is linearly independent from f , for i = 2, 3.

12This can be verified by applying the dimension formula of Corollary 3.4 in [5].
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Hence S1 = Span(b1)⊥ and Si = Span(f , bi)
⊥, i = 2, 3. Then for a generic point

x2 ∈ S2 − S1 ∪ S3, we have that

∇q1|x2
= ∇q2|x2

= ∇q4|x2
= ∇q6|x2

= ∇q7|x2
= 0,(14)

∇q3|x2
∼= ∇q5|x2

∼= f , ∇q8|x2
∼= b2.(15)

Hence f , b2 ∈ Span(∇IA,4|x2) and so S2 ⊃ Span(∇IA,4|x2)⊥. Similarly to Example
7, since every element of IA,4 is a linear combination of the q`, ` = 1, . . . , 8, we have
S2 = Span(∇IA,4|x2

)⊥.

Remark 10. Notice that both Theorems 6 and 8 are statements about the abstract
subspace arrangement A, i.e., no finite subset X of A is explicitly considered. To pass
from A to X and get similar Theorems, we need to require X to be in general position
in A, in some suitable sense. As one may suspect, this notion of general position must
entail that polynomials of degree n for Theorem 6, or of degree m for Theorem 8, that
vanish on X must also vanish on A and vice versa. In that case, we can compute
the required basis for IA,n, simply by computing a basis for IX ,n, by means of the
Veronese embedding described in section 2.1, and similarly for IA,m. We will make
the notion of general position precise in Definition 12.

2.5. Computational complexity and recursive ASC. Although Theorem 8
is quite satisfactory from a theoretical point of view, using an upper bound m ≥ n for
the number of subspaces comes with the practical disadvantage that the dimension of
the Veronese embedding, Mm(D), grows exponentially with m. In addition, increasing
m also increases the number of polynomials in the null space of νm(X ), some which
will eventually, as m becomes large, be polynomials that simply fit the data X but
do not vanish on A. To reduce the computational complexity of the polynomial
differentiation algorithm, one can consider vanishing polynomials of smaller degree,
m < n, as suggested by Example 3. While such vanishing polynomials may not be
sufficient to cluster the data into n subspaces, they still provide a clustering of the
data into m′ ≤ n subspaces. We can then look at each of these m′ clusters and see
if they can be partitioned further. For instance, in Example 3, we can first cluster
the data into two planes, the plane S1 and the plane H23 containing the two lines S2
and S3, and then partition the data lying in H23 into the two lines S2 and S3. This
leads to the recursive ASC algorithm proposed in [16, 41], which is based on finding
the polynomials of the smallest possible degree m that vanish on the data, computing
the gradients of these vanishing polynomials to cluster the data into m′ ≤ n groups,
and then repeating the procedure for each group until the data from each group
can be fit by polynomials of degree 1, in which case each group lies in single linear
subspace. While this recursive ASC algorithm is very intuitive, no rigorous proof
of its correctness has appeared in the literature. In fact, there are examples where
this recursive method provably fails in the sense of producing ghost subspaces in the
decomposition of A. For instance, when partitioning the data from Example 3 into
two planes S1 and H23, we may assign the data from the intersection of the two planes
to H23. If this is the case, when trying to partition further the data of H23, we will
obtain three lines: S2, S3 and the ghost line S4 = S1 ∩H23 (see Fig. 3(a)).

2.6. Instability in the presence of noise and spectral ASC. Another im-
portant issue with Theorem 8 from a practical standpoint is its sensitivity to noise.
More precisely, when implementing Theorem 8 algorithmically, one is required to
estimate the dimension of the null space of νm(X ), which is an extremely challeng-
ing problem in the presence of noise. Moreover, small errors in the estimation of
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dimN (νm(X )) have been observed to have dramatic effects in the quality of the clus-
tering, thus rendering algorithms that are directly based on Theorem 8 unstable.
While the recursive ASC algorithm of [16, 41] is more robust than such algorithms, it
is still sensitive to noise, as considerable errors may occur in the partitioning process.
Moreover, the performance of the recursive algorithm is always subject to degradation
due to the potential occurrence of ghost subspaces.

To enhance the robustness of ASC in the presence of noise and obtain a stable
working algebraic algorithm, the standard practice has been to apply a variation of the
polynomial differentiation algorithm based on spectral clustering [35]. More specifi-
cally, given noisy data X lying close to a union of n subspaces A, one computes an
approximate vanishing polynomial p whose coefficients are given by the right singular
vector of νn(X ) corresponding to its smallest singular value. Given p, one computes
the gradient of p at each point in X (which gives a normal vector associated with each
point in X ), and builds an affinity matrix between points xj and xj′ as the cosine of
the angle between their corresponding normal vectors, i.e.,

Cjj′,angle =
∣∣∣〈 ∇p|xj

||∇p|xj
||
,
∇p|xj′

||∇p|xj′ ||

〉∣∣∣.(16)

This affinity is then used as input to any spectral clustering algorithm (see [44] for
a tutorial on spectral clustering) to obtain a clustering X =

⋃n
i=1 Xi. We call this

Spectral ASC method with angle-based affinity as SASC-A.
To gain some intuition about C, suppose that A is a union of n hyperplanes and

that there is no noise in the data. Then p must be of the form p(x) = (b>1 x) · · · (b>n x).
In this case Cjj′ is simply the cosine of the angle between the normals to the hy-
perplanes that are associated with points xj and xj′ . If both points lie in the same
hyperplane, their normals must be equal, and hence Cjj′ = 1. Otherwise, Cjj′ < 1
is the cosine of the angles between the hyperplanes. Thus, assuming that the small-
est angle between any two hyperplanes is sufficiently large and that the points are
well distributed on the union of the hyperplanes, applying spectral clustering to the
affinity matrix C will in general yield the correct clustering.

Even though SASC-A is much more robust in the presence of noise than purely
algebraic methods for the case of a union of hyperplanes, it is fundamentally limited
by the fact that, theoretically, it applies only to unions of hyperplanes. Indeed, if the
orthogonal complement of a subspace S has dimension greater than 1, there may be
points x,x′ inside S such that the angle between ∇p|x and ∇p|x′ is as large as 90◦.
In such instances, points associated to the same subspace may be weakly connected
and thus there is no guarantee for the success of spectral clustering.

2.7. The challenge. In summary, as the discussion so far suggests, the state of
the art in ASC can be summarized as follows:

1. A complete closed form solution to the abstract subspace clustering problem
(Problem 1) exists and can be found using the polynomial differentiation
algorithm implied by Theorem 8.

2. All known algorithmic variants of the polynomial differentiation algorithm
are sensitive to noise, especially for subspaces of arbitrary dimensions.

3. The recursive ASC algorithm described in section 2.5 does not in general
solve the abstract subspace clustering problem (Problem 1), and is in addition
sensitive to noise.

4. The spectral algebraic algorithm described in section 2.6 is less sensitive to
noise, but is theoretically justified only for unions of hyperplanes.
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The above list reveals the challenge that we will be addressing in the rest of
this paper: Develop an ASC algorithm, that solves the abstract subspace clustering
problem for perfect data, while at the same time it is robust to noisy data.

3. Filtrated Algebraic Subspace Clustering - Overview. This section pro-
vides an overview of our proposed Filtrated Algebraic Subspace Clustering (FASC)
algorithm, which conveys the geometry of the key idea of this paper while keeping
technicalities at a minimum. To that end, let us pretend for a moment that we have
access to the entire set A, so that we can manipulate it via set operations such as
taking its intersection with some other set. Then the idea behind FASC is to construct
a descending filtration of the given subspace arrangement A ⊂ RD, i.e., a sequence of
inclusions of subspace arrangements, that starts with A and terminates after a finite
number of c steps with one of the irreducible components S of A:13

A =: A0 ⊃ A1 ⊃ A2 ⊃ · · · ⊃ Ac = S.(17)

The mechanism for generating such a filtration is to construct a strictly descending
filtration of intermediate ambient spaces, i.e.,

V0 ⊃ V1 ⊃ V2 ⊃ · · · ,(18)

such that V0 = RD, dim(Vs+1) = dim(Vs)−1, and each Vs contains the same fixed ir-
reducible component S of A. Then the filtration of subspace arrangements is obtained
by intersecting A with the filtration of ambient spaces, i.e.,

A0 := A ⊃ A1 := A ∩ V1 ⊃ A2 := A ∩ V2 ⊃ · · · .(19)

This can be seen equivalently as constructing a descending filtration of pairs (Vs,As),
where As is a subspace arrangement of Vs:

(RD,A)← (V1 ∼= RD−1,A1)← (V2 ∼= RD−2,A2)← · · · .(20)

But how can we construct a filtration of ambient spaces (18), that satisfies the
apparently strong condition Vs ⊃ S, ∀s? The answer lies at the heart of ASC: to
construct V1 pick a suitable polynomial p1 vanishing on A and evaluate its gradient
at a nonsingular point x of A. Notice that x will lie in some irreducible component
Sx of A. Then take V1 to be the hyperplane of RD defined by the gradient of p1 at
x. We know from Proposition 56 that V1 must contain Sx. To construct V2 we apply
essentially the same procedure on the pair (V1,A1): take a suitable polynomial p2
that vanishes on A1, but does not vanish on V1, and take V2 to be the hyperplane of
V1 defined by πV1 (∇p2|x). As we will show in section 4, it is always the case that
πV1 (∇p2|x) ⊥ Sx and so V2 ⊃ Sx. Now notice, that after precisely c such steps,
where c is the codimension of Sx, Vc will be a (D− c)-dimensional linear subspace of
RD that by construction contains Sx. But Sx is also a (D− c)-dimensional subspace
and the only possibility is that Vc = Sx. Observe also that this is precisely the step
where the filtration naturally terminates, since there is no polynomial that vanishes
on Sx but does not vanish on Vc. The relations between the intermediate ambient
spaces and subspace arrangements are illustrated in the commutative diagram of (21).
The filtration in (21) will yield the irreducible component S := Sx of A that contains

13We will also be using the notation A =: A0 ← A1 ← A2 ← · · · , where the arrows denote
embeddings.
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the nonsingular point x ∈ A that we started with. We will be referring to such a
point as the reference point. We can also take without loss of generality Sx = S1.
Having identified S1, we can pick a nonsingular point x′ ∈ A − Sx and construct a
filtration of A as above with reference point x′. Such a filtration will terminate with
the irreducible component Sx′ of A containing x′, which without loss of generality we
take to be S2. Picking a new reference point x′′ ∈ A − Sx ∪ Sx′ and so on, we can
identify the entire list of irreducible components of A, as described in Algorithm 1.

(21)

RD V0 A0 Sx

RD−1 V1 A1 Sx

RD−2 V2 A2 Sx

...
...

RD−c+1 Vc−1 Ac−1 Sx

RD−c Vc Ac Sx

∼=

∼=

∼=

∼=

∼= ∼= ∼=

Algorithm 1 Filtrated Algebraic Subspace Clustering (FASC) - Geometric Version

1: procedure FASC(A)
2: L← ∅; L ← ∅;
3: while A− L 6= ∅ do
4: pick a nonsingular point x in A− L;
5: V ← RD;
6: while V ∩ A ( V do
7: find polynomial p that vanishes on A∩ V but not on V, s.t. ∇p|x 6= 0;
8: let V be the orthogonal complement of πV(∇p|x) in V;
9: end while

10: L← L ∪ {V}; L ← L ∪ V;
11: end while
12: return L;
13: end procedure

Example 11. Consider the setting of Examples 2 and 3. Suppose that in the first
filtration the algorithm picks as reference point x ∈ S2 − S1 ∪ S3. Suppose further
that the algorithm picks the polynomial p(x) = (b>1 x)(f>x), which vanishes on A but
certainly not on R3. Then the first ambient space V1 of the filtration associated to x
is constructed as V1 = Span(∇p|x)⊥. Since ∇p|x ∼= f , this gives that V1 is precisely
the plane of R3 with normal vector f . Then A1 is constructed as A1 = A∩V1, which
consists of the union of three lines S2 ∪ S3 ∪ S4, where S4 is the intersection of V1
with S1 (see Figs. 3(a) and 3(b)).
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S1

f

H23

b1

S2S3

S4

(a)

V(1)
1

S2S3

S4

(b)

b2

b3

b4

V(1)
1

S2S3

S4

(c)

Fig. 3. (a): The plane spanned by lines S2 and S3 intersects the plane S1 at the line S4. (b):
Intersection of the original subspace arrangement A = S1 ∪ S2 ∪ S3 with the intermediate ambient

space V(1)
1 , giving rise to the intermediate subspace arrangement A(1)

1 = S2∪S3∪S4. (c): Geometry

of the unique degree-3 polynomial p(x) = (b>2 x)(b>3 x)(b>4 x) that vanishes on S2∪S3∪S4 as a variety

of the intermediate ambient space V(1)
1 . bi ⊥ Si, i = 2, 3, 4.

Since A1 ( V1, the algorithm takes one more step in the filtration. Suppose that
the algorithm picks the polynomial q(x) = (b>2 x)(b>3 x)(b>4 x), where bi is the unique
normal vector of V1 that is orthogonal to Si, for i = 2, 3, 4 (see Fig 3(c)). Because of
the general position assumption, none of the lines S2,S3,S4 is orthogonal to another.
Consequently, ∇q|x = (b>3 x)(b>4 x)b2 6= 0. Moreover, since b2 ∈ V1, we have that
πV1 (∇q|x) = ∇q|x ∼= b2 defines a line in V1 that must contain S2. Intersecting A1

with V2 we obtain A2 = A1 ∩ V2 = V2 and the filtration terminates with output the
irreducible component Sx = S2 = V2 of A associated to reference point x.

Continuing, the algorithm now picks a new reference point x′ ∈ A − Sx, say
x′ ∈ S1. A similar process as above will identify S1 as the intermediate ambient space
V1 = Sx′ of the filtration associated to x′ that arises after one step. Then a third
reference point will be chosen as x′′ ∈ A − Sx ∪ Sx′ and S3 will be identified as the
intermediate ambient space V2 = Sx′′ of the filtration associated to x′′ that arises after
two steps. Since the set A−Sx∪Sx′ ∪Sx′′ is empty, the algorithm will terminate and
return {Sx,Sx′ ,Sx′′}, which is up to a permutation a decomposition of the original
subspace arrangement into its constituent subspaces.

Strictly speaking, Algorithm 1 is not a valid algorithm in the computer-science
theoretic sense, since it takes as input an infinite set A, and it involves operations
such as checking equality of the infinite sets V and A∩ V. Moreover, the reader may
reasonably ask:

1. Why is it the case that through the entire filtration associated with reference
point x we can always find polynomials p such that ∇p|x 6= 0?

2. Why is it true that even if ∇p|x 6= 0 then πV(∇p|x) 6= 0?
We address all issues above and beyond in the next section, which is devoted to
rigorously establishing the theory of the FASC algorithm.14

4. Filtrated Algebraic Subspace Clustering - Theory. This section for-
malizes the concepts outlined in section 3. section 4.1 formalizes the notion of a set X
being in general position inside a subspace arrangement A. Sections 4.2-4.4 establish
the theory of a single filtration of a finite subset X lying in general position inside

14At this point the reader unfamiliar with algebraic geometry is encouraged to read the appendices
before proceeding.
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a transversal subspace arrangement A, and culminate with the Algebraic Descend-
ing Filtration (ADF) algorithm for identifying a single irreducible component of A
(Algorithm 2) and the theorem establishing its correctness (Theorem 27). The ADF
algorithm naturally leads us to the core contribution of this paper in section 4.5, which
is the FASC algorithm for identifying all irreducible components of A (Algorithm 3)
and the theorem establishing its correctness (Theorem 28).

4.1. Data in general position in a subspace arrangement. From an alge-
braic geometric point of view, a union A of linear subspaces is the same as the set
IA of polynomial functions that vanish on A. However, from a computer-science-
theoretic point of view, A and IA are quite different: A is an infinite set and hence
it can not be given as input to any algorithm. On the other hand, even though IA is
also an infinite set, it is generated as an ideal by a finite set of polynomials, which can
certainly serve as input to an algorithm.That said, from a machine-learning point of
view, both A and IA are often unknown, and one is usually given only a finite set of
points X in A, from which we wish to compute its irreducible components S1, . . . ,Sn.

To lend ourselves the power of the algebraic-geometric machinery, while providing
an algorithm of interest to the machine learning and computer science communities,
we adopt the following setting. The input to our algorithm will be the pair (X ,m),
where X is a finite subset of an unknown union of linear subspacesA :=

⋃n
i=1 Si of RD,

and m is an upper bound on n. To make the problem of recovering the decomposition
A =

⋃n
i=1 Si from X well-defined, it is necessary that A be uniquely identifiable form

X . In other words, X must be in general position inside A, as defined next.

Definition 12 (Points in general position). Let X = {x1, . . . ,xN} be a finite
subset of a subspace arrangement A = S1 ∪ · · · ∪ Sn. We say that X is in general
position in A with respect to degree m, if m ≥ n and A = Z(IX ,m), i.e., if A is
precisely the zero locus of all homogeneous polynomials of degree m that vanish on X .

The intuitive geometric condition A = Z(IX ,m) of Definition 12 guarantees that
there are no spurious polynomials of degree less or equal to m that vanish on X .

Proposition 13. Let X be a finite subset of an arrangement A of n linear sub-
spaces of RD. Then X lies in general position inside A with respect to degree m if
and only if IA,k = IX ,k, ∀k ≤ m.

Proof. (⇒) We first show that IA,m = IX ,m. Since A ⊃ X , every homogeneous
polynomial of degree m that vanishes on A must vanish on X , i.e., IA,m ⊂ IX ,m.
Conversely, the hypothesis A = Z(IX ,m) implies that every polynomial of IX ,m must
vanish on A, i.e., IA,m ⊃ IX ,m.

Now let k < m. As before, since A ⊃ X , we must have IA,k ⊂ IX ,k. For
the converse direction, suppose for the sake of contradiction that there exists some
p ∈ IX ,k that does not vanish on A. This means that there must exist an irreducible
component of A, say S1, such that p does not vanish on S1. Let ζ be a vector of
RD non-orthogonal to S1, i.e., the linear form g(x) = ζ>x does not vanish on S1.
Since p vanishes on X so will the degree m polynomial gm−kp, i.e., gm−kp ∈ IX ,m.
But we have already shown that IX ,m = IA,m, and so it must be the case that
gm−kp ∈ IA,m. Since gm−kp vanishes on A, it must vanish on S1, i.e., gm−kp ∈ IS1 .
Since by hypothesis p 6∈ IS1 , and since IS1 is a prime ideal (see 53), it must be the
case that gm−k ∈ IS1 . But again because IS1 is a prime ideal, we must have that
g ∈ IS1 . But this is true if and only if ζ ∈ S⊥1 , which contradicts the definition of ζ.

(⇐) Suppose IA,k = IX ,k, ∀k ≤ m. We will show that A = Z(IX ,m). But this
is the same as showing that A = Z(IA,m), which is true, by Proposition 55.
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The next Proposition ensures the existence of points in general position with
respect to any degree m ≥ n.

Proposition 14. Let A be an arrangement of n linear subspaces of RD and let
m be any integer ≥ n. Then there exists a finite subset X ⊂ A that is in general
position inside A with respect to degree m.

Proof. By Proposition 55 IA is generated by polynomials of degree ≤ m. Then by
Theorem 2.9 in [25], there exists a finite set X ⊂ A such that IA,k = IX ,k, ∀k ≤ m,
which concludes the proof in view of Proposition 13.

Notice that there is a price to be paid by requiring X to be in general position,
which is that we need the cardinality of X to be artificially large, especially when
m− n is large. In particular, since the dimension of IX ,m must match the dimension
of IA,m, the cardinality of X must be at least Mm(D)− dim(IA,m).

The next result will be useful in the sequel.

Lemma 15. Suppose that X is in general position inside A with respect to degree

m. Let n′ < n. Then the set X (n′) := X −
⋃n′

i=1 Xi lies in general position inside the

subspace arrangement A(n′) := Sn′+1 ∪ · · · ∪ Sn with respect to degree m− n′.
Proof. We begin by noting that m − n′ is an upper bound on the number of

subspaces of the arrrangement A(n′). According to Proposition 13, it is enough to
prove that a homogeneous polynomial p of degree less or equal than m− n′ vanishes
on X (n′) if and only if it vanishes on A(n′). So let p be a homogeneous polynomial of
degree less or equal than m− n′. If p vanishes on A(n′), then it certainly vanishes on
X (n′). It remains to prove the converse. So suppose that p vanishes on X (n′). Suppose
that for each i = 1, . . . , n′ we have a vector ζi ⊥ Si, such that ζi 6⊥ Sn′+1, . . . ,Sn.
Next, define the polynomial r(x) = (ζ>1 x) · · · (ζ>n′x)p(x). Then r has degree ≤ m and
vanishes on X . Since X is in general position inside A, r must vanish on A. For the
sake of contradiction suppose that p does not vanish on A(n′). Then p does not vanish
say on Sn. On the other hand r does vanish on Sn, hence r ∈ ISn or equivalently
(ζ>1 x) · · · (ζ>n′x)p(x) ∈ ISn . Since ISn is a prime ideal we must have either ζ>i x ∈ ISn
for some i ∈ [n′] or p ∈ ISn . Now, the latter can not be true by hypothesis, thus
we must have ζ>i x ∈ ISn for some i ∈ [n′]. But this implies that ζi ⊥ Sn, which
contradicts the hypothesis on ζi. Hence it must be the case that p vanishes on A(n′).

To complete the proof we show that such vectors ζi, i = 1, . . . , n′ always exist. It
is enough to prove the existence of ζ1. If every vector of RD orthogonal to S1 were
orthogonal to Sn′+1, . . . ,Sn, then we would have that S⊥1 ⊥ Sn′+1, . . . ,Sn, which
implies that S1 ⊃ A(n′). But this is a contradiction on the transversality of A.

Remark 16. Notice that the notion of points X lying in general position inside a
subspace arrangement A is independent of the notion of transversality of A (Definition
4). Nevertheless, to facilitate the technical analysis by avoiding degenerate cases of
subspace arrangements, in the rest of section 4 we will assume that A is transversal.
For a geometric interpretation of transversality as well as examples, the reader is
encouraged to consult Appendix C.

4.2. Constructing the first step of a filtration. We will now show how to
construct the first step of a descending filtration associated with a single irreducible
component of A, as in (21). Once again, we are given the pair (X ,m), where X is a
finite set in general position inside A with respect to degree m, A is transversal, and
m is an upper bound on the number n of irreducible components of A (section 4.1).

To construct the first step of the filtration, we need to find a first hyperplane V1 of
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RD that contains some irreducible component Si of A. According to Proposition 56, it
would be enough to have a polynomial p1 that vanishes on the irreducible component
Si together with a point x ∈ Si. Then ∇p1|x would be the normal to a hyperplane
V1 containing Si. Since every polynomial that vanishes on A necessarily vanishes on
Si,∀i = 1, . . . , n, a reasonable choice is a vanishing polynomial of minimal degree k,
i.e., some 0 6= p1 ∈ IA,k, where k is the smallest degree at which IA is non-zero. Since
X is assumed in general position in A with respect to degree m, by Proposition 13
we will have IA,k = IX ,k, and so our p1 can be computed as an element of the right
null space of the embedded data matrix νk(X ). The next Lemma ensures that given
any such p1, there is always a point x in X such that ∇p1|x 6= 0.

Lemma 17. Let 0 6= p1 ∈ IX ,k be a vanishing polynomial of minimal degree. Then
there exists 0 6= x ∈ X such that ∇p1|x 6= 0, and moreover x ∈ S1 −

⋃
i>1 Si.

Proof. We first establish the existence of a point x ∈ X such that ∇p1|x 6= 0. For
the sake of contradiction, suppose that no such x ∈ X exists. Since 0 6= p1 ∈ IX ,k,
p1 can not be a constant polynomial, and so there exists some j ∈ [D] such that
the degree k − 1 polynomial ∂p1

∂xj
is not the zero polynomial. Now, by hypothesis

∇p1
∣∣
x

= 0, ∀x ∈ X , hence ∂p1
∂xj

∣∣
x

= 0, ∀x ∈ X . But then, 0 6= ∂p1
∂xj
∈ IX ,k−1 and

this would contradict the hypothesis that k is the smallest index such that IX ,k 6= 0.
Hence there exists x ∈ X such that ∇p1|x 6= 0. To show that x can be chosen to be
non-zero, note that if k = 1, then ∇p1 is a constant vector and we can take x to be
any non-zero element of X . If k > 1 then ∇p1|0 = 0 and so x must necessarily be
different from zero.

Next, we establish that x ∈ S1−
⋃
i>1 Si. Without loss of generality we can assume

that x ∈ X1 := X ∩ S1. For the sake of contradiction, suppose that x ∈ S1 ∩ Si for
some i > 1. Since x 6= 0, there is some index j ∈ [D] such that the jth coordinate of x,
denoted by χj , is different from zero. Define g(x) := xn−kj p1(x). Then g ∈ IX ,n and
by the general position assumption we also have that g ∈ IA,n. Since A is assumed
transversal, by Theorem 58, g can be written in the form

g =
∑

ri∈[ci], i∈[n]

cr1,...,rn lr1,1 · · · lrn,n,(22)

where cr1,...,rn ∈ R is a scalar coefficient, lri,i is a linear form vanishing on Si, and the
summation runs over all multi-indices (r1, . . . , rn) ∈ [c1]× · · · × [cn]. Then evaluating
the gradient of the expression on the right of (22) at x, and using the hypothesis that
x ∈ S1 ∩ Si for some i > 1, we see that ∇g|x = 0. However, evaluating the gradient
of g at x from the formula g(x) := xn−`j p1(x), we get ∇g|x = χn−kj ∇p1|x 6= 0. This
contradiction implies that the hypothesis x ∈ S1 ∩ Si for some i > 1 can not be true,
i.e., x lies only in the irreducible component S1.

Using the notation established so far and setting b1 = ∇p1|x, the hyperplane of
RD given by V1 = Span(b1)⊥ = Z(b>1 x) contains the irreducible component of A
associated with the reference point x, i.e., V1 ⊃ S1. Then we can define a subspace
sub-arrangement A1 of A by

A1 := A ∩ V1 = S1 ∪ (S2 ∩ V1) ∪ · · · ∪ (Sn ∩ V1).(23)

Observe that A1 can be viewed as a subspace arrangement of V1, since A1 ⊂ V1
(see also the commutative diagram of eq. (21)). Certainly, our algorithm can not
manipulate directly the infinite sets A and V1. Nevertheless, these sets are algebraic
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varieties and as a consequence we can perform their intersection in the algebraic
domain. That is, we can obtain a set of polynomials defining A∩V1, as shown next.15

Lemma 18. A1 := A∩V1 is the zero set of the ideal generated by IX ,m and b>1 x,
i.e.,

A1 = Z (a1) , a1 := 〈IX ,m〉+ 〈b>1 x〉.(24)

Proof. (⇒) : We will show that A1 ⊂ Z (a1). Let w be a polynomial of a1.
Then by definition of a1, w can be written as w = w1 + w2, where w1 ∈ 〈IX ,m〉 and

w2 ∈ 〈b>1 x〉. Now take any point y ∈ A1. Since y ∈ A, and IX ,m = IA,m, we must
have w1(y) = 0. Since y ∈ V1, we must have that w2(y) = 0. Hence w(y) = 0, i.e.,
every point of A1 is inside the zero set of a1. (⇐) : We will show that A1 ⊃ Z (a1).
Let y ∈ Z (a1), i.e., every element of a1 vanishes on y. Hence every element of IX ,m
vanishes on y, i.e., y ∈ Z(IX ,m) = A. In addition, every element of 〈b>1 x〉 vanishes

on y, in particular b>1 y = 0, i.e., y ∈ V1.

In summary, the computation of the vector b1 ⊥ S1 completes algebraically the
first step of the filtration, which gives us the hyperplane V1 and the sub-variety A1.
Then, there are two possibilities: A1 = V1 or A1 ( V1. In the first case, we need to
terminate the filtration, as explained in section 4.3, while in the second case we need
to take one more step in the filtration, as explained in section 4.4.

4.3. Deciding whether to take a second step in a filtration. IfA1 = V1, we
should terminate the filtration because in this case V1 = S1, as Lemma 19 shows, and
so we have already identified one of the subspaces. Lemma 20 will give us an algebraic
procedure for checking if the condition A1 = V1 holds true, while Lemma 21 will give
us a computationally more friendly procedure for checking the same condition.

Lemma 19. V1 = A1 if and only if V1 = S1.

Proof. (⇒) : Suppose V1 = A1
.
= S1 ∪ (S2 ∩ V1) ∪ · · · ∪ (Sn ∩ V1). Taking the

vanishing-ideal operator on both sides, we obtain

IV1 = IS1 ∩ IS2∩V1 ∩ · · · ∩ ISn∩V1 .(25)

Since V1 is a linear subspace, IV1 is a prime ideal by Proposition 53, and so by
Proposition 32 IV1 must contain one of the ideals IS1 , IS2∩V1 , . . . , ISn∩V1 . Suppose
that IV1 ⊃ ISi∩V1 for some i > 1. Taking the zero-set operator on both sides,
and using Proposition 44 and the fact that linear subspaces are closed in the Zariski
topology, we obtain V1 ⊂ Si∩V1, which implies that V1 ⊂ Si. Since S1 ⊂ V1, we must
have that S1 ⊂ Si, which contradicts the assumption of transversality on A. Hence it
must be the case that IV1 ⊃ IS1 . Taking the zero-set operator on both sides we get
V1 ⊂ S1, which implies that V1 = S1, since S1 ⊂ V1. (⇐) : Suppose V1 = S1. Then
V1 = S1 ⊂ A1 ⊂ V1 = S1 and so A1 = V1.

Knowing that a filtration terminates ifA1 = V1, we need a mechanism for checking
this condition. The next lemma shows how this can be done in the algebraic domain.

Lemma 20. V1 = A1 if and only if IX ,m ⊂ 〈b>1 x〉m.

Proof. (⇒) : Suppose A1 = V1. Then A ⊃ V1 and by taking vanishing ideals
on both sides we get IA ⊂ IV1 = 〈b>1 x〉. Since IX ,m = IA,m ⊂ IA, it follows that

IX ,m ⊂ 〈b>1 x〉m. (⇐) : Suppose IX ,m ⊂ 〈b>1 x〉m and for the sake of contradiction

15Lemma 18 is a special case of Proposition 43.
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suppose that A1 ( V1. In particular, from Lemma 19 we have that S1 ( V1. Hence,
there exists a vector ζ1 linearly independent from b1 such that ζ1 ⊥ S1. Now for
any i > 1, there exists ζi linearly independent from b1 such that ζi ⊥ Si. For if not,
then ISi ⊂ IV1 and so Si ⊃ V1, which leads to the contradiction Si ⊃ S1. Then the
polynomial (ζ>1 x) · · · (ζ>n x) is an element of IA,n = IX ,n and by the hypothesis that

IX ,m ⊂ 〈b>1 x〉m we must have that (ζ>1 x)m−n+1 · · · (ζ>n x) ∈ 〈b>1 x〉. But 〈b>1 x〉 is a

prime ideal and so one of the factors of (ζ>1 x) · · · (ζ>n x) must lie in 〈b>1 x〉. So suppose
ζ>j x ∈ 〈b

>
1 x〉, for some j ∈ [n]. This implies that there must exist a polynomial h

such that ζ>j x = h (b>1 x). By degree considerations, we conclude that h must be a
constant, in which case the above equality implies ζj

∼= b1. But this is a contradiction
on the definition of ζj . Hence it can not be the case that A1 ( V1.

Notice that checking the condition IX ,m ⊂ 〈b>1 x〉m in Lemma 20, requires com-
puting a basis of IX ,m and checking whether each element of the basis is divisible

by the linear form b>1 x. Equivalently, to check the inclusion of finite dimensional
vector spaces IX ,m ⊂ 〈b>1 x〉m we need to compute a basis BX ,m of IX ,m as well as a

basis B of 〈b>1 x〉m and check whether the rank equality rank([BX ,m B]) = rank(B)

holds true. Note that a basis of 〈b>1 x〉m can be obtained in a straightforward man-
ner by multiplying all monomials of degree m − 1 with the linear form b>1 x. On the
other hand, computing a basis of IX ,m by computing a basis for the right nullspace
of νm(X ) can be computationally expensive, particularly when m is large. If how-
ever, the points X ∩ S1 are in general position in S1 with respect to degree m, then
checking the condition IX ,m ⊂ 〈b>1 x〉m can be done more efficiently, as we now ex-
plain. Let V 1 = [v1, . . . ,vD−1] be a basis for the vector space V1. Then V1 is
isomorphic to RD−1 under the linear map σV 1

: V1 → RD−1 that takes a vector
v = α1v1 + · · ·+ αD−1vD−1 to its coordinate representation (α1, . . . , αD−1)>. Then
the next result says that checking the condition V1 = A1 is equivalent to checking
the rank-deficiency of the embedded data matrix νm(σV 1(X ∩ V1)), which is compu-
tationally a simpler task than computing the right nullspace of νm(X ).

Lemma 21. Suppose that X1 is in general position inside S1 with respect to degree
m. Then V1 = A1 if and only if the embedded data matrix νm(σV 1

(X ∩ V1)) is full
rank.

Proof. The statement is equivalent to the statement “V1 = A1 if and only if
IX∩V1,m = 〈b>1 x〉m”, which we now prove. (⇒) : Suppose V1 = A1. Then by Lemma

19 V1 = S1, which implies that IS1 = 〈b>1 x〉. This in turn implies that IS1,m =

〈b>1 x〉m. Now IX∩V1,m = IX∩S1,m = IX1,m. By the general position hypothesis

on X1 we have IS1,m = IX1,m. Hence IX∩V1,m = 〈b>1 x〉m. (⇐) : Suppose that

IX∩V1,m = 〈b>1 x〉m. For the sake of contradiction, suppose that A1 ( V1. Since A1 is
an arrangement of at most m subspaces, there exists a homogeneous polynomial p of
degree at most m that vanishes on A1 but does not vanish on V1. Since X ∩V1 ⊂ A1,
p will vanish on X ∩ V1, i.e., p ∈ IX∩V1,m or equivalently p ∈ 〈b>1 x〉m by hypothesis.
But then p vanishes on V1, which is a contradiction; hence it must be the case that
V1 = A1.

4.4. Taking multiple steps in a filtration and terminating. If A1 ( V1,
then it follows from Lemma 19 that S1 ( V1. Therefore, subspace S1 has not yet
been identified in the first step of the filtration and we should take a second step.
As before, we can start constructing the second step of our filtration by choosing a
suitable vanishing polynomial p2, such that its gradient at the reference point x is
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not colinear with b1. The next Lemma shows that such a p2 always exists.

Lemma 22. X admits a homogeneous vanishing polynomial p2 of degree ` ≤ n,
such that p2 6∈ IV1 and ∇p2|x 6∈ Span(b1).

Proof. Since A1 ( V1, Lemma 19 implies that S1 ( V1. Then there exists a vector
ζ1 that is orthogonal to S1 and is linearly independent from b1. Since x ∈ S1−

⋃
i>1 Si,

for each i > 1 we can find a vector ζi such that ζi 6⊥ x and ζi ⊥ Si. Notice that the
pairs b1, ζi are linearly independent for i > 1, since b1 ⊥ x but ζi 6⊥ x. Now, the
polynomial p2 := (ζ>1 x) · · · (ζ>n x) has degree n and vanishes on A, hence p2 ∈ IX ,≤m.

Moreover, ∇p2|x = (ζ>2 x) · · · (ζ>nx)ζ1 6= 0, since by hypothesis ζ>i x 6= 0,∀i > 1.
Since ζ1 is linearly independent from b1, we have ∇p2|x 6∈ Span(b1). Finally, p2 does
not vanish on V1, by a similar argument to the one used in the proof of Lemma 20.

Remark 23. Note that if ` is the degree of p2 as in Lemma 22, and if q1, . . . , qs
is a basis for IX ,`, then at least one of the qi satisfies the conditions of the Lemma.
This is important algorithmically, because it implies that the search for our p2 can be
done sequentially. We can start by first computing a minimal-degree polynomial in
IA,k, and see if it satisfies our requirements. If not, then we can compute a second
linearly independent polynomial and check again. We can continue in that fashion
until we have computed a full basis for IX ,k. If no suitable polynomial has been found,
we can repeat the process for degree k+ 1, and so on, until we have reached degree n,
if necessary.

By using a polynomial p2 as in Lemma 22, Proposition 56 guarantees that ∇p2|x
will be orthogonal to S1. Recall though that for the purpose of the filtration we are
interested in constructing a hyperplane V2 of V1. Since there is no guarantee that
∇p2|x is inside V1 (thus defining a hyperplane of V1), we must project ∇p2|x onto V1
and guarantee that this projection is still orthogonal to S1. The next Lemma ensures
that this is always the case.

Lemma 24. Let 0 6= p2 ∈ IX ,≤m − IV1 such that ∇p2|x 6∈ Span(b1). Then 0 6=
πV1(∇p2|x) ⊥ S1.

Proof. For the sake of contradiction, suppose that πV1(∇p2|x) = 0. Setting b11 :=
b1, let us augment b11 to a basis b11, b12 . . . , b1c for the orthogonal complement of S1
in RD. In fact, we can choose the vectors b12, . . . , b1c to be a basis for the orthogonal
complement of S1 inside V1. By proposition 52, p2 must have the form

p2(x) = q1(x)(b>11x) + q2(x)(b>12x) + · · ·+ qc(x)(b>1cx),(26)

where q1, . . . , qc are homogeneous polynomials of degree deg(p2)− 1. Then

∇p2|x = q1(x)b11 + q2(x)b12 + · · ·+ qc(x)b1c.(27)

Projecting the above equation orthogonally onto V1 we get

πV1(∇p2|x) = q2(x)b12 + · · ·+ qc(x)b1c,(28)

which is zero by hypothesis. Since b12, · · · , b1c are linearly independent vectors of V1
it must be the case that q2(x) = · · · = qc(x) = 0. But this implies that ∇p2|x =
q1(x)b11, which is a contradiction on the non-colinearity of ∇p2|x with b11. Hence it
must be the case that 0 6= πV1(∇p2|x). The fact that πV1(∇p2|x) ⊥ S1 follows from
(28) and the fact that by definition b12, . . . , b1c are orthogonal to S1.
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At this point, letting b2 := πV1(∇p2|x), we can define V2 = Span(b1, b2)⊥, which
is a subspace of codimension 1 inside V1 (and hence of codimension 2 inside V0 := RD).
As before, we can define a subspace sub-arrangement A2 of A1 by intersecting A1

with V2. Once again, this intersection can be realized in the algebraic domain as
A2 = Z(IX ,m, b>1 x, b

>
2 x). Next, we have a similar result as in Lemmas 19 and 20,

which we now prove in general form:

Lemma 25. Let b1, . . . , bs be s vectors orthogonal to S1 and define the interme-
diate ambient space Vs := Span(b1, · · · , bs)⊥. Let As be the subspace arrangement
obtained by intersecting A with Vs. Then the following are equivalent:

(i) Vs = As
(ii) Vs = S1

(iii) S1 = Span(b1, . . . , bs)
⊥

(iv) IX ,m ⊂ 〈b>1 x, . . . , b
>
s x〉m.

Proof. (i)⇒ (ii) : By taking vanishing ideals on both sides of Vs = S1
⋃
i>1(Si ∩

Vs) we get IVs = IS1
⋂
i>1 ISi∩Vs . By using Proposition 32 in a similar fashion as

in the proof of Lemma 19, we conclude that Vs = S1. (ii) ⇒ (iii) : This is obvious
from the definition of Vs. (iii) ⇒ (iv) : Let h ∈ IX ,m. Then h vanishes on A and

hence on S1 and by Proposition 52 we must have that h ∈ IS1 = 〈b>1 x, . . . , b
>
s x〉.

(iv) ⇒ (i) : IX ,m ⊂ 〈b>1 x, . . . , b
>
s x〉m can be written as IX ,m ⊂ IVs . By the general

position assumption IA,m = IX ,m and so we have IA,m ⊂ IVs . Taking zero sets on
both sides we get A ⊃ Vs, and intersecting both sides of this relation with Vs, we get
As ⊃ Vs. Since As ⊂ Vs, this implies that Vs = As.

Similarly to Lemma 21 we have:

Lemma 26. Let V s = [v1, . . . ,vD−s] be a basis for Vs, and let σV s
: Vs → RD−s

be the linear map that takes a vector v = α1v1 + · · · + αD−svD−s to its coordinate
representation (α1, . . . , αD−s)

>. Suppose that X1 is in general position inside S1
with respect to degree m. Then Vs = As if and only if the embedded data matrix
νm(σV s(X ∩ Vs)) is full rank.

By Lemma 25, if IX ,m ⊂ 〈b>1 x, b
>
2 x〉, the algorithm terminates the filtration with

output the orthogonal basis {b1, b2} for the orthogonal complement of the irreducible
component S1 of A. If on the other hand IX ,m 6⊂ 〈b>1 x, b

>
2 x〉, then the algorithm

picks a basis element p3 of IX ,m such that p3 6∈ IV2 and ∇p3|x 6∈ Span(b1, b2),
and defines a subspace V3 of codimension 1 inside V2 using πV2 (∇p3|x).16 Setting
b3 := πV2 (∇p3|x), the algorithm uses Lemma 25 to determine whether to terminate
the filtration or take one more step and so on.

The principles established in the previous sections, formally lead us to the alge-
braic descending filtration Algorithm 2 and its Theorem 27 of correctness.

Theorem 27 (Correctness of Algorithm 2). Let X = {x1, . . . ,xN} be a finite
set of points in general position (Definition 12) with respect to degree m inside a
transversal (Definition 4) arrangement A of at most m linear subspaces of RD. Let
p be a polynomial of minimal degree that vanishes on X . Then there always exists a
nonsingular x ∈ X such that ∇p|x 6= 0, and for such an x, the output B of Algo-
rithm 2 is an orthogonal basis for the orthogonal complement in RD of the irreducible
component of A that contains x.

16The proof of existence of such a p3 is similar to the proof of Lemma 22 and is omitted.
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Algorithm 2 Algebraic Descending Filtration (ADF)

1: procedure ADF(p,x,X ,m)
2: B← ∇p|x;
3: while IX ,m 6⊂ 〈b>x : b ∈ B〉 do

4: find p ∈ IX ,≤m − 〈b>x : b ∈ B〉 s.t. ∇p|x 6∈ Span(B);
5: B← B ∪

{
πSpan(B)⊥ (∇p|x)

}
;

6: end while
7: return B;
8: end procedure

4.5. The FASC algorithm. In Sections 4.2-4.4 we established the theory of a
single filtration, according to which one starts with a nonsingular point x1 := x ∈
A ∩ X and obtains an orthogonal basis b11, . . . , b1c1 for the orthogonal complement
of the irreducible component S1 of A that contains reference point x1. To obtain an
orthogonal basis b21, . . . , b2c2 corresponding to a second irreducible component S2 of
A, our approach is the natural one: remove X1 from X and run a filtration on the set
X (1) := X −X1. All we need for the theory of Sections 4.2-4.4 to be applicable to the
set X (1), is that X (1) be in general position inside the arrangementA(1) := S2∪· · ·∪Sn.
But this has been proved in Lemma 15. With Lemma 15 establishing the correctness
of recursive application of a single filtration, the correctness of the FASC Algorithm
3 follows at once, as in Theorem 28. Note that in Algorithm 3, n is the number of
subspaces, while D and L are ordered sets, such that, up to a permutation, the i-th
element of D is di = dimSi, and the i-th element of L is an orthogonal basis for S⊥i .

Algorithm 3 Filtrated Algebraic Subspace Clustering

1: procedure FASC(X ∈ RD×N ,m)
2: n← 0; D← ∅; L← ∅;
3: while X 6= ∅ do
4: find polynomial p of minimal degree that vanishes on X ;
5: find x ∈ X s.t. ∇p|x 6= 0;
6: B← ADF(p,x,X ,m);
7: L← L ∪ {B};
8: D← D ∪ {D − card(B)};
9: X ← X − Span(B)⊥;

10: n← n+ 1; m← m− 1;
11: end while
12: return n,D,L;
13: end procedure

Theorem 28 (Correctness of Algorithm 3). Let X = {x1, . . . ,xN} be a set in
general position with respect to degree m (Definition 12) inside a transversal (Defi-
nition 4) arrangement A of at most m linear subspaces of RD. For such an X and
m, Algorithm 3 always terminates with output a set L = {B1, . . . ,Bn}, such that up
to a permutation, Bi is an orthogonal basis for the orthogonal complement of the ith

irreducible component Si of A, i.e., Si = Span(Bi)
⊥, i = 1, . . . , n, and A =

⋃n
i=1 Si.

5. Filtrated Spectral Algebraic Subspace Clustering. In this section we
show how FASC (Sections 3-4) can be adapted to a working subspace clustering
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algorithm that is robust to noise. As we will soon see, the success of such an algorithm
depends on being able to 1) implement a single filtration in a robust fashion, and 2)
combine multiple robust filtrations to obtain the clustering of the points.

5.1. Implementing robust filtrations. Recall that the filtration component
ADF (Algorithm 2) of the FASC Algorithm 3, is based on computing a descending
filtration of ambient spaces V1 ⊃ V2 ⊃ · · · . Recall that V1 is obtained as the hyper-
plane of RD with normal vector ∇p|x, where x is the reference point associated with
the filtration, and p a polynomial of minimal degree k that vanishes on X . In the
absence of noise, the value of k can be characterized as the smallest ` such that ν`(X )
drops rank (see section 2.1 for notation). In the presence of noise, and assuming that
X has cardinality at least

(
m+D−1

m

)
, there will be in general no vanishing polynomial

of degree ≤ m, i.e., the embedded data matrix ν`(X ) will have full column rank, for
any ` ≤ m. Hence, in the presence of noise we do not know a-priori what the minimal
degree k is. On the other hand, we do know that m ≥ n, which implies that the un-
derlying subspace arrangement A admits vanishing polynomials of degree m. Thus a
reasonable choice for an approximate vanishing polynomial p1 := p, is the polynomial
whose coefficients are given by the right singular vector of νm(X ) that corresponds
to the smallest singular value. Recall also that in the absence of noise we chose our
reference point x ∈ X such that ∇p1|x 6= 0. In the presence of noise this condition
will be almost surely true every point x ∈ X ; then one can select the point that gives
the largest gradient, i.e., we can pick as reference point an x that maximizes the norm
of the gradient ‖∇p1|x‖2.

Moving on, ADF constructs the filtration of X by intersecting X with the inter-
mediate ambient spaces V1 ⊃ V2 ⊃ · · · . In the presence of noise in the dataset X ,
such intersections will almost surely be empty. As it turns out, we can replace the
operation of intersecting X with the intermediate spaces Vs, s = 1, 2, . . . , by project-
ing X onto Vs. In the absence of noise, the norm of the points of X that lie in Vs
will remain unchanged after projection, while points that lie outside Vs will witness
a drop in their norm upon projection onto Vs. Points whose norm is reduced can
then be removed and the end result of this process is equivalent to intersecting X
with Vs. In the presence of noise one can choose a threshold δ > 0, such that if the
distance of a point from subspace Vs is less than δ, then the point is maintained after
projection onto Vs, otherwise it is removed. But how to choose δ? One reasonable
way to proceed, is to consider the polynomial p that corresponds to the right singular
vector of νm(X ) of smallest singular value, and then consider the quantity

β(X ) :=
1

N

N∑
j=1

∣∣x>j ∇p|xj

∣∣
‖xj‖2

∥∥∇p|xj

∥∥
2

.(29)

Notice that in the absence of noise dimN (νm(X )) > 0 and subsequently β(X ) = 0.
In the presence of noise however, β(X ) represents the average distance of a point x
in the dataset to the hyperplane that it produces by means of ∇p|x (in the absence
of noise this distance is zero by Proposition 56). Hence intuitively, δ should be of
the same order of magnitude as β(X ); a natural choice is to set δ := γ · β(X ), where
γ is a user-defined parameter taking values close to 1. Having projected X onto V1
and removed points whose distance from V1 is larger than δ, we obtain a second
approximate polynomial p2 from the right singular vector of smallest singular value
of the embedded data matrix of the remaining projected points and so on.

It remains to devise a robust criterion for terminating the filtration. Recall that
the criterion for terminating the filtration in ADF is IX ,m ⊂ 〈b>1 x, . . . , b

>
s x〉m, where
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Vs = Span(b1, . . . , bs)
⊥. Checking this criterion is equivalent to checking the inclu-

sion IX ,m ⊂ 〈b>1 x, . . . , b
>
s x〉m of finite dimensional vector spaces. In principle, this

requires computing a basis for the vector space IX ,m. Now recall from section 2.6,
that it is precisely this computation that renders the classic polynomial differentia-
tion algorithm unstable to noise; the main difficulty being the correct estimation of
dim (IX ,m), and the dramatic dependence of the quality of clustering on this esti-
mate. Consequently, for the purpose of obtaining a robust algorithm, it is imperative
to avoid such a computation. But we know from Lemma 26 that, if Xi := X ∩Si is in
general position inside Si with respect to degree m for every i ∈ [n], then the criterion
for terminating the filtration is equivalent to checking whether in the coordinate rep-
resentation of Vs the points X ∩ Vs admit a vanishing polynomial of degree m. But
this is computationally equivalent to checking whether N (νm (σV s

(X ∩ Vs))) 6= 0; see
notation in Lemma 26. This is a much easier problem than estimating dim (IX ,m),
and we solve it implicitly as follows. Recall that in the absence of noise, the norm
of the reference point remains unchanged as it passes through the filtration. Hence,
it is natural to terminate the filtration at step s, if the distance from the projected
reference point17 to Vs+1 is more than δ, i.e., if the projected reference point is among
the points that are being removed upon projection from Vs to Vs+1. To guard against
overestimating the number of steps in the filtration, we enhance the termination cri-
terion by additionally deciding to terminate at step s if the number of points that
survived the projection from Vs to Vs+1 is less than a pre-defined integer L, which is
to be thought of as the minimum number of points in a cluster.

5.2. Combining multiple filtrations. Having determined a robust algorith-
mic implementation for a single filtration, we face the following issue: In general, two
points lying approximately in the same subspace S will produce different hyperplanes
that approximately contain S with different levels of accuracy. In the noiseless case
any point would be equally good. In the presence of noise though, the choice of the
reference point x becomes significant. How should x be chosen? To deal with this
problem in a robust fashion, it is once again natural to construct a single filtration
for each point in X and define an affinity between points j and j′ as

Cjj′,FSASC =

{
‖π(j)

sj ◦ · · · ◦ π
(j)
1 (xj′)‖ if xj′ remains

0 otherwise,
(30)

where π
(j)
s is the projection from Vs to Vs+1 associated to the filtration of point xj

and sj is the length of that filtration. This affinity captures the fact that if points xj
and xj′ are in the same subspace, then the norm of xj′ should not change from step
0 to step c of the filtration computed with reference point xj , where c = D− dim(S)
is the codimension of the irreducible component S associated to reference point xj .
Otherwise, if xj and xj′ are in different subspaces, the norm of xj′ is expected to be
reduced by the time the filtration reaches step c. In the case of noiseless data, only
the points in the correct subspace survive step c and their norms are precisely equal
to one. In the case of noisy data, the affinity defined above will only be approximate.

5.3. The FSASC algorithm. Having an affinity matrix as in eq. (30), standard
spectral clustering techniques can be applied to obtain a clustering of X into n groups.
We emphasize that in contrast to the abstract case of Algorithm 3, the number n of

17Here by projected reference point we mean the image of the reference point under all projections
up to step s.
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clusters must be given as input to the algorithm. On the other hand, the algorithm
does not require the subspace dimensions to be given: these are implicitly estimated
by means of the filtrations. Finally, one may choose to implement the above scheme
for M distinct values of the parameter γ and choose the affinity matrix that leads
to the smallest nth eigengap. The above discussion leads to the Filtrated Spectral
Algebraic Subspace Clustering (FSASC) Algorithm 4, in which

• Spectrum
(
NL(C+C>)

)
denotes the spectrum of the normalized Laplacian

matrix of C +C>,
• SpecClust

(
C∗+(C∗)>, n

)
denotes spectral clustering being applied toC∗+

C∗> to obtain n clusters,
• Vanishing

(
νn(X )

)
is the polynomial whose coefficients are the right singular

vector of νn(X ) corresponding to the smallest singular value.

• H ← 〈∇q|x〉⊥, π ←
[
Rd → H ∼−→ Rd−1

]
is to be read as “π is assigned the

composite linear transformation Rd → H ∼−→ Rd−1, where the first arrow is
the orthogonal projection of Rd to hyperplane H, and the second arrow is the
linear isomorphism that maps a basis of H in Rd to the standard coordinate
basis of Rd−1”.

5.4. A distance-based affinity (SASC-D). Observe that18 the FSASC affin-
ity (30) between points xj and xj′ , can be interpreted as the distance of point xj′

to the orthogonal complement of the final ambient space Vsj of the filtration corre-
sponding to reference point xj . If all irreducible components of A were hyperplanes,
then the optimal length of each filtration would be 1. Inspired by this observation,
we may define a simple distance-based affinity, alternative to the angle-based affinity
of eq. (16), by

Cjj′,dist := 1−
∣∣x>j′∇p|xj

∣∣∥∥∇p|xj

∥∥
2

.(31)

The affinity of eq. (31) is theoretically justified only for hyperplanes, as Cjj′,angle is;
yet as we will soon see in the experiments, Cjj′,dist is much more robust thanCjj′,angle

in the case of subspaces of different dimensions. We attribute this phenomenon to
the fact that, in the absence of noise, it is always the case that Cjj′,dist = 1 whenever
xj ,xj′ lie in the same irreducible component; as mentioned in section 2.6, this need
not be the case for Cjj′,angle. We will be referring to the Spectral ASC method that
uses affinity (31) as SASC-D.

5.5. Discussion on the computational complexity. As mentioned in section
2, the main object that needs to be computed in algebraic subspace clustering is a
vanishing polynomial p in D variables of degree n, where D is the ambient dimension
of the data and n is the number of subspaces. This amounts to computing a right null-
vector of the N ×Mn(D) embedded data matrix νn(X ), where Mn(D) :=

(
n+D−1

n

)
,

and N ≥Mn(D). In practice, the data are noisy and there are usually no vanishing
polynomials of degree n; instead one needs to compute the right singular vector of the
embedded data matrix that corresponds to the smallest singular value. Approximate
iterative methods for performing this task do exist [27, 19, 46], and in this work
we use the MATLAB function svds.m, which is based on an inverse-shift iteration
technique; see, e.g., the introduction of [19]. Even though svds.m is in principle more

18We will henceforth be assuming that all points x1, . . . ,xN are normalized to unit `2-norm.
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Algorithm 4 Filtrated Spectral Algebraic Subspace Clustering (FSASC)

1: procedure FSASC(X , D, n, L, {γm}Mm=1)
2: if N <Mn(D) then
3: return (’Not enough points’);
4: else
5: eigengap ← 0; C∗ ← 0N×N ;
6: xj ← xj/||xj ||, ∀j ∈ [N ];
7: p← Vanishing(νn(X ));

8: β ← 1
N

∑N
j=1

∣∣〈xj , ∇p|xj

||∇p|xj
|| 〉
∣∣;

9: for k = 1 : M do
10: δ ← β · γk, C ← 0N×N ;
11: for j = 1 : N do
12: Cj,: ← Filtration(X ,xj , p, L, δ, n);
13: end for
14: {λs}Ns=1 ← Spectrum(NL(C +C>)) ;
15: if (eigengap < λn+1 − λn) then
16: eigengap ← λn+1 − λn; C∗ ← C;
17: end if
18: end for
19: {Yi}ni=1 ← SpecClust(C∗ +C∗>, n);
20: return {Yi}ni=1;
21: end if
22: end procedure

23: function Filtration(X ,x, p, L, δ, n)
24: d← D, J ← [N ], q ← p, c← 01×N ;
25: flag ← 1;
26: while (d > 1) and (flag = 1) do

27: H ← 〈∇q|x〉⊥, π ←
[
Rd → H ∼−→ Rd−1

]
;

28: if (||x|| − ||π(x)||)/||x|| > δ then
29: if d = D then
30: c(j′)← ||π(x′j)||, ∀j′ ∈ [N ];
31: end if
32: flag ← 0;
33: else

34: J ←
{
j′ ∈ [N ] :

||xj′ ||−||π(xj′ )||
||xj′ ||

≤ δ
}

35: if |J | < L then
36: flag ← 0;
37: else
38: c(j′)← ||π(x′j)||, ∀j′ ∈ J ;
39: c(j′)← 0, ∀j′ ∈ [N ]− J ;
40: if |J | <Mn(d) then
41: flag ← 0;
42: else
43: d← d− 1,x← π(x);
44: xj′ ← π(xj′)∀j′ ∈ J ;
45: X ← {xj′ : j′ ∈ J };
46: q ← Vanishing(νn(X ));
47: end if
48: end if
49: end if
50: end while
51: return (c);
52: end function
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efficient than computing the full SVD of νn(X ) via the MATLAB function svd.m, the
complexity of both functions is of the same order

NMn(D)2 = N

(
n+D − 1

n

)2

,(32)

which is the well-known complexity of SVD [12] adapted to the dimensions of νn(X ).
This is because svds.m requires at each iteration the solution to a linear system of
equations whose coefficient matrix has size of the same order as the size of νn(X ).

Evidently, the complexity of (32) is prohibitive for large D even for moderate
values of n. If we discount the spectral clustering step, this is precisely the complexity
of SASC-A of section 2.6 as well as of SASC-D of section 5.4. On the other hand,
FSASC (Algorithm 4) is even more computationally demanding, as it requires the
computation of a vanishing polynomial at each step of every filtration, and there are
as many filtrations as the total number of points. Assuming for simplicity that there
is no noise and that the dimensions of all subspaces are equal to d < D, then the
complexity of a single filtration in FSASC is of the order of

D−d+1∑
i=0

N (Mn(D − i))2 = N

D−i−d+1∑
i=0

(
n+D − i− 1

n

)2

.(33)

Since FSASC computes a filtration for each and every point, its total complexity
(discounting the spectral clustering step and assuming that we are using a single
value for the parameter γ) is

N

D−d+1∑
i=0

N (Mn(D − i))2 = N2
D−i−d+1∑

i=0

(
n+D − i− 1

n

)2

.(34)

Even though the filtrations are independent of each other, and hence fully paralleliz-
able, the complexity of FSASC is still prohibitive for large scale applications even after
parallelization. Nevertheless, when the subspace dimensions are small, then FSASC is
applicable after one reduces the dimensionality of the data by means of a projection,
as will be done in section 6.2. At any case, we hope that the complexity issue of
FSASC will be addressed in future research.

6. Experiments. In this section we evaluate experimentally the proposed meth-
ods FSASC (Algorithm 4) and SASC-D (section 5.4) and compare them to other
state-of-the-art subspace clustering methods, using synthetic data (section 6.1), as
well as real motion segmentation data (section 6.2).

6.1. Experiments on synthetic data. We begin by randomly generating n =
3 subspaces of various dimension configurations (d1, d2, d3) in R9. The choice D = 9
for the ambient dimension is motivated by applications in two-view geometry [14,
43]. Once the subspaces are randomly generated, we use a zero-mean unit-variance
Gaussian distribution with support on each subspace to randomly sample Ni = 200
points per subspace. The points of each subspace are then corrupted by additive zero-
mean Gaussian noise with standard deviation σ ∈ {0, 0.01, 0.03, 0.05} and support
in the orthogonal complement of the subspace. All data points are subsequently
normalized to have unit euclidean norm.

Using data as above, we compare the proposed methods FSASC (Algorithm 4)
and SASC-D (section 5.4) to the state-of-the-art SASC-A (section 2.6) from algebraic
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Table 1
Mean subspace clustering error in % over 100 independent trials for synthetic data randomly

generated in three random subspaces of R9 of dimensions (d1, d2, d3). The total number of points is
N = 600 with 200 points associated to each subspace. We consider noiseless data (σ = 0) as well
as data corrupted by zero-mean additive white noise of standard deviation σ = 0.01, 0.03, 0.05 and
support in the orthogonal complement of each subspace.

method (2, 3, 4) (4, 5, 6) (6, 7, 8) (2, 5, 8) (3, 3, 3) (6, 6, 6) (7, 7, 7) (8, 8, 8)

σ = 0

FSASC 0 0 0 0 0 0 0 0
SASC-D 0 0 0 0 0 0 0 0
SASC-A 42 39 6 14 37 24 12 0
SSC 0 1 18 49 0 3 14 55
LRR 0 3 39 5 0 9 42 51
LRR-H 0 3 36 6 0 8 38 51
LRSC 0 3 39 5 0 9 42 51
LSR 0 3 39 5 0 9 42 51
LSR-H 0 3 32 6 0 8 38 51

σ = 0.01

FSASC 0 0 0 1 0 0 0 5
SASC-D 0 0 1 1 0 0 0 3
SASC-A 54 45 8 24 57 36 13 3
SSC 2 2 18 49 0 3 13 55
LRR 0 3 38 5 0 9 42 51
LRR-H 0 3 36 7 0 8 38 51
LRSC 0 3 38 5 0 9 42 51
LSR 0 3 39 5 0 9 42 51
LSR-H 0 3 32 6 0 8 38 51

σ = 0.03

FSASC 0 0 1 2 0 0 1 10
SASC-D 0 0 4 3 0 1 2 6
SASC-A 57 46 13 31 58 37 15 7
SSC 0 1 20 48 0 3 13 55

σ = 0.05

FSASC 1 0 2 3 1 0 2 14
SASC-D 1 1 7 5 1 2 5 10
SASC-A 58 46 17 36 60 39 17 11
SSC 0 2 20 49 0 3 15 55
LRR 1 3 39 6 0 10 42 51
LRR-H 1 3 36 13 0 8 38 52
LRSC 1 3 39 6 0 10 42 51
LSR 1 3 39 6 0 10 42 51
LSR-H 1 3 32 7 0 8 38 51

subspace clustering methods, as well as to state-of-the-art self-expressiveness-based
methods, such as Sparse Subspace Clustering (SSC) [10], Low-Rank Representation
(LRR) [20, 22], Low-Rank Subspace Clustering (LRSC) [37] and Least-Squares Re-
gression subspace clustering (LSR) [23]. For FSASC we use L = 10 and γ = 0.1.
For SSC we use the Lasso version with αz = 20, where αz is defined above equation
(14) in [10], and ρ = 0.7, where ρ is the thresholding parameter of the SSC affinity
(see MATLAB function thrC.m provided by the authors of [10]). For LRR we use
the ADMM version provided by the first author with λ = 4 in equation (7) of [21].
For LRSC we use the ADMM method proposed by the authors with τ = 420 and
α = 4000, where α and τ are defined at problem (P ) of page 2 in [37]. Finally, for
LSR we use equation (16) in [23] with λ = 0.0048. For both LRR and LSR we also
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Table 2
Mean intra-cluster connectivity over 100 independent trials for synthetic data randomly gener-

ated in three random subspaces of R9 of dimensions (d1, d2, d3). There are 200 points associated to
each subspace, which are corrupted by zero-mean additive white noise of standard deviation σ = 0.01
and support in the orthogonal complement of each subspace.

method (2, 3, 4) (4, 5, 6) (6, 7, 8) (2, 5, 8) (3, 3, 3) (6, 6, 6) (7, 7, 7) (8, 8, 8)

σ = 0

FSASC 1 1 1 1 1 1 1 1
SASC-D 1 1 1 1 1 1 1 1
SASC-A 0.37 0.37 0.37 0.39 0.34 0.41 0.37 1
SSC 10−3 0.01 10−4 10−3 0.01 0.02 10−3 10−7

LRR 0.59 0.37 0.43 0.31 0.64 0.41 0.45 0.50
LRR-H 0.28 0.23 0.23 0.19 0.31 0.24 0.24 0.26
LRSC 0.59 0.37 0.43 0.31 0.64 0.41 0.45 0.50
LSR 0.59 0.37 0.42 0.31 0.64 0.41 0.45 0.50
LSR-H 0.28 0.24 0.24 0.21 0.31 0.25 0.25 0.27

σ = 0.01

FSASC 0.05 0.35 0.43 0.10 0.09 0.43 0.42 0.43
SASC-D 0.91 0.93 0.85 0.84 0.94 0.91 0.87 0.85
SASC-A 0.32 0.30 0.12 0.14 0.30 0.29 0.24 0.07
SSC 10−3 0.01 10−4 10−3 0.01 0.02 10−3 10−7

LRR 0.42 0.37 0.43 0.31 0.51 0.41 0.45 0.50
LRR-H 0.13 0.23 0.23 0.17 0.22 0.24 0.24 0.26
LRSC 0.42 0.37 0.43 0.31 0.52 0.41 0.45 0.50
LSR 0.41 0.37 0.42 0.31 0.51 0.41 0.45 0.50
LSR-H 0.11 0.24 0.24 0.18 0.21 0.25 0.25 0.27

Table 3
Mean inter-cluster connectivity in % over 100 independent trials for synthetic data randomly

generated in three random subspaces of R9 of dimensions (d1, d2, d3). There are 200 points associated
to each subspace, which are corrupted by zero-mean additive white noise of standard deviation σ =
0.01 and support in the orthogonal complement of each subspace.

method (2, 3, 4) (4, 5, 6) (6, 7, 8) (2, 5, 8) (3, 3, 3) (6, 6, 6) (7, 7, 7) (8, 8, 8)

σ = 0

FSASC 0 0 1 1 0 0 0 2
SASC-D 60 60 60 60 60 60 60 60
SASC-A 55 55 38 43 55 50 42 35
SSC 0 2 22 2 0 7 23 46
LRR 1 49 60 45 0 55 60 63
LRR-H 0 18 43 9 0 32 44 55
LRSC 2 49 60 45 2 55 60 63
LSR 2 49 60 43 2 56 60 64
LSR-H 0 11 24 6 0 19 25 30

σ = 0.01

FSASC 2 4 22 18 2 6 15 35
SASC-D 62 61 60 61 62 60 60 60
SASC-A 63 58 46 51 64 55 47 39
SSC 0.1 1 23 3 0.1 7 23 46
LRR 17 49 60 45 16 55 60 63
LRR-H 1 18 43 9 1 32 44 55
LRSC 17 49 60 45 16 55 60 63
LSR 17 49 60 46 16 55 60 64
LSR-H 0.1 11 24 6 0.1 19 25 30
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Table 4
Mean running time of each method in seconds over 100 independent trials for synthetic data

randomly generated in three random subspaces of R9 of dimensions (d1, d2, d3). There are 200 points
associated to each subspace, which are corrupted by zero-mean additive white noise of standard
deviation σ = 0.01 and support in the orthogonal complement of each subspace. The reported
running time is the time required to compute the affinity matrix, and it does not include the spectral
clustering step. The experiment is run in MATLAB on a standard Macbook-Pro with a dual core
2.5GHz Processor and a total of 4GB Cache memory.

method (2, 3, 4) (4, 5, 6) (6, 7, 8) (2, 5, 8) (3, 3, 3) (6, 6, 6) (7, 7, 7) (8, 8, 8)

σ = 0.01

FSASC 13.57 12.11 8.34 13.90 13.69 10.67 8.55 6.01
SASC-D 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
SASC-A 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
SSC 5.01 4.84 5.06 6.59 4.90 4.71 4.80 5.03
LRR 0.54 0.36 0.34 0.45 0.53 0.34 0.34 0.34
LRR-H 0.65 0.48 0.45 0.61 0.65 0.46 0.46 0.45
LRSC 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
LSR 0.05 0.05 0.05 0.07 0.05 0.05 0.05 0.05
LSR-H 0.25 0.25 0.24 0.32 0.24 0.24 0.24 0.24

report results with the heuristic post-processing of the affinity matrix proposed by the
first author of [21] in their MATLAB function lrr motion seg.m; we denote these
versions of LRR and LSR by LRR-H and LSR-H respectively.

Notice that all compared methods are spectral methods, i.e., they produce a pair-
wise affinity matrix C upon which spectral clustering is applied. To evaluate the
quality of the produced affinity, besides reporting the standard subspace clustering
error, which is the percentage of misclassified points, we also report the intra-cluster
and inter-cluster connectivities of the affinity matrices C. As an intra-cluster connec-
tivity we use the minimum algebraic connectivity among the subgraphs corresponding
to the ground truth clusters. The algebraic connectivity of a subgraph is the second
smallest eigenvalue of its normalized Laplacian, and measures how well connected
the graph is. In particular, values close to 1 indicate that the subgraph is indeed
well-connected (single connected component), while values close to 0 indicate that
the subgraph tends to split to at least two connected components. Clearly, from
a clustering point of view, the latter situation is undesirable, since it may lead to
over-segmentation. Finally, as inter-cluster connectivity we use the percentage of the
`1-norm of the affinity matrix C that corresponds to erroneous connections, i.e., the
quantity

∑
xj∈Si,xj′∈Si′ ,i6=i′

|Cj,j′ |/||C||1. The smaller the inter-cluster connectivity

is, the fewer erroneous connections the affinity contains. To summarize, a high-quality
affinity matrix is characterized by high intra-cluster and low inter-cluster connectivity,
which is then expected to lead to small spectral clustering error.

Tables 1-3 show the clustering error, and the intra-cluster and inter-cluster con-
nectivities associated with each method, averaged over 100 independent experiments.
Inspection of Table 1 reveals that, in the absence of noise (σ = 0), FSASC gives
exactly zero error across all dimension configurations. This is in agreement with the
theoretical results of section 4, which guarantee that, in the absence of noise, the only
points that survive the filtration associated with some reference point are precisely
the points lying in the same subspace as the reference point. Indeed, notice that
in Table 2 and for σ = 0 the connectivity attains its maximum value 1, indicating
that the subgraphs corresponding to the ground truth clusters are fully connected.
Moreover in Table 3 we see that for σ = 0 the erroneous connections are either zero
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or negligible. This practically means that each point is connected to each and every
other point from same subspace, while not connected to any other points, which is
the ideal structure that an affinity matrix should have.

Remarkably, the proposed SASC-D, which is much simpler than FSASC, also
gives zero error for zero noise. Table 2 shows that SASC-D achieves perfect intra-
cluster connectivity, while Table 3 shows that the inter-cluster connectivity associated
with SASC-D is very large. This is clearly an undesirable feature, which nevertheless
seems not to be affecting the clustering error in this experiment, perhaps because the
intra-cluster connectivity is very high. As we will see though later (section 6.2), the
situation is different for real data, for which SASC-D performs inferior to FSASC.

Going back to Table 1 and σ = 0, we see that the improvement in performance
of the proposed FSASC and SASC-D over the existing SASC-A is dramatic: indeed,
SASC-A succeeds only in the case of hyperplanes, i.e., when d1 = d2 = d3 = 8. This
is theoretically expected, since in the case of hyperplanes there is only one normal
direction per subspace, and the gradient of the vanishing polynomial at a point in the
hyperplane is guaranteed to recover this direction. However, when the subspaces have
lower-dimensions, as is the case, e.g., for the dimension configuration (4, 5, 6), then
there are infinitely many orthogonal directions to each subspace. Hence a priori, the
gradient of a vanishing polynomial may recover any such direction, and such directions
could be dramatically different even for points in the same subspace (e.g., they could
be orthogonal), thus leading to a clustering error of 39%.

As far as the rest of the self-expressiveness methods are concerned, Table 1 (σ = 0)
shows what we expect: the methods give a perfect clustering when the subspace
dimensions are small, e.g., for dimension configurations (2, 3, 4) and (3, 3, 3), they start
to degrade as the subspace dimensions increase ((4, 5, 6), (6, 6, 6)), and eventually they
fail when the subspace dimensions become large enough ((6, 7, 8),(7, 7, 7),(8, 8, 8)). To
examine the effect of the subspace dimension on the connectivity, let us consider
SSC and the dimension configurations (2, 3, 4) and (2, 5, 8): Table 2 (σ = 0) shows
that for both of these configurations the intra-cluster connectivity has a small value
of 10−3. This is expected, since SSC computes sparse affinities and it is known to
produce weakly connected clusters. Now, Table 3 (σ = 0) shows that the inter-cluster
connectivity of SSC for (2, 3, 4) is zero, i.e., there are no erroneous connections, and
so, even though the intra-cluster connectivity is as small as 10−3, spectral clustering
can still give a zero clustering error. On the other hand, for the case (2, 5, 8) the inter-
cluster connectivity is 2%, which, even though small, when coupled with the small
intra-cluster connectivity of 10−3, leads to a spectral clustering error of 49%. Finally,
notice that for the case of (8, 8, 8) the intra-cluster connectivity is 10−7 and the inter-
cluster connectivity is 46%, indicating that the quality of the produced affinity is very
poor, thus explaining the corresponding clustering error of 55%.

When the data are corrupted by noise (σ = 0.01, 0.03, 0.05), the rest of the
Tables 1-3 show that FSASC is the best method, with the exception of the case
of hyperplanes. In this latter case, i.e., when d1 = d2 = d3 = 8, the best method is
SASC-D with a clustering error of 6% when σ = 0.03, as opposed to 10% for FSASC.
This is expected, since for the case of codimension-1 subspaces the length of each
filtration should be precisely 1, since in theory, the length of the filtration is equal
to the codimension of the subspace associated to the reference point. Since FSASC
automatically determines this length based on the data and the value of the parameter
γ, it is expected that when the data are noisy, errors will be made in the estimation
of the filtration length. On the other hand, SASC-D is equivalent to FSASC with an
a priori configured filtration length equal to 1, thus performing superior to FSASC.



31

Table 5
Mean subspace clustering error in % over 100 independent trials for synthetic data randomly

generated in four random subspaces of R9 of dimensions (8, 8, 5, 3). There are 200 points associated
to each subspace, which are corrupted by zero-mean additive white noise of standard deviation σ =
0, 0.01, 0.03, 0.05 and support in the orthogonal complement of each subspace.

method / σ 0 0.01 0.03 0.05

FSASC 0 2.19 5.08 7.65
SASC-D 22.88 17.83 15.93 17.44
SASC-A 22.88 27.21 31.43 36.36
SSC 64.39 64.17 64.36 64.13
LRR 42.86 42.88 43.04 42.91
LRR-H 42.08 42.06 42.23 42.21
LRSC 42.85 42.88 43.05 42.90
LSR 42.84 42.85 43.00 42.93
LSR-H 38.72 38.74 38.96 39.86

Certainly, giving as input to FSASC more than one values for γ, as shown in Algorithm
4, is expected to address this issue, but also increase the running time of FSASC (see
Table 4 for average running times of the methods in the current experiment).

We conclude this section by demonstrating the interesting property of FSASC
of being able to give the correct clustering by using vanishing polynomials of degree
strictly less than the true number of subspaces. Towards that end, we consider a
similar situation as above, except that now we have n = 4 subspaces of dimensions
(8, 8, 5, 3). Contrary to SASC-D and SASC-A, for which the theory requires degree-4
polynomials, FSASC is still applicable if one works with polynomials of degree 3: the
crucial observation is that for the dimension configuration (8, 8, 5, 3), the correspond-
ing subspace arrangement always admits vanishing polynomials of degree 3, and the
same is true for every intermediate arrangement occurring in a filtration. For exam-
ple, if one lets b1 be a normal vector to one of the 8-dimensional subspaces, and b2
a normal vector to the other, and b3 a normal vector to the 8-dimensional subspace
spanned by both the 5-dimensional and 3-dimensional subspace, then the polynomial
p(x) = (b>1 x)(b>2 x)(b>3 x) has degree 3 and vanishes on the entire arrangement of the
four subspaces. Interestingly, Table 5 shows that FSASC gives zero error in the ab-
sence of noise and 7.65% error for the worst case σ = 0.05, while all other methods
fail. In particular, the other two algebraic methods, i.e., SASC-D and SASC-A, are
not able to cluster the data using a single vanishing polynomial of degree 3.

6.2. Experiments on real motion sequences. We evaluate different methods
on the Hopkins155 motion segmentation data set [31], which contains 155 videos of
n = 2, 3 moving objects, each one with N = 100-500 feature point trajectories of
dimension D = 56-80. While SSC, LRR, LRSC and LSR can operate directly on the
raw data, algebraic methods require Mn(D) ≤ N . Hence, for algebraic methods, we
project the raw data onto the subspace spanned by their D principal components,
where D is the largest integer ≤ 8 such that Mn(D) ≤ N , and then normalize each
point to have unit norm. We apply SSC to i) the raw data (SSC-raw) and ii) the raw
points projected onto their first 8 principal components and normalized to unit norm
(SSC-proj). For FSASC we use L = 10 and γ = 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10.
LRR, LRSC and LSR use the same parameters as in section 6.1, while for SSC the
parameters are α = 800 and ρ = 0.7.

The clustering errors and the intra/inter-cluster connectivities are reported in
Table 6 and Fig. 4. Notice the clustering errors of about 5% and 37% for SASC-
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Table 6
Mean clustering error (E) in %, intra-cluster connectivity (C1), and inter-cluster connectivity

(C2) in % for the Hopkins155 data set.

2 motions 3 motions all motions

method E C1 C2 E C1 C2 E C1 C2

FSASC 0.80 0.18 4 2.48 0.10 10 1.18 0.16 5
SASC-D 5.65 0.82 26 14.0 0.80 46 7.59 0.81 31
SASC-A 4.99 0.35 5 36.8 0.09 35 12.2 0.29 12
SSC-raw 1.53 0.05 2 4.40 0.04 3 2.18 0.05 2
SSC-proj 5.87 0.04 3 5.70 0.03 3 5.83 0.03 3
LRR 4.26 0.25 19 7.78 0.25 28 5.05 0.25 21
LRR-H 2.25 0.05 2 3.40 0.04 3 2.51 0.05 2
LRSC 3.38 0.25 19 7.42 0.24 28 4.29 0.25 21
LSR 3.60 0.24 18 7.77 0.23 28 4.54 0.23 21
LSR-H 2.73 0.04 1 2.60 0.03 2 2.70 0.04 1
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Fig. 4. Clustering error ratios for both 2 and 3 motions in Hopkins155, ordered increasingly
for each method. Errors start from the 90-th smallest error of each method.

A for two and three motions respectively. Notice how changing the angle-based by
the distance-based affinity, SASC-D already gives errors of around 5.5% and 14%.
But most dramatically, notice how FSASC further reduces those errors to 0.8% and
2.48%. Moreover, even though the dimensions of the subspaces (di ∈ {1, 2, 3, 4} for
motion segmentation) are low relative to the ambient space dimension (D = 56-
80) - a case that is specifically suited for SSC, LRR, LRSC, LSR - projecting the
data to D ≤ 8, which makes the subspace dimensions comparable to the ambient
dimension, is sufficient for FSASC to get superior performance relative to the best
performing algorithms on Hopkins 155. We believe that this is because, overall,
FSASC produces a much higher intra-cluster connectivity, without increasing the
inter-cluster connectivity too much.

7. Conclusions and Future Research. We presented a novel family of sub-
space clustering algorithms, termed Filtrated Algebraic Subspace Clustering (FASC).
The common theme of these algorithms is the notion of a filtration of subspace ar-
rangements. The first algorithm of the family, termed Filtrated Algebraic Subspace
Clustering (FASC) receives as input a finite point set in general position inside a
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subspace arrangement, together with an upper bound on the number of subspaces in
the arrangement. Then FASC provably returns the number of the subspaces, their
dimensions, as well as a basis for the orthogonal complement of each subspace. The
second algorithm of the family, termed Filtrated Spectral Algebraic Subspace Cluster-
ing (FSASC) is an adaptation of FASC to a working algorithm that is robust to noise.
In fact, by experiments on synthetic and real data we showed that FSASC is superior
to state-of-the-art subspace clustering algorithms on several occasions.

Due to the power of the machinery of filtrations, FSASC is unique among other
subspace clustering algorithms in that it can handle robustly subspaces of potentially
very different dimensions, which can be arbitrarily close or far from the dimension of
the ambient space. This is an important distinctive feature of FSASC from state-of-
the-art Sparse and Low-Rank methods, which are in principle applicable only when the
subspace dimensions are sufficiently small relative to the ambient dimension. However,
this advantage of FSASC comes at the cost of a large computational complexity.
Future research will address the problem of reducing this complexity with the aim
of making FSASC applicable to large scale datasets. Additional challenges to be
undertaken include making FSASC robust to missing entries and outliers.

Appendix A. Notions From Commutative Algebra. A central concept in
the theory of polynomial algebra is that of an ideal :

Definition 29 (Ideal). A subset I of the ring R[x] := R[x1, . . . , xD] of polyno-
mials is called an ideal if for every p, q ∈ I and every r ∈ R[x] we have that p+ q ∈ I
and rp ∈ I. If p1, . . . , pn are elements of R[x], then the ideal generated by these
elements is the set of all linear combinations of the pi with coefficients in R[x].

A polynomial f ∈ R[x] is called homogeneous of degree r, if all the monomials
that appear in f have degree r. An ideal I is called homogeneous, if it is generated by
homogeneous elements, i.e., I = 〈f1, . . . , fs〉 where fi is a homogeneous polynomial
of degree ri. The reader can check that an ideal I is homogeneous if and only if
I = ⊕k≥0Ik, where Ik = I ∩R[x]k. It is not hard to see that the intersection and the
sum of two (homogeneous) ideals is a (homogeneous) ideal. In performing algebraic
operations with ideals it is also useful to have a notion of product of ideals:

Definition 30 (Product of ideals). Let I1, I2 be ideals of R[x]. The product
I1I2 of I1, I2 is defined to be the set of all elements of the form p1q1 + · · · + pmqm
for any m ∈ N, pi ∈ I1, qi ∈ I2.

The notion of a prime ideal is a natural generalization of the notion of a prime number.
Prime ideals play a fundamental role in the study of the structure of general ideals,
in analogy to the role that prime numbers have in the structure of integers.

Definition 31 (Prime ideal). An ideal p of R[x] is called prime, if whenever
pq ∈ p for some p, q ∈ R[x], then either p ∈ p or q ∈ p.

We note that if p is a homogeneous ideal, then in order to check whether p is prime,
it is enough to consider f, g homogeneous polynomials in the above definition.

Proposition 32. Let p, I1, . . . , In be ideals of R[x] with p being prime. If p ⊃
I1 ∩ · · · ∩ In, then p ⊃ Ii for some i ∈ [n].

Proof. Suppose p 6⊃ Ii for all i. Then for every i there exists xi ∈ Ii − p. But
then

∏s
i=1 xi ∈ ∩si=1Ii ⊂ p and since p is prime, some xj ∈ p, contradiction.

A final notion that we need is that of a radical ideal:
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Definition 33. An ideal I of R[x] is called radical, if whenever some p ∈ R[x]
satisfies p` ∈ I for some `, then it must be the case that p ∈ I.

Radical ideals have a very nice structure:

Theorem 34. Every radical ideal I of R[x] can be written uniquely as the finite
intersection of prime ideals. Conversely, the intersection of a finite number of prime
ideals is always a radical ideal.

For further information on commutative algebra we refer the reader to [1] and [7] or
to the more advanced treatment of [26].

Appendix B. Notions From Algebraic Geometry. The central object of
algebraic geometry is that of an algebraic variety :

Definition 35 (Algebraic variety). A subset Y of RD is called an algebraic
variety or algebraic set if it is the zero-locus of some ideal a of R[x], i.e., Y ={
y ∈ RD : p(y) = 0, ∀p ∈ a

}
. A standard notation is to write Y = Z(a) where the

operator Z(·) denotes zero set.

If Y = Z(a) is an algebraic variety, then certainly every polynomial of a vanishes
on the entire Y (by definition). However, there may be more polynomials with that
property, and they have a special name:

Definition 36 (Vanishing ideal). The vanishing ideal of a subset Y of RD, de-
noted IY , is the set of all polynomials of R[x] that vanish on every point of Y, i.e.,
IY = {p ∈ R[x] : p(y) = 0, ∀y ∈ Y}.

It can be shown that the algebraic varieties induce a topology on RD:

Definition 37 (Zariski topology). The Zariski Topology on RD is the topology
generated by defining the closed sets to be all the algebraic varieties.

Applying the definition of an irreducible topological space in the context of the Zariski
topology, we obtain:

Definition 38 (Irreducible algebraic variety). An algebraic variety Y is called
irreducible if it can not be written as the union of two proper subsets of Y that are
closed in the subspace topology of Y.19

The following Theorem is one of many interesting connections between geometry and
algebra:

Theorem 39. An algebraic variety Y = Z(a) is irreducible if and only if its
vanishing ideal IY is prime.

Perhaps not surprisingly, irreducible varieties are the fundamental building blocks of
general varieties:

Theorem 40 (Irreducible decomposition). Every algebraic variety Y of RD can
be uniquely written as Y = Y1 ∪ · · · ∪ Yn, where Yi are irreducible varieties and there
are no inclusions Yi ⊂ Yj for i 6= j. The varieties Yi are referred to as the irreducible
components of Y.

Proposition 41. If Y1 = Z(a1),Y2 = Z(a2) are algebraic varieties such that
a1 ⊂ a2, then Y1 ⊃ Y2.

19We note that certain authors (e.g. [15]) reserve the term algebraic variety to refer to an irre-
ducible closed set.
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Theorem 42. It two subsets Y1,Y2 of RD satisfy the inclusion Y1 ⊃ Y2, then
their vanishing ideals will satisfy the reverse inclusion IY1

⊂ IY2
.

Proposition 43. Let Y1 = Z(a1),Y2 = Z(a2) be varieties of RD. Then Y1 ∩
Y2 = Z(a1 + a2).

The final theorem that we present characterizes the set of all points that arise as the
zero set of the vanishing ideal of an arbitrary subset Y of RD.

Proposition 44. Let Y be a subset of RD and IY its vanishing ideal. Then
Z(IY) = Y cl, where Y cl is the topological closure of Y in the Zariski topology.

Finally, it should be noted that most of classic and modern algebraic geometry [15]
assume that the underlying algebraic field (in this paper R) is algebraically closed
[18]. An example of an algebraically closed field is the complex numbers C. Conse-
quently, one should be careful when using results such as Hilbert’s Nullstellensatz in
real polynomial rings.

Appendix C. Subspace Arrangements and their Vanishing Ideals. We
begin by defining the main mathematical object of interest in this paper.

Definition 45 (Subspace arrangement). A union A =
⋃n
i=1 Si of linear sub-

spaces S1, . . . ,Sn of RD, with D ≥ 1, n ≥ 1 is called a subspace arrangement.

It is often technically convenient to work with subspace arrangements that are as
general as possible. One way to capture this notion is by the following definition.

Definition 46 (Transversal subspace arrangement [5]). A subspace arrange-
ment A =

⋃n
i=1 Si ⊂ RD is called transversal, if for any subset I of [n], the codimen-

sion of
⋂
i∈I Si is the minimum between D and the sum of the codimensions of all

Si, i ∈ I, i.e.,

codim

(⋂
i∈I

Si

)
= min

{
D,
∑
i∈I

ci

}
,(35)

where ci = codimSi.
Transversality is a geometric condition on the subspaces S1, . . . ,Sn, that requires all
possible intersections among the subspaces to be as small as possible, as allowed by
the dimensions of the subspaces. To see this, let I be a subset of [n], which without
loss of generality can be taken to be I = {1, 2, . . . , `} = [`], where ` ≤ n. For
every i ∈ I let Bi be a D × ci matrix, whose columns form a basis for S⊥i , where
ci = codimSi := D − dimSi, and let B = [B1 . . .B`]. Then the intersection

⋂
i∈I Si

can be described algebraically as

x ∈
⋂
i∈I

Si ⇔ B>x = 0.(36)

From (36) it is clear that the dimension of
⋂
i∈I Si is equal to the dimension of the

right nullspace of B, or equivalently

codim

(⋂
i∈I

Si

)
= rank(B).(37)

Now, B is a D ×
(∑

i∈I ci
)

matrix and so its rank will satisfy

rank(B) ≤ min

{
D,
∑
i∈I

ci

}
,(38)
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which in conjunction with (37) justifies the geometric interpretation of Definition 4.
In fact, if A is not transversal, then there exists some subset I ⊂ [n], for which B is
rank-deficient, which shows that certain algebraic relations must be satisfied among
the parametrizations B1, . . . ,Bn of the subspaces S1, . . . ,Sn. This is essentially the
argument behind the proof of the next Proposition, which shows that transversality
is not a strong condition, rather it will be satisfied almost surely.

Proposition 47. Let A be a subspace arrangement consisting of n linear sub-
spaces of RD of dimensions d1, . . . , dn. If A is chosen uniformly at random, then A
will be transversal with probability 1.

Example 48. An arrangement A = S1 ∪ S2 ∪ S3 ⊂ RD such that S1 ⊂ S2 is
non-transversal, since codimS1 ∩ S2 = codimS1 = c1 < min {D, c1 + c2}. Note that
when choosing S1,S2,S3 uniformly at random, the event S1 ⊂ S2 has probability zero.

Example 49. An arrangement of three planes A = H1∪H2∪H3 of R3 that inter-
sect on a line is non-transversal, because codimH1∩H2∩H3 = 2 < min {3, 1 + 1 + 1}.
When H1,H2,H3 are chosen uniformly at random, which is equivalent to choosing
their normal vectors b1, b2, b3 uniformly at random, the three planes intersect on a
line only if b1, b2, b3 are linearly dependent, which is a probability zero event.

Another notion of subspace arrangements in general position that is closely related
to transversal arrangements, is that of linearly general subspaces.

Definition 50 (Linearly general subspace arrangement [4]). A subspace arrange-
ment A =

⋃n
i=1 Si is called linearly general, if for every subset I ⊂ [n] we have

dim

(∑
i∈I

Si

)
= min

{
D,
∑
i∈I

di

}
,(39)

where di = dimSi.
As the reader may suspect, the notion of transversal and linearly general are dual to
each other in the following sense.

Proposition 51. A subspace arrangement
⋃n
i=1 Si is transversal if and only if

the subspace arrangement
⋃n
i=1 S⊥i is linearly general.

Proof. This follows by noting that with reference to the matrix B constructed
below Definition 4, we have

codim

(⋂
i∈I

Si

)
= rank(B) = dim

(∑
i∈I

S⊥i

)
,(40)

and that codimSi = dimS⊥i .

In order to understand some important properties of subspace arrangements, it is
necessary to examine the algebraic-geometric properties of a single subspace S of RD
of dimension d. Let b1, . . . , bc be a basis for the orthogonal complement of S, where
c = D − d and define the polynomials pi(x) = b>i x, i = 1, . . . , c. Notice that pi(x)
is homogeneous of degree 1 and is thus also referred to as linear form. If a point x
belongs to S, then pi(x) = 0, ∀i. Conversely, if a point x ∈ RD satisfies pi(x) = 0, ∀i,
then x ∈ S. This shows that S = Z(p1, . . . , pc), i.e., S is an algebraic variety. Notice
that the set of linear forms that vanish on S is a vector space and the polynomials
pi, i = 1, . . . , c form a basis.
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The Proposition that follows asserts that the vanishing ideal of S, i.e., the set of
all polynomials that vanish at every point of S, is in fact generated by the polynomials
pi(x), i = 1, . . . , c.

Proposition 52 (Vanishing Ideal of a Subspace). Let S = Span(b1, . . . , bc)
⊥

be a subspace of RD defined as the orthogonal complement of the space spanned by
{b1, . . . , bc} over R. Then IS is generated over R[x] by the linear forms b>1 x, . . . , b

>
c x.

Proof. Let {b1, . . . , bc} be a basis for the orthogonal complement of S and aug-
ment it to a basis {b1, . . . , bc,h1, . . . ,hD−c} of RD, where h1, . . . ,hD−c is a basis for
S. Now define a change of basis transformation φ : RD → RD, which maps the basis
{b1, . . . , bc,h1, . . . ,hD−c} to the canonical basis {e1, . . . , eD} of RD, where ei is the
i-th column of the D × D identity matrix. Notice that bi is mapped to ei and as
a consequence S is mapped to the orthogonal complement of the vectors e1, . . . , ec.
Since φ is a vector space isomorphism, we do not loose generality if we assume from
the beginning that S = Span(e1, . . . , ec)

⊥ = Span(ec+1, . . . , eD) and the vector space
of linear forms that vanish on S is x1, . . . , xc. Notice that x ∈ S if and only if the
first c coordinates of x are zero.

Now let g ∈ IS . We can write g(x) = ḡ(xc+1, . . . , xD) +
∑c
i=1 xigi(x). By

hypothesis we have g(0, . . . , 0, ac+1 . . . , aD) = 0 for any real numbers ac+1, . . . , aD,
which implies that ḡ(ac+1, . . . , aD) = 0,∀ac+1, . . . , aD ∈ R. This in turn implies that
ḡ is the zero polynomial 20. Hence g(x) =

∑c
i=1 xigi(x), which shows that g is inside

the ideal generated by the linear forms that vanish on S.

In algebraic-geometric notation, the above proposition can be concisely stated as
IZ(b>

1 x,...,b
>
c x)

= 〈b>1 x, . . . , b
>
c x〉. Interestingly, the vanishing ideal of a subspace is a

prime ideal:

Proposition 53. Let S be a subspace of RD. Then S is irreducible in the Zariski
topology of RD or equivalently, IS is a prime ideal of R[x].

Proof. As in the proof of Proposition 52 we can assume that (x1, . . . , xc) is a
basis for the linear forms of R[x] that vanish on S. Then IS = 〈x1, . . . , xc〉 and our
task is to show that IS is prime. So let f, g be homogeneous polynomials such that
fg ∈ 〈x1, . . . , xc〉. For the sake of contradiction, suppose that f 6∈ 〈x1, . . . , xc〉 and
g 6∈ 〈x1, . . . , xc〉. Then f contains monomials that depend only on the indeterminates
xc+1, . . . , xD. Among such monomials, let uf be the monomial of maximal degree in
the reverse lexicographic order [7] and let its coefficient be cf 6= 0. Similarly, let ug
be the monomial of maximal degree in the reverse lexicographic order appearing in g
that depends only on the indeterminates xc+1, . . . , xD with coefficient cg 6= 0. Then
the monomial of maximal degree in the reverse lexicographic order in the product fg
is going to be ufug. Since fg ∈ 〈x1, . . . , xc〉 we will have fg = x1q1+ . . . xcqc, where qi
is some polynomial. However, every monomial appearing in x1q1 + . . . xcqc is strictly
less than ufug, which implies that cfcg = 0 and so either cf = 0 or cg = 0, which is a
contradiction.

Alternative Proof : A more direct proof exists if we assume familiarity of the reader
with quotient rings. In particular, it is known that an ideal I of a commutative ring R
is prime if and only if the quotient ring R/I has no zero-divisors [1]. By noticing that
R[x1, . . . , xD]/〈x1, . . . , xc〉 ∼= R[xc+1, . . . , xD] we immediately see that 〈x1, . . . , xc〉 is
prime.

20We can prove by induction on d that if F is an infinite field and g(x1, . . . ,xd) = 0,∀x1, · · · ,xd ∈
F, then g = 0.



38

Returning to the subspace arrangements, we see that a subspace arrangement
A = S1 ∪ · · · ∪ Sn is the union of irreducible algebraic varieties S1, . . . ,Sn. This
immediately suggests that the subspace arrangment itself is an algebraic variety. This
was established in [25] via an alternative argument. Additionally, in view of Theorem
40, the irreducible components of A are precisely its constituent subspaces S1, . . . ,Sn,
which also proves that a subspace arrangement can be uniquely written as the union
of subspaces among which there are no inclusions. We summarize these observations
in the following theorem:

Theorem 54. Let S1, . . . ,Sn be subspaces of RD such that no inclusions exist
between any two subspaces. Then the arrangement A = S1 ∪ · · · ∪ Sn is an algebraic
variety and its irreducible components are S1, . . . ,Sn.

The vanishing ideal of a subspace arrangement A =
⋃n
i=1 Si is readily seen to

relate to the vanishing ideals of its irreducible components via the formula

IA = IS1 ∩ · · · ∩ ISn .(41)

Since ISi is a prime ideal, Theorem 34 implies that IA is radical and that A uniquely
determines the ideals IS1 , . . . , ISn , assuming that there are no inclusions between the
subspaces. Hence, retrieving the irreducible components of a subspace arrangement
is equivalent to that of computing the prime factors of its vanishing ideal IA.

Since the ideal of a single subspace S1 is generated by linear forms, i.e., it is
generated in degree 1, one may be tempted to conjecture that the ideal IA of a union
of n subspaces is generated in degree less or equal than n. In fact, this is true:

Proposition 55. Let A be an arrangement of n linear subspaces of RD. Then
its vanishing ideal IA is generated in degree ≤ n.

Proof. By [6] the Castelnuovo-Mumford regularity21 of IA is bounded above by n.
But by construction, the CM-regularity of an ideal bounds from above the maximal
degree of a generator of the ideal.

A crucial property of a subspace arrangement A in relation to the theory of
Algebraic Subspace Clustering is that for any non-zero vanishing polynomial p on A,
the orthogonal complement of the space spanned by the gradient of p at some point
x ∈ A contains the subspace to which x belongs.

Proposition 56. Let A =
⋃n
i=1 Si be a subspace arrangement of RD, p ∈ IA

and x ∈ A, say x ∈ Si for some i ∈ [n]. Then ∇p|x ⊥ Si.
Proof. Take p ∈ IA. From IA = IS1 ∩ · · · ∩ ISn we have that IA ⊂ ISi . Hence

p ∈ ISi . Now, from Proposition 52 we know that ISi is generated by a basis among
all linear forms that vanish on Si, i.e., by a basis of ISi,1. If (bi1, . . . , bici) is an

R-basis for S⊥i then (b>i1x, . . . , b
>
icix) is an R-basis for ISi,1 and a set of generators

for ISi over R[x]. Hence we can write p(x) =
∑ci
j=1(b>ijx)gj(x) where gj(x) ∈ R[x].

Taking the gradient of both sides of the above equation we get ∇p =
∑ci
j=1 gj(x)bij +∑ci

j=1(b>ijx)∇gj . Now let x ∈ Si be any point of Si. Evaluating both sides at x we

have ∇p|x =
∑ci
j=1 gj(x)bij +

∑ci
j=1(b>ijx)∇gj |x. By hypothesis we have b>ijx = 0, ∀j

and so we obtain ∇p|x =
∑ci
j=1 gj(x)bij ∈ S⊥i .

One may wonder when it is the case that the gradient of a vanishing polynomial
on a subspace arrangement A is zero at every point of A. This is answered by

21Please see [7], [4], [6] or [5] for the definition of Castelnuovo-Mumford regularity.
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Proposition 57. Let A =
⋃n
i=1 Si be a subspace arrangement of RD and let

p ∈ IA. Then ∇p|x = 0, ∀x ∈ A if and only if p ∈
⋂n
i=1 I2Si .

Proof. (⇒) Suppose that p ∈ IA, such that ∇p|x = 0,∀x ∈ A. Since IA ⊂
ISi , ∀i ∈ [n], by Proposition 52, p(x) can be written as

p(x) =

ci∑
j=1

gi,j(x)(b>i,jx),(42)

where ci is the codimension of Si, (bi,1, . . . , bi,ci) is a basis for S⊥i and gi,j(x) are
polynomials. Now the hypothesis ∇p|x = 0,∀x ∈ A implies that ∂p/∂xk|x = 0,∀x ∈
A, ∀k ∈ [D]. Thus ∂p/∂xk ∈ IA and so ∂p/∂xk ∈ ISi . Hence, again by Proposition
52, ∂p/∂xk can be written as

∂p/∂xk =

ci∑
j=1

hi,j,k(x)(b>i,jx).(43)

Differentiating equation (42) with respect to xk gives

∂p/∂xk =

ci∑
j=1

(∂gi,j/∂xk) (b>i,jx) +

ci∑
j=1

gi,j(x)bi,j(k).(44)

From equations (43), (44) we obtain

ci∑
j=1

gi,j(x)bi,j(k) =

ci∑
j=1

(hi,j,k(x)− ∂gi,j/∂xk) (b>i,jx)(45)

which can equivalently be written as

ci∑
j=1

bi,j(k)gi,j(x) =

ci∑
j=1

qi,j,k(x)(b>i,jx)(46)

where qi,j,k(x) := hi,j,k(x) − ∂gi,j/∂xk. Note that equation (46) is true for every
k ∈ [D]. We can write these D equations in matrix form

[
bi,1 bi,2 · · · bi,ci

]


gi,1(x)
gi,2(x)

...
gi,ci(x)

 = Q(x)


b>i,1x

b>i,2x
...

b>i,cix

 ,(47)

where Q(x) is a D × ci polynomial matrix with entries in R[x]. We can view
equation (47) as a linear system of equations over the field R(x). Define Bi :=[
bi,1 bi,2 · · · bi,ci .

]
The columns of Bi form a basis of S⊥i , and so they will be

linearly independent over R. Consequently, the square matrix B>i Bi will be invert-
ible over R and its inverse will also be the inverse of B>i Bi over the larger field R(x).
Multiplying both sides of equation (47) from the left with (B>i Bi)

−1B>i , we obtain
gi,1(x)
gi,2(x)

...
gi,ci(x)

 = (B>i Bi)
−1B>i Q(x)


b>i,1x

b>i,2x
...

b>i,cix

 .(48)
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Note that (B>i Bi)
−1B>i Q(x) ∈ (R[x])

ci×ci and so equation (48) gives that gi,j(x) ∈
ISi , ∀j ∈ [ci]. Returning back to equation (42), we readily see that p ∈ I2Si , ∀i ∈ [n],
which implies that p ∈ ∩ni=1I2Si .

(⇐) Suppose that p ∈ ∩ni=1I2Si . Since ∩ni=1I2Si ⊂ ∩
n
i=1ISi = IA, we see that

p must be a vanishing polynomial. Since p ∈ I2Si , by Proposition 52 we can write

p(x) =
∑ci
j,j′=1 gj,j′(x)(b>i,jx)(b>i,j′x) from which it follows that ∇p|xi

= 0, ∀xi ∈ Si.
Since this holds for any i ∈ [n], we get that ∇p|x = 0, ∀x ∈ A.

We conclude with a theorem lying at the heart of Algebraic Subspace Clustering.

Theorem 58. Let A =
⋃n
i=1 Si be a transversal subspace arrangement of RD with

vanishing ideal IA. Let JA be the product ideal JA = IS1 · · · ISn . Then the two ideals
are equal at degrees ` ≥ n, i.e., IA,` = JA,`,∀` ≥ n.

Theorem 58 implies that every polynomial of degree n that vanishes on a transversal
subspace arrangement A of n subspaces is a linear combination of products of linear
forms vanishing on A, a fundamental fact that is used repeatedly in the main text of
the paper. Theorem 58 was first proved in Proposition 3.4 of [4], in the context of
the Castelnuovo-Mumford regularity of products of ideals generated by linear forms.
It was later reproved in [5] using a Hilbert series argument and the result from [6] on
the Castelnuovo-Mumford regularity of a subspace arrangement.
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