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Abstract 
%e analyze the observability of the continuous and dis- 
crete states of a class of linear hybrid systems. We 
derive rank conditions that the structural parameters 
of the model must satisfy in order for filtering and 
smoothing algorithms to operate correctly. We also 
study the identifiability of the model parameters by 
characterizing the set of models that  produce the same 
output measurements. Finally, when the data  are gen- 
erated by a model in the class, we give conditions under 
which the true model can he identified. 

1 In t roduct ion  

Hybrid systems are mathemat.ical models'of physical 
processes governed by differential equations that ex- 
hibit discontinuous behavior. Examples of such pro- 
cesses are ubiquitous in nature and in man-made de- 
vices, from action potentials in neurons to  flight control 
syst,ems in aircrafts. A particular but important class 
of hybrid syst.ems is obtained by assuming that  the dy- 
namics between discrete events are linear. This cl&s of 
systems is important not only because the analysis and 
design of linear control systems is well understood, hut 
also because many real processes can be approximated 
arbitrarily well by models in this class. Previous work 
on hybrid systems concentrated on the areas of model- 
ing, stability, controllability and verification. However 
(see Section 1.2), litt.le attention has been devoted to 
the study of the obseruability of the continuous and 
discrete states of a hybrid system. Another important 
issue is whether the model itself can be inferred from 
data,  i.e., whether it is identifiable. While many iden- 
tification algorithms have been proposed (see Section 
1.2): most of them do not give conditions under which 
their solution is unique. 

In this paper, we study the observability and identi- 
fiability of so-called jump linear systems (JLSs), i.e., 
systems whose evolution is determined by a collec- 
tion of linear models with continuous state x t  E Rn 
connect,ed by switches of a number of discrete stales 
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At E (1_ 2 , .  . . , N } .  The evolution of the continuous 
state xt is described by the linear system 

(1) Yt = C ( A t ) X t  + w t ,  

where A ( k )  E RnYn and C ( k )  E RP'", for k E 
{ L Z ;  ..., N } ,  xto - PO, ut - N(O,Q(At)) and wt - 
N(O,R(Xt)). The evolution of the discrete state A t  
can he modeled, for instance, as an irreducible Markov 
chain governed by the transition map 71, P(Xt+1JAt)  = 
T ~ + I . ~ ,  or (a we do here) as a deterministic but unknom 
input that  is piecewise constant and finite valued'. 

1.1 Contr ibut ions  of t h i s  paper 
In Section 2 we introduce the notion of observability 
for JLSs, and derive conditions under which the con- 
tinuous and discrete states can he inferred from data. 
Unlike previous work, we derive simple and intuitive 
rank conditions that depend on the system parameters 
A(. ) ,C( . )  and on the separation between jumps, and 
not on the noise or inference criterion. The rank condi- 
tions we derive can be thought of as an extension of the 
Popov-Belevic-Hautus rank test for linear systems [ IO]  
and are, to  the best of our knowledge, novel. 

In Section 3 we study two problems. The first one is 
concerned with the characterization of the set of mod- 
els that  produce the same outputs ("realizability"). We 
show that,  in lack of assumptions on the model generat- 
ing the data, there are infinitely many models that  pro- 
duce the same measurements and, therefore, a unique 
model cannot he inferred from data. We also show 
that the set of unidentifiable models is actually the 
entire set of possible models, unless proper conditions 
are imposed. Therefore, extreme care has to he ex- 
ercised in the use of iterative identification techniques 
for JLSs, since they can in principle converge to  any 
model if proper conditions are not enforced. We derive 
such conditions in Section 3.1. The second problem is 
concerned with the conditions under which the actual 
model that  generated the data  (the "true" model) can 
be recovered from the output ("identifiability"), under 
the assumption that the true oiodel belongs to the class 
of JLSs. We address this problem in Section 3.2. 

'Most of the literature on hybrid systems restricts the switch- 
ing mechanism of the discrete state to depend on the d u e  of the 
continuom state. While this is generaliy sensible in the study of 
stability, it i s  a significant rstriction to  impose in the context 
of filtering and identification. Our model is more general, as it 
imposes no restriction on the mechanism that governs the tran- 
sitions between discrete states. 

xt+i = A ( X t ) x t + ~  
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1.2 Relation to prior  work 
Filtering and identification of JLSs was an active area 
of research through the seventies and eighties: a review 
of the state of the art in 1982 can be found in [19]. 
That  paper discusses suboptimal algorithms for mini- 
mum mean-square error state estimation. In 1181, the 
same author uses a finite-memory approximation to 
the maximum likelihood for simultaneously estimating 
the model parameters and the continuous and discrete 
states. The paper includes a condition for observabil- 
ity which, although tautological, is significant because 
it represents the first attempt to  characterize the ob- 
servability of hybrid systems. 

The field was revived in the last few years, when many 
iterative algorithms were proposed, along with a few 
attempts to characterize observability. 1161 gives an 
unusual and somewhat limited condition in terms of 
the existence of a discrete state trajectory. These con- 
ditions pertain to systems where the discrete state is 
controlled, rather than evolving out of its own dynam- 
ics. 1171 gives conditions for a particular class of lin- 
ear time-varying systems where the system matrix is 
a linear combination of a basis with time-varying c e  
efficients. They relate to  the conditions of 1161, where 
the discrete state is controlled. 181 addresses observ- 
ability and controllability for switched linear systems 
with known and periodic transitions. [2] proposes the 
notion of incremental observability of a hybrid system, 
which requires the solution of a mixed-integer linear 
program in order to  be tested. 

In a series of papers (see [7] and references therein) 
Krishnamurthy, Doucet et al. propose various forms 
of alternating minimization algorithms for estimating 
continuous and/or discrete states that  are optimal in 
the maximum a-posteriori sense. Various forms of a p  
proximate inference for JLSs include 114, 12,4]. In [12]: 
approximate filtering and maximum likelihood parani- 
eter estimates are obtained via alternating minimiza- 
tion. The approximate filtering entails the assump 
tion that the underlying conditional density is uui- 
modal, similarly to  1141, which implicitly approximates 
the posterior density with a Gaussian. Also [15] al- 
ternates between approximate filtering, which uses se 
called Viterbi approximations (where the evolution of 
the conditional density is approximated by the trajec- 
tory of its mode; which subsumes the assumption that 
it is unimodal), and maximum likelihood parameter e% 
timation. In 1131 approximate filtering is performed by 
approximating the posterior density with a member of 
an ad-hoc parametric class. In 151 particle filtering is 
used for simultaneous filtering and identification. In [9] 
approximate filtering is applied to  systems in which the 
discrete dynamics do not affect the evolution of the 
continuous states, but only the choice of the measured 
output. The textbook [l] uses the interacting multiple 
models scheme to provide an approximation of the two- 

step prediction using N Gaussian densities rather than 
NZ. 131 uses mixed-integer quadratic programming for 
identifying the parameters of piecewise affine models 
with known polyhedral partitions. The algorithm has 
polynomial complexity on the number of data. 

2 Observabi l i ty  

Given a model C = { A ( k ) , C ( k ) ; k  = l . . . N }  of the 
type described by equation (l), we focus our attention 
on how to infer the st.ate of the system and the sys- 
tem paranieters from the output {yt}. The simplest 
instance of this problem can be informally described as 
follows. Assume that we are given the model paran- 
eters A ( k ) , C ( k )  and that C evokes starting from an 
(unknown) initial condition (xt,: &). Given the out- 
put on the interval [ to, to + T], is i t  possible to recoii- 
struct the sequence of continuous states xta . .  . . , qa+T 

as well a5 the sequence of discrete states At,, . . . X t o + ~  
uniquely? 

If the sequence of discrete states is known, then the 
output of the system between two consecutive jumps 
can be written explicitly in terms of the model parani- 
eters A(.)_C(.), and the initial value of the continuous 
state xio .  Thus the entire continuous state trajectory 
can be reconstructed from the initial d u e  of the con- 
tinuous state xto and the discrete states Xi,, . . . , X t o + ~ .  
More specifically. the output sequence is gi\-en by: 

Yt" 

Ut , - ]  

Yt l  

Yt2-1 

Yt. 

where { t k .  k z  1) are the switching times, Q = &-tn  
and O,(X,,) E RprkXn,  defined by the equations 
above, is the extended observability matrix of the pair 
(A(&,) :  C(&)) .  We t,hus propose the following no- 
tions of indistinguishability and observability: 

Definit ion 1 (Indistinguishability) W e  say that the 
states {Q,, At,, . . . . &+T} and {st,, Xi,, . . . , xt,+T} 
are indistinguishable on the internal [ t O : t o  + 
TI if the wnesponding outputs in free evolution 
{uta,. . . ,Yi.+T} and {Yt,. . . . &+T} are eqaal. We  de- 
note the set of states which are indistinguishable from 
{Zio,Xto,...,Xto+T} asZ(xt,,Xt",.. .-Xta+T). 

361 5 



Definit ion 2 (Observabi l i ty)  We say that a state 
{zto,At, ,..., Xto+T} ZS observable on [to,to + TI if 
Z(xt, ,Xt, , . . . ,Ato+T) = {zt,,Xt,, ..., Xto+T}. When 
any admissible state is observable, we say that the 
model C is observable.  

2.1 Observabi l i ty  of the ini t ia l  state 
We first analyze the conditions under which we 
can determine At, = &,+I = ... = and 
xto uniquely, i.e., before a switch occurs. We 
have that {zt,, ~ At,, . . . , X t , - l }  is indistinguishable from 
{ % , i t , ,  .. .. &,-I} if O,(At.)zto = (7To(Xta)%, i.e., 
ifrank([O,(At,) UTo(&,)]) < 2n. Ifeitherpro < 2nor  
rank(OTa(Ato)) < n or rank(O,(&,)) < n, the above 
rank condition is trivially satisfied, so we assume that 
TO 2 7 2n. We then have the following: 

L e m m a  1 (Observabi l i ty  of the ini t ia l  s t a t e )  

observable if and only if for  all k # k' E { 1,. . . , N )  we 
have rank([O,(k) U,(k')]) = 2n. 

Readers may notice that the joint observability matriz 
Ozn(k,k')  +! [Uzn(!=) U2,(k')] equals the observability 
matrix of the Zn-dimensional system defined by: 

If 70 t I +! 2n, then { x t o . X t o , A f o + i  i...,XtO+I--l} is 

Therefore, we can define t,he joint observability index of 
systems k and k' as the minimum integer v(k, k ' )  such 
that the rank of the extended joint observability matrix 
Oj (k .k ' )  d [Oj(k)  Oj(k')] stops growing. Hence, we 
can rephrase Lemma 1 in terms of the largest joint 
observability index Y max{v(k, k')} 5 2n as follows: 

Corollary 1 I f  TO 2 Y, then {+to:  At,, . . . ~ At,+,-l} is 
observable if and only if for all k # k' E { 1,. , . , N )  we 
have rank([O,(k) O"(k')]) = 2n. 

R e m a r k  1 (Observabili ty subspaces)  Notice that 
the rank-2n condition implies that each linear system 
( A ( k ) ,  C (k ) )  must be observable, i.e., rank(U,(k)) = n 
for all k E [I.. . . ~ N } .  I n  addition, the ran t9n  con- 
dition implies that the intersection of the observabil- 
ity subspaces of each pair of linear systems has to be 
empty. In  fact, the set of unobservable states can be 
directly obtained f rom the intersection of the obseruabil- 
ity subspaces. One could therefore introduce a notion 
of distance between models using the angles between the 
observability spaces, similarly to if?]. 

2.2 Observabi l i ty  of the switching t imes  
Corollary 1 gives conditions for the observability of 
{xt,, A t o >  X~,+I,. . . ~ Xt,+,-l}. We are now interested in 
the observability of {zto,At,, At,+l,. . . ,,!+I}. Since 

= . . , = A tor we only need to  concentrate on the 
conditions under which the first transition, t l ,  can be 
uniquely determined. We will distinguish between two 
different aspects of the problem: 

k#k' 

Detec t ion  of a s w i t c h  this refers t o  the problem of 
determining whether a jump has occurred or not, given 
the output of the system { u t }  on the interval [ t o ,  to+T]. 
We will derive a rank condition that  guarantees the 
detection of a switch, either a t  the same instant, or 
post-mortem (i.e., after it has occurred). 

Obse rva t ion  of a switch: this refers to the problem 
of uniquely determining the time instant tk a t  which a 
jump occurs, given the output of the system { y t }  on the 
interval [to, to+T]. We will derive additional conditions 
on the system parameters that guarantee that a switch 
is recovered uniquely when it is detected post-mortem. 

Let us first derive conditions under which a switch is 
immediately reflected in the measurements. We have 
yt, = C ( X t , ) A ( A t , ) t l - t o x t ,  and want to determine 
whether it is possible that ytl = C(Xto)A(Xt,)l l-fnxt, .  
This happens for all xto in the null-space of 
(C(At,) - C(At,)) A(Ato)tl-to.  Therefore: 

L e m m a  2 If xtO E Null (C(xt,)-C(Xt,))A(Xt~)tl-'o, 

then {.to. At,: . . . , At,, At, 1 and { . to,  At,, . . . , At,, At,}, 

t,-tn timer t l - tO timer - - 
are indistinguishable i n  [ to ,  t i]  

We conclude from Lemma 2 that a switch can be in- 
stantaneously detected for all xtn E W" if and only 
if ( C ( k ) - C ( k ' ) ) A ( k )  is full rank for all k # k' E 
[I,. . . , N } .  This condition, together with those of 
Corollary 1, enable us to uniquely recover x t o ,  At, and 
tl from the output [y t , t  E [ to , t l ]}  as follows. Let 

T T 
Yt [ Y; ... It,+t-1 ] = O<(Xt,)Xt,. (4) 

If i = U, equation (4) has a solution for only one At, E 
(1, . . . I N} which is given by 

At. = {k : rank([O,(k) Y,]) = n). ( 5 )  

Given such a At,, equation (4) has a solution for any 
i E [v_ TO] and does not have a solution for i = TO + 1. 
Therefore t l  can be uniquely recovered as: 

t l  = min[i : rank([U;(Xto) Y;])  = n + I} +to - 1. (6)  

Once t~ has been determined, we set ro = tl - t o  and 
xto = OTo(Ato)'Y~o. Then x e  repeat the process for 
the remaining jumps. The only difference is that  x t k .  
k 2 1. will be given. However, since At, is originally 
unknown, we still need to check the rank-2n condition 
of Corollary 1 for any pair of extended observability 
matrices in order for xto and At, to  be uniquely recov- 
erable. Therefore, we have: 

Theorem 1 If (C(k) - C(k')) A(k)  is full rank for all 
k # k' E {I: ..., N }  and Tk t v for all k 0, then 
{.to: At,;. . . , &+T} is observable if and only if for all 
k # k ' € { l >  ...,N} we hauerank([U,(k) Ou(k')])=2n. 
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Let us now consider the case in which a jump occurs 
at time tl, but it cannot be detected at the same 
time. This happens, for example, when C(X,,) = 
C(Xl,) or p < n. It can be easily verified that 
the output of the system in [ t l . t l  + 3 - 11, yt,+, = 
C(Xt,)A(Xt,)*A(Xt,)tl-toxtor can also be obtained as 
C(Xt.)A(Xt,)t'+'-Dxt, if and only if zta belongs to 

all z = 0,1,. . . ,j - 1. This condition is compactly ex- 
pressed in the following lemma. 

Null ((C(Xt,)A(Xt,)' - C(Xt,)A(Xt,)')At'-to(Xt,)) for 

L e m m a  3 (Detect ion of a switch) Ifxt, belongs to 
Null((Oi(X,,) - Oi(Xl,))AtL-to((Xl,)) for all i=l ?..., j, 

then {zS, At, ,..., ha} and {xt.lXt,, ..., Xt.,Xt,: ..., Xt,} 
are indistinguishable on the interual [to,  t l  + j - 11 

t l+ j - ta  times t l - t o  times j timer - -- 
Therefore, if (O,(k) - U,(k')) A(k) is full rank for 
all k # k' E 1 1 , .  ..,A'}, then a switch can be de- 
tected for all xtn E R" (either immediately or after 
it has occurred). Even though this condition guar- 
antees that a switch is detected, it does not guaran- 
tee that it can be uniquely recovered. For instance, 
imagine that a jump occurs at time t l ,  but it is 
not detected until time t i  + j .  Since both t l  and 
j 5 U are unknown, in general we cannot tell when 
the jump occurred. However, if we assunie that t:! 2 
t l  +j +U, since tl  +j is known, under the assuniptions 
of Corollary 1. we can determine (A(&"): C(Ata):xtu) 
and (A(X,,):C(X,,),xt,+j) uniquely from the niea- 
suremeiits on the intervals [ t O : t O  + U - l] and [ t l  + 
j :  t l  + j + U - 11, respectively. Since we must have 
st,+, = A(Xtl)JA(Xt,)"-'D~t,, in order for t l  to  be 
uniquely recoverable for all xtn E R", we need that 
rank ((A(Xt,)j - A(Xt,)j'A(XI,)j-j')A(X,,)"-") = n 
for all 0 5 j' 5 j - 1. Since j is unknowii n.e need to 
enforce this for all j 5 U .  We have shown that: 

Theorem 2 If for all k 2 0 we have ~k 2 2u and 
for all k # k' E 11; ... :N}, j'  = 0 , ._.,  j - 1 
and j 5 U we have rank([O,(k) Ou(k')]) = 2n, 
rank((O,(k) - ,$ lu(k ' ) )  A(k)) = n and rank(A(k')j - 
A(!d)j'A(k)j-J) = n, then (xto:Xt,,Xt,+i, ..., XtO+T} 

i s  observable on [ tO; ta  + TI. 

3 Identification 

The study of identifiability aims at answering two cru- 
cial questions in modeling time series with JLSs. 

The first question pertains to uniqueness: Given 
measurements [yt}g:T, generated by a model C = 
{Ai, C,ii 0 . .  . N - l}, what is the set of models 
C = [Ai, Ct; i = 0 . .  . N - 1) that  may have produced 
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the same output sequence {yt}p!T? Clearly, this ques- 
tion is crucial in the design of inference algorithms: if 
the set 2 is non-empty, then any inference algorithm 
can converge to  any points of the set. In other words, 
all models in the set are indistinguishable. In order for 
inference algorithms to  converge to a unique model, it 
is necessary to  understand the structure of the set, and 
elect a representative for each class. This will need im- 
posing conditions on the structure of the models. Fail- 
ing that, any inference algorithm may give dramatically 
different answers when operating on the same data de- 
pending on initialization, or on numerical errors. 

The second question pertains to  identifiability of the 
"true" model: Assuming that the model that  generates 
the data  is actually a jump linear system, under what 
conditions can we recover it from the data? We address 
these two questions in order in the next two sectioiis. 

3.1 Realizabili ty 
The results we are about to  present reveal that. given 
data alone, there are infinitely many systems that gen- 
erate it, which differ in the trajectories of both discrete 
and continuous states, and model parameters. Even 
more surprisingly, given any system, one can always 
find arbitrary changes of basis of the same system that 
re-create the data. In other words, given any system, 
one can "simulate" the jumps. This is grim news for 
inference algorithms, because i t  means that  ~ unless 
appropriate conditions are enforced - one can never re- 
cover a meaningful model from data. 

Consider a vector YT collecting the niea~nreinents from 
to to t o  + T < cn. We will now show that one can 
explain the data with one single model. or with two 
models and one switch, all the way to T + 1 models 
and T switches. In fact, we can always choose (in- 
finitely many) models [Ao: CO} with extended observ- 
ability matrix 00, and initial conditions 10 E Rn with 
n large enough, such that YT = 00x0. However, we can 
also choose TO 5 T/2 ,  two systems [AI> Cl}, {Az- C,) 
with observability matrices O1 and 0 2 ,  two initial con- 
ditions ~ 1 ~ x 2  € R"', and nl  large enough, such that: 

(7) 

where (A&}%, are chosen with respect to a basis such 
that xz=A;Oxl. Similarly, one can split the time series 
into 3, ..., T+1 segments, and find {Ai> C,} for each one. 

This shows that there is an inherent ambiguity between 
the number of models N and their complexity n: one 
cannot tell. from YT,  how many, and how complex, 
the models that  generated the data are. Note that, 
even if the maximum number of models is known and 
equal to  the true N, one can always generate thesame 
data with an equal or smaller number of models N and 
a larger dimension of their continuous state. Similarly, 



even if the maximum dimension of the continuous state 
is known and equal to  the true one n, one can always 
generate the same data with models of smaller or equal 
state dimension 5, and a larger number of models. 

Therefore, imposing a limit on the dimension of the 
state space n or on the number of models N allowable 
in a given time interval T is not enough to make the 
inference task weU-posed and we will need to  constrain 
both of them simultaneously. If only one model is al- 
IonTed, a.e., if N = l ,  then the order n of a minimal 
realization must satisfy 2n 5 T + 1. If N models are 
allowed. and we are given a lower bound P o n  the mini- 
mum separation between consecutive switches, then we 
must have 2n+2n 5 T,  hence 2 n N + 2 n ( N - l )  _< T+1, 
in order to obtain a minimal realization for each one of 
the N linear systems and identify the N - 1 switches. 

From linear systenis theory, we know that the realiza- 
tion of a linear system is obtained up to a change of 
basis of the state space. Since xto is unknown, such a 
change of basis is arbitrary for the first linear system. 
However, the choice of basis for subsequent systems is 
not arbitrary, but depends on the choice of the initial 
continuous state. Therefore we have the following: 

Theorem 3 If we are given a lower bound f on 
the minimum separation between consecutive switches, 
then the set of models that generate the data { y t } p ! T  
isgiven b y C =  { n ~ i A ; A l ; ’ , C ; n l ; ’ ; i = O  . . .  N-1) ,  
where Mi E G L ( n )  is such that M<+lxt ,+l  = M i A > x t , ,  
i = 0.. . . N ~ 1, 4n 5 T and 4 n N -  2n 5 T + 1. 

The  intuition behind the theorem is as follows. Since 
the first switch occurs after t o  +4, we can use the first 
7 measurements to  identify the dimension of the state 
space n, the initial state (zto, At,,) and the system pa- 
rameters (A(Ato)>C(Ato) )  up to  a change of basis MO E 
G L ( n ) .  Then, assuming that t l  can be uniquely recov- 
ered, one can U% the measurements in [ t l ,  tl+?] to ob- 
tain (zt l ,At,) ,  (A(At , ) :C(At , ) )  u p  to  a change of basis 
MI E G L ( n )  that  must satisfy M l x t ,  = MoA(A,,)xt, 
and so on. 

Consider now a set of data YT and any (observable) 
system { A _ C } ,  with continuous state space of dimen- 
sion n, which generates an extended observability ma- 
trix 0. For simplicity, let T be a multiple of n, 
T = kn. Then, one can find k matrices M; E G L ( n ) ,  
i = 1.. . k: such that the same system, with changes 
of basis A{;, generates the data. This means that one 
can choose an arbitrary model ( A , C ) ,  of arbitrary or- 
der n, and generate k models which differ only by a 
change of hasis while generating the data. Consider, 
in fact, the equation J+ = [ ( O X ] )  T . . . ( O ~ k ) T ] .  If 
0 bas full rank (which is true provided that  { A , C }  
is minimal), then one can always choose X I , .  . . , z k  so 

that the above equation is satisfied. However, given 
an arbitrary choice of the statespace, one can always 
choose M2,. . . , h f k  E G L ( n )  in the following way. Let 
Mzxz = Ata-’lxl and define Or OM;’ and conse- 
quently A2 and Cz. Similarly one defines A43 so that  
M3x3 = A 2 - ‘ Z A t Z - t 1 ~ l  from which O3 = OM;’ and 
so on. Therefore, given any (finite) dataset, one can 
pick an arbitrary model that  will explain the data, pr+ 
vided that the number of models one can use (all con- 
structed from the given one just by changes of basis) is 
large enough. 

3.2 Identifiability 
In this section we address the question of identifiabil- 
ity: under what conditions can we recover the “true” 
model from data? From the discussion of the previous 
sections, if the model can be uniquely identified (The- 
orems 2 and 3) and the “true” model belongs to  the 
class of JLSs, then the model being ident.ified has to  be 
the true one. 

Consider now the doubly infinite Hankel matrix 

Y t ,  3rt,+l ..’ 
H =  [ Yt,M Yt,Z ;:-I (8) 

and let Htl;lj E RiPxj be a finite-dimensional Hankel 
sub-matrix with upper left entry yt, lower left entry 
yt+;-l and upper right entry y t + j - l .  If the dimension 
of the continuous state space n and the switching times 
tk and tk+l were known, then the continuous state of 
the syst,em Xk = [zt, . . . z ~ ~ + ~ - ~ ]  and the model pa- 
rameters (i lk,  c k )  could be identified up to  a change of 
basis h f k  E G L ( n )  from the Hankel submatrix gener- 
ated by measurements {yt} corresponding to  that lin- 
ear system, i.e., from Ht,in+lln. Such a computation 
can be done using; for example, a simplified version of 
the subspace identification algorithms described in [ll]. 
The details of the cornputation are as follows (we use 
MATLAB notation): 

fft,ln+lln = ukskv? (9) 

C h = U k ( l : p , l : n )  (11) 
X ,  = Sk(1  : n, 1 : n)vk(:, 1 : n)*. (12) 

Ak = I i k ( 1  : p n ,  1 : n)tUk(p + 1 : p ( n  + l), 1 : n) (10) 

Since in practice n and tk are unknown, we con- 
sider Hankel submatrices of the form Ht,liklj , ,  with 

where R is a given upper bound on n .  Since 
Htkliilj,  = Oi,(At,)[xt, . . . X ~ . + ~ ~ - I ]  and we are look- 
ing for a pair (Ai;,Ck) that  is observable, we have 
that rank(Ht,liklj,) = n. Since to  is known, the di- 
mension of the continuous state can be obtained as 
n = raiik(Hta~io~jo). Given n and to? we can obtain xto 
and (Ao;  CO) from equations (9)-(12) up to a chaige of 
basis MO E G L ( n ) .  

i k  2 5 + 1 ,  j k  2 and i k + j k  5 7 1 1 ,  
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We are now interested in identifying t l ,  for which we 
consider a Hankel sub-matrix of the form Hto,n+llj with 
a variable number of columns j 2 n. If n 5 j < t l  - n, 
Ht,~n+llj is generated hy measurements corresponding 
to  one linear system, thus rank(Ht,ln+llj) = n. If j > 
tl-n, the matrix Ht,lnlj is generated by two linear sys- 
tems. Since we have assumed that the switching times 
are detectable, we must have rank(Htoln+ll,) > n from 
some j on. Letting j* = min{j : rank(Ht,ln+llj) > n}, 
we can recover t l  uniquely from j *  as follows. Com- 
pute xjr and (A1,Cl) up to  a change of basis M I  by 
applying (9)-(12) to  Hj.ln+,ln. We must have that 
hllxj ,  = hloA{'-t'A;-tU~t,. Under the assumptions 
of Theorem 2, there is a unique t l  satisfying such an 
equation. Once such a ti has been computed, the iden- 
tification process can be repeated starting with t i  BS 

we did with t o .  

Finally, we emphasize that the matrices M k  E GL(n) 
cannot be chosen arbitrarily, since they must satisfy 
the following constraint: 

(13) 
t*+*-tl. 

hfk+lzth+, = MkAk Xtk.  

Thus, one can pick hfo arbitrarily and then determine 
M k + ,  from h!k,  xtktl and xtk as follows: 

where XI E W"-'"" is the space orthogonal to  X tan. 

4 Conclusions 

We have presented an analysis of the observability of 
the continuous and discrete states of a class of linear 
hybrid systems, as well as a characterization of the 
identifiability of the model parameters. The character- 
ization of observability and identifiability given above 
sheds light on the geometry of the spaces spanned by 
the outputs of a JLS, regardless of noise. For a given 
system structure: which could be for instance a gener- 
ative model, the conditions tell us whether one could 
use any of the filtering or identification algorithms pr+ 
posed in the literature or, if the conditions are not sat- 
isfied, how one should modify the model or the infer- 
ence procedure. We have also characterized the classes 
of unidentifiable models, i . e . ,  models that  produce the 
same outputs, and derived conditions under which the 
"true" model can be identified from data. 

An important issue that we did not addressed is con- 
cerned with characterizing the set of observationally 
equivalent models. In linear systems theory, this is 
done elegantly by the Kalman decomposition, which 
partitions the state space into orthogonal subspaces. 
Future work will address a characterization of the set 
of observationally equivalent models as well as a study 
of the observability and identifiability conditions in the 
presence of noise. 
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