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Abstract— We consider the problem of identifying a model
for data generated by a mixture of dynamical models, both
in space and in time. We assume that the measurements at
a particular time instant depend on a spatial variable, and
that the dynamics of the data in different spatial regions can
be modeled with different hybrid systems. We also assume
that both the spatial regions as well as the discrete states
of the hybrid systems are unknown. Furthermore, we allow
the number of models to vary as a function of time. We call
such a dynamical model a spatial-temporal hybrid system, and
develop a recursive identification algorithm for the class of
spatial-temporal switched ARX models. We demonstrate the
applicability of our method to the segmentation of videos of
dynamic textures, such as segmenting a bird floating on water.

I. INTRODUCTION

The past few years have witnessed an increasing interest
in the application of system-theoretic techniques to modeling
visual dynamical processes. For instance, [1] models videos
of dynamic textures, such as fire, steam, water, etc., as
the output of an Auto-Regressive Moving Average (ARMA)
model; [2] uses ARMA models to represent human gaits,
such as walking, running, jumping, etc.; and [3], [4] use
ARMA models to describe the appearance of moving faces.
Given a video sequence, one can use standard system iden-
tification techniques, e.g., [5], to learn the parameters of the
ARMA model. Given an ARMA model, one can use it to
synthesize, classify, or recognize novel sequences.

An important assumption in all these applications is that
the scene contains a single dynamic texture, so that the video
can be modeled with a single ARMA model. This limitation
has motivated recent work on modeling scenes consisting of
multiple temporal events. [6], [7] model such videos as the
output of a linear hybrid system, where each discrete state
corresponds to a different event. Given a video sequence, the
parameters of each dynamical model can be identified using
existing techniques for switched ARX systems [8], [9], [10],
[11] or piece-wise ARX systems [12], [13], [14].

Unfortunately, all existing algorithms for hybrid system
identification assume that the measurements at time t are the
output of a single linear model. This assumption is violated
in several applications in computer vision, where different
regions in an image may obey different dynamical models.
Therefore, one needs to model the video as the output of
several dynamical models, not only in time, but also in space.

Paper contributions. We propose a recursive algorithm for
identifying the parameters of a spatial-temporal switched
ARX (STSARX) system, whose output at time t, yt, comes
from nt ≥ 1 ARX models, without knowing which entries

of yt correspond to which model. As time proceeds, the
number of models nt could vary. Also, the ARX model
associated with a particular entry of yt could change due
to the occurrence of an event, as in regular SARX models.

Our recursive identification algorithm exploits the fact that
the output of an STSARX system at time t must satisfy
a polynomial of degree n, where n ≥ nt is the total
number of ARX models. The coefficients of this polynomial
are identified using recursive normalized least-squares. The
parameters of each ARX model at each time and spatial
location are identified from the derivatives of this polynomial
at a measurement. The segmentation of the data according to
the nt ARX models is then obtained by clustering the ARX
model parameters obtained at each spatial-temporal location.

We test our algorithm on the segmentation of a scene
containing a bird floating on water. The algorithm not only
segments the bird motion from the surrounding water motion,
but also captures the periodic bird motion from the temporal
evolution of the coefficients of the estimated polynomial. Our
experiments also demonstrate the ability of the method to
deal with appearing and disappearing motions in the scene.

Relation to prior work. Our work can be seen as a natural
generalization of the work of [11] on recursive identification
of SARX systems. The main differences is that we consider
ARX models whose output has multiple entries, with each
entry obeying a possibly different models depending on a
spatial variable. Our work is also related to the work of [15],
which proposes a recursive algorithm for clustering moving
hyperplanes. The main difference is that we have an explicit
(SARX) model for the temporal evolution of the data, while
in [15] there is no model for the motion of the hyperplanes.

II. IDENTIFICATION OF STSARX SYSTEMS

A discrete-time Switched Auto-Regressive eXogenous
(SARX) system is a system whose dynamics are given by

yt =
na(qt)∑
j=1

aj(qt)yt−j +
nc(qt)∑
j=1

cj(qt)ut−j , (1)

where yt ∈ R is the output, ut ∈ R is the input, q : N → Q
.=

{1, 2, . . . , n} is the discrete state or mode, which is assumed
to be a deterministic but unknown sequence, na(i) and nc(i)
are the orders of the ith ARX model for i = 1, . . . , n, and
{aj(i)}na(i)

j=1 and {cj(i)}nc(i)
j=1 are the model parameters.

In this paper, we will consider systems in which both
the input and the output are actually functions of a spatial
variable x ∈ X ⊂ ZD, i.e. ut : X → R and yt : X → R.
For example, when D = 2, yt(x) could be the intensity at



pixel x in an image, or the temperature reading of a mote at
location x in a sensor network. Furthermore, we will assume
that at time t the space X is partitioned into nt regions

X = X1(t) ∪ X2(t) ∪ · · · ∪ Xnt(t), (2)

each one associated with a different SARX model. Although
each one of these nt SARX model has its own discrete state,
we assume that their discrete-state spaces are all subsets of
Q = {1, 2, . . . , n}. This allows us to define a global discrete
state qt : X → Q such that qt(x) = i if yt(x) is generated
by the ith ARX model. Therefore, we define a discrete-space
discrete-time Spatial-Temporal SARX (STSARX) model as
a system whose dynamics are given by

yt(x) =
na(qt(x))∑

j=1

aj(qt(x))yt−j(x) +
nc(qt(x))∑

j=1

cj(qt(x))ut−j(x). (3)

Remark 1: Note that an SARX system is a particular case
of an STSARX system with |X | = 1, and an ARX system is
a particular case of an STSARX system with |X | = n = 1.

Given input/output data {ut, yt}∞t=0 generated by an
STSARX system with n ARX models in space and time,
we wish to identify the model orders {na(i), nc(i)}n

i=1 and
the model parameters {aj(i)}na(i)

j=1 and {cj(i)}nc(i)
j=1 , without

knowing the discrete state {qt(x)}, the regions where each
model is valid Xi(t), or the number of active models at time
t, nt. In order for this identification problem to be well posed,
the parameters of the STSARX system must be uniquely
defined, which requires an assumption of minimality. We
will say that an STSARX model is minimal if its n individual
ARX systems are minimal and different from each other.

A. Spatial-Temporal Hybrid Decoupling Polynomial
In [10] we showed that the input/output data generated by

an SARX model with n discrete states lie in the zero set of
a homogeneous polynomial of degree n. More specifically,
if n̄a ≥ max{na(i)} and n̄c ≥ max{nc(i)} are given upper
bounds on the orders of the ARX models, K

.= n̄a + n̄c +1,
and for all i = 1, . . . , n and t ≥ max{n̄a, n̄c} we let

zt
.=[ut−n̄c

, . . . , ut−1, yt−n̄a
, . . . , yt−1,−yt]>∈ RK and (4)

bi
.=
[
0>n̄c−nc

, cnc(i), ..., c1(i),0>n̄a−na
, ana(i), ..., a1(i), 1

]
,>(5)

then there exists a discrete state qt = i ∈ {1, . . . , n} such
that b>i zt = 0, hence the input/output data must satisfy the
following hybrid decoupling polynomial [10]

qn(zt) =
n∏

i=1

(b>i zt) = 0. (6)

The coefficients of qn can be estimated using a batch least-
squares method [10] or a recursive normalized least-squares
method [11]. Given an estimate of the coefficients of qn,
the vector of model parameters bi associated with zt can be
computed from the derivatives of qn at the regressor zt.

In the case of STSARX models, the situation is more
complicated, because the regressor vector

zt(x) .= [ut−n̄c
(x), . . . , ut−1(x),

yt−n̄a
(x), . . . , yt−1(x),−yt(x)]>

(7)

depends on the spatial variable x, and the value of x deter-
mines which one of the nt SARX models corresponds to the
regressor vector zt(x). Nevertheless, if we let Q1(x) ⊆ Q
be the set of discrete states associated with a spatial location
x ∈ X , then for all t ≥ max{n̄a, n̄c} the set of all regressors
associated with x must satisfy the polynomial∏

i∈Q1(x)

(b>i zt(x)) = 0. (8)

However, we cannot identify the coefficients this polynomial,
because the nt regions Xi(t) are unknown, thus so is Q1(x).

An alternative solution is to consider the set of nt discrete
states Q2(t) ⊆ Q that are active at time t. Then∏

i∈Q2(t)

(b>i zt(x)) = 0 (9)

for all x ∈ X , no matter which region Xi(t) the vector x
belongs to. However, the degree of this polynomial, hence
the dimension of its vector of coefficients, changes with time.
This rules out the possibility of using a recursive algorithm
for identifying the polynomial coefficients.

As it turns out, there is a much simpler approach for defin-
ing a hybrid decoupling polynomial for STSARX systems
that is valid for all x and all t, irrespective of the value of
the discrete state qt(x) and of the regions Xi(t). The idea
is to consider all n ARX models that define the STSARX
model. At each time t, a subset of nt ≤ n models with
parameters {bi}i∈Q2(t) is chosen. Then, for all x ∈ X and
for all t ≥ max{n̄a, n̄c} there exists an i ∈ {1, 2, . . . , n}
such that b>i zt(x) = 0. Therefore, for all x ∈ X and
t ≥ max{n̄a, n̄c}, we have

pn(zt(x)) =
n∏

i=1

(b>i zt(x)) = 0. (10)

Notice that the degree n of the hybrid decoupling polynomial
for STSARX models, pn, does not need to coincide with the
number of discrete states of any individual SARX model.
Also n does not need to correspond with the number of
models at time t, nt. Instead, n is the total number of ARX
models, both in space and in time. Therefore, the number
of coefficients in pn does not change with time, which
allows us to develop a recursive algorithm for identifying
its coefficients, as we will describe in the next subsections.

B. Spatial-Temporal Hybrid Model Parameters

Notice that pn(z) .=
∏n

i=1(b
>
i z) is a homogeneous

polynomial of degree n in K variables. Hence, if we define
the Veronese map of degree n, νn : RK → RMn(K), as [16]

νn : [z1, . . . , zK ]> 7→ [. . . , γn1,...,nK
zn1
1 · · · znK

K . . .]>, (11)

where Mn(K) =
(
n+K−1

K−1

)
=

(
n+K−1

n

)
, 0 ≤ nk ≤ n for

k = 1, . . . ,K,
∑K

k=1 nk = n, and γn1,...,nK
=

√
n

n1!···nK ! ,
we can write pn as a linear combination of the monomials
γn1,...,nK

zn1
1 zn2

2 · · · znK

K with coefficients hn1,...,nK
∈ R as∑

hn1,...,nK
γn1,...,nK

zn1
1 zn2

2 · · · znK

K = h>νn(z). (12)



The following lemma summarizes some properties of h
and νn that will be used later in the paper (see [16]).

Lemma 1 (Properties of the Veronese map):
1) The vector h ∈ RMn(K) is a vector representation of

the symmetric part of the symmetric tensor product of
the individual ARX model parameters {bi}n

i=1, i.e.

h '
∑

σ∈Sn

bσ(1) ⊗ bσ(2) ⊗ · · · ⊗ bσ(n), (13)

where Sn is the permutation group of n elements, and
⊗ is the Kronecker product.

2) For all z1,z2 ∈ RK , the Veronese map of degree n,
νn, is such that νn(z1)>νn(z2) = (z>1 z2)n. Hence,

‖νn(z)‖ = ‖z‖n and ‖νn(z)‖i = ‖νi(z)‖n. (14)

Since the vector h ∈ RMn(K) encodes the parameters
{bi}n

i=1 of the n ARX models, we will refer to h as the
vector of spatial-temporal hybrid model parameters from
now on. Notice that the last entry of h is always one, because
the last entry of each bi is also one. Therefore, there is a
one-to-one correspondence between h and the ARX model
parameters {bi}n

i=1 modulo a permutation of the latter ones.

C. Recursive Identification of the Spatial-Temporal Hybrid
Model Parameters

For the sake of simplicity, let us first revisit the problem
of recursively identifying the parameters of an ARX model
with known orders, i.e. n̄a = na and n̄c = nc. In this case,
the normalized gradient equation error identifier [17] obtains
an estimate b̂t of the parameter vector b from the data up to
time t by following a normalized gradient of the prediction
error

∑t
τ≥na,nc

(b>zτ )2. The update equation is

b̂t+1 = (IK − µΠKztz
>
t

1 + µ‖ΠKzt‖2
)b̂t, (15)

where µ > 0 is a fixed parameter, IK is the identity matrix
in RK , ΠK =

[
IK−1 0K−1

0>K−1 0

]
∈ RK×K , and 0K ∈ RK

is the zero vector.1 It is well known (see e.g., [18]) that
if the ARX model is minimal and the vectors {ΓKzt},
where ΓK = [ IK−1 0K−1 ] ∈ R(K−1)×K , are persistently
exciting, i.e. there are S ∈ N, ρ1, ρ2 > 0 such that for all
j≥max{na,nc}

ρ1I ≺
j+S∑
t=j

ΓKztz
>
t Γ>K ≺ ρ2I, (16)

where A≺B means that (B − A) is positive definite, then
b̂t − b → 0 exponentially.

When the model orders are over estimated, i.e. n̄a > na

and n̄c > nc, then there are d = min{n̄a − na, n̄c − nc}
additional parameter vectors that fit the data. These additional
parameter vectors are formed by shifting the locations of the
zeros in the expression for the true ARX model parameters
in (5). Therefore, b̂t no longer converges to b in (5). Instead,
it converges to a point b∗ orthogonal to the span of the

1For notational convenience, we will drop the subindex K in IK and
0K whenever understood.

regressors {zt} that depends linearly on the initial condition
b̂0 [11]. In order for b̂t to converge to b, we need to enforce
that the leading entries of b be zero. If d were known, we
could define Λd =

[
0(K−d)×d IK−d

]
and replace zt in

(15) by Λdzt, i.e.

b̂t+1 =
(

I − µ
ΠK−dΛdztz

>
t Λ>d

1 + µ‖ΠK−dΛd zt‖2

)
b̂t. (17)

Then, Λ>d b̂t → b if the vectors {ΓK−dΛdzt} are persistently
exciting.

In reality, we do not necessarily know d, and we need to
identify both b and d simultaneously. Thus we may start
with d = 0 and run two identifiers of the form (17) in
parallel starting from two different initial conditions. If the
two identifiers converge to different vectors, then we know
that the orders are over estimated. Thus, we may increase d
by one and run the two identifiers again. By repeating this
process with larger and larger values of d, the two identifiers
will eventually converge to the same vector. Hence both the
orders and the model parameters will be correctly identified.

In order to generalize the recursive identifier (17) to
STSARX models such as (3), we exploit the properties
of the hybrid decoupling polynomial. Rather than directly
identifying the ARX model parameters {bi}n

i=1, we pro-
pose to first identify the hybrid model parameters h. The
advantage of doing so is that h depends neither on the
value of the discrete state qt(x), nor on the regions Xi(t).
Furthermore, once h is known, one can easily identify the
ARX model parameters {bi}n

i=1 from the derivatives of the
hybrid decoupling polynomial, as shown in [10], [11].

From the hybrid decoupling polynomial for STSARX
models, we have that for all t ≥ t0 = max{n̄a, n̄c} and
x ∈ X , h>νn(zt(x)) = 0. Therefore, given measurements
up to time t, we can find an estimate ĥt of h by following
the normalized gradient of the mean prediction error

f(h) =
1
|X |

t∑
τ=t0

∑
x∈X

(h>νn(zt(x)))2. (18)

This leads to the following hybrid equation error identifier
for STSARX systems:

ĥt+1=(I− µ

|X |

∑
x∈X

ΠMn(K)−dΛdνn(zt(x))νn(zt(x))>Λd
>

1 + µ
|X |

∑
x∈X

‖ΠMn(K)−dΛdνn(zt(x))‖2
)ĥt.

(19)
Notice that (19) reduces to (17) when |X | = n = 1. As
in the case of ARX models, we set d entries of ĥt to
zero by multiplying the embedded regressors by the matrix
Λd =

[
0(Mn(K)−d)×d IMn(K)−d

]
. In the case of STSARX

models, d is the number of linearly independent polynomials
that together with pn fit the data. The value of d depends
nontrivially on n, n̄a, n̄c, {na(i)} and {nc(i)}.

The natural question is whether Λ>d ĥt converges to h. As
in the case of ARX models, the answer is no in general. This
is because when we over estimate the model orders, there
are two or more parameter vectors that fit the data coming
from some of the ARX models, and so there is more than



one polynomial fitting the data coming from the STSARX
model. In the case of STSARX models, the situation is even
more complicated. For instance, even if the orders of the
ARX models were known, it could be the case that different
ARX models have different orders. Thus, even if we choose
n̄a = max{na(i)} and n̄c = max{nc(i)}, we may still
over estimate the orders for some of the ARX models. The
following theorem shows that under a certain persistence
of excitation condition, the sequence Λ>d ĥt converges to h
exponentially when d is known.

Theorem 1: Consider a minimal STSARX system of the
form (3) and an identifier of the form (19). If there are S ∈ N,
ρ1, ρ2 > 0 such that for all j ≥ max{na(i), nc(i)}

ρ1I ≺ M ≺ ρ2I, (20)

where the matrix M is defined as
j+S∑
t=j

∑
x∈X

ΓMn(K)−dΛdνn(zt(x))νn(zt(x))>Λ>d Γ>Mn(K)−d

(21)

then Λ>d ĥt converges exponentially to h.
Unfortunately, the theorem requires one to know the

number of additional polynomials d that fit the data generated
by the STSARX system. However, when the orders of the
ARX models are unknown, the value of d is also unknown.
Therefore, as in the case of ARX models, if we underestimate
the value of d, then the recursive identifier will not converge
to the correct hybrid model parameters. Instead, it will
converge to a vector h∗ that depends linearly on the initial
condition ĥ0 and lies in the orthogonal complement of the
span of the vectors νn(zt(x)). Therefore, we may start with
d = 0 and run two hybrid identifiers in parallel starting from
two different initial conditions. If the two identifiers converge
to different vectors, then we know that d is under estimated.
Thus, we may increase d by one, and run two identifiers
again. By repeating this process with larger and larger values
of d, the two identifiers will eventually converge to the same
vector. Hence both d and h will be correctly identified.

D. Recursive Identification of the ARX Model Parameters

Given the vector of hybrid model parameters h, it is
well known (see e.g., [10], [11]) that one can obtain the
individual ARX model parameters from the gradient of the
hybrid decoupling polynomial

∇pn(z) =
∂pn(z)

∂z
=

n∑
i=1

∏
` 6=i

(b>` z)bi (22)

at z = zt(x). This is because if zt(x) is generated by the
ith ARX model, i.e. qt(x) = i where i = 1, . . . , n, then all
the terms in the summation in (22) vanish, except for the
ith, and so bqt(x) ∼ ∇pn(zt(x)). Since in addition the Kth
entry of bqt(x) is equal to one, we obtain

bqt(x) =
∇pn(zt(x))

e>K∇pn(zt(x))
, (23)

where eK = [0, · · · , 0, 1]> ∈ RK .

In reality, however, we do not know the polynomial
pn exactly. Instead, we compute an estimate Λ>d ĥt of its
coefficients from the measurements of the input/output data
collected up to time t. We can use this estimate to build
the polynomial p̂n(z) = ĥ

>
t Λdνn(z), from which we can

identify the parameters of the ARX model at time t as

b̂t(x) =
∇ν>n (zt(x))Λ>d ĥt

e>K∇ν>n (zt(x))Λ>d ĥt

, (24)

The next theorem shows that the estimate given by this iden-
tifier converges exponentially to the true model parameters.

Theorem 2: Consider a minimal STARX system of the
form (3) and assume that the hybrid recursive identifier (19)
and (24) is used. If there exist ρ1, ρ2 > 0 and an integer S
such that for all j ≥ max{na(i), nc(i)}

ρ1I ≺ M ≺ ρ2I, (25)

then b̂t(x)− bqt(x) → 0K exponentially.

E. Estimation of the Spatial Regions
Theorem 2 allows us to computing an estimate b̂t(x) of

the parameters of the ARX model associated with the mea-
surement zt(x). Since all spatial locations in a region Xi(t)
share the same ARX model parameters, we may find the
regions {Xi(t)} by clustering the vectors {b̂t(x)}x∈X . We
do so using the K-means algorithm [19]. More specifically,
let us define the segmentation variables wix(t) ∈ {0, 1} as

wix(t) =

{
1 if x ∈ Xi(t)
0 else

. (26)

At each t, the recursive K-means algorithms looks for nt

parameter vectors b̂i(t) and the segmentation of the data
wix(t) ∈ {0, 1} that minimize

g({wix(t)}, {b̂i(t)})=
∑
x∈X

n∑
i=1

wix(t)‖b̂i(t)−b̂t(x)‖2. (27)

The minimization of this cost function is carried out using
the following coordinate descent algorithm:

1) Given a current estimate for b̂i(t), compute the seg-
mentation of the data as

wix(t) =

1 if i = arg min
k=1,...,n

‖b̂k(t)− b̂t(x)‖2

0 else
. (28)

2) Given a current estimate of wix(t), estimate the model
parameters as

bi(t) =
∑

x∈X wix(t)b̂t(x)∑
x∈X wix(t)

, (29)

and the spatial regions at time t as

Xi(t) = {x ∈ X : wix(t) = 1}. (30)

3) Iterate until the memberships do not change.
This method gives an estimate of the ARX model param-

eters and the spatial regions at each time t. One may use the
solution at time t to initialize the method at time t + 1.

The batch K-means algorithm is also used as part of
existing hybrid system identification algorithms, such as [13].



III. EXPERIMENTS

In this section, we apply our identification algorithm to the
problem of segmenting video sequences of dynamic textures,
such as fire, steam, water, or fire. As proposed in [1], a video
sequence of a single dynamic texture can be modeled as the
output of a linear dynamical system. Here we propose to
model video sequences containing several dynamic textures
in space and time using an STSARX model.

A. Segmentation of a Periodic Motion

We first apply our algorithm for segmenting a sequence
(110× 192, 130 frames) with a bird floating on water while
rotating around a fixed point. The task is to segment the
bird’s rigid motion from the water’s dynamic texture. This
sequence was segmented in [15] using a recursive hyperplane
clustering technique. Here we segment it using the proposed
recursive identification algorithm for STARX models. After
using the same projection steps as in [15], we model the
projected data as the output of two AR models of order
nc = 4, one representing the bird’s motion, and the other
representing the water motion. We initialize our recursive
identification algorithm by applying Generalized Principal
Component Analysis (GPCA) [7] to the projected data in
the first 5 frames of the video sequence. GPCA is a batch
method for clustering data living in multiple hyperplanes.
Since the equation of an ARX model defines a hyperplane
in the space of regressors, identifying multiple ARX models
can be seen as a hyperplane clustering problem.

Figure 1 shows the segmentation results. Notice that the
bird is relatively well segmented from the water. However,
there are some portions of the water that are assigned to
the bird. This is because our method does not constraint the
regions Xi(t) to be connected, thus the final segmentation
need not be spatially coherent. Also, although the sequence
is short for the vector of hybrid parameters h to converge, it
is clear from the last row of Figure 1 that h already captures
the periodicity of the motion. For instance, notice that when
the bird is facing to the right, h8 achieves a local maximum.
On the contrary, if the bird is oriented to the left, h8 achieves
a local minimum. Also, some irregularities seem to appear at
the local minima of this coefficient: they actually correspond
to a rapid motion of the bird. This example shows that the
coefficients of the estimated hybrid decoupling polynomial
give useful information about the scene motion.

B. Segmentation of Appearing and Disappearing Motions

To test the performance of our algorithm on a video
sequence with a variable number of motions, we extracted
a sub-clip of the bird sequence (55 × 192, 130 frames) in
which the camera moves up at 1 pixel/frame until the bird
disappears at t = 51. Then, the camera stays stationary from
t = 56 to t = 66. Finally, the camera moves down at 1
pixel/frame, and the bird reappears at t = 76. We compare
our recursive identification algorithm against GPCA applied
to a moving window of 5 consecutive frames. We initialize
our recursive identification algorithm with the solution of
GPCA applied to the first 5 frames.

Figure 2 shows the segmentation results. Notice that
both methods give excellent results during the first few
frames where both the bird and the water are present.
This is expected, as our method is initialized with GPCA.
Nevertheless, notice that the performance of GPCA de-
teriorates dramatically when the bird disappears, because
GPCA overestimates the number of models, whereas our
method is robust to this change and keeps segmenting the
scene correctly, i.e. assigning most of the pixels to the
background. When the bird reappears, our method detects the
bird correctly from the first frame whereas GPCA produces
a wrong segmentation for the first few frames after the bird
reappears. Toward the end of the sequence, the segmentation
given by both algorithms is good, though our algorithm
performs better, because it incorporates temporal coherence.
This demonstrates how our method has the ability to deal
with a variable number of motions, while GPCA does not.
Acknowledgements: We thank Camille Izard for performing
the experiments. Work supported by grants NSF-EHS 05-
09101, NSF-CAREER 04-47739, and ONR N00014-05-1083.

IV. CONCLUSIONS AND FUTURE WORK

We have presented a recursive identification algorithm for
spatial-temporal switched ARX systems. The algorithm is
based on recursively updating the coefficients of a poly-
nomial that is satisfied by all measurements, regardless of
their spatial-temporal location. The parameters of each ARX
model are identified from the derivatives of the polynomial.
The regions associated with each model at each time instant
are obtained by clustering the ARX model parameters.

Future work involves exploiting the spatial structure of
STSARX systems to obtain more efficient solutions. For ex-
ample, [21] shows how least-squares problems with spatially
decaying operators can be solved more efficiently.
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