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Abstract— In this expository paper we illustrate the use of
filtering and identification-theoretic techniques in a number of
problems in computer vision. We first demonstrate how linear
system identification techniques combined with distances for
linear systems can be used for modeling, synthesis, classification
and recognition of dynamic textures and human gaits. We then
show how hybrid system identification techniques can be used
for segmentation of dynamic textures. We also highlight some
open problems in system identification that are motivated by
extensions of the research described in this paper.

I. I NTRODUCTION

Recently, several system-theoretic techniques have been
used for modeling dynamic visual processes. For instance,
[10], [36] model the appearance ofdynamic textures, such as
videos of water, smoke, fire, etc., as the output of an Auto Re-
gressive Moving Average (ARMA) model; [4] uses ARMA
models to represent human gaits, such as walking, running,
jumping, etc.; and [1], [26] use ARMA models to describe
the appearance of moving faces. Given a video sequence,
one can use standard system identification techniques, e.g.,
subspace identification [25], to learn the parameters of the
ARMA model. Given a model, one can use them to generate
novel synthetic sequences [10], [36], [28], [29], manipulate
real ones [12], and recognize one from another [27], [10].

However, most of these methods assume that the scene
contains a single dynamic texture, human gait, or moving
face, so that the video can be modeled with a single linear
dynamical model. This limitation has motivated recent work
on modeling scenes consisting of multiple temporal events,
e.g., a video sequence consisting of multiple shots. [17] mod-
els such videos as the output of a linear hybrid system, where
each discrete state corresponds to a different event in the
video sequence. The parameters of each linear model and the
sequence of discrete events can be identified from the video
sequence using existing linear hybrid system identification
techniques for switched ARX systems [34], [21], [31] or
piece-wise ARX systems [2], [14], [18].

More recent works [6], [8], [11], [33] consider scenes
where different regions in the image have different dynamics,
e.g., a video sequence of fire in the foreground and water
in the background. Such sequences can be modeled as
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the output of a multidimensional hybrid system where the
discrete state depends on a spatial location (the pixel coordi-
nates). Therefore, there is no switching from one dynamical
system to another in time, but rather multiple dynamical
system co-exist simultaneously in different spatial locations.
[6] models such scenes with a mixture of ARMA models
and learns the model parameters and the segmentation of
the scene using Expectation Maximization (EM) [9]. As
EM-like approaches are often sensitive to good initializa-
tion, [33] proposes to cluster the trajectories of the image
intensities according to their corresponding observability
subspaces using an algebraic method for subspace clustering
called Generalized PCA (GPCA) [32]. Unfortunately, GPCA
does not incorporate spatial regularization, thus the resulting
contour is typically non smooth. [11] and [15] incorporate
spatial regularization by modeling the boundaries between
two regions in the image as the zero level set of a functionφ.
When the parameters of the dynamical systems are known,
one can computeφ as the stationary solution of a partial
differential equation. Conversely, whenφ is known so are
the boundaries, thus one can identify the parameters of
each dynamical model from the data within each region. By
alternating between these two steps, both the boundaries and
the dynamical models can be identified.

However, in real sequences the region boundaries change
as a function of time, and also the dynamics of a region may
change suddenly due to depths discontinuities, occlusions,
objects entering or leaving the field of view, etc. The works
of [8], [30], [31] model such video sequences as the output of
a spatial-temporal hybrid system consisting of multiple Auto
Regressive eXogenous (ARX) models both in space and in
time. [8] segments these models using GPCA. [31] proposes
a recursive system identification techniques that identifies the
coefficients of a polynomial encoding the parameters of all
the ARX models associated with all spatial-temporal regions.
The derivatives of this polynomial give an estimate of the
parameters of the ARX models associated spatial location at
each time. The boundaries between spatial-temporal regions
are then computed once the ARX parameters are known.

In this paper we seek to infer models of dynamic visual
processes for the purpose of classification, segmentation and
recognition tasks. For instance, from a number of sequences
of images of fire, smoke or steam, we want to identify a
model that can be used to recognize, say, fire in a new
sequence. Similarly, in human motion analysis, we want to
infer a model of various gaits, such as walk, run, jump, limp,



so that we can for instance detect a limping person from afar.
We will first address the simplest possible classes of models,
working under the assumption that the underlying data
exhibit some form of stationarity. Here the current body of
knowledge in system identification has already played a key
role in a number of applications, as we describe in Section II.
Even for such simple models, however, recognition and
classification tasks remain largely an open problem, which
we discuss in Section III. Imposing simpler models and
inferring the model parameters as well as the domain where
they are satisfied within a prescribed accuracy leads to a
segmentation problem, which is described in Section IV. We
highlight open problems in system identification motivated
by extensions to more complex models in Section V.

II. M ODELING, IDENTIFICATION AND SYNTHESIS OF

DYNAMIC VISUAL PROCESSES

The general goal of computer vision is to infer properties
of a “scene” from measurement of “images” obtained under
varying conditions. For the purposes of this paper, asceneis
simply a finite collection ofobjects, where each object is a
volume inR

3 bounded by closed piecewise smooth surfaces
embedded inR3. On the other hand, animageis a function,

I : R
2 ∋ x 7→ I(x) ∈ R

+ (1)

that assigns to each pixelx a positive numberI that measures
the intensity (irradiance) of light (electromagnetic radiation)
reflected by a point in one of the surfaces in the scene.
In general, the energy of the light reflected by different
points in the scene varies depending on the scenephotometry
(light sources, reflectance properties of the objects),geometry
(position of the objects relative to the light sources, position
of the objects relative to the camera), anddynamics(temporal
evolution of object surfaces and of the camera pose).

Unfortunately, one cannot recover a unique model of the
photometry, geometry and dynamics of a scene from visual
information alone. For instance, a video of water may be
generated by an outdoor water scene with simple photometry
(ambient light) and very complex geometry and dynamics
(the moving surface of the water), or it may be rendered by
a projector with very simple geometry (a flat screen) and
very complicated photometry. Therefore, rather than trying
to recover a ”correct” model of the scene, we seek to recover
a statisticalmodel of visual data directly at the outset.

The next subsections illustrate the simplest possible model
(linear systems) applied to pixel intensities, as a model for
so-called “dynamic textures”. This simple model is indeed
useful for recognition and classification tasks, as we will see
in Section III. More complex hybrid dynamical models for
segmentation purposes will be discussed in Section IV.

A. Dynamic textures

Let {I(t) ∈ R
k×l}t=1...τ be a sequence of images.

Suppose that at each instant of timet we can measure a noisy
version of the image,y(t) = I(t) + w(t) wherew(t) is an
independent and identically distributed (IID) sequence drawn
from a distributionpw(·) resulting in a positive measured

sequencey(t) ∈ R
m, t = 1 . . . τ , wherem = k × l.

The sequence{I(t)} is a (linear) dynamic texture[10] if
there exists a set ofn spatial filtersφα, α = 1 . . . n, and a
stationary distributionq(·) such that, callingz(t)

.
= φ(I(t)),

z(t) can be modeled as an ARMA process excited by the
white noisev(t), distributed according toq(·). Therefore, a
dynamic texture is associated to (a second-order stationary
process and, therefore) a state space model which, without
loss of generality, can be written in forward innovation form











x(t+ 1) = Ax(t) +Kv(t)

z(t) = Cx(t) + v(t)

y(t) = ψ(z(t)) + w(t)

(2)

wherex(0) = x0, v(t)
IID
∼ q(·) unknown,w(t)

IID
∼ pw(·)

given, andI(t) = ψ(z(t)) whereψ(φ(I)) = I. One can
obviously extend the definition to an arbitrary non-linear
model of the formx(t + 1) = f(x(t), v(t)), leading to the
concept of anon-linear dynamic texture.

The definition of dynamic texture above, which was pro-
posed in [10], entails a choice of filtersφα, α = 1 . . . n.
These filters could also be inferred as part of the identifica-
tion process for a given dynamic texture. There are several
criteria for choosing a suitable class of filters, ranging from
biological motivations to computational efficiency. In the
trivial case, one can takeφ to be the identity, and therefore
look at the dynamics of individual pixelsz(t) = I(t) in (2).
However, in texture analysis the dimension of the signal is
huge (tens of thousands components) and there is a lot of
redundancy. Hence, one can view the choice of filters as a
dimensionality reduction step, and seek a decomposition of
the image in the simple (linear) form

I(t) =

n
∑

i=1

xi(t)θi
.
= Cx(t), (3)

whereC = [θ1, . . . , θn] and {θi} can be an orthonormal
or overcomplete basis ofL2, e.g., a set of principal com-
ponents, or a wavelet filter bank. The advantage of using
principal component analysis (PCA), besides simplicity, is
that it reduces complexity via a data-tailored construction
of basis function. Experimental results show that20 to 30
principal components yield synthesized textures which are
practically indistinguishable from the original ones. Standard
approaches based on filter banks require more coefficients
to obtain comparable results; for instance, dynamic textures
based on Fourier and Gabor filters were presented in [37].

B. Inference

The problem of going from data to models is the usual
system identification problem. Several approaches have been
proposed in the literature ranging from standard prediction
error methods [20], to iterative solutions based on EM [9],
to the more recent subspace methods [25].

For the case of dynamic textures, due to the dimension of
the signal (76,800 for video at half-resolution), one cannot
apply standard identification algorithms. A dimensionality
reduction step is a must as we have discussed at the end of



section II-A. Even after this reduction step, the dimension
of x(t) is still high (20 to 50 in typical examples presented
in [10]). If we restrict ourselves to first-order AR processes
for modeling the evolution ofx(t), the following algorithm,
proposed in [10], yields a simple and yet effective solution:
Let Y τ

1
.
= [y(1), . . . , y(τ)] ∈ R

m×τ with τ > n, and
similarly for Xτ

1 andW τ
1 , and notice that

Y τ
1 = CXτ

1 +W τ
1 ; C ∈ R

m×n; CTC = I (4)

by our assumptions. Now letY τ
1 = UΣV T ; U ∈ R

m×n,
UTU = I, V ∈ R

τ×n, V TV = I, be the singular value
decomposition (SVD) withΣ = diag{σ1, . . . , σn}, and
consider the problem of finding the best estimate ofC in
the sense of Frobenius:̂C(τ), X̂(τ) = arg minC,Xτ

1
‖W τ

1 ‖
2
F

subject to (4). It follows immediately from the fixed-rank
approximation property of the SVD that the unique solution
(modulo a change of sign) is given by

Ĉ(τ) = U X̂(τ) = ΣV T . (5)

Given X̂(τ), Â can be determined uniquely, again in the
sense of Frobenius, by solving the following linear problem:
Â(τ) = arg minA ‖Xτ

1 −AXτ−1
0 ‖2

F which is trivially done
in closed form using an estimate ofX from (5):

Â(τ) = ΣV TD1V (V TD2V )−1Σ−1 (6)

whereD1 =

[

0 0
Iτ−1 0

]

andD2 =

[

Iτ−1 0
0 0

]

. Notice that

Ĉ(τ) is uniquely determined up to a change of sign of the
components ofC andx. Also note that

E[x̂(t)x̂T (t)] ≡ lim
τ→∞

1

τ

τ
∑

k=1

x̂(t+ k)x̂T (t+ k) ≃ Σ2 (7)

which is diagonal. Finally, the sample input noise covariance
Q can be estimated from

Q̂(τ) =
1

τ

τ
∑

i=1

v̂(i)v̂T (i), (8)

wherev̂(t)
.
= x̂(t+1)−Â(τ)x̂(t). This algorithm requires the

number of principal componentsn to be given. In practice,
n needs to be inferred from data. This can be done from the
singular values{σi}, by choosingn such thatσn+1/σ1 < ǫ,
or σn+1/σn < ǫ, whereǫ > 0 is a user defined threshold.

C. Synthesis

As reported in [10], identifying a model from a sequence
of 100 frames takes about 5 minutes in MATLAB on a 1GHz
Pentium III personal computer. Synthesis can be performed
in real time. The implementation in [10] usedτ between
50 and 150 andn between20 and 50. Figures 1-2 show
the behavior of the algorithm on a representative set of
experiments. Figure 1 shows the overall compression error
as a function of the dimension of the state space (top row) as
well as the prediction error as a function of the length of the
learning set (bottom row). The prediction error is computed
by using the firstτ images to identify a model, then using
the model to predict the image atτ + 1, finally comparing

the result with the actual image measured atτ + 1. The plot
shows the error between the predicted and measured images
atτ+1 as a function ofτ . Figure 2 shows results on synthesis
of novel sequences. For each sequence, the first row shows
a few images from the original dataset, and the second row
shows a few extrapolated samples.
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Fig. 1. Compression error as a function of the dimension of the state
spacen (left column), and extrapolation error as a function of the length
of the training setτ (right column). Row (a)river sequence, row (b)smoke
sequence, column (c)toilet sequence. (Figure courtesy of [10])

(a)

(b)

(c)

Fig. 2. Synthesis of novel dynamic textures from previouslylearned
ARMA models: (a)river sequence, (b)smokesequence, (c)toilet sequence.
For each of them the top row are samples of the original sequence,
the bottom row shows samples of the extrapolated sequence. All the
data are available on-line athttp://www.vision.ucla.edu/projects/dynamic-
textures.html(Figure courtesy of [10])



III. C LASSIFICATION AND RECOGNITION OF DYNAMIC

VISUAL PROCESSES

One approach to classification and recognition is to look
directly at the data sequences. These can be regarded as sam-
ples from some distribution, thus classical concepts of dis-
crepancy measures such as Kullback-Leibler divergence [19],
or Bhattacharyya-Hellinger metric [3], could be employed.
The space of probability distributions, suitably restricted, can
be given the structure of a differentiable manifold endowed
with a Riemannian structure. Thus, one can define distances
and probability distributions, which are the basis of standard
techniques such as Bayes classification or likelihood ratios.
This, however, has several drawbacks. First, one has to take
into account that different datasets may have different length.
In fact, the probability distribution of ann-vector lives on a
different space than that of anm-vector ifm 6= n. Therefore,
it seems more appropriate to look at invariants of the process
itself. If we restrict to second-order stochastic processes,
these are the spectrum, the covariance function or a spectral
factor or, in other words, an ARMA model.

ARMA models, learned from data as described in the
previous section, do not live on a linear space. The space
of linear systems can be given a structure of a differentiable
manifold (see [16]) and is certainly not flat. Recall that in
order for the models to be stable and invertible, the matrices
A andA − KC are constrained to be stable. Furthermore,
all the triples(TAT−1, TK,CT−1) are equivalent. While a
simple probabilistic approach to classification based on like-
lihood ratios with respect to a simple probability distribution
on Stiefel manifolds has been proposed in [27], in general
it is not straightforward to introduce manageable probability
distribution on the space of dynamical models.

In the next subsections, we restrict ourselves to describing
an approach to classification and recognition based on dis-
tances defined on the space of models, which could be used
for nearest-neighbor classification or k-means clustering[13].

A. Distances between dynamical models

We first review the distance for scalar ARMA models
introduced by Martin [22] and elaborated upon by [7]. We
then review the Binet-Cauchy kernels introduced by [35].

The cepstrum of an ARMA model with transfer function
H(z) is defined aslog(H(z)H∗(1/z)) =

∑

k∈Z
ckz

−k. In
[22], Martin defines the distance between two scalar ARMA
modelsM1 andM2 with transfer functionsH1(z) andH2(z)
as the following distance between its cepstrum coefficients

dM (M1,M2)
2 =

∞
∑

k=0

k(c1k − c2k)2. (9)

As shown in [7], the Martin distance can also be expressed in
terms the (extended) observability spaces. More specifically,
let M1

.
= (A1,K1, C1) and M2

.
= (A2,K2, C2) be two

ARMA models and define the extended observability matrix

O∞(Mi)
.
=

[

CT
i AT

i C
T
i . . . (AT

i )nCT
i . . .

]T
.

Then, the distance betweenM1 andM2 can be expressed in
terms of the subspace angles between the column spaces of

[

O∞(M1) O∞(M−1
2 )

]

and
[

O∞(M2) O∞(M−1
1 )

]

, where
M−1

i = (Ai − KiCi,Ki,−Ci). If we denote byθi the ith

canonical angle between these spaces, the distance defined
by Martin can be shown to be equivalent to [7]

dM (M1,M2)
2 = − ln

2n
∏

i=1

cos2 θi, (10)

wheren is the model order. Although the equivalence be-
tween (9) and (10) holds for scalar ARMA processes, one can
also use (10) to measure the distance between multivariable
ARMA models, such as linear dynamic textures. Clearly, in
the multivariate case the link with the cepstrum is lost.

In order to compute subspace angles between models, we
proceed as follows

• Compute the solutionQ =

(

Q11 Q12

Q21 Q22

)

of the Lya-

punov equation

ATQA−Q = −CTC (11)

where

A
.
=









A1 0 0 0
0 A2 −K2C2 0 0
0 0 A2 0
0 0 0 A1 −K1C1









(12)

C
.
=

(

C1 −C2 C2 −C1

)

. (13)

• Compute the2n largest eigenvalues{λi =cos θi}
2n
i=1 of

(

0 Q−1
11 Q12

Q−1
22 Q21 0

)

.

An alternative approach to computing distances between
dynamical models is based on the so-called Binet-Cauchy
kernels [35]. These kernels are obtained by computing the
trace of a compound matrix of orderq built from the output
trajectories. More specifically, letYi = [yi(0), yi(1), · · · ].
The Binet-Cauchy kernel of orderq is defined as

kq(M1,M2) = traceCq(Y1Y
T
2 ), (14)

where Cq(X) is a matrix whose entries are given by the
determinants of all the minors ofX of size q. As shown in
[35], whenq = 1, one can compute this kernel explicitly in
terms of the ARMA modelsMi = (xi(0), Ai,Ki, Ci) as

k1(M1,M2) = xT
1 (0)Qx2(0), (15)

whereQ is the solution to the Sylverster’s equation

AT
1 QA2 −Q = −CT

1 C2. (16)

From the Binet-Cauchy kernel, one may define a distance as
d1(M1,M2)

2 = k1(M1,M1)−2k1(M1,M2)+k1(M2,M2).
Notice that, unlike the Martin distance, the distanced1

depends explicitly on the initial conditions. While this might
be undesirable in some applications, it might be quite useful
in other cases. For instance, not every initial configuration
of the joints of the human body is appropriate for modeling
human gaits. Thus incorporating the initial condition when
comparing dynamical systems may be useful for recognition.



Figure 3 shows an experiment taken from [35] in which the
pairwise distancesdM andd1 are computed on a database of
144 video clips of sequences of dynamic textures of natural
and artificial objects, such as trees, water bodies, water flow
in kitchen sinks, etc. In general, clips that are close to each
other on an axis in the figure are closely related (they are
either from similar natural phenomenon or are extracted from
the same master clip). However, clips 65–80 are random clips
of people and objects taken by a shaky camera, which cannot
be modeled as dynamic textures. Notice from the plots that
the Binet-Cauchy distance is small (darker colors) for similar
clips, and large (lighter colors) for random clips. The Martin
distance does not seem to capture these differences very well.

B. Nearest neighbor classification

Suppose we are given a (training) set of dynamical systems
{Mi} drawn independently from an unknown probability dis-
tribution. Suppose also we are given a labelλi ∈ {1, . . . , c}
denoting the membership ofMi to one out ofc classes.
Given a new systemM , we want to predict its labelλ. As we
already have a distance in the space of dynamical models, we
can use any distance-based classification technique. One of
the simplest methods is nearest neighbor classification [13],
where λ is chosen by taking a vote among thek nearest
neighbors ofM . That is,λm is selected if the majority of
the k nearest neighbors ofM have labelλm.

In [4], nearest neighbor classification together with the
Martin distance were used for recognizing different types of
human gaits. The training set consists of several sequencesof
humans walking, running and going up and down a staircase,
as shown in Figure 4. For each gait, 10 sequences of different
subjects were acquired with varying viewing position and
distance from the camera to the subject. From each sequence,
a reduced kinematical model consisting of the projection of4
joints onto the image plane (shoulder, elbow, hip and knee)
was extracted. For each sequence, the vector consisting of
the location of all these joints was consider as the output
y(t) of an ARMA model. Each model was identified using
the implementation of the N4SID algorithm in the Matlab
System Identification Toolbox. Note that for human gaits the
dimension ofy(t) is much smaller than the number of pixels,
thus one does not need to resort to the sub-optimal method
described in Section II-B for identifying dynamic textures.

Figure 5 shows the pairwise distance between each model
in the dataset. Notice that these three gaits are quite similar to
each other (as opposed, say, to dancing or jumping), and yet
similar gaits result in smaller distances, with a few outliers.
A few sample sequences from each class were also chosen as
test sequences for classification purposes. For each sequence
in the test set, a model was estimated by first pre-processing
the sequence (after manual initialization) using the ideas
described in [5] to extract joint coordinates. Sample frames
from different test sequences are shown in the first and
third columns of Figure 6, while the first two corresponding
nearest neighbors are shown to the right. Although this
dataset is quite small, the discriminating power of the model
as a representation of the dynamic sequence is visible.

(a) Martin distance (b) Binet-Cauchy distance

Fig. 3. Pairwise distances among 144 video clips of dynamic textures.
Each row/column of a matrix represents a clip, and clips corresponding to
similar dynamic textures are grouped in block rows/columns. Dark indicates
a small distance, light a large distance. (Figure courtesy of [35])

Fig. 4. Sample frames from the dataset of the gaits: waking, running and
walking a staircase. (Figures 4-6 courtesy of [4])

Walk Run Stair

Walk

Run

Stair

Fig. 5. Pairwise distance between video clips of human gaits. Each
row/column of a matrix represents a sequence, and sequencescorrespon-
dence to similar gaits are grouped in block rows/columns. Dark indicates a
small distance, light a large distance. The minimum distance is of course
along the diagonal, and for each row the next closest sequence is indicated
by a circle, while the second nearest is indicated by a cross.

Walk1-1 Walk2-1 Walk1-2 Run1-1 Run3-1 Run1-2

Walk2-2 Walk2-1 Walk1-2 Run3-1 Run3-2 Run2-1

Walk3-3 Walk3-1 Walk3-4 Run4-2 Run6-1 Stair3-1

Walk4-2 Walk4-1 Walk1-2 Run6-1 Run4-2 Run4-1

Stair1-1 Stair2-3 Stair1-2 Stair2-2 Stair2-3 Stair1-1

Stair1-3 Stair3-1 Stair1-4 Stair3-2 Stair3-3 Run5-1

Fig. 6. For each gait we have chosen a few sample sequences (left) and
computed the distance to every other sequence in the dataset. The closest
sequence is shown in the central column, while the second nearest is shown
in the right column. With a few exceptions, the nearest neighbor belongs to
the same gait as the test sequence. Notice that all gaits are quite similar.



IV. SEGMENTATION OF DYNAMIC VISUAL PROCESSES

Consider now the problem of modeling and segmenting
video sequences where different spatial-temporal regions
exhibit different spatial-temporal statistics. We assumethat
the image at timet can be divided intoN(t) (unknown)
regions1 {Ωi(t) ⊂ R

2}
N(t)
i=1 . We model the intensity of each

pixel in Ωi(t) as the output of an ARMA model such as
(2) with statexi(t) ∈ R

n and parametersAi(t) ∈ R
n×n,

Ki(t) ∈ R
n×p, andCi(t) ∈ R

mi(t)×n,
∑

imi(t) = m. For
the sake of simplicity, we assume that as time proceeds these
parameters take on only finitely many values. Therefore, we
can effectively model the entire video sequence as the output
of N ≥ N(t) ARMA models{(Aj ,Kj , Cj)}

N
j=1.

Given a sequence of images{y(t) ∈ R
m, t = 1, . . . , T}

with two or more distinct regionsΩi(t) that satisfy the model
(2), we want to estimate both the regionsΩi(t), as well as
the states{xi(t)} and parametersAi(t), Ki(t) andCi(x, t)
in each region. Notice that if the boundaries of each region
were known and constant in time, one could easily estimate
an ARMA model of the spatial-temporal statistics within
each region. Unfortunately, in general one does not know
the boundaries of each region, and this is one of the goals
of the inference process. On the other hand, if the state and
parameters associated with each pixel were known, then one
could easily determine the regions by thresholding or by
other grouping or segmentation technique. Unfortunately,the
model we wish to infer is not a point process, and therefore
one cannot pre-compute the ARMA model at each pixel and
convert the problem into a static segmentation at the outset.
Therefore, we have a classic “chicken-and-egg” problem: If
we knew the regions, we could easily identify the dynamical
models, and if we knew the dynamical models we could
easily segment the regions. Unfortunately, we know neither.

A. Spatial segmentation

In this section, which follows [11] and [15], we discuss the
spatial-temporal segmentation problem under the assumption
that the boundaries of the regions do not change with time,
i.e. Ωi(t) = Ωi and soN(t) = N . Therefore, the problem
reduces to partitioning an image sequence intoN spatial
regions, each of which can be described by an ARMA model.

One can address this problem by setting up an alternating
minimization procedure: starting with an initial guess of
the regions,̂Ωi(0), estimate the models within each region,
Âi(0), K̂i(0), Ĉi(0), x̂i(0), and then at any given timet seek
for the modification of the regionŝΩi(t), and the update of
the modelsÂi(t), K̂i(t), Ĉi(t), x̂i(t) so as to minimize a
chosen cost functional. For instance, one can minimize the
norm of the innovation, integrated in space and time2

N
∑

i=1

∫

Ωi

T
∑

t=n+1

(y(x, t) − ŷi(x, t|t− 1))2dx, (17)

where yi(x, t|t − 1) is the predictor ofy(x, t) from the
measurements up to timet− 1 based on modeli.

1That is,Ω = ∪
N(t)
i=1 Ωi(t) andΩi(t) ∩ Ωj(t) = ∅, i 6= j.

2We usey(x, t) to indicate the intensity of pixelx ∈ Ω at time t.

To minimize (17), one needs to choose a representation
for the region boundariesδΩi. In the level-set representation
[24], Ωi = {x : φi(x) > 0} andδΩi = {x : φi(x) = 0} for
some functionφi : Ω → R. In addition, one also needs to
choose a tractable representation for the dynamical modelMi

within each regionΩi.3 In [15], the dynamics are modeled
with an AR modely(x, t) =

∑n
j=1 a

i
jy(x, t − j), x ∈ Ωi,

rather than with an ARMA model as in (2).
With this representation, the spatial segmentation problem

can be formulated as one of grouping regions of similar AR
parameters. In [15], the grouping is obtained by minimizinga
temporal generalization of the Mumford-Shah functional [23]

E({φi}, {a
i
j}) =

N
X

i=1

Z

Ω

λi|∇H(φi(x)|dx+

N
X

i=1

Z

Ω

T
X

t=n+1

`

y(x, t) −
n

X

j=1

a
i
jy(x, t − j)

´2
H(φi(x))dx,

(18)

where the Heaviside functionH(φ) is defined asH(φ) = 1
if φ ≥ 0 andH(φ) = 0 otherwise. The first term in (18)
aims at minimizing the length of the separating boundaries,
weighted by a factorλi ∈ R

+, whereas the second term
is the innovation error in (17), specialized for AR models.
The minimization ofE proceeds by alternating between the
following two steps until convergence:
1) For fixed{φi}, minimization with respect to{ai

j} amounts
to solving a linear least squares problem.
2) For fixed{ai

j}, minimization with respect to{φi} can be
implemented by gradient descent, which leads to the PDE4

∂φi(x)

∂t
=λi∇·

„

∇φi(x)

‖∇φi(x)‖

«

+
T

X

t=n+1

(y(x, t)−
n

X

j=1

a
i
jy(x, t−j))2. (19)

The right hand-side is obtained by taking the first variationof
equation (18). This PDE is simulated numerically using level
set methods [24], until convergence to a local minimum.

In an alternative approach [11], the dynamics within each
region are described with a spatial-temporal signature

s(x) =
(

cos θ1(x), . . . , cos θn(x)
)

(20)

around each pixelx, which depends on the subspace angles
{θj(x)} between a locally computed modelM(x) and a
reference modelM0. The functional (18) is replaced by

E({φi}, {si}) =
PN

i=1

R

Ω

λi|∇H(φi(x))|dx +

PN

i=1

R

Ω

(s(x) − si)
2H(φi(x))dx (21)

and is also minimized by alternating between two steps:
1) For fixed{φi}, minimization with respect to{si} amounts
to averaging the signatures over each region.
2) For fixed{si}, minimization with respect to{φi} can be
implemented by a gradient descent given by:4

∂φi(x)

∂t
= λi∇ ·

(

∇φi(x)

‖∇φi(x)‖

)

+ (s(x) − si)
2. (22)

3Recall that the number of pixels in each region may be large, which
may prevent one from obtaining the optimal parameters within each region.

4For N = 2 regions it is better to use a single level-set functionφ to
represent both regions. This leads to a slightly different evolution equation.



Figure 7 shows segmentation results on three sequences
of size 220 × 220 × 120 containing two dynamic textures.
For each sequence, the snapshots show the contour evolution
according to the method in [11] based on signatures, starting
from a circle. The segmentation is nearly perfect for the
ocean-steamand ocean-appearancesequences, which have
constant boundary. For theocean-firesequence, however, the
method converges to the contour of an “average” region, be-
cause it computes a single segmentation from all the frames,
although the true contour changes with time. The method
in [15] yields similar results in all sequences, however with
a much smaller order for the ARX models (n = 2 versus
n = 10). Therefore, one may apply the method in [15] to a
moving window of frames, and obtain one segmentation per
frame. As can be seen from Figure 8, this give a much more
accurate segmentation of the moving boundary. Therefore,
the approach shows robustness also to changes in the original
hypotheses that dynamic textures were spatially stationary.

B. Temporal segmentation

Instead of partitioning the spatial domain into regions of
constant statistics, one can partition the temporal domain.
For instance, in a news video sequence, the host could
be interviewing a guest and the camera may be switching
between the host, the guest and both of them, as shown in
Figure 9. Given the frames{I(t) ∈ R

m}T
t=1, we would like

to cluster them according to the different events. This prob-
lem is a particular case of the spatial-temporal segmentation
problem in which there is a single region at each time instant
(N(t) = 1 and Ωi(t) = Ω). As such, this problem is very
much related to filtering and identification of hybrid systems
[2], [14], [18], [34], [21], [31], where each discrete state
corresponds to a different event in the video.

Here, we adapt the algebraic approach for identification of
switched ARX (SARX) models in [21] and apply it to tempo-
ral video segmentation. We assume that pixel intensities obey
a SAR modely(x, t) =

∑n
j=1 aj(qt)y(x, t−j) with discrete

stateqt =1, . . . , N . If we let bi = (an(i), . . . , a1(i), 1) and
zt(x) = (y(x, t − n), · · · , y(x, t − 1),−y(x, t)), then for
eachx andt there is aj such thatbTi zt(x) = 0. Therefore,

∀ x, t pN (zt(x)) =

N
∏

i=1

(bTi zt(x)) = 0. (23)

This N -degree polynomial can be written linearly in terms
of a vector of coefficientsh and a vector of monomials
νN (zt(x)) as h

T νN (zt(x)) = 0. Therefore, one may com-
puteh linearly from the image data. As shown in [21], the
parameters of the AR model active at timet can be computed
from the gradient ofpN at any pixelx as

bi = ∇pN (zt(x)). (24)

Figure 9 shows segmentation results reported in [32] on
the temporal segmentation of two video sequences with three
temporal events. Since the number of pixels is large, the im-
ages were projected onto the first three principal components,
and the algorithm was applied to the projected data. A perfect
segmentation was obtained for both sequences.

C. Spatial-temporal segmentation

In this section, which follows [30], [31], we consider
segmentation both in space and in time under the assumption
that the model within each spatial-temporal region is an AR
model. This gives rise to a spatial-temporal SAR model for
the image intensitiesy(x, t) =

∑n
j=1 aj(qt(x))y(x, t − j).

Notice that the main difference with the previous section is
that the discrete stateqt(x) depends on the pixel coordinates.
Therefore, we may apply the same algorithms as in the
previous section. However, rather than obtaining a single
model for each time instant, we will obtain several models.
By clustering all the models at timet intoN(t) ≤ N groups
using k-means, one obtains the segmentation in space of the
frame at timet. This batch method can incorporate temporal
coherence by computing an estimateĥ(t) of h from the
measurements up to timet. This estimate is updated using a
normalized gradient recursive identification algorithm [31].

Figure 10 compares the batch method applied to a moving
window of 5 frames and the recursive method on a video
sequence with a variable number of models. The video
displays a bird swimming on water. The camera moves
up at 1 pixel/frame until the bird disappears att = 51.
Then, the camera stays stationary fromt = 56 to t = 66.
Finally, the camera moves down at 1 pixel/frame, and the
bird reappears att = 76. Note that both methods give
good results for the first frames containing both the bird
and the water. Nevertheless, the batch method performs
poorly when the bird disappears, because it overestimates the
number of models, whereas the recursive method is robust.
When the bird reappears, the recursive method detects the
bird correctly, while the batch method produces a wrong
segmentation for the first few frames after the bird reappears.

V. CONCLUSIONS

We have presented several examples where current algo-
rithms for system identification can be successfully employed
to address modeling, synthesis and recognition problems in
computer vision. These include modeling dynamic textures
and human gaits for the purpose of synthesis and classifica-
tion or recognition. In addition, we have indicated several
directions where further work in system identification is
needed in order to address difficult tasks of modeling non-
Gaussian, non-linear, non-stationary processes for detection,
classification, recognition and segmentation.
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