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Abstract— In this expository paper we illustrate the use of the output of a multidimensional hybrid system where the
filtering and identification-theoretic techniques in a number of  discrete state depends on a spatial location (the pixeb¢oor
problems in computer vision. We first demonstrate how linear nates). Therefore, there is no switching from one dynamical

system identification techniques combined with distancesof t t ther in ti but rath tiole d ical
linear systems can be used for modeling, synthesis, classifiion Systém 1o another in time, but rather mullipie dynamica

and recognition of dynamic textures and human gaits. We then SyStem co-exist simultaneously in different spatial lawss.
show how hybrid system identification techniques can be used [6] models such scenes with a mixture of ARMA models

for segmentation of dynamic textures. We also highlight som  and learns the model parameters and the segmentation of
open problems in system |dent|f|.cat|op tha}t are motivated by the scene using Expectation Maximization (EM) [9]. As
extensions of the research described in this paper. - - L
EM-like approaches are often sensitive to good initializa-
|. INTRODUCTION tion, [33] proposes to cluster the trajectories of the image
intensities according to their corresponding observgbili
unospaces using an algebraic method for subspace clgsterin

used for modeling dynamic visual ProCESSEs. For instancga”ed Generalized PCA (GPCA) [32]. Unfortunately, GPCA
[1.0]’ [36] model the appearance dynamic texturessuch as does not incorporate spatial regularization, thus theltiagu
videos of water, smoke, fire, etc., as the output of an Auto Re-

. . ) contour is typically non smooth. [11] and [15] incorporate
gressive Moving Average (ARMA) model; [4] Uses ARMAS atial regularization by modeling the boundaries between
modgls to represent human gaits, such as walking, r“”.””\é?o regions in the image as the zero level set of a funation
jumping, etc.; and [1], [2.6] use ARM.A model_s to describ hen the parameters of the dynamical systems are known,
the appearance of moving faces. Given a video sequence

) e . fle can compute as the stationary solution of a partial
one can use standard system identification techniques, € Georential equation. Conversely, whenis known so are
subspace identification [25], to learn the parameters of t : ’

. fie boundaries, thus one can identify the parameters of
ARMA model. Given a model, one can use them to generate ' fy b

. ) each dynamical model from the data within each region. By
novel synthetic sequences_[lO], [36], [28], [29], manipela alternating between these two steps, both the boundariks an
real ones [12], and recognize one from another [27], [10].

However, most of these methods assume that the scethe dynamical models can be identified.
i T le d i text h " ; owever, in real sequences the region boundaries change
contains a singie dynamic fexture, human gar, or MoviNgs o nction of time, and also the dynamics of a region may

face, SO that the V'd‘?o can b.e modeled .W'th a single Ime%‘ﬁange suddenly due to depths discontinuities, occlusions
dynamical model. This limitation has motivated recent wor bjects entering or leaving the field of view, etc. The works

on mod_eling Scenes consis’Fin_g of muItipIe temporal eventgf [8], [30], [31] model such video sequences as the output of
€g.a V|d_eo sequence consisting (.)f multiple .ShOtS' [111-moa spatial-temporal hybrid system consisting of multipleu
els such videos as the output of a linear hybrid system, whe 2gressive eXogenous (ARX) models both in space and in
each discrete state corresponds to a different event in t [ [8] segments these models using GPCA. [31] proposes
video sequence. The parameters of each linear model and Fecursive system identification techniques that idesttfie

sequence of discrete events can be identified from the vid Qefficients of a polynomial encoding the parameters of all
sequence using existing linear hybrid system identificatio,

. ; the ARX models associated with all spatial-temporal region
techniques for switched ARX systems [34], [21], [31] or. R : o :
piece-wise ARX systems [2], [14], [18]. The derivatives of this polynomial give an estimate of the

. parameters of the ARX models associated spatial location at
More _recent Wo_rks [_6]’ [8]_’ [14], [33] (?onS|der SCENESeach time. The boundaries between spatial-temporal region
where different regions in the image have different dynamic

) S are then computed once the ARX parameters are known.
e.g., a video sequence of fire in the foreground and WaterIn this paper we seek to infer models of dynamic visual

in the background. Such sequences can be modeled par%cesses for the purpose of classification, segmentation a
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Recently, several system-theoretic techniques have be



so that we can for instance detect a limping person from afaequencey(t) € R™, t = 1...7, wherem = k x L.
We will first address the simplest possible classes of mpdelhe sequencd(¢)} is a (linear) dynamic texturd10] if
working under the assumption that the underlying datthere exists a set af spatial filters¢,, « = 1...n, and a
exhibit some form of stationarity. Here the current body ostationary distributiory(-) such that, calling:(t) = ¢(I(t)),
knowledge in system identification has already played a key(t) can be modeled as an ARMA process excited by the
role in a number of applications, as we describe in Section Wwhite noisev(t), distributed according tq(-). Therefore, a
Even for such simple models, however, recognition andynamic texture is associated to (a second-order stationar
classification tasks remain largely an open problem, whicprocess and, therefore) a state space model which, without
we discuss in Section Ill. Imposing simpler models andoss of generality, can be written in forward innovationrfor
inferring the model parameters as well as the domain where
they are satisfied within a prescribed accuracy leads to a z(t+1) = Az(t) + Kv(?)
segmentation problem, which is described in Section V. We 2(t) = Cz(t) + v(?) )
highlight open problems in system identification motivated y(t) = (z(t)) + w(t)
by extensions to more complex models in Section V. 1D 1D
wherez(0) = zg, v(t) '~ q(-) unknown,w(t) "~ py,(-)
[I. MODELING, IDENTIFICATION AND SYNTHESIS OF given, andI(t) = (z(t)) wherey(¢(I)) = I. One can
DYNAMIC VISUAL PROCESSES obviously extend the definition to an arbitrary non-linear
The general goal of computer vision is to infer propertiegnodel of the formz(t + 1) = f(x(t),v(t)), leading to the
of a “scene” from measurement of “images” obtained underoncept of anon-linear dynamic texture
varying conditions. For the purposes of this papescenes The definition of dynamic texture above, which was pro-
simply a finite collection ofobjects where each object is a posed in [10], entails a choice of filters,, o = 1...n.
volume inR3 bounded by closed piecewise smooth surfaceBhese filters could also be inferred as part of the identifica-
embedded iR3. On the other hand, amageis a function, tion process for a given dynamic texture. There are several
. N criteria for choosing a suitable class of filters, rangingndr
IR >z I(z) eR (1) biological motivations to computational efficiency. In the

that assigns to each pixela positive numbef that measures trivial case, one can take to be the identity, and therefore
the intensity (irradiance) of light (electromagnetic mtitin) 100k at the dynamics of individual pixels(t) = I(¢) in (2).
reflected by a point in one of the surfaces in the scen&lowever, in texture analysis the dimension of the signal is
In general, the energy of the light reflected by difierenfuge (tens of thousands components) and there is a lot of
points in the scene varies depending on the sgdioéometry redundancy. Hence, one can view the choice of filters as a
(light sources, reflectance properties of the objegesymetry dimensionality reduction step, and seek a decomposition of
(position of the objects relative to the light sources, posi the image in the simple (linear) form

of the objects relative to the camera), atythamicgtemporal n

evolution of object surfaces and of the camera pose). I(t) = in(t)@ = Cz(t), (3)
Unfortunately, one cannot recover a unique model of the i=1

photometry, geometry and dynamics of a scene from visuglhere C = [0y, ...,6,] and {6;} can be an orthonormal

information alone. For instance, a video of water may ber overcomplete basis of?, e.g., a set of principal com-
generated by an outdoor water scene with simple photomeispnents, or a wavelet filter bank. The advantage of using
(ambient light) and very complex geometry and dynamicgrincipal component analysis (PCA), besides simpliciy, i
(the moving surface of the water), or it may be rendered byat it reduces complexity via a data-tailored constructio
a projector with very simple geometry (a flat screen) andf basis function. Experimental results show thatto 30
very complicated photometry. Therefore, rather than gyinprincipal components yield synthesized textures which are
to recover a "correct” model of the scene, we seek to recovgractically indistinguishable from the original ones.r&tard
a statisticalmodel of visual data directly at the outset. approaches based on filter banks require more coefficients
The next subsections illustrate the simplest possible inod@ obtain comparable results; for instance, dynamic testur
(linear systems) applied to pixel intensities, as a model fdased on Fourier and Gabor filters were presented in [37].
so-called “dynamic textures”. This simple model is indeed
useful for recognition and classification tasks, as we vei# s B. Inference
in Section Ill. More complex hybrid dynamical models for The problem of going from data to models is the usual
segmentation purposes will be discussed in Section IV. system identification problem. Several approaches have bee
proposed in the literature ranging from standard predictio
error methods [20], to iterative solutions based on EM [9],
Let {I(t) € Rk*'},_; ., be a sequence of images.to the more recent subspace methods [25].
Suppose that at each instant of tim&e can measure a noisy  For the case of dynamic textures, due to the dimension of
version of the imagey(t) = I(t) + w(t) wherew(t) is an the signal (76,800 for video at half-resolution), one canno
independent and identically distributed (IID) sequen@ar  apply standard identification algorithms. A dimensiomwalit
from a distributionp,,(-) resulting in a positive measured reduction step is a must as we have discussed at the end of

A. Dynamic textures



section II-A. Even after this reduction step, the dimensiothe result with the actual image measured-at1. The plot

of z(t) is still high (20 to 50 in typical examples presentedshows the error between the predicted and measured images
in [10]). If we restrict ourselves to first-order AR processeatr+1 as a function of-. Figure 2 shows results on synthesis
for modeling the evolution of:(t), the following algorithm, of novel sequences. For each sequence, the first row shows
proposed in [10], yields a simple and yet effective solutiona few images from the original dataset, and the second row
Let Y77 = [y(1),...,y(7)] € R™*7 with 7 > n, and shows a few extrapolated samples.

similarly for X7 and W7, and notice that

YT =CX{+W[]; CeR™™ Cc'c=1 (4 N\

by our assumptions. Now let7 = UXVT; U € R™*", =
UTU = I,V € R, VTV = I, be the singular value (a) N

decomposition (SVD) withY = diag{oy,...,0,}, and

consider the problem of finding the best estimateCobin \
the sense of Frobeniué(7), X () = arg minc, x7 |W7 ||%
subject to (4). It follows immediately from the fixed-rank
approximation property of the SVD that the unique solution .., ] \

R T] E % [ E e 7 el

(modulo a change of sign) is given by

ac00)

Cir)=U X(r)=3xvT. (5) (®)

) -y 0l

o0

Given X(7), A can be determined uniquely, again in the
sense of Frobenius, by solving the following linear problem ™|
A(r) = argminy || X7 — AXJ |2 which is trivially done S T e
in closed form using an estimate &f from (5):

A(r) =xvID vV (VIDv) et (6)

0 L1 O
O] and D, = { 0 0

C(r) is uniquely determined up to a change of sign of the - |
components of” andz. Also note that L I S B
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E[j;(t)jT(t)] = lim 1 Z 2(t+ k)ng(t +k)~ »2 (7) Fig. 1. Compression error as a function of the dimension ef dtate
T—00 T spacen (left column), and extrapolation error as a function of teagth
k=1 of the training set- (right column). Row (ayiver sequence, row (b3moke

which is diagonal. Finally, the sample input noise covar@n sequence, column (dpilet sequence. (Figure courtesy of [10])

Q) can be estimated from

Qr) = = 300" (i), ®
@
whered(t) = i(t+1)—A(7)#(t). This algorithm requires the

number of principal components to be given. In practice,

n needs to be inferred from data. This can be done from the
singular valueqs;}, by choosing: such thato,, ;1 /01 <,
or o,41/0, < €, Wheree > 0 is a user defined threshold.

F.FFFF

(b)
C. Synthesis

As reported in [10], identifying a model from a sequence
of 100 frames takes about 5 minutes in MATLAB on a 1GHz
Pentium IIl personal computer. Synthesis can be performed
in real time. The implementation in [10] used between ()
50 and 150 anch between20 and 50. Figures 1-2 show
the behavior of the algorithm on a representative set of
experiments. Figure 1 shows the overall compression error 4 E , :
as a function of the dimension of the state space (top row) &g, 2.  Synthesis of novel dynamic textures from previoutgigrned

well as the prediction error as a function of the length of théRMA models: (a)river sequence, (bymokesequence, (cloilet sequence.

: o : or each of them the top row are samples of the original seguen
learning set (bottom row). The prediction error is Comp“teﬁe bottom row shows samples of the extrapolated sequenttethé

by using the firstr images to identify a model, then using data are available on-line dtttp:/www.vision.ucla.edu/projects/dynamic-
the model to predict the image at+ 1, finally comparing textures.htmiFigure courtesy of [10])




[1l. CLASSIFICATION AND RECOGNITION OF DYNAMIC [Ooo (M) Oue(My )] and [Oune(M2) Ooe (M )], where

VISUAL PROCESSES M; ' = (A; — K,C;i, K;, —C;). If we denote byd; the i"

One approach to classification and recognition is to lookanonical angle between these spaces, the distance defined
directly at the data sequences. These can be regarded as s@ynMartin can be shown to be equivalent to [7]
ples from some distribution, thus classical concepts of dis 2n
crepancy measures such as Kullback-Leibler divergende [19 dyr(My, My)? = —1n H cos? 0;, (10)
or Bhattacharyya-Hellinger metric [3], could be employed. i=1
The space of probability distributions, suitably resetttcan \herer is the model order. Although the equivalence be-
be given the structure of a differentiable manifold endowegyeen (9) and (10) holds for scalar ARMA processes, one can
with a Riemannian structure. Thus, one can define distancggo use (10) to measure the distance between multivariable
and probability distributions, which are the basis of s&md ARMA models, such as linear dynamic textures. Clearly, in

techniques such as Bayes classification or likelihood satiofhe multivariate case the link with the cepstrum is lost.

into account that different datasets may have differergtlen proceed as follows

In fact, the probability distribution of an-vector lives on a . Q1 Qi

different space than that of an-vector if m # n. Therefore, ~ + Compute the solutior) = (Q21 Q22> of the Lya-
it seems more appropriate to look at invariants of the pces  punov equation

itself. If we restrict to second-order stochastic procgsse

these are the spectrum, the covariance function or a spectra ATQA-Q=-c'c (11)
factor or, in other words, an ARMA model. where
ARMA models, learned from data as described in the
previous section, do not live on a linear space. The space A 0 0 0
of linear systems can be given a structure of a differergiabl Az |0 A HC 0 0 (12)
manifold (see [16]) and is certainly not flat. Recall that in 8 8 f(l)? A OK o
1= 1“1

order for the models to be stable and invertible, the matdrice
A and A — KC are constrained to be stable. Furthermore, C=(C, —Cy Cy —C). (13)
all the triples(TAT !, TK,CT~') are equivalent. While a
simple probabilistic approach to classification based ke li
lihood ratios with respect to a simple probability disttion ( 0 Qﬁlng)
on Stiefel manifolds has been proposed in [27], in general Qo Q21 0 '

it_is not _straightforward to introduce_ manageable probigbil A aiternative approach to computing distances between
distribution on the space of dynamical models. dynamical models is based on the so-called Binet-Cauchy

In the next subseculo_ns,.we restrict ours_e]ves to desagﬂb”f(ernels [35]. These kernels are obtained by computing the
an approach to classification and recognition based on d|[§—

f d matrix of orderbuilt f th tput
tances defined on the space of models, which could be usggfeecgriaegorMng?;gp;iiggn(; (I)gy‘er:u%ylzggny‘(iz)o.u. P]u

for nearest-neighbor classification or k-means clustdi8y | . Binet-Cauchy kernel of orderis defined as

« Compute then largest eigenvalue§\; =cos 0;}77, of

A. Distances between dynamical models

We first review the distance for scalar ARMA models
introduced by Martin [22] and elaborated upon by [7]. Wewhere C,(X) is a matrix whose entries are given by the
then review the Binet-Cauchy kernels introduced by [35]. determinants of all the minors of of size¢. As shown in
The cepstrum of an ARMA model with transfer function[35], wheng = 1, one can compute this kernel explicitly in
H(z) is defined adog(H (2)H*(1/2)) = Y 4cpcrz . In  terms of the ARMA models\/; = (z:(0), A;, K3, C;) as
[22], Martin defines the distance between two scalar ARMA o7
modelsM; and M- with transfer functiond?; (z) and Ha(z) Fa (M, M) = 21 (0)Q2(0), (15)
as the following distance between its cepstrum coefficientsvhere( is the solution to the Sylverster's equation

ATQA; — Q= —C{ Cs. (16)

kq(My, My) = traceC,(Y1Y3'), (14)

d]u(Ml, M2)2 = Z k(Clk — Cgk)Q. (9)
k=0 From the Binet-Cauchy kernel, one may define a distance as
As shown in [7], the Martin distance can also be expressed ify (M1, M3)? = ki (M, My) — 2k, (My, M)+ k1 (Ma, My).
terms the (extended) observability spaces. More spedyficalNotice that, unlike the Martin distance, the distanée
let My = (A1, K;,Cp) and My = (As, K5,C5) be two  depends explicitly on the initial conditions. While thisght
ARMA models and define the extended observability matrive undesirable in some applications, it might be quite usefu
. " T in other cases. For instance, not every initial configuratio
Ouo (Mi) = [CiT Arer ...o@ahrer ] of the joints of the human body is appropriate for modeling
Then, the distance betweéd; and M, can be expressed in human gaits. Thus incorporating the initial condition when
terms of the subspace angles between the column spacesamparing dynamical systems may be useful for recognition.



Figure 3 shows an experiment taken from [35] in whick
pairwise distanced,; andd; are computed on a databas:
144 video clips of sequences of dynamic textures of ne
and artificial objects, such as trees, water bodies, waten
in kitchen sinks, etc. In general, clips that are close tdh
other on an axis in the figure are closely related (the)
either from similar natural phenomenon or are extractegh
the same master clip). However, clips 65—-80 are random
of people and objects taken by a shaky camera, which ¢

be modeled as dynamic textures. Notice from the plots that
the Binet-Cauchy distance is small (darker colors) for Emi

ClipS, and Iarge (Iighter CO|OI’S) for random ClipS. The Ntart Fig- 3. Pairwise distances among 144 video clips of dynamututes.

Each row/column of a matrix represents a clip, and clipsesponding to
Shilar dynamic textures are grouped in block rows/coluniberk indicates
a small distance, light a large distance. (Figure courtdq35])

(a) Martin distance (b) Binet-Cauchy distance

distance does not seem to capture these differences vdry wi

B. Nearest neighbor classification

Suppose we are given a (training) set of dynamical systenij
{M;} drawn independently from an unknown probability dis
tribution. Suppose also we are given a lahek {1,...,¢c}
denoting the membership a¥/; to one out ofc classes.
Given a new system/, we want to predict its label. As we
already have a distance in the space of dynamical models, we
can use any distance-based classification technique. One of
the simplest methods is nearest neighbor classificatioh [13 s
where \ is chosen by taking a vote among thenearest
neighbors ofM. That is, A, is selected if the majority of 5°
the k& nearest neighbors ¥/ have label)\,,. Run ot

In [4], nearest neighbor classification together with the [ -

Martin distance were used for recognizing different types o

human gaits. The training set consists of several sequerfices Walk
humans walking, running and going up and down a staircase, S
as shown in Figure 4. For each gait, 10 sequences of different wale Run Stai

subjects were acquired with varying viewing position angtig. 5.  Pairwise distance between video clips of human g&itch
distance from the camera to the subject. From each sequenie/column of a matrix represents a sequence, and sequencespon-

. . ‘e P dence to similar gaits are grouped in block rows/columnskDradicates a
a reduced kinematical model consisting of the projectiod of small distance, light a large distance. The minimum distaiscof course

joints onto the image plane (shoulder, elbow, hip and kneejong the diagonal, and for each row the next closest sequierindicated

was extracted. For each sequence, the vector consistingbgfa circle, while the second nearest is indicated by a cross.

the location of all these joints was consider as the output ,

y(t) of an ARMA model. Each model was identified using [IF5 m m\« m4 m4
Walkl-1  Wak2-l  Wakl-2 | Runi-l  Run3-1  Runl-2

the implementation of the N4SID algorithm in the Matlab

System Identification Toolbox. Note that for human gaits the ‘
dimension ofy(t) is much smaller than the number of pixels, m m m- M4 M
thus one does not need to resort to the sub-optimal methodywaio-2  wake-1  walki-2 | Run3-1  Run3-2 RuUN2-1
described in Section 1I-B for identifying dynamic textures '

Figure 5 shows the pairwise distance between each modelM M m‘ !EEE = 5 ‘%
in the dataset. Notice that these three gaits are quitessitoil Walk3-3  Walk3-1  Walk3-4 | Run4-2 Run6-1 Stair3-1
each other (as opposed, say, to dancing or jumping), and ye% E m‘ m‘
similar gaits result in smaller distances, with a few oulie i o T = s
A few sample sequences from each class were also chosen a§a/k4-2 ~ Walk4-1  Walkl-2 | Run6-1  Rund-2  Rund-1
test sequences for classification purposes. For each segjuen == % % %
in the test set, a model was estimated by first pre-processing—— ; : _ _ .

T . . . Stairl-1 Stair2-3 Stairl-2 Stair2-2 Stair2-3 Stairl-1
the sequence (after manual initialization) using the ideas - ' \ -
described in [5] to extract joint coordinates. Sample frame QQ -
from different test sequences are shown in the first and g3 swmirsa stairia | stz
third columns of Figure 6, while the first two corresponding.. )

. . Fig. 6. For each gait we have chosen a few sample sequences (left) and
nearest _ nelg_hbors are shc_)wn_ tQ th_e right. Although thissmputed the distance to every other sequence in the datsetciosest
dataset is quite small, the discriminating power of the nhodeequence is shown in the central column, while the seconestsia shown

; ; e vici in the right column. With a few exceptions, the nearest rtogtbelongs to
as a representation of the dynamic sequence is visible. the same gait as the test sequence. Notice that all gaitsigeesimilar.

Fig. 4. Sample frames from the dataset of the gaits: wakimgning and
walking a staircase. (Figures 4-6 courtesy of [4])
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IV. SEGMENTATION OF DYNAMIC VISUAL PROCESSES To minimize (17), one needs to choose a representation

video sequences where different spatial-temporal regiohé4l: i = {z : ¢i(z) > 0} andd9); = {@ : ¢;(x) = 0} for
exhibit different spatial-temporal statistics. We assutrgt SOme functiong; : € — R. In addition, one also needs to
the image at timet can be divided intoN (¢) (unknown) choose a tractable representation for the dynamical madel
regiond {Q;(t) C Rz}il\i(lt)_ We model the intensity of each W?thin each regiort2;.2 In [15],7'fhe dynamics are modeled
pixel in Q;(t) as the output of an ARMA model such asWith an AR modely(,t) = >°5_, ajy(z,t —j), @ € (i,
(2) with statez;(t) € R" and parametersl;(t) € R"*™, rath(_ar tha_m with an ARMA model as in (2). _
K;(t) € R™P, andC;i(t) € R™®xn S i (¢) = m. For With this representation, the spatial segmentation proble
the sake of simplicity, we assume that as time proceeds thet@ be formulated as one of grouping regions of similar AR
parameters take on only finitely many values. Therefore, wRarameters. In [15], the grouping is obtained by minimizing
can effectively model the entire video sequence as the outggMmPoral generallfvatlon of the Mumford-Shah functiona][2
of N > N(t) ARMA models{(A;, K;,C;)}Y ;. B{o0 {ait) — /A- VH (6:(2)|d

Given a sequence of imagég(t) € R™, =1, T} (o {a;}) ;Q (VH(Gu(@)lde+
with two or more distinct region@; (¢) that satisfy the model - N
(2), we want to estimate both the regiofis(t), as well as Z Z (y(,t) - Za§y(w,t—j))2H(¢i(w))dm7
the stateq{z;(¢)} and parameterd;(t), K;(t) andC;(x,t) =1y t=nt1 j=1
in each region. Notice that if the boundaries of each regiovr\wlhere the Heaviside functiofl (¢) is defined asi(¢) — 1
were known and constant in time, one could easily estima N

: o . he¢ > 0 and H(¢) = 0 otherwise. The first term in (18)
an ﬁ‘RMA moSe]J otf th? lspgual—temp(l)ral StgtlSthS Vtv'tkh'naims at minimizing the length of the separating boundaries,
€ach region. Uniortunaltely, in general one does no noWeighted by a factor\; € R™, whereas the second term

the boundaries of each region, and this is one of the goqlss the innovation error in (17), specialized for AR models.

of the inference p_rocess._On the ot_her hand, if the state arf’ﬂe minimization ofE proceeds by alternating between the
parameters associated with each pixel were known, then Oﬂ)‘?lowing two steps until convergence:

could easily determine the regions by thresholding or bx) For fixed{¢; }, minimization with respect tga’ } amounts
other grouping or segmentation technique. Unfortunatiady, to solving a Iizne,ar least squares problem J

model we wish to infer is not a point process, and therefor, For fixed{aj-}, minimization with respect tde;} can be

one cannot pre-compute the ARMA model at each pixel anupplemented by gradient descent, which leads to the PDE
convert the problem into a static segmentation at the autse -
Therefore, we have a classic “chicken-and-egg” problem: f¢i(z) V( Voi(z) ) —~ 2

i T : =NV ———— )+ - aky(x, t—))%. (19
we knew the regions, we could easily identify the dynamical 0t Vi) > (v, 1) ;%y(fv 7))°. (19)

models, and if we knew the dynamical models we COUIthe right hand-side is obtained by taking the first variatbn

easily segment the regions. Unfortunately, we know r]e'theé:\quation (18). This PDE is simulated numerically using lleve
A. Spatial segmentation set methods [24], until convergence to a local minimum.

In this section, which follows [11] and [15], we discuss the N @n alternative approach [11], the dynamics within each
spatial-temporal segmentation problem under the assampti'€9ion are described with a spatial-temporal signature
that the boundaries of the regions do not change with time, s(x) = (COS 61(x),...,cos 9n(m)) (20)
i.e. Q;(t) = Q; and soN(t) = N. Therefore, the problem
reduces to partitioning an image sequence iMospatial
regions, each of which can be described by an ARMA mod
One can address this problem by setting up an alternati

(18)

t=n+1

around each pixet, which depends on the subspace angles
e 6;(x)} between a locally computed modél(x) and a
ﬁiaference modelM,. The functional (18) is replaced by

minimization procedure: starting with an initial guess of  g({¢1 {s;}) = SN T NIVH (¢i(x))|dee +

the regions2;(0), estimate the models within each region, T

A;(0), K;(0), C;(0), #;(0), and then at any given timeseek SN [(s(z) — s0)?H(¢s(x))dz  (21)
Q

for the modification of the regionél-(t), and the update of . S )
the modeIsAi(t), ffi(t), éi(t), #;(t) so as to minimize a and is glso m|n|m|_z¢d py :_;\Itern.atlng between two steps:
chosen cost functional. For instance, one can minimize the For fixed{¢; }, minimization with respect t¢s;} amounts
norm of the innovation, integrated in space and fime to averaging the signatures over each region.

2) For fixed{s;}, minimization with respect td¢;} can be

N T . . .
. implemented by a gradient descent given*by:
y(x,t) — gi(x, t|t — 1))%de,  (17)
;_f/n- > l@,t) i1l — 1))

i o (x Voi(x
sl d)é( ) _av. <7v¢1( ) ) +(s@) =) (22)
where y;(x,t|t — 1) is the predictor ofy(x,t) from the t IV i)
measurements up to tinte- 1 based on model. 3Recall that the number of pixels in each region may be lardgctw
Nt may prevent one from obtaining the optimal parameters wiggich region.
1That is,Q = Uiz(l)Qi(t) andQ;(t) N Q;(t) = 0,4 # J. 4For N = 2 regions it is better to use a single level-set functiprio

2We usey(zx,t) to indicate the intensity of pixek € Q at timet. represent both regions. This leads to a slightly differeigion equation.



Figure 7 shows segmentation results on three sequend@s Spatial-temporal segmentation

of size 220 x 220 x 120 containing two dynamic textures. _In this section, which follows [30], [31], we consider
For each sequence, the snapshots show the contour evolutigmentation both in space and in time under the assumption
according to the method in [11] based on signatures, Startifyat the model within each spatial-temporal region is an AR
from a circle. The segmentation is nearly perfect for theyoqel. This gives rise to a spatial-temporal SAR model for
ocean-steanand ocean-appearanaequences, which have i image intensitieg(,t) = >>"_, a; (g (z))y(x, t — j).
constant boundary. For ttexean-firesequence, however, the njqti 0 di b ; N i

c P TEVED Notice that the main difference with the previous section is
method converges to the contour of an “average” region, bg;at the discrete statg(z) depends on the pixel coordinates.
cause it computes a single segmentation from all the framegyerefore. we may apply the same algorithms as in the
although the true contour changes with time. The methogeyious section. However, rather than obtaining a single
in [15] yields similar results in all sequences, howeveiwit o de| for each time instant, we will obtain several models.
a much smaller order for the ARX models & 2 VErsus gy clustering all the models at timeinto N(¢) < N groups
n = 10). Therefore, one may apply the method in [15] to §;gjng k-means, one obtains the segmentation in space of the
moving window of frames, and obtain one segmentation pgfame at timet. This batch method can incorporate temporal
frame. As can be seen from Figure 8, this give a much mogherence by computing an estimeftxét) of h from the
accurate segmentation of the moving boundary. Thereforg,easurements up to time This estimate is updated using a

the approach shows robustness also to changes in the érigigrmalized gradient recursive identification algorithr][3
hypotheses that dynamic textures were spatially statjonar Figure 10 compares the batch method applied to a moving

B. Temporal segmentation window of 5 frames and the recursive method on a video

Instead of partitioning the spatial domain into regions ofcduence W'.th a v_arlat_)le number of models. The video
constant statistics, one can partition the temporal domaiH'SplayS a bird swimming on Wate'f- The camera moves
For instance, in a news video sequence, the host cod & 1 pixeliirame until thg bird disappears fat= 51,
be interviewing a guest and the camera may be switchin en, the camera stays stationary fro)ni_ o6 to = G6.
between the host, the guest and both of them, as shown iwally' the camera moves down at 1 pixelfirame, anql the
Figure 9. Given the frame§I(t) € R™}1_,, we would like bird reappears at = 76. Note that bqth methods give
to cluster them according to the different events. This prolf’OOd results for the first frames containing both the bird
lem is a particular case of the spatial-temporal segmemtati and the water. Nevertheless, the batch method performs

problem in which there is a single region at each time instarﬁ’toorly when the bird disappears, becaus_e it overesti_niadaest
(N(t) = 1 and:(¢) = Q). As such, this problem is very number of models, whereas the recursive method is robust.

much related to filtering and identification of hybrid syslaemWhen the bird reappears, the recursive method detects the

[2], [14], [18], [34], [21], [31], where each discrete Statebird correctly, while the batch method produces a wrong
co;resp(’)nds t’o a d’iffererylt evént in the video. segmentation for the first few frames after the bird reappear

Here, we adapt the algebraic approach for identification of V. CONCLUSIONS
switched ARX (SARX) models in [21] and apply it to tempo-
ral video segmentation. We assume that pixel intensitiey ob
a SAR model(z,t) = >=7_, a;(q:)y(z, t—j) with discrete
stateq; =1,...,N. If we let b; = (a,(i),...,a1(i),1) and
zi(x) = (y(z, t —n), - ,y(z, t — 1),—y(x,t)), then for
eachx andt there is aj such that! z;(x) = 0. Therefore,

N

We have presented several examples where current algo-
rithms for system identification can be successfully emgtby
to address modeling, synthesis and recognition problems in
computer vision. These include modeling dynamic textures
and human gaits for the purpose of synthesis and classifica-
tion or recognition. In addition, we have indicated several
T directions where further work in system identification is
Va,t py(z(z) = H(bi (@) =0. (23)  needed in order to address difficult tasks of modeling non-

=t Gaussian, non-linear, non-stationary processes for tit@tec

This N-degree polynomial can be written linearly in termsgjassification, recognition and segmentation.
of a vector of coefficientsh and a vector of monomials
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Fig. 7. Video segmentation using spatial-hybrid systenog: Eegmenting
steam versus water. Middle: segmenting rotated water sevster. Bottom:
segmenting fire versus water. Animation of these resultsbeasiownloaded
from http://vision.ucla.edu/projects.htniFigure courtesy of [10])

Fig. 8. Segmentation of thecean-firesequence using spatial hybrid
systems. (Figure courtesy of [15])
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Fig. 9. Video segmentation using temporal hybrid systenet: Lnews
video segmented into 3 groups: interviewer, interviewesl both. Right:
news video from Iraq segmented into 3 groups: rear of a cdr aviburning
wheel, a burnt car with people, and a burning car. (Figuretesy of [32])

"
Sequence Method in [30], [31] Method in [32]

Fig. 10. Video segmentation using spatial-temporal hybyistems: a bird
floating on water (top row) that disappears (middle row) aseppears
(bottom row) in the scene. Left: frames of the video sequemieldle:

segmentation using spatial-temporal hybrid ID. Right:nsegtation of the
bird (white) from the water (black) using GPCA. (Figure desy of [30])
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