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Abstract— Many robot navigation tasks require the com-
putation of the motion of multiple objects moving in 3-D
space from a collection of images taken by a moving robot.
In this paper we present a unifying theoretical framework
for both infinitesimal and discrete 3-D motion segmentation
from optical flow or point correspondences in multiple affine,
perspective or central panoramic views. We exploit the
fact that for these motion and camera models, the image
measurements associated with a single object live in a low
dimensional subspace of a high dimensional space, hence
motion segmentation is achieved by segmenting data living
in multiple subspaces. We solve this problem in closed form
using a polynomial fitting and differentiation technique called
Generalized Principal Component Analysis. Unlike previous
work, our method does not restrict the motion of the objects
to be full dimensional or fully independent. Instead, our
approach deals gracefully with all the spectrum of possible
motions: from low dimensional and partially dependent to full
dimensional and fully independent. We test our algorithm on
various real and synthetic dynamic scenes with linear motions,
planar and full motions, transparent motions, etc.

Index Terms— Motion segmentation, subspace clustering,
Generalized Principal Component Analysis.

I. INTRODUCTION

Computer vision is a very important sensor for many
mobile robot applications, such as autonomous navigation,
localization, formation control, pursuit evasion games, etc.
A problem that is fundamental to most of these applications
is multibody motion estimation and segmentation, which
refers to the problem of estimating the number of indepen-
dently moving objects in the scene; the motion of each one
of the objects relative to the camera; the camera motion;
and the segmentation of the image measurements according
to their associated motion.

The case in which the camera is static has been tradi-
tionally tackled using background substraction techniques.
However, such techniques are not suitable for the afore-
mentioned applications, where the camera is mounted on a
moving robot. The case in which the camera is moving is
a very challenging problem in motion analysis, because
it requires the simultaneous estimation of an unknown
number of motion models, without knowing which pixels
move according to the same model.
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Because of theses difficulties, early studies concentrated
on simplified motion models such as multiple points mov-
ing linearly with constant speed [4], [11], multiple points
moving in a plane [12], and reconstruction of multiple
translating planes [20]. The case of multiple moving objects
seen by two perspective views was recently studied in [21],
[17], [18], where a generalization of the 8-point algorithm
based on the so-called multibody epipolar constraint and
its associated multibody fundamental matrix was proposed.
The method simultaneously recovers multiple fundamental
matrices using multivariate polynomial factorization, and
can be extended to most two-view motion models in
computer vision, such as affine, translational and planar
homographies, by fitting and differentiating complex poly-
nomials [14]. Extensions of these two-view algorithms that
deal with noisy data can be found in [18]. The case of
multiple moving objects seen by three perspective views
has also been recently solved by exploiting the algebraic
and geometric properties of the multibody trifocal tensor
[5]. To the best of our knowledge, there is no work on
3-D motion segmentation from multiple (more than 3)
perspective views. The case of multiple views has only
been studied in the case of affine cameras. For instance,
the works of [1], [3] demonstrated that when the motion of
the objects are independent and fully dimensional, motion
segmentation can be achieved by thresholding the entries
of a certain matrix built from point correspondences in
multiple affine views. A similar technique can be applied
in the case of optical flow in multiple frames, both in the
case of perspective cameras [19] and central panoramic
cameras [10]. Unfortunately, these methods are very sensi-
tive to noise [7], [22] and fail with degenerate or partially
dependent motions [23], [8].

In this paper we present a unifying theoretical framework
for both infinitesimal and discrete 3-D motion segmentation
from optical flow or point correspondences in multiple
affine, perspective or central panoramic views. We exploit
the fact that for these motion and camera models, the
image measurements associated with a single object live in
a low dimensional subspace of a high dimensional space,
hence motion segmentation is achieved by segmenting data
living in multiple subspaces. We solve this problem in
closed form using a polynomial fitting and differentia-
tion technique for subspace clustering called Generalized
Principal Component Analysis. Unlike previous work, our



method does not restrict the motion of the objects to be full
dimensional or fully independent. Instead, our approach
deals gracefully with all the spectrum of possible motions:
from low dimensional and partially dependent to full di-
mensional and fully independent. We test our algorithm
on various real and synthetic dynamic scenes with linear,
planar, and full motions, transparent motions, etc.

II. MOTION SUBSPACES FOR AFFINE, PERSPECTIVE
AND CENTRAL PANORAMIC CAMERAS

In this section we describe classes of camera models
whose associated image measurements (discrete or dif-
ferential) live in a low dimensional subspace of a high
dimensional space.

A. Discrete Motion in Multiple Affine Views

Let xfp ∈ R
2 be the image of a point Xp ∈ P

3, p =
1, . . . , P , in frame f = 1, . . . , F . Let (Rf , Tf ) ∈ SO(3) be
the pose of one of the moving objects relative to the camera
in frame f . Under the affine camera model the image point
xfp is obtained by projecting the 3-D point [Rf Tf ]Xp

orthographically. That is, the image point is given by xfp =

AfXp, where Af =

[

1 0 0
0 1 0

]

[Rf Tf ] ∈ R
2×4 is the so-

called affine camera matrix.
Therefore, if we are given a set of P point correspon-

dences {xfp} in F frames, we can stack all the image
measurements into a 2F × P matrix W that satisfies

W = MST






x11 · · ·x1P

...
...

xF1· · ·xFP







2F×P

=







A1

...
AF







2F×4

[

X1· · ·XP

]

4×P
, (1)

where M is called the motion matrix and S is called the
structure matrix. Since the first two rows of each Af are
rows of a rotation matrix, the above equation implies that
2 ≤ rank(W ) ≤ 4. Therefore, the image trajectories of a 3-
D point associated with one of the moving objects live in a
subspace of R

2F of dimension two, three or four. This rank
constraint was derived in [13], and was used to propose the
first multi-frame algorithm for estimating the motion of an
affine camera observing a static scene.

B. Differential Motion in Multiple Perspective Views

Let Ωf = (ω1f , ω2f , ω3f )T and Vf = (v1f , v2f , v3f )T

be, respectively, the rotational and translational velocities
of one of the moving objects relative to the camera at frame
f = 1, . . . , F . Under the perspective projection model, the
projection of point Xp = (Xp, Yp, Zp, 1)

T ∈ P
3 on the

zeroth frame is (xp, yp)
T = (Xp, Yp)

T /Zp, and its optical
flow ufp ∈ R

2 in the f th frame is:

ufp =

[

xpyp −(1 + x2
p) −yp 1/Zp 0 xp/Zp

(1 + y2
p) −xpyp xp 0 1/Zp yp/Zp

][

Ωf

Vf

]

.

Given measurements for the optical flow {ufp} of P
pixels in F frames, we can stack all the image measure-
ments into a 2F × P matrix W

W =







u11 · · · u1P

...
...

uF1 · · · uFP







2F×P

(2)

that can be factored into its motion and structure compo-
nents as W = MST , where

M =















ω11 ω21 −ω31 0 0 v11 v31 0
−ω21 0 0 ω11 ω31 v21 0 v31

...
...

ω1F ω2F −ω3F 0 0 v1F v3F 0
−ω2F 0 0 ω1F ω3F v2F 0 v3F















2F×8

S =







x1y1 z1−x2
1 y1 y2

1−z1 x1
1
λ1

x1

λ1

y1

λ1

...
...

xP yP zP −x2
P yP y2

P −zP xP
1

λP

xP

λP

yP

λP







P×8

,

Therefore, rank(W ) ≤ 8, hence the vector containing the
optical flow of a point between the zeroth and the f th
frame for f = 1, . . . , F lives in a subspace of R

2F of
dimension at most 8. This rank constraint, among others,
was derived in [6] and was used to derive a multi-frame
algorithm for the estimation of the optical flow of a moving
camera observing a static scene.

C. Differential Motion and Central Panoramic Cameras

A central panoramic camera is a combination of a curved
mirror and a lens with a unique focal point. For a calibrated
camera with parameter ξ ∈ [0, 1], the projection of a point
Xp = (Xp, Yp, Zp, 1)

T ∈ P
3 is given by (xp, yp)

T =

(Xp, Yp)
T /λp, where λp = −Zp + ξ

√

X2
p + Y 2

p + Z2
p .

As before, let Ωf and Vf be, respectively, the rotational
and translational velocities of one of the moving objects
relative to the camera at frame f . We showed in [9] that
for a central panoramic camera the optical flow ufp ∈ R

2

of point Xp =(Xp, Yp, Zp, 1)
T ∈ P

3 is given by:

ufp =





xpyp zp−x2
p −yp

1−ρpx2

p

λp
−

ρpxpyp

λp

(1−ρpzp)xp

λp

y2
p−zp −xpyp xp −

ρpxpyp

λp

1−ρpy2

p

λp

(1−ρpzp)yp

λp





[

Ωf

Vf

]

,

where ρp = ξ2/(1 + zp) and

zp =
−1 + ξ2(x2

p + y2
p)

1 + ξ
√

1 + (1 − ξ2)(x2
p + y2

p)
. (3)

Given measurements for the optical flow {ufp} of P
pixels in F frames, we can stack all the image measure-
ments into a 2F × P matrix W

W =







u11 · · · u1P

...
...

uF1 · · · uFP







2F×P

(4)

that can be factored into its motion and structure compo-
nents as W = MST , where



M =















ω11 ω21 −ω31 0 0 v11 −v21 v31 0 0
−ω21 0 0 ω11 ω31 0 −v11 0 v21 v31

...
...

ω1F ω2F −ω3F 0 0 v1F −v2F v3F 0 0
−ω2F 0 0 ω1F ω3F 0 −v1F 0 v2F v3F















2F×10

S =









x1y1 z1−x2
1 y1 y2

1−z1 x1
1−ρ1x2

λ1

ρ1x1y1

λ1

(1−ρ1z1)x1

λ1

(1−ρ1y2

1
)

λ1

(1−ρ1z1)y1

λ1

...
...

xP yP zP −x2
P yP y2

P −zP xP
1−ρP x2

P

λP

ρP xP yP

λP

(1−ρP zP )xP

λP

(1−ρP y2

P )
λP

(1−ρP zP )yP

λP









P×10

.

Therefore, rank(W ) ≤ 10, hence the vector containing
the optical flow of a point between the zeroth and the f th
frame for f = 1, . . . , F lives in a subspace of R

2F of
dimension at most 10.

III. SEGMENTATION OF THE MOTION SUBSPACES

Assume we are given a matrix W ∈ R
2F×P containing

P image measurements (either point correspondences or
optical flow) in F frames. If the image measurements are
generated by a single moving object, then the columns of
W span a subspace of R

2F of dimension at most 4, 8 or
10, depending on whether the camera is affine, perspective,
or central panoramic.

Now, if the image measurements are generated by n
independently moving objects, then the columns of W must
live in a collection of n subspaces {Si ⊂ R

2F }n
i=1. If the

motion subspaces are fully dimensional, i.e. dim(Si) =
d = 4, 8 or 10, and fully independent, i.e. dim(Si ∪Sj) =
dim(Si) + dim(Sj) or equivalently Si ∩ Sj = {0}, then
we must have rank(W ) = nd, provided that 2F ≥ nd and
P ≥ nd. This is because rank(W ) = rank([W1 · · ·Wn]),
where Wi is the matrix of image measurements associated
with the ith motion subspace and satisfies Wi = MiS

T
i , so

that

[W1 · · ·Wn] = [M1 · · ·Mn]







ST
1 0

. . .
0 ST

n






. (5)

The rank constraint rank(W ) = nd allows us to determine
the number of independent motions directly from the
measurements as

n =
rank(W )

d
(6)

In many applications, however, the motions need not be
fully dimensional. In ground robot navigation, for example,
the motion of each robot relative to the camera is con-
strained to be planar, which reduces the dimension of the
motion subspaces to d = 4, d = 4 and d = 5 for affine,
perspective and cental panoramic cameras, respectively. In
addition, the motion subspaces may be partially dependent,
i.e. max{dim(Si),dim(Sj)} < dim(Si∪Sj) < dim(Si)+
dim(Sj) or equivalently Si ∩ Sj 6= {0}, Si ∩ Sj 6= Si

and Si ∩ Sj 6= Sj , which happens for instance when
two objects move with the same rotation but different
translation relative to the camera.

In order to deal both with fully independent and partially
dependent motions, as well as full dimensional and de-
generate motions, we need a subspace clustering algorithm
that assumes only that the motion subspaces are different,
i.e. Si 6= Sj for all i 6= j = 1, . . . , n.1 We solve this
problem by fitting and differentiating polynomials using
the Generalized Principal Component Analysis (GPCA)
algorithm [16], [15], which consists of the following two
steps:

1) Project the image measurements onto a (d + 1)-
dimensional subspace of R

2F .
2) Estimate all the motion subspaces by fitting a homo-

geneous polynomial to the projected data. Segment
the motion subspaces by taking the derivatives of this
polynomial.

We discuss these steps in the following two sections.

A. Projection onto a Low Dimensional Subspace

The first step of the algorithm is dimensionality reduc-
tion, which we do via a linear projection onto a (d + 1)-
dimensional subspace of R

2F . We use a linear projection,
because the clustering of data lying on a collection of
subspaces is preserved by a generic linear projection. For
instance, if one is given data lying on two lines in R

3

passing through the origin, then one can first project the two
lines onto a plane in general position2 and then cluster the
data inside that plane. More generally the principle is [15]:

Theorem 1 (Cluster-Preserving Projections): If a set of
vectors {xj} all lie in n linear subspace of dimensions
{di}

n
i=1 in R

D, and if πP represents a linear projection
onto a subspace P of dimension D′, then the points
{πP(xj)} lie in at most n linear subspaces of P of dimen-
sions {d′

i ≤ di}
n
i=1. Furthermore, if D > D′ > max{di},

then there is an open and dense set of projections that
preserve the separation and dimensions of the subspaces.

Since in the case of motion subspaces the maximum
dimensions are d = 4, 8 and 10, depending on the camera
models, we can project the columns of W onto a subspace
of dimension (d+1) = 5, 9 or 11. In choosing a projection,
it makes sense to lose as little information as possible by

1Notice that this is equivalent to requiring that dim(Si ∪ Sj) >

max{dim(Si), dim(Sj)}.
2A plane perpendicular to any of the lines or perpendicular to the plane

containing the lines would fail.



projecting into a dominant eigensubspace, which we can
do simply by computing the SVD of W = UV with U ∈
R

2F×(d+1) and V ∈ R
(d+1)×P . The matrix V contains the

desired projected data.

B. Estimation and Segmentation of Motion Subspaces

With an abuse of notation, from now we will denote
the matrix of projected data as W ∈ R

(d+1)×P and the
projected motion subspaces as {Si}

n
i=1. Let w ∈ R

d+1 be
any of the columns of W . Since w must belong to one of
the projected subspaces, say Si, then there exists a vector
bi ∈ R

d+1 normal to subspace Si such that b
T
i w = 0. Let

{bi}
n
i=1 be a collection of n different vectors in R

d+1 with
the property that bi is orthogonal to Si, but not orthogonal
to Sj for j 6= i = 1, . . . , n. Then any column w of W must
satisfy the following homogeneous polynomial of degree n
in d + 1 variables

pn(w) = (bT
1 w)(bT

2 w) · · · (bT
nw) = 0. (7)

This polynomial can be expressed linearly in terms of
its coefficients. For instance, if n = 2 and d + 1 = 2 we
have pn(w) = c1w

2
1 + c2w1w2 + c3w

2
2 , and we can solve

for the coefficients from the linear system

[c1, c2, c3]





w2
11 · · · w2

1P

w11w21 · · · w1P w2P

w2
21 · · · w2

2P



 = 0. (8)

For arbitrary n and d, the above equation reads c
T Ln = 0,

where the jth column of Ln is formed by stacking all
the monomials of degree n generated from the entries
of the jth column of W. There are Mn =

(

n+d
d

)

such
monomials, hence c ∈ R

Mn and Ln ∈ R
Mn×P . When all

the motion subspaces are fully dimensional the choice of
one normal vector per subspace is unique. This implies that
c is uniquely defined, and so there is only one vector in
the null space of Ln. In this case, we compute c in a least
squares sense as the left singular vector of Ln associated
with its smallest singular value. When one or more motion
subspaces are not fully dimensional, the choice of one
normal vector per subspace is not unique, hence there will
be many vectors c in the null space of Ln. In the unlikely
event that the eigenvector of Ln associated with its smallest
eigenvalue happens to correspond to a choice of normal
vectors in which one of the normal vectors is orthogonal
to two or more subspaces at the same time, we can take
any other vector c in the null space of Ln.

Given c, a direct calculation shows that if w corresponds
to motion subspace Si, then the derivative of pn at w gives
the normal vector bi up to scale factor, i.e.

bi =
Dpn(w)

‖Dpn(w)‖
. (9)

Therefore, if we choose n columns of W , {wi}
n
i=1, each

one belonging to each one of the n motion subspaces, then
we can immediately obtain the normal vectors as bi ∼
Dpn(wi). We refer the reader to [15] for a simple method
for choosing such points.

Given the normal vectors {bi}, we can immediately
cluster the columns of W by assigning wj to motion
subspace i if

i = arg min
`=1,...,n

{(bT
` wj)

2}. (10)

Therefore, the motion segmentation problem is solved by
fitting a polynomial pn to the columns of W and computing
the derivatives of this polynomials to assign each column
to its corresponding motion subspace.

IV. EXPERIMENTAL RESULTS

We tested our 3-D motion segmentation algorithm for
affine cameras on the motion sequences shown in Fig-
ure 1, which contain sequences with missing data (Boat),
full motions (Can-Book), linear and planar motions (3-
Cars), perspective effects3 and transparent motions (Tea-
Tins). The point correspondences were computed using the
algorithm in [2]. Table I shows the segmentation results for
each one of the sequences. Notice that the sequences have
rather different number of feature points and number of
frames. However, in all the cases the algorithm gives a
misclassification error of less than 5%.

TABLE I
PERCENTAGE OF MISCLASSIFIED CORRESPONDENCES FOR DIFFERENT

MOTION SEQUENCES.

Sequence Points Frames Motions Error
Boat 686 11 2 2.19%

Can-Book 170 3 2 1.18%
Tea-Tins 84 3 2 1.19%
3-Cars 173 15 3 4.62%

We also tested our 3-D motion segmentation algorithm
for perspective cameras on two video sequences.
Figure 2 shows the street sequence available at
http://www.cs.otago.ac.nz/research/vision/Research/OpticalFlow/
opticalflow.html#Sequences, which contains two independent
motions: the car translating to the right, and the camera
panning to the right. Figure 2(a) shows frames 3, 8, 12
and 16 of the sequence with the corresponding optical
flow superimposed. The optical flow measurements
were computed using algorithm, which is available
at http://www.cs.brown.edu/people/black/ignc.html. Figures
3(b)-(c) show the segmentation results. In frame 4 the
car is partially occluded, thus only the frontal part of
the car is segmented from the background. The door
is incorrectly segmented because it is in a region with
low texture. As time proceeds, motion information is
integrated over time by incorporating optical flow from
many frames in the optical flow matrix, thus the door is
correctly segmented. In frame 16 the car is fully visible
and correctly segmented from the moving background.
Figure 3(a) shows the two-robot sequence with the
corresponding optical flow superimposed. Figures 3(b)

3Most of the chosen sequences present noticeable perspective effects,
due to large depth variations, or forward motions. The affine camera model
does not take into account such effects.
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Fig. 1. Motion segmentation from point correspondences in multiple
affine views for various sequences.

and 3(c) show the results of the segmentation. Groups 1
and 2 correspond to the each one of the moving objects,
while group 3 corresponds to the background, which is
the correct segmentation.

We also evaluated the performance of our algorithm in
the case where two independently moving mobile robots
are viewed by a static paracatadioptric camera (ξ = 1).
We grabbed 18 images of size 240 × 240 pixels at a
framerate of 5Hz. The optical flow was computed di-
rectly in the image plane using Black’s algorithm avail-
able at http://www.cs.brown.edu/people/black/ignc.html. Fig-
ure 4 shows a sample of the motion segmentation based
on the optical flow. On the left, the optical flow generated
by the two moving robots is shown, and on the right is the
segmentation of the pixels corresponding to the indepen-
dent motions. The two moving robots are segmented very
well from the static background.

V. CONCLUSIONS

This paper has presented a unifying theoretical frame-
work for both infinitesimal and discrete 3-D motion seg-
mentation from optical flow or point correspondences in
multiple affine, perspective or central panoramic views.
We exploited the fact that for various motion and cam-
era models, the image measurements associated with a
single object live in a low dimensional subspace of a
high dimensional space, hence motion segmentation is
achieved by segmenting data living in multiple subspaces.
The segmentation of the motion subspaces was achieved by

(a) Optical flow (b) Group 1 (c) Group 2

Fig. 2. Segmentation results for the street sequence. The sequence has 18
frames and 200 × 200 pixels. The camera is panning to the right while
the car is also moving to the right. (a) Frames 3, 8 12 and 16 of the
sequence with the corresponding optical flow superimposed. (b) Group 1:
motion of the camera. (c) Group 2: motion of the car.

projecting the data onto a low dimensional subspace, fitting
a polynomial to the projected data, and clustering the data
points by evaluating the derivatives of this polynomials.

Open research avenues include making the proposed
batch algorithm recursive, as well as extending it to pro-
jective reconstruction of multiple rigid-body motions from
multiple perspective views.
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