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Abstract

We propose a recursive algorithm for clustering trajeemlying in multiple mov-
ing hyperplanes. Starting from a given or random initial dition, we use nor-
malized gradient descent to update the coefficients of avamgng polynomial
whose degree is the number of hyperplanes and whose deewai a trajectory
give an estimate of the vector normal to the hyperplane auintathat trajectory.
As time proceeds, the estimates of the hyperplane normalstawn to track
their true values in a stable fashion. The segmentationefridjectories is then
obtained by clustering their associated normal vectors.fiftal result is a simple
recursive algorithm for segmenting a variable number ofimgptiyperplanes. We
test our algorithm on the segmentation of dynamic sceneticomg rigid mo-
tions and dynamic textures, e.g., a bird floating on waterr i@ethod not only
segments the bird motion from the surrounding water mobiahalso determines
patterns of motion in the scene (e.g., periodic motion)aliydrom the temporal
evolution of the estimated polynomial coefficients. Ouremxments also show
that our method can deal with appearing and disappearingpnsih the scene.

1 Introduction

Principal Component Analysis (PCA) [1] refers to the problef fitting a linear subspacg ¢ R”

of unknown dimensionl < D to N sample pointsX = {z; € S} ,. A natural extension
of PCA is subspace clustering, which refers to the problerfitisig a union ofn > 1 linear
subspace$S; ¢ R”}"_, of unknown dimensiong; = dim(S;), 0 < d; < D, to N points
X = {z; ¢ RP}N, drawn fromU?_, S;, without knowing which points belong to which subspace.
This problem shows up in a variety of applications in compuigion (image compression, motion
segmentation, dynamic texture segmentation) and alsontralghybrid system identification).

Subspace clustering has been an active topic of researcthevpast few years. Existing methods
randomly choose a basis for each subspace, and then itetatedn data segmentation and standard
PCA. This can be done using methods such as Ksubspaces itersion of Kmeans to the case
of subspaces, or Expectation Maximization for Mixtures adtrbilistic PCAs [3]. An alternative
algebraic approach, which does not require any initializatis Generalized PCA (GPCA) [4]. In
GPCA the data points are first projected onto a low-dimerasisnbspace. Then, a set of polyno-
mials is fitted to the projected data points and a basis folh eae of the projected subspaces is
obtained from the derivatives of these polynomials at tha gaints.

Unfortunately, all existing subspace clustering methaedatch i.e. the subspace bases and the
segmentation of the data are obtained after all the datapbave been collected. In addition,
existing methods are designed for clustering data lying éolkection ofstatic subspaces.e. the
subspace bases do not change as a function of time. Therefoea these methods are applied to
time-series data, e.g., dynamic texture segmentationtymeally applies them to a moving time
window, under the assumption that the subspaces are sittio that window. A major disadvan-
tage of this approach is that it does not incorporate tempotzerence, because the segmentation



and the bases at tinte+ 1 are obtained independently from those at timélso, this approach is
computationally expensive, since a new subspace clugtprisblem is solved at each time instant.

In this paper, we propose a computationally simple and teatlyocoherentonline algorithm for
clustering point trajectories lying in a variable numbenaving hyperplanediVe model a union of
n moving hyperplanes ii”, S;(t) = {x € RP : b (t)z = 0}, j = 1,...,n, whereb(t) € R,

as the zero set of a polynomial with time varying coefficier8¢arting from an initial polynomial
at timet, we compute an update of the polynomial coefficients usimgiatized gradient descent.
The hyperplane normals are then estimated from the demstf the new polynomial at each
trajectory. The segmentation of the trajectories is oletghiby clustering their associated normal
vectors. As time proceeds, new data are added, and the &sgiofahe polynomial coefficients are
more accurate, because they are based on more observatiismaot only makes the segmentation
of the data more accurate, but also allows us to handle élariamber of hyperplanes. We test our
approach on the challenging problem of segmenting dynaertartes from rigid motions in video.

2 Recursive estimation of a single hyperplane

In this section, we review the normalized gradient alganifor estimating a single hyperplane. We
consider both static and moving hyperplanes, and analgzgtébility of the algorithm in each case.

Recursive linear regressionFor the sake of simplicity, let us first revisit a simple lineagression
problem in which we are given measuremefit§t), y(¢)} related by the equation(t) = b x(t).
Attime t, we seek an estimatgt) of b that minimizesf (b) = >0, (y(r) — b =(7))2. A simple
strategy is to recursively updaiiét) by following the negative of the gradient direction at time

v(t) = —(b(t) " @(t) — y(t))a(t). )
However, it is better to normalize this gradient in orderc¢hiave better convergence properties. As
shown in Theorem 2.8, page 77 of [5], the followingrmalized gradient recursive identifier

. N b T x(t) —
bt +1) = o) — L2, @

wherey > 0 is a fixed parameter, is such thgt) — b exponentially if the regressofsc(t)} are
persistently exciting.e. if there is arS € N andp;, p2 > 0 such that for alin
m-+S

plp = > x(t)x(t)" < palp, (3)

whereA < B means thatB — A) is positive definite andp, is the identity matrix irR”. Intuitively,

the condition on the left hand side of (3) means that the dasadbe persistently "rich enough” in
time in order to uniquely estimate the vectomwhile the condition on the right hand side is needed
for stability purposes, as it imposes a uniform upper bounthe covariance of the data.

Consider now a modification of the linear regression prokitemhich the parameter vector varies

with time, i.e.y(t) = b' (t)z(t). As shown in [6], if the regressoisc(t)} are persistently exciting

and the sequendé(t+1)—b(t)} is Lo-stable, i.esup ||b(t+1)—b(t)||?> < oo, then the normalized
t>1

gradient recursive identifier (2) produces an estinbétiof b(t) such tha{b(t)—b(t)} is Ly-stable.

Recursive hyperplane estimationLet {x(¢)} be a set of measurements lying in the moving hyper-
planeS(t) = {x € R : b' (t)x = 0}. Attime t, we seek an estimatg) of b(¢) that minimizes
the errorf (b(t)) = 32" _, (b (7)z(7))? subject to the constraifjb(¢)|| = 1. Notice that the main
difference between linear regression and hyperplane astimis that in the latter case the parame-
ter vectorb(t) is constrained to lie in the unit sphe®€ 1. Therefore, instead of applying standard
gradient descent as in (2), we must follow the negative gradiirection along the geodesic curve
in SP~1 passing through(t). As shown in [7], the geodesic curve passing throbighS®~! along

the tangent vectow € TSP~ is b cos(||v||) + ol sin(||v||). Therefore, the update equation for the

normalized gradient recursive identifier on the sphere is
A N v(t .
bt + 1) = b{e) cos(o) ) + 1 s o(0)]), @



where the negative normalized gradient is computed as

~T
o) = u(1p ~ b(0b (1) D ®

Notice that the gradient on the sphere is essentially the sethe Euclidean gradient, except that it

needs to be projected onto the subspace orthogohaitby the matrixlp —b(1)b (t) e RP> (D=1,
Another difference between recursive linear regressiahranursive hyperplane estimation is that
the persistence of excitation condition (3) needs to be figatiio

m+S
pilp_1 < Z Py (t)z(t) " Py < p2lp_1, (6)
t=m
where the projection matri®y ) € R(P-1DxD onto the orthogonal complement bft) accounts
for the fact that|b(¢)|| = 1. Under persistence of excitation condition (6)b{f) = b the identifier
(4) is such thab(t) — b exponentially, while if{b(t + 1) — b(t) } is Lo-stable, so ifb(t) — b(t)}.

3 Recursive segmentation of a known number of moving hypergines

In this section, we generalize the recursive identifier mj ds stability properties to the case of
N trajectories{z;(t)};L, lying in n hyperplanegS;(t)}7_,. In principle, we could apply the
identifier (2) to each one of the hyperplanes. However, asavweod know the segmentation of the
data, we do not know which data to use to update each one of itientifiers. In the approach,
then hyperplanes are represented with a single polynomial woosticients do not depend on the
segmentation of the data. By updating the coefficients &f plolynomial, we can simultaneously
estimate all the hyperplanes, without first clustering tbimptrajectories.

Representing moving hyperplanes with a time varying polynaial. Letx(¢) be an arbitrary point
in one of then hyperplanes. Then there is a vecbg(t) normal toS;(¢) such thaﬂ)jT (t)x(t) = 0.
Thus, the following homogeneous polynomial of degtea D variables must vanish at(t):

pa(@(®),t) = (b Wa(®)) (b3 Oa(®)) -+ (b) Ha(t)) = 0. )

This homogeneous polynomial can be written as a linear coeatioin of all the monomials of degree
nine, z! =z ab? 2P with0 <ny <nfork=1,...,D,andn; + no+---+np =n, as
)= Cnymp (B2 2 = c(t) Tva(m) =0, (8)

wherec;(t) € R represents the coefficient of the monomidl The mapy,, : RP? — RM~(D) jg
known as th&/eronese mapf degreen, which is defined as [8]:

Up [x17...,xD]Tn—>[...,m17...]T, (9)

wherel is chosen in the degree-lexicographic order Md D) = (”*ffl) is the total number of
independent monomials. Notice that since the normal ve¢tgr¢) } are time dependent, the vector
of coefficientsc(t) is also time dependent. Since both the normal vectors ancbigféicient vector
are defined up to scale, we will assume thiat(¢)|| = ||c(¢)|| = 1, without loss of generality.

Recursive identification of the polynomial coefficients.Thanks to the polynomial equation (8),
we now propose a hew online hyperplane clustering algorttlahoperates on the polynomial co-
efficientsc(t), rather than on the normal vectdis; (¢) }_, . The advantage of doing so is tht)
does not depend on which hyperplane the measuremghbelongs to. Our method operates as
follows. At each time, we seek to find an estimatét) of ¢(t) that minimizes

ZZ ’/n x; (T )))2 (10)

‘rlzl

By using normalized gradient descent®H~(P)~1, we obtain the following recursive identifier

&(t + 1) = &(t) cos(|lo(t)]) + |E>|bm<||v<t>||>, (1)



where the negative normalized gradient is computed as

ol — e (1) ims @ (D@ (D) v (@) /N
0=~ =80 OV ST ety D

Notice that (11) reduces to (4) and (12) reduces to (b)# 1 andN = 1.

Recursive identification of the hyperplane normals Given an estimate af(t), we may obtain an
estimate of the vector normal to the hyperplane containitrgjactoryx(t) from the derivative of

the polynomiap, (z,t) = &' (t)v.(x) atz(t) as

o D, (z(t))e(t)
b(x(t)) = Z — , (13)
=0) = Du w)e®
where Dy, (x) is the Jacobian of,, atz. We choose the derivative @f, to estimate the normal

vectorb;(t), because ife(t) is a trajectory in thejth hyperplane, thebT( t)x(t) = 0, hence the
denvatlve of the true polynomial,, at the trajectory gives

Dpae(t), 1) = 24200 = ST (D(e)belt) ~ by (1), (14)

k=1 £k

Stability of the recursive identifier. Since in practice we do not know the true polynomial coeffi-
cientse(t), and we estimatd(t) from ¢(¢), we need to show that botht) andb(x(t)) track their
true values in a stable fashion. Theorem 1 shows that thiweigdése. Notice that the persistence
of excitation condition for multiple hyperplanes (15) isestially the same as the one for a single
hyperplane (6), but properly modified to take into accouat the regressors are a set of trajectories
in the embedded spade,, (z;(¢))} Y, rather than a single trajectory in the original spéeét)}.

Theorem 1 Let Py € RMn (D)=1)xMn(D) he a projection matrix onto the orthogonal comple-
ment ofc(t). Consider the recursive identifi¢t1)}(13)and assume that the embedded regressors
{vn(zi(t))} Y, are persistently exciting, i.e. there exist p» > 0 and.S € N such that for allm

m+S N
pilnr, (py—1 < Z ch(t v (i (t))v,) (@i(t)) Py < palag, (py-1- (15)

t=m i=1
Then the sequenast) — &(t) is Lo-stable. Furthermore, if a trajectory(¢) belongs to thejth
hyperplane, then the correspondibge(t)) in (13)is such thab; () — b(z(t)) is L-stable. If in
addition the hyperplanes are static, theft) — &(t) — 0 andb, () — b(x(t)) — 0 exponentially.

Proof. [Sketch only] When the hyperplanes are static, the expéalerinvergence o&(t) to ¢
follows with minor modifications from Theorem 2.8, page 77%}f This implies thatdx, A > 0
such that||le(t) — ¢|| < kA~'. Also, since the vectord, ..., b, are different, the polynomial
¢ " v, (x) has no repeated factor. Therefore, thereds-a0 and al’ > 0 such that for alt > 7" we
have| Dv,,(z(t)) Tc|| > 6 and| Dy, (x(t)) "&(t)|| > ¢ (see proof of Theorem 3 in [9] for the latter
claim). Combining this with|¢|| < ||| + ||& — ¢|| and]|c|| = 1, we obtain that wher(t) € S;,

llbj — b(a(t))]| =

Dy, (2(8)&(t)|| Dy, (x(t))e — || Dv,, (2(t))el| Dy, (x(t))e(t)
| Dv,; ()|l Dy} (z+)ell

. 1Dy, @®)(@(t) = )| D] (@(t))e — | Dv,] (2(t)el Dy, (2(t)(@(t) - o)
52
LIDvT @) (@) — ) D, @(W)ell _ , IDw] @O)l1e() ~ )l _ ,of B rr~

52 62 52

showing tha‘l;(:c(t))—>bj exponentially. In the last step we used the fact that foxadl R” there
is a constant matrix of exponen&,, € RM»(P)xMn-1(D) gych thadv, (x)/0xr, = Eynvn_1(x).
Therefore )| Dv,(z)|| < Enl|vn—1(x)|| = En 73/ ||vn(®)]| < anE,, whereE,, = max(||Exy||)
anda,, = zm-xw/p2. Consider now the case in which the hyperplanes are moviimgeSY !
is compact, the sequencfls; (¢t + 1) — b;(t)}}_, are trivially L,-stable, hence so is the sequence

{e(t +1) — ¢(t)}. The Lo-stability of {c(t) — &(t)} and{b;(t) — b(t)} follows. m




Segmentation of the point trajectories. Theorem 1 provides us with a method for computing an
estimatef)(:cz( )) for the normal to the hyperplane passing through each onleed¥ttrajectories
{z;(t) € RP}Y, at each time instant. The next step is to cluster these nerimi@ n groups,
thereby segmenting th& trajectories. We do so by using a recursive version of the d&ns
algonthm adapted to vectors on the unit sphere. Essbntidleach:, we seek the normal vectors
bj( ) € SP~1 and the membership af;; (t) € {O 1} of trajectoryi to hyperplang that maximize

Fus (01, G5(0) = 325" s (0(6] (01 1) (16)
=1 j=1
The main difference with K-means is that we maximize the dotdpct of each data point with
the cluster center, rather than minimizing the distancerdtore, the cluster center is given by the
principal component of each group, rather than the mean.rdardo obtain temporally coherent
estimates of the normal vectors, we use the estimates at torigitialize the iterations at time+ 1.

Algorithm 1 (Recursive hyperplane segmentation)

Initialization step

1: Randomly choos@lﬁ)j(l)}};1 andé(1), or else apply the GPCA algorithm fa; (1)}, .
Foreacht > 1
1: Update the coefficients of the polynomial(x(t),t) = &(t) " v, (x(t)) using the recursive procedure

COS( ||V 'U(t)
e(t+1) = e(t) cos(o (1)) + gy

v(t) = —p(In, (p) — é(t)éT(t))

sin([lv(2)]]),
S (@ (vn (s (t))om (e (1) /N
L+ p 3500 [va(a(2))12/N
2: Solve for the normal vectors from the derivativeggfat the given trajectories
Dyl (z(1))é(t)
[ Dy (:i(t))e(t)]|

3. Segment the normal vectors using the K-means algorithth@sphere

b(xi(t)) = i=1,...,N.

(@) Setwi;(t) = {1 if j = arg, max_ (b Obi(e))* ... N.j=1,....n
0 otherwise
(b) Seth;(t) = PCA([wy;(t)b(x1(t)) wa;(£)b(za(t)) e wng(t) o)), J=1,...,n

b(
(c) Iterate (a) and (b) until convergencewf; (t), and then seb; (t + 1) = b;(t).

4 Recursive segmentation of a variable number of moving hypplanes

In the previous section, we proposed a recursive algorittmségmenting: moving hyperplanes
under the assumption thatis knownandconstantin time. However, in many practical situations
the number of hyperplanes may be unknown and time varyingekample, the number of moving
objects in a video sequence may change due to objects enteri@aving the camera field of view.

In this section, we consider the problem of segmenting abéginumber of moving hyperplanes.
We denote byn(t) € N the number of hyperplanes at timeand assume we are given an upper
boundn > n(t). We show that if we apply Algorithm 1 with the number of hyplarges set to,
then we can still recover the correct segmentation of theesaaven ifn(t) < n. To see this, let us
have a close look at the persistence of excitation conditi@guation (15) of Theorem 1. Since the
condition on the right hand side of (15) holds trivially whigve regressors;(t) are bounded, the
only important condition is the one on the left hand side.idothat the condition on the left hand
side implies that the spatial-temporal covariance matrtk® embedded regressors must be of rank
M, (D) — 1 in any time window of size5 for some integelS. Loosely speaking, the embedded
regressors must be "rich enough” either in space or in time.

The case in which there isg > 0 such that for alk

n(t)=n  and ZP ¥ (@i(t)vy (i (1) Py = prlu, (D)1 (17)



corresponds to the case of data that is rich in space. Indsis, @t each time instant we draw data
from all n hyperplanes and the data is rich enough to estimatelatberplanes at each time instant.
In fact, condition (17) is the one required by GPCA [4], whinhthis case can be applied at each
timet independently. Notice also that (17) is equivalent to (1Bh W = 1.

The case in which(t) = 1 and there arg; > 0, S € Nand: € {1,..., N} such that for alin

m+S
> val@ ), @i(6) = a0y (18)

t=m

corresponds to the case of data that is rich in time. In tisg cat each time instant we draw data
from a single hyperplane. As time proceeds, however, tha ohtst be persistently drawn from
at leastn hyperplanes in order for (18) to hold. This can be achievéteeby having: different
static hyperplanes and persistently drawing data fromfalh@m, or by having less than moving
hyperplanes whose motion is rich enough so that (18) holds.

In summary, as long as the embedded regressors satisfytioondi5) for some upper boundon
the number of hyperplanes, the recursive identifier (1 B)-¢lill still provide L,-stable estimates of
the parameters, even if the number of hyperplanes is unkaogwariable, and(t) < n for all ¢.

5 Experiments

Experiments on synthetic data. We randomly drawV. = 200 3D points lying inn = 2 planes

and apply a time varying rotation to these points for 1,...,1000 to generateV trajectories
{zi(t)};¥,. Since the true segmentation is known, we compute the \&fg(t) } normal to each
plane, and use them to generate the vector of coefficignis We run our algorithm on the so-
generated data with = 2, y = 1 and a random initial estimate for the parameters. We compare
these estimates with the ground truth using the percenfagesolassified points. We also consider
the error of the polynomial coefficients and the normal vectty computing the angles between
the estimated and true values. Figure 1 shows the true amdadstl parameters, as well as the
estimation errors. Observe that the algorithm takes ab@Qtskconds for the errors to stabilize
within 1.62° for the coefficients].62° for the normals, and 4% for the segmentation error.
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Figure 1: Segmenting 200 points lying on two moving planeRinising our recursive algorithm.

Segmentation of dynamic textures.We now apply our algorithm to the problem of segmenting
video sequences of dynamic textures, i.e. sequences ofgitbacenes that exhibit some temporal
stationarity, e.g., water, smoke, or foliage. As proposef 0], one can model the temporal evo-
lution of the image intensities as the output of a linear dyital system. Since the trajectories of
the output of a linear dynamical system live in the so-catibdervability subspace, the intensity
trajectories of pixels associated with a single dynamituexlie in a subspace. Therefore, the set
of all intensity trajectories lie in multiple subspaceseqrer dynamic texture.



Given+ consecutive frames of a video sequelﬁfef)}}:tﬂﬂ, we interpret the data as a matrix

W(t) € RN*37 whereN is the number of pixels, and 3 corresponds to the three RG8r col
channels. We obtain a data point(t) € R” from image!(t) by projecting theith row of W (¢),

w, (t) onto a subspace of dimensidh i.e. x;(t) = Hw,(t), with II € RP*37. The projection
matrix IT can be obtained in a variety of ways. We use ih@rincipal components of the first
frames to definél. More specifically, ifi (y) = UXV T, with U € RV*P 53 ¢ RPXP andV ¢
R37*P is a rankd approximation ofiV/ () computed using SVD, then we chodde= X1V .

We applied our method to a sequerj¢e@0 x 192,130 frameg containing a bird floating on water,
while rotating around a fix point. The task is to segment thid'®irigid motion from the water’s
dynamic texture, while at the same time tracking the motiothe bird. We chosé = 5 principal
components of the = 5 first frames of the RGB video sequence to project each frantealower
dimensional space. Figure 2 shows the segmentation. Aljththe convergence is not guaranteed
with only 130 frames, it is clear that the polynomial coe#itis already capture the periodicity of the
motion. As shown in the last row of Figure 2, some coefficiarfitthe polynomial oscillate in time.
One can notice that the orientation of the bird is relateti¢osalue of the coefficienk. If the bird is
facing to the right showing her right side, the valueghichieves a local maximum. On the contrary
if the bird is oriented to the left, the value ef achieves a local minimum. Some irregularities seem
to appear at the local minima of this coefficient: they adyuabrrespond to a rapid motion of
the bird. One can distinguish three behaviors for the patyiabcoefficients: oscillations, pseudo-
oscillations or quasi-linearity. For both the oscillaoand the pseudo-oscillations the period is
identical to the bird’s motion period (40 frames). This exdenshows that the coefficients of the
estimated polynomial give useful information about thengcaotion.

0 50 100 0 100 0 50 100 0 50 100 0 100

50 50
Time (seconds) Time (seconds) Time (seconds) Time (seconds) Time (seconds)

Figure 2: Segmenting a bird floating on water. Top: frames36760, 81, and 98 of the sequence.
Middle: segmentation obtained using our method. Bottormpteral evolution ofcg during the
video sequence, with the red dot indicating the locatiomefdorresponding frame in this evolution.

To test the performance of our method on a video sequenceawishiable number of motions, we
extracted a sub-clip of the bird sequenéé & 192, 130 frames) in which the camera moves up
at 1 pixel/frame until the bird disappearstat 51. The camera stays stationary frgm= 56 to

t = 66, and then moves down at 1 pixel/frame, the bird reappeats-at76. We applied both
GPCA and our method initialized with GPCA to this video samee For GPCA we used a moving
window of v = 5 frames. For our method we chogk = 5 principal components of the = 5
first frames of the RGB video sequence to project each frarteeafixed lower dimensional space.
We set the parameter of the recursive algorithm te 1. Figure 3 shows the segmentation results.
Notice that both methods give excellent results during tfs¢ few frames, when both the bird and
the water are present. This is expected, as our method ialired with GPCA. Nevertheless,
notice that the performance of GPCA deteriorates dramnibtizéoen the bird disappears, because
GPCA overestimates the number of hyperplanes, whereas etinoohis robust to this change and
keeps segmenting the scene correctly, i.e. assigningealpittels to the background. When the
bird reappears, our method detects the bird correctly fiwarfitst frame whereas GPCA produces



a wrong segmentation for the first frames after the bird reapp Towards the end of the sequence,
both algorithms give a good segmentation. This demonstthst our method has the ability to deal
with a variable number of motions, while GPCA has not. In &ddithe fixed projection and the
recursive estimation of the polynomial coefficients makeroathod much faster than GPCA.

Sequence

GPCA

Figure 3: Segmenting a video sequence with a variable nuofligmamic textures. Top: frames 1,
24,65, 77, and 101. Middle: segmentation with GPCA. Bottsagmentation with our method.

6 Conclusions

We have proposed a simple recursive algorithm for segmgtijectories lying in a variable num-
ber of moving hyperplanes. The algorithm updates the cosfiic of a polynomial whose deriva-
tives give the normals to the moving hyperplanes as well@aségmentation of the trajectories. We
applied our method successfully to the segmentation obadentaining multiple dynamic textures.
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