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a b s t r a c t

We consider the problem of fitting a union of subspaces to a collection of data points drawn from one or
more subspaces and corrupted by noise and/or gross errors. We pose this problem as a non-convex opti-
mization problem, where the goal is to decompose the corrupted data matrix as the sum of a clean and
self-expressive dictionary plus a matrix of noise and/or gross errors. By self-expressive we mean a dictio-
nary whose atoms can be expressed as linear combinations of themselves with low-rank coefficients. In
the case of noisy data, our key contribution is to show that this non-convex matrix decomposition prob-
lem can be solved in closed form from the SVD of the noisy data matrix. The solution involves a novel
polynomial thresholding operator on the singular values of the data matrix, which requires minimal
shrinkage. For one subspace, a particular case of our framework leads to classical PCA, which requires
no shrinkage. For multiple subspaces, the low-rank coefficients obtained by our framework can be used
to construct a data affinity matrix from which the clustering of the data according to the subspaces can be
obtained by spectral clustering. In the case of data corrupted by gross errors, we solve the problem using
an alternating minimization approach, which combines our polynomial thresholding operator with the
more traditional shrinkage-thresholding operator. Experiments on motion segmentation and face clus-
tering show that our framework performs on par with state-of-the-art techniques at a reduced compu-
tational cost.

! 2013 Elsevier B.V. All rights reserved.

1. Introduction

The past few decades have seen an explosion in the availability
of datasets from multiple modalities. While such datasets are usu-
ally very high-dimensional, their intrinsic dimension is often much
smaller than the dimension of the ambient space. For instance, the
number of pixels in an image can be huge, yet most computer
vision models use a few parameters to describe the appearance,
geometry and dynamics of a scene. This has motivated the devel-
opment of a number of techniques for finding low-dimensional
representations of high-dimensional data.

One of the most commonly used methods is Principal Compo-
nent Analysis (PCA), which models the data with a single low-
dimensional subspace. In practice, however, the data points could
be drawn from multiple subspaces and the membership of the data
points to the subspaces could be unknown. For instance, a video se-
quence could contain several moving objects and different sub-
spaces might be needed to describe the motion of different
objects in the scene. Therefore, there is a need to simultaneously
cluster the data into multiple subspaces and find a low-dimen-
sional subspace fitting each group of points. This problem, known

as subspace clustering, finds numerous applications in computer vi-
sion, e.g., image segmentation (Yang et al., 2008), motion segmen-
tation (Vidal et al., 2008) and face clustering (Ho et al., 2003),
image processing, e.g., image representation and compression
(Hong et al., 2006), and systems theory, e.g., hybrid system identi-
fication (Vidal et al., 2003b).

1.1. Prior work on subspace clustering

Over the past decade, a number of subspace clustering methods
have been developed. This includes algebraic methods (Boult and
Brown, 1991; Costeira and Kanade, 1998; Gear, 1998; Vidal et al.,
2003a; Vidal et al., 2004; Vidal et al., 2005), iterative methods
(Bradley and Mangasarian, 2000; Tseng, 2000; Agarwal and
Mustafa, 2004; Lu and Vidal, 2006; Zhang et al., 2009), statistical
methods (Tipping and Bishop, 1999,Sugaya and Kanatani, 2004,
Gruber and Weiss, 2004,Yang et al., 2006, Ma et al., 2007,Rao
et al., 2008, Rao et al., 2010), and spectral clustering-based meth-
ods (Boult and Brown, 1991; Yan and Pollefeys, 2006; Zhang
et al., 2010; Goh and Vidal, 2007; Elhamifar and Vidal, 2009;
Elhamifar and Vidal, 2010; Elhamifar and Vidal, 2013; Liu et al.,
2010; Chen and Lerman, 2009). Among them, methods based on
spectral clustering have been shown to perform very well for
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several applications in computer vision (see Vidal (2011) for a re-
view and comparison of existing methods).

Spectral clustering-based methods (see von Luxburg, 2007 for a
review) decompose the subspace clustering problem in two steps.
In the first step, a symmetric affinity matrix C ¼ ½cij# is constructed,
where cij ¼ cji P 0 measures whether points i and j belong to the
same subspace. Ideally cij $ 1 if points i and j are in the same sub-
space and cij $ 0 otherwise. In the second step, a weighted undi-
rected graph is constructed where the data points are the nodes
and the affinities cij are the weights. The segmentation of the data
is then found by clustering the eigenvectors of the graph Laplacian
using central clustering techniques, such as k-means. Arguably, the
most difficult step is to build a good affinity matrix. This is because
two points could be very close to each other, but lie in different
subspaces (e.g., near the intersection of two subspaces). Con-
versely, two points could be far from each other, but lie in the same
subspace.

Earlier methods for building an affinity matrix (Boult and
Brown, 1991; Costeira and Kanade, 1998) compute the singular
value decomposition (SVD) of the data matrix D ¼ URV> and let
C ¼ V1V>1 , where the columns of V1 are the top r ¼ rankðDÞ singular
vectors of D. The rationale behind this choice is that cij ¼ 0 when
points i and j are in different independent subspaces and the data
are uncorrupted, as shown in Vidal et al. (2005). In practice, how-
ever, the data are often contaminated by noise and gross errors.
In such cases, the equation cij ¼ 0 does not hold, even if the rank
of the noiseless D was given. Moreover, selecting a good value
for r becomes very difficult, because D is full rank. Furthermore,
the equation cij ¼ 0 is derived under the assumption that the sub-
spaces are linear. In practice, many datasets are better modeled by
affine subspaces.

More recent methods for building an affinity matrix address
these issues by using techniques from sparse and low-rank repre-
sentation. For instance, it is shown in Elhamifar and Vidal (2009,
2010, 2013) that a point in a union of multiple subspaces admits
a sparse representation with respect to the dictionary formed by
all other data points, i.e., D ¼ DC, where C is sparse. It is also shown
in Elhamifar and Vidal (2009, 2010, 2013) that, if the subspaces are
independent, the nonzero coefficients in the sparse representation
of a point correspond to other points in the same subspace, i.e., if
cij–0, then points i and j belong to the same subspace. Moreover,
the nonzero coefficients can be obtained by ‘1 minimization. These
coefficients are then converted into symmetric and nonnegative
affinities, from which the segmentation is found using spectral
clustering. A very similar approach is presented in Liu et al.
(2010). The major difference is that a low-rank representation is
used in lieu of the sparsest representation. While the same
principle of representing a point as a linear combination of other
points has been successfully used when the data are corrupted
by noise and gross errors, from a theoretical viewpoint it is not
clear that the above methods are effective when using a corrupted
dictionary.

1.2. Paper contributions

In this paper, we propose a general optimization framework for
solving the subspace clustering problem in the case of data cor-
rupted by noise and/or gross errors. Given a corrupted data matrix
D 2 RM'N , we wish to decompose it as the sum of a self-expressive,
noise-free and outlier-free (clean) data matrix A 2 RM'N , a noise
matrix G 2 RM'N , and a matrix of sparse gross errors E 2 RM'N .
We assume that the columns of the matrix A ¼ a1; a2; . . . ; aN½ # are
points in RM drawn from a union of n P 1 low-dimensional linear
subspaces of unknown dimensions fdigni¼1, where di ( M. We also
assume that A is self-expressive, which means that the clean data
points can be expressed as linear combinations of themselves, i.e.,

aj ¼
XN

i¼1
aicij or A ¼ AC; ð1Þ

where C ¼ ½cij# is the matrix of coefficients. This constraint aims to
capture the fact that a point in a linear subspace can be expressed
as a linear combination of other points in the same subspace. There-
fore, we expect cij to be zero if points i and j are in different
subspaces.

Notice that the constraint A ¼ AC is non-convex, because both A
and C are unknown. This is an important difference with respect to
existing methods, which enforce D ¼ DC where D is the dictionary
of corrupted data points. Another important difference is that we
directly enforce C to be symmetric, while existing methods sym-
metrize C as a post-processing step.

The proposed framework, which we call Low Rank Subspace
Clustering (LRSC), is based on solving the following non-convex
optimization problem:

ðPÞ
min
A;C;E;G

kCk) þ s
2 kA+ ACk2F þ a

2 kGk
2
F þ ckEk1

s:t: D ¼ Aþ Gþ E and C ¼ C>;

where kXk) ¼
P

iriðXÞ, kXk2F ¼
P

ijX
2
ij and kXk1 ¼

P
ijjXijj are, respec-

tively, the nuclear, Frobenius and ‘1 norms of X. The above formula-
tion encourages:

, C to be low-rank (by minimizing kCk)),
, A to be self-expressive (by minimizing kA+ ACk2F ),
, G to be small (by minimizing kGk2F ), and
, E to be sparse (by minimizing kEk1).

The main contribution of our work is to show that important
particular cases of P (see Table 1) can be solved in closed form from
the SVD of the data matrix. In particular, we show that in the
absence of gross errors (i.e., c ¼1), A and C can be obtained by
thresholding the singular values of D and A, respectively. The thres-
holding is done using a novel polynomial thresholding operator,
which reduces the amount of shrinkage with respect to existing
methods. Indeed, when the self-similarity constraint A ¼ AC is en-
forced exactly (i.e., a ¼1), the optimal solution for A reduces to
classical PCA, which does not perform any shrinkage. Moreover,
the optimal solution for C reduces to the affinity matrix for sub-
space clustering proposed by Costeira and Kanade (1998). In the
case of data corrupted by gross errors, a closed-form solution ap-
pears elusive. We thus use an augmented Lagrange multipliers
method. Each iteration of our method involves a polynomial thres-
holding of the singular values to reduce the rank and a regular
shrinkage-thresholding to reduce gross errors.

Table 1
Particular cases of P solved in this paper.

Relaxed Exact

Uncorrupted
P1: Section 3.1 P2: Section 3.2
0 < s <1 s ¼1
a ¼1 a ¼1
c ¼1 c ¼1

Noise
P3: Section 4.1 P4: Section 4.2
0 < s <1 s ¼1
0 < a <1 0 < a <1
c ¼1 c ¼1

Gross errors
P5: Section 5.1 P6: Section 5.2
0 < s <1 s ¼1
0 < a <1 0 < a <1
0 < c <1 0 < c <1
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1.3. Paper outline

The remainder of the paper is organized as follows (see Table 1):
Section 2 reviews existing results on sparse representation and
rank minimization for subspace estimation and clustering as well
as some background material needed for our derivations. Section 3
formulates the low rank subspace clustering problem for linear
subspaces in the absence of noise or gross errors and derives a
closed form solution for A and C. Section 4 extends the results of
Section 3 to data contaminated by noise and derives a closed form
solution for A and C based on the polynomial thresholding opera-
tor. Section 5 extends the results to data contaminated by both
noise and gross errors and shows that A and C can be found using
alternating minimization. Section 6 presents experiments that
evaluate our method on synthetic and real data. Section 7 gives
the conclusions.

2. Background

In this section we review existing results on sparse representa-
tion and rank minimization for subspace estimation (Section 2.1)
and and subspace clustering (Section 2.2).

2.1. Subspace estimation by sparse representation and rank
minimization

2.1.1. Low rank minimization
Given a data matrix corrupted by Gaussian noise D ¼ Aþ G,

where A is an unknown low-rank matrix and G represents the
noise, the problem of finding a low-rank approximation of D can
be formulated as

min
A
kD+ Ak2F subject to rankðAÞ 6 r: ð2Þ

The optimal solution to this (PCA) problem is given by
A ¼ UHrrþ1 ðRÞV

>, where D ¼ URV> is the SVD of D, rk is the kth
singular value of D, and H!ðxÞ is the hard thresholding operator:

H!ðxÞ ¼
x jxj > !
0 else:

!
ð3Þ

When r is unknown, the problem in (2) can be formulated as

min
A

rankðAÞ þ a
2
kD+ Ak2F ; ð4Þ

where a > 0 is a parameter. Since the optimal solution of (2) for a
fixed rank r ¼ rankðAÞ is A ¼ UHrrþ1 ðRÞV

>, the problem in (4) is
equivalent to

min
r

r þ a
2

X

k>r

r2
k : ð5Þ

The optimal r is the smallest r such that rrþ1 6
ffiffiffiffiffiffiffiffiffi
2=a

p
. Therefore,

the optimal A is given by A ¼ UH ffiffi
2
a

p ðRÞV>.
Since rank minimization problems are in general NP hard, a

common practice (see Recht et al., 2010) is to replace the rank of
A by its nuclear norm kAk), i.e., the sum of its singular values,
which leads to the following convex problem

min
A

kAk) þ
a
2
kD+ Ak2F ; ð6Þ

where a > 0 is a user-defined parameter. It is shown in Cai et al.
(2008) that the optimal solution to the problem in (6) is given by
A ¼ US1

a
ðRÞV>, where S!ðxÞ is the shrinkage-thresholding operator

S!ðxÞ ¼
x+ ! x > !
xþ ! x < +!
0 else:

8
><

>:
ð7Þ

Notice that the latter solution does not coincide with the one gi-
ven by PCA, which performs hard-thresholding of the singular val-
ues of D without shrinking them by 1=a.

2.1.2. Principal component pursuit
While the above methods work well for data corrupted by

Gaussian noise, they break down for data corrupted by gross errors.
In Candès et al. (2011) this issue is addressed by assuming sparse
gross errors, i.e., only a small percentage of the entries of D are cor-
rupted. Hence, the goal is to decompose the data matrix D as the
sum of a low-rank matrix A and a sparse matrix E, i.e.,

min
A;E

rankðAÞ þ ckEk0 s:t: D ¼ Aþ E; ð8Þ

where c > 0 is a parameter and kEk0 is the number of nonzero en-
tries in E. Since this problem is in general NP hard, a common prac-
tice is to replace the rank of A by its nuclear norm and the ‘0 semi-
norm by the ‘1 norm. It is shown in Candès et al. (2011) that, under
broad conditions, the optimal solution to the problem in (8) is iden-
tical to that of the convex problem

min
A;E

kAk) þ ckEk1 s:t: D ¼ Aþ E: ð9Þ

While a closed form solution to this problem is not known, con-
vex optimization techniques can be used to find the minimizer. We
refer the reader to Lin et al. (2011) for a review of numerous ap-
proaches. One such approach is the Augmented Lagrange Multi-
plier (ALM) method, an iterative approach for solving the
following optimization problem

max
Y

min
A;E
kAk) þ ckEk1 þ hY ;D+ A+ Eiþ a

2
kD+ A+ Ek2F ; ð10Þ

where the third term enforces the equality constraint via the matrix
of Lagrange multipliers Y, while the fourth term (which is zero at
the optimum) makes the cost function strictly convex. The optimi-
zation problem in (10) is solved using the inexact ALM method in
(13). This method is motivated by the fact that the minimization
over A and E for a fixed Y can be re-written as

min
A;E
kAk) þ ckEk1 þ

a
2
kD+ A+ Eþ a+1Yk2F : ð11Þ

Given E and Y, it follows from the solution of (6) that the opti-
mal A is A ¼ USa+1 ðRÞV

>, where URV> is the SVD of D+ Eþ a+1Y .
Given A and Y, the optimal E satisfies

+aðD+ A+ Eþ a+1YÞ þ csignðEÞ ¼ 0: ð12Þ

It is shown in Lin et al. (2011) that this equation can be solved in
closed form using the shrinkage-thresholding operator as
E ¼ Sca+1 ðD+ Aþ a+1YÞ. Therefore, the inexact ALM method iter-
ates the following steps till convergence

ðU;R;VÞ ¼ svdðD+ Ek þ a+1k YkÞ
Akþ1 ¼ USa+1

k
ðRÞV>

Ekþ1 ¼ Sca+1
k
ðD+ Akþ1 þ a+1k YkÞ

Ykþ1 ¼ Yk þ akðD+ Akþ1 + Ekþ1Þ
akþ1 ¼ qak:

ð13Þ

This ALM method is essentially an iterated thresholding algo-
rithm, which alternates between thresholding the SVD of
D+ Eþ Y=a to get A and thresholding D+ Aþ Y=a to get E. The up-
date for Y is simply a gradient ascent step. Also, to guarantee the
convergence of the algorithm, the parameter a is updated by
choosing the parameter q such that q > 1 so as to generate a se-
quence ak that goes to infinity.
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2.2. Subspace clustering by sparse representation and rank
minimization

Consider now the more challenging problem of clustering data
drawn from multiple subspaces. In what follows, we discuss two
methods based on sparse and low-rank representation for address-
ing this problem.

2.2.1. Sparse subspace clustering (SSC)
The work of Elhamifar and Vidal (2009) shows that, in the case

of uncorrupted data, an affinity matrix for solving the subspace
clustering problem can be constructed by expressing each data
point as a linear combination of all other data points. That is, we
wish to find a matrix C such that D ¼ DC and diagðCÞ ¼ 0. In prin-
ciple, this leads to an ill-posed problem with many possible solu-
tions. To resolve this issue, the principle of sparsity is invoked.
Specifically, every point is written as a sparse linear combination
of all other data points by minimizing the number of nonzero coef-
ficients. That is

min
C

X

i

kCik0 s:t: D ¼ DC and diagðCÞ ¼ 0; ð14Þ

where Ci is the ith column of C. Since this problem is combinatorial,
a simpler ‘1 optimization problem is solved

min
C
kCk1 s:t: D ¼ DC and diagðCÞ ¼ 0: ð15Þ

It is shown in Elhamifar and Vidal (2009, 2010, 2013) that, un-
der some conditions on the subspaces and the data, the solutions to
the optimization problems in (14) and (15) are such that Cij ¼ 0
when points i and j are in different subspaces. In other words,
the nonzero coefficients of the ith column of C correspond to points
in the same subspace as point i. Therefore, one can use C to define
an affinity matrix as jCjþ jC>j. The segmentation of the data is then
obtained by applying spectral clustering (von Luxburg, 2007) to
this affinity.

In the case of data contaminated by noise G, the SSC algorithm
assumes that each data point can be written as a linear combina-
tion of other data points up to an error G, i.e., D ¼ DC þ G, and
solves the following convex problem

min
C;G
kCk1 þ

a
2
kGk2F s:t: D ¼ DC þ G and diagðCÞ ¼ 0: ð16Þ

In the case of data contaminated also by gross errors E, the SSC
algorithm assumes that D ¼ DC þ Gþ E, where E is sparse. Since
both C and E are sparse, the equation D ¼ DC þ Gþ E ¼
½DI#½C>E>#> þ G means that each point is written as a sparse linear
combination of a dictionary composed of all other data points plus
the columns of the identity matrix I. Thus, one can find C by solving
the following convex optimization problem

min
C;G;E

kCk1 þ
a
2
kGk2F þ ckEk1

s:t: D ¼ DC þ Gþ E and diagðCÞ ¼ 0:
ð17Þ

While SSC works well in practice, until recently there was no
theoretical guarantee that, in the case of corrupted data, the
nonzero coefficients correspond to points in the same subspace.
We refer the reader to Soltanolkotabi et al. (2013) for very recent
results in this direction. Moreover, notice that the model is not
really a subspace plus error model, because a contaminated data
point is written as a linear combination of other contaminated
points plus an error. To the best of our knowledge, there is no
method that tries to simultaneously recover a clean dictionary
and cluster the data within this framework.

2.2.2. Low rank representation (LRR)
This algorithm (Liu et al., 2010) is very similar to SSC, except

that it aims to find a low-rank representation instead of a sparse
representation. LRR is motivated by the fact that for uncorrupted
data drawn from n independent subspaces of dimensions fdigni¼1,
the data matrix D is low rank because r ¼ rankðDÞ ¼

Pn
i¼1di, which

is assumed to be much smaller than minfM;Ng. Therefore, the
equation D ¼ DC has a solution C that is low-rank. The LRR
algorithm finds C by solving the following convex optimization
problem

min
C
kCk) s:t: D ¼ DC: ð18Þ

It is shown in Liu et al. (2011) that the optimal solution to (18)
is given by C ¼ V1V>1 , where D ¼ U1R1V>1 is the rank r SVD of D.
Notice that this solution for C coincides with the affinity matrix
proposed by Costeira and Kanade (1998), as described in the intro-
duction. It is shown in Vidal et al. (2008) that this matrix is such
that Cij ¼ 0 when points i and j are in different subspaces, hence
it can be used to build an affinity matrix.

In the case of data contaminated by noise or gross errors, the
LRR algorithm solves the convex optimization problem

min
C
kCk) þ ckEk2;1 s:t: D ¼ DC þ E; ð19Þ

where kEk2;1 ¼
PN

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
j¼1jEjkj2

q
is the ‘2;1 norm of the matrix of er-

rors E. Notice that the problem in (19) is analogous to that in (17),
except that the ‘1 norms of C and E are replaced by the nuclear norm
of C and the ‘2;1 norm of E, respectively. The nuclear norm is a con-
vex relaxation of the rank of C, while the ‘2;1 norm is a convex relax-
ation of the number of nonzero columns of E. Therefore, the LRR
algorithm aims to minimize the rank of the matrix of coefficients
and the number of corrupted data points, while the SSC algorithm
aims to minimize the number of nonzero coefficients and the num-
ber of corrupted entries. As before, the optimal C is used to define an
affinity matrix jCjþ jC>j and the segmentation of the data is ob-
tained by applying spectral clustering to this affinity.

3. Low rank subspace clustering with uncorrupted data

In this section, we consider the low rank subspace clustering
problem P in the case of uncorrupted data, i.e., a ¼1 and c ¼1
so that G ¼ E ¼ 0 and D ¼ A. In Section 3.1, we show that the opti-
mal solution for C can be obtained in closed form from the SVD of A
by applying a nonlinear thresholding to its singular values. In
Section 3.2, we assume that the self-expressiveness constraint is
satisfied exactly, i.e., s ¼1 so that A ¼ AC. As shown in Liu et al.
(2011), the optimal solution to this problem can be obtained by
hard thresholding the singular values of A. Here, we provide a sim-
pler derivation of this result.

3.1. Uncorrupted data and relaxed constraints

Consider the optimization problem P with uncorrupted data
and relaxed self-expressiveness constraint, i.e., s <1 so that
A $ AC. In this case, the problem P reduces to

ðP1Þ min
C
kCk) þ

s
2
kA+ ACk2F s:t: C ¼ C>:

Notice that P1 is convex on C, but not strictly convex. Therefore,
we do not know a priori if the minimizer of P1 is unique. The fol-
lowing theorem shows that the minimizer of P1 is unique and
can be computed in closed form from the SVD of A.

Theorem 1. Let A ¼ UKV> be the SVD of A, where the diagonal
entries of K ¼ diagðfkigÞ are the singular values of A in decreasing
order. The optimal solution to P1 is given by
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C ¼ VPsðKÞV> ¼ V1 I + 1
sK

+2
1

# $
V>1 ; ð20Þ

where the operator Ps acts on the diagonal entries of K as

PsðxÞ¼
: 1+ 1

sx2 x > 1=
ffiffiffi
s
p

0 x 6 1=
ffiffiffi
s
p

(
; ð21Þ

and U ¼ ½U1U2#;K ¼ diagðK1;K2Þ and V ¼ ½V1V2# are partitioned
according to the sets I1 ¼ fi : ki > 1=

ffiffiffi
s
p
g and I2 ¼ fi : ki 6 1=

ffiffiffi
s
p
g.

Moreover, the optimal value of P1 is

UsðAÞ¼
:X

i2I1

1+ 1
2s k

+2
i

# $
þ s
2

X

i2I2

k2i : ð22Þ

Proof. See Appendix B. h

Notice that the optimal solution for C is obtained by applying a
nonlinear thresholding Ps to the singular values of A. Singular
values smaller than 1ffiffi

s
p are mapped to zero, while larger singular

values are mapped closer to one. Notice also that the optimal value
of P1;UsðAÞ, is a decomposable function of the singular values of A,
as are the Frobenius and nuclear norms of A; kAk2F ¼

P
k2i and

kAk) ¼
P

ki, respectively. However, unlike kAkF or kAk);UsðAÞ is
not a convex function of A because UsðkÞ is quadratic near zero
and saturates as k increases, as illustrated in Fig. 1(a). Interestingly,
as s goes to infinity, UsðAÞ approaches rankðAÞ, as we shall see.
Therefore, we may view UsðAÞ as a non-convex relaxation of
rankðAÞ.

3.2. Uncorrupted data and exact constraints

Consider now the optimization problem P with uncorrupted
data and exact self-expressiveness constraint, i.e., s ¼1 so that
A $ AC. This leads to the following optimization problem

ðP2Þ min
C
kCk) s:t: A ¼ AC and C ¼ C>:

The following Theorem shows that the Costeira and Kanade
affinity matrix C ¼ V1V>1 is the optimal solution to P2. The theorem
follows as a corollary of Theorem 1 by letting s!1. An alterna-
tive proof can be found in Liu et al. (2011). Here, we provide a sim-
pler and more direct proof.

Theorem 2. Let A ¼ UKV> be the SVD of A, where the diagonal
entries of K ¼ diagðfkigÞ are the singular values of A in decreasing
order. The optimal solution to P2 is given by

C ¼ V1V
>
1 ; ð23Þ

where V ¼ ½V1V2# is partitioned according to the sets I1 ¼ fi : ki > 0g
and I2 ¼ fi : ki ¼ 0g. Moreover, the optimal value is

U1ðAÞ ¼
X

i2I1

1 ¼ rankðAÞ: ð24Þ

Proof. Let C ¼ UCDU>C be the eigenvalue decomposition (EVD) of C.
Then A ¼ AC can be rewritten as UKV> ¼ UKV>UCDU>C , which
reduces to

KV>UC ¼ KV>UCD ð25Þ

since U>U ¼ I and U>C UC ¼ I. Let W ¼ V>UC ¼ w1; . . . ;wN½ #. Then,
Kwj ¼ Kwjdj for all j ¼ 1; . . . ;N. This means that dj ¼ 1 if Kwj–0
and dj is arbitrary otherwise. Since our goal is to minimize
kCk) ¼ kDk) ¼

PN
j¼1jdjj, we need to set as many dj to zero as possible.

Since A ¼ AC implies that rankðAÞ 6 rankðCÞ, we can set at most
N + rankðAÞ of the dj to zero and the remaining rankðAÞ of the dj must

be equal to one. Now, if dj ¼ 0, then Kwj ¼ K1V>1UCej ¼ 0, where ej is
the jth column of the identity. This means that the columns of UC

associated to dj ¼ 0 must be orthogonal to the columns of V1, and
hence the columns of UC associated with dj ¼ 1 must be in the range
of V1. Thus, UC ¼ V1R1 U2R2½ #P for some rotation matrices R1 and
R2, and permutation matrix P, and so the optimal C is

C ¼ V1R1 V2R2½ #
I 0
0 0

% &
V1R1 V2R2½ #> ¼ V1V>1 ; ð26Þ

as claimed. h

4. Low rank subspace clustering with noisy data

In this section, we consider the low rank subspace clustering
problem P in the case of noisy data, i.e., k ¼1, so that E ¼ 0 and
D ¼ Aþ G. While in principle the resulting problem appears to be
very similar to those in eqs. (16) and (19), there are a number of
differences. First, notice that instead of expressing the noisy data
as a linear combination of itself plus noise, i.e., D ¼ DC þ G, we
search for a clean dictionary, A, which is self-expressive, i.e.,
A ¼ AC. We then assume that the data are obtained by adding noise
to the clean dictionary, i.e., D ¼ Aþ G. As a consequence, our meth-
od searches simultaneously for a clean dictionary A, the coeffi-
cients C and the noise G. Second, the main difference with (16) is
that the ‘1 norm of the matrix of the coefficients is replaced by
the nuclear norm. Third, the main difference with (19) is that the
‘2;1 norm of the matrix of the noise is replaced by the Frobenius
norm. Fourth, our method enforces the symmetry of the affinity
matrix as part of the optimization problem, rather than as a
post-processing step.

As we will show in this section, these modifications result in a
key difference between our method and the state of the art: while
the solution to (16) requires ‘1 minimization and the solution to
(19) requires an ALM method, the solution to P with noisy data
can be computed in closed form from the SVD of the data matrix
D. For the relaxed problem, P3, the closed-form solution for A is
found by applying a polynomial thresholding to the singular values
of D, as we will see in Section 4.1. For the exact problem, P4, the
closed-form solution for A is given by classical PCA, except that
the number of principal components can be automatically deter-
mined, as we will see in Section 4.2.

4.1. Noisy data and relaxed constraints

Consider the optimization problem P with noisy data and re-
laxed self-expressiveness constraint, i.e.

ðP3Þ min
A;C
kCk) þ

s
2
kA+ ACk2F þ

a
2
kD+ Ak2Fs:t: C ¼ C>:

The key difference between P3 and the problem P1 considered in
Section 3.1 is that A is now unknown. Hence the cost function in P3

is not convex in ðA; CÞ because of the product AC. Nonetheless, we
will show in this subsection that the optimal solution is still un-
ique, unless one of the singular values of D satisfies a constraint
that depends on a and s. In such a degenerate case, the problem
has two optimal solutions. Moreover, the optimal solutions for
both A and C can be computed in closed form from the SVD of D,
as stated in the following theorem.

Theorem 3. Let D ¼ URV> be the SVD of the data matrix D. The
optimal solutions to P3 are of the form

A ¼ UKV> and C ¼ VPsðKÞV>; ð27Þ

where each entry of K ¼ diagðk1; . . . ; knÞ is obtained from each entry of
R ¼ diagðr1; . . . ;rnÞ as the solutions to
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r ¼ wðkÞ¼:
kþ 1

as k
+3 if k > 1=

ffiffiffi
s
p

;

kþ s
a k if k 6 1=

ffiffiffi
s
p

;

(
ð28Þ

that minimize

/ðk;rÞ¼: a
2
ðr+ kÞ2 þ

1+ 1
2s k

+2 k > 1=
ffiffiffi
s
p

;
s
2 k

2 k 6 1=
ffiffiffi
s
p

:

(
ð29Þ

Proof. Notice that when A is fixed, P3 reduces to P1. Therefore, it
follows from Theorem 1 that, given A, the optimal solution for C
is C ¼ VPsðKÞV>, where A ¼ UKV> is the SVD of A. Moreover, it fol-
lows from (22) that if we replace the optimal C into the cost of P3,
then P3 is reduces to

min
A

UsðAÞ þ
a
2
kD+ Ak2F : ð30Þ

It is easy to see that, because UsðAÞ is a decomposable function
of the singular values of A, the optimal solution for A in (30) must
be of the form A ¼ UKV> for some K ¼ diagðfkigni¼1Þ. After
substituting this expression for A into (30), we obtain that K must
minimize UsðKÞ þ a

2 kR+Kk2F ¼
Pn

i¼1/ðki;riÞ. Therefore, each ki can
be obtained independently as the minimizer of /ðk;riÞ. After

taking the derivative of /ðk;rÞ w.r.t. k and setting it to zero, we
obtain r ¼ wðkÞ. Therefore, ki is the solution of ri ¼ wðkÞ that min-
imizes /ðk;riÞ, as claimed. For a more detailed proof, we refer the
reader to Appendix B. h

It follows from Theorem 3 that the singular values of A can be
obtained from those of D by solving the equation r ¼ wðkÞ. When
3s 6 a, the solution for k is unique (see Fig. 1(b)). However, when
3s > a there are three possible solutions (see Fig. 1(c)). The follow-
ing theorem shows that, in general, only one of these solutions is
the global minimizer. Moreover, this solution can be obtained by
applying a polynomial thresholding operator k ¼ Pa;sðrÞ to the sin-
gular values of D.

Theorem 4. There exists a r) > 0 such that the solutions to (28) that
minimize (29) can be computed as

k ¼ Pa;sðrÞ¼:
b1ðrÞ if r 6 r)
b3ðrÞ if r > r);

!
ð31Þ

where b1ðrÞ ¼
: a

aþs r and b3ðrÞ is the real root of the polynomial

pðkÞ ¼ k4 + rk3 þ 1
as ¼ 0 ð32Þ

Fig. 1. Plots of Us , w and Pa;s .
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that minimizes (29). If 3s 6 a, the solution for k is unique and

r) ¼ w
1ffiffiffi
s
p

# $
¼ aþ s

a
ffiffiffi
s
p : ð33Þ

If 3s > a, the solution for k is unique, except when r satisfies

/ðb1ðrÞ;rÞ ¼ /ðb3ðrÞ;rÞ; ð34Þ

and r) must lie in the range

4
3

ffiffiffiffiffiffi
3
as

4

r
< r) <

aþ s
a

ffiffiffi
s
p : ð35Þ

Proof. See Appendix B. h

It follows from Theorems 3 and 4 that the optimal solutions to
P3 can be obtained from the SVD of D ¼ URV> as

A ¼ UPa;sðRÞV> and C ¼ VPsðPa;sðRÞÞV>: ð36Þ

However, to compute Pa;s, we need to compute the threshold r).
Unfortunately, finding a formula for r) is not straightforward, be-
cause it requires solving (34) (see B for details). While this equation
can be solved numerically for each a and s, a simple closed-form
formula can be obtained when 1

as ’ 0 (relative to r). In this case,
the quartic becomes pðkÞ ¼ k4 + rk3 ¼ 0, which can be immediately
solved and yields three solutions that are equal to 0 and are hence
out of the range k > 1=

ffiffiffi
s
p

. The only valid solution to the quartic is

k ¼ r 8r : r > 1=
ffiffiffi
s
p

: ð37Þ

Thus, a simpler thresholding procedure can be obtained by
approximating the thresholding function with two piecewise lin-
ear functions. One is exact (when k 6 1=

ffiffiffi
s
p

) and the other one is
approximate (when k > 1=

ffiffiffi
s
p

). The approximation, however, is
quite accurate for a wide range of values for a and s. Since we have
two linear functions, we can easily find a threshold for r as the va-
lue er) at which the discontinuity happens. To do so, we can plug in
the given solutions in (34). We obtain

as
2ðaþ sÞ

er2
) ¼ 1+ 1

2ser2
)
: ð38Þ

This gives 4 solutions, out of which the only suitable one is

er) ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ s
as þ

ffiffiffiffiffiffiffiffiffiffiffiffi
aþ s
a2s

rs

: ð39Þ

Finally, the approximate polynomial thresholding operator can
be written as

k ¼ ePa;sðrÞ ¼
r if r > er)
a

aþs r if r 6 er):

(
ð40Þ

Notice that as s increases, the largest singular values of D are
preserved, rather than shrunk by the operator Sa+1 in (7). Notice
also that the smallest singular values of D are shrunk by scaling
them down, as opposed to subtracting a threshold.

4.2. Noisy data and exact constraints

Assume now that the data are generated from the exact self-
expressive model, A ¼ AC, and contaminated by noise, i.e.,
D ¼ Aþ G. This leads to the optimization problem

ðP4Þ min
A;C
kCk) þ

a
2
kD+ Ak2F s:t: A ¼ AC and C ¼ C>:

This problem can be seen as the limiting case of P3 with s!1.

In this case, b1ðrÞ ¼ r, b3ðrÞ ¼ 0 and r) ¼
ffiffi
2
a

q
, hence the

polynomial thresholding operator Pa;s in (31) reduces to the hard

thresholding operator H ffiffi
2
a

p in (3). Therefore, the optimal A can be

obtained from the SVD of D ¼ URV> as A ¼ UH ffiffi
2
a

p ðRÞV>, while

the optimal C is given by Theorem 2.

Theorem 5. Let D ¼ URV> be the SVD of the data matrix D. The
optimal solution to P4 is given by

A ¼ U1R1V>1 and C ¼ V1V>1 ; ð41Þ

where R1 contains the singular values of D that are larger than
ffiffi
2
a

q
, and

U1 and V1 contain the corresponding singular vectors.

5. Low rank subspace clustering with corrupted data

In this section, we consider the low-rank subspace clustering
problem in the case of data corrupted by both noise and gross er-
rors, i.e., problem P. Similar to the case of noisy data discussed in
Section 4, the major difference between P and the problems in
(17) and (19) is that, rather than using a corrupted dictionary,
we search simultaneously for the clean dictionary A, the low-rank
coefficients C and the sparse errors E. Also, notice that the ‘1 norm
of the matrix of coefficients is replaced by the nuclear norm, the
‘2;1 norm of the matrix of errors is replaced by the ‘1 norm, and
we enforce the symmetry of the affinity matrix as part of the opti-
mization problem rather than as a post-processing. A closed form
solution to the low-rank subspace clustering problem in the case
of data corrupted by noise and gross errors appears elusive at this
point. Therefore, we propose to solve P using an alternating mini-
mization approach.

5.1. Corrupted data and relaxed constraints

5.1.1. Iterative polynomial thresholding (IPT)
We begin by considering the relaxed problem P, which is equiv-

alent to

ðP5Þ min
A;C;E
kCk) þ s

2 kA+ ACk2F þ a
2 kD+ A+ Ek2F þ ckEk1

s:t: C ¼ C>:

When E is fixed, this problem reduces to P3, except that D is re-
placed by D+ E. Therefore, it follows from (36) that A and C can be
computed from the SVD of D+ E ¼ URV> as

A ¼ UPa;sðRÞV> and C ¼ VPsðPa;sðRÞÞV>; ð42Þ

where Ps is the operator in (21) and Pa;s is the polynomial thres-
holding operator in (31). When A and C are fixed, the optimal solu-
tion for E satisfies

+aðD+ A+ EÞ þ csignðEÞ ¼ 0: ð43Þ

This equation can be solved in closed form by using the shrink-
age-thresholding operator in (7) and the solution is

E ¼ Sc
a
ðD+ AÞ: ð44Þ

This suggest an iterative thresholding algorithm that, starting
from A0 ¼ D and E0 ¼ 0, alternates between applying polynomial
thresholding to D+ Ek to obtain Akþ1 and applying shrinkage-thres-
holding to D+ Akþ1 to obtain Ekþ1, i.e.,

ðUk;Rk;VkÞ ¼ svdðD+ EkÞ
Akþ1 ¼ UkPa;sðRkÞV>k
Ekþ1 ¼ Sca+1 ðD+ Akþ1Þ:

ð45Þ

Notice that we do not need to compute C at each iteration be-
cause the updates for A and E do not depend on C. Therefore, we
can obtain C from A upon convergence. Although the optimization
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problem in (42) is non-convex, the algorithm in (45) is guaranteed
to converge, as shown in Tseng (2001). Specifically, it follows from
Theorem 1 that the optimization problem in (42) is equivalent to
the minimization of the cost function

f ðA; EÞ ¼ UsðAÞ þ
a
2
kD+ A+ Ek2F þ ckEk1: ð46Þ

It is easy to see that the algorithm in (45) is a coordinate des-
cent method applied to the minimization of f. This function is con-
tinuous, has a compact level set fðA; EÞ : f ðA; EÞ 6 f ðA0; E0Þg, and has
at most one minimum in E as per (44). Therefore, it follows from
Theorem 4.1 part (c) in Tseng (2001) that the algorithm in (45)
converges to a coordinate-wise minimum of f.

Notice, however, that this minimum is not guaranteed to be a
global minimum. Moreover, in practice its convergence can be
slow as observed in Lin et al. (2011) for similar problems.

5.1.2. Alternating direction method of multipliers (ADMM)
We now propose an alternative solution to P5 in which we en-

force the constraint D ¼ Aþ E exactly. This means that we tolerate
outliers, but we do not tolerate noise. Using the method of multi-
pliers, this problem can be formulated as

max
Y

min
A;E;C:C¼C>

kCk) þ
s
2
kA+ ACk2F þ

l
2
kD+ A+ Ek2F

þ hY ;D+ A+ Eiþ ckEk1: ð47Þ

In this formulation, the term with l does not play the role of
penalizing the noise G ¼ D+ A+ E, as before. Instead, it augments
the Lagrangian with the squared norm of the constraint.

To solve the minimization problem over ðA; E; CÞ, notice that
when E is fixed the optimization over A and C is equivalent to

min
A;C
kCk) þ

s
2
kA+ ACk2F þ

l
2
kD+ A+ Eþ l+1Yk2F s:t: C ¼ C>:

It follows from (36) that the optimal solutions for A and C can be
computed from the SVD of D+ Eþ l+1Y ¼ URV> as

A ¼ UPl;sðRÞV> and C ¼ VPsðPl;sðRÞÞV>; ð48Þ

Conversely, when A and C are fixed, the optimization problem
over E reduces to

min
E

l
2
kD+ A+ Eþ l+1Yk2F þ ckEk1: ð49Þ

As discussed in Section 2.1, the optimal solution for E is given as
E ¼ Sc=lðD+ Aþ l+1YÞ.

Given A and E, the ADMM algorithm updates Y using gradient
ascent with step size l, which gives Y  Y þ lðD+ A+ EÞ. There-
fore, starting from A0 ¼ D, E0 ¼ 0 and Y0 ¼ 0, we obtain the follow-
ing ADMM for solving the low-rank subspace clustering problem in
the presence of gross corruptions,

ðUk;Rk;VkÞ ¼ svdðD+ Ek þ l+1k YkÞ
Akþ1 ¼ UkPlk ;sðRkÞV>k
Ekþ1 ¼ Scl+1

k
ðD+ Akþ1 þ l+1k YkÞ

Ykþ1 ¼ Yk þ lkðD+ Akþ1 + Ekþ1Þ
lkþ1 ¼ qlk;

ð50Þ

where q > 1 is a parameter. As in the case of the IPT method, C is
obtained from A upon convergence. Experimentally, we have ob-
served that our method always converges. However, while the con-
vergence of the ADMM is well studied for convex problems, we are
not aware of any extensions to the nonconvex case.

5.2. Corrupted data and exact constraints

Let us now consider the low rank subspace clustering problem
P, where the constraint A ¼ AC is enforced exactly, i.e.,

ðP6Þ
min
A;C;E;G

kCk) þ a
2 kGk

2
F þ ckEk1

s:t: D ¼ Aþ Gþ E; A ¼ AC and C ¼ C>:

This problem can be seen as the limiting case of P5 with s!1.
In this case, the polynomial thresholding operator Pa;s becomes the
hard thresholding operator H ffiffi

2
a

p . Therefore, we can solve P6 using

the IPT and ADMM algorithms described in Section 5.1 with Pa;s re-
placed by H ffiffi

2
a

p .

6. Experiments

In this section we evaluate the performance of LRSC on two
computer vision tasks: motion segmentation and face clustering.
Using the subspace clustering error,

Subspace clustering error ¼ # of misclassified points
total # of points

; ð51Þ

as a measure of performance, we compare LRSC to state-of-the-art
subspace clustering algorithms based on spectral clustering, such
as LSA (Yan and Pollefeys, 2006), SCC (Chen and Lerman, 2009),
LRR (Liu et al., 2010), and SSC (Elhamifar and Vidal, 2013). We
choose these methods as a baseline, because they have been shown
to perform very well on the above tasks, as reported in Vidal (2011).
For the state-of-the-art algorithms, we use the implementations
provided by their authors. The parameters of the different methods
are set as shown in Table 2.

Notice that the SSC and LRR algorithms in Elhamifar and Vidal
(2013) and Liu et al. (2010), respectively, apply spectral clustering
to a similarity graph built from the solution of their proposed opti-
mization programs. Specifically, SSC uses the affinity jCjþ jCj>,
while LRR uses the affinity jCj. However, the implementation of
the SSC algorithm normalizes the columns of C to be of unit ‘1
norm. To investigate the effect of this post-processing step, we re-
port the results for both cases of without (SSC) and with (SSC-N)
the column normalization step. Also, the code of the LRR algorithm
in Liu et al. (2012) applies a heuristic post-processing step to the
low-rank solution prior to building the similarity graph, similar
to Lauer and Schnörr (2009). Thus, we report the results for both
without (LRR) and with (LRR-H) the heuristic post-processing step.

Notice also that the original published code of LRR contains the
function ‘‘compacc.m’’ for computing the misclassification rate,
which is erroneous, as noted in Elhamifar and Vidal (2013). Here,
we use the correct code for computing the misclassification rate
and as a result, the reported performance for LRR-H is different
from the published results in Liu et al. (2010, 2012). Likewise,
our results for LRSC are different from those in Favaro et al.
(2011), which also used the erroneous function ‘‘compacc.m’’.

Finally, to have a fair comparison, since LSA and SCC need to
know the number of subspaces a priori and the estimation of the
number of subspaces from the eigenspectrum of the graph Lapla-
cian in the noisy setting is often unreliable, we provide the number
of subspaces as an input to all the algorithms.

6.1. Experiments on motion segmentation

Motion segmentation refers to the problem of clustering a set of
2D point trajectories extracted from a video sequence into groups
corresponding to different rigid-body motions. Here, the data ma-
trix D is of dimension 2F ' N, where N is the number of 2D trajec-
tories and F is the number of frames in the video. Under the affine
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projection model, the 2D trajectories associated with a single rigid-
body motion live in an affine subspace of R2F of dimension d ¼ 1;2
or 3 (Tomasi and Kanade, 1992). Therefore, the trajectories associ-
ated with n different moving objects lie in a union of n affine sub-
spaces in R2F , and the motion segmentation problem reduces to
clustering a collection of point trajectories according to multiple
affine subspaces. Since LRSC is designed to cluster linear subspaces,
we apply LRSC to the trajectories in homogeneous coordinates, i.e.,
we append a constant g ¼ 0:1 and work with 2F þ 1 dimensional
vectors.

We use the Hopkins155 motion segmentation database (Tron
and Vidal, 2007) to evaluate the performance of LRSC against that
of other algorithms. The database, which is available online at
http://www.vision.jhu.edu/data/hopkins155, consists of 155
sequences of two and three motions. For each sequence, the 2D
trajectories are extracted automatically with a tracker and outliers
are manually removed. Fig. 2 shows some sample images with the
feature points superimposed.

Table 3(a) and (b) give the average subspace clustering error ob-
tained by different variants of LRSC on the Hopkins 155 motion
segmentation database. We can see that most variants of LRSC
have a similar performance. This is expected, because the trajecto-
ries are corrupted by noise, but do not have gross errors. Therefore,
the Frobenius norm on the errors performs almost as well as the ‘1
norm. However, the performance depends on the choice of the
parameters. In particular, notice that choosing s that depends on
the number of motions and size of each sequence gives better
results than using a fixed s.

Table 4(a) and (b) compare the best results of LRSC against the
state-of-the-art results. Overall, LRSC compares favorably against
LSA, SCC and LRR without post-processing of the affinity matrix.
Relative to LRR with post-processing, LRSC performs worse when
the data is not projected, and better when the data is projected.
However, LRSC does not perform as well as either version of SSC
(with or without post-processing).

Overall, we can see that even the simplest version of LRSC (P1),
whose solution can be computed in closed form, performs on par
with state-of-the-art motion segmentation methods, which re-
quire solving a convex optimization problem. We also notice that
LRSC has almost the same performance with or without projection.

6.2. Experiments on face clustering

Face clustering refers to the problem of clustering a set of face
images from multiple individuals according to the identity of each
individual. Here, the data matrix D is of dimension P ' N, where P
is the number of pixels, and N is the number of images. For a
Lambertian object, the set of all images taken under all lighting
conditions, but the same viewpoint and expression, forms a cone
in the image space, which can be well approximated by a low-
dimensional subspace (Basri and Jacobs, 2003). In practice, a few
pixels deviate from the Lambertian model due to cast shadows
and specularities, which can be modeled as sparse outlying entries.
Therefore, the face clustering problem reduces to clustering a set of
images according to multiple subspaces and corrupted by sparse
gross errors.

We use the Extended Yale B database (Lee et al., 2005) to eval-
uate the performance of LRSC against that of state-of-the-art meth-
ods. The database includes 64 frontal face images of 38 individuals
acquired under 64 different lighting conditions. Each image is
cropped to 192' 168 pixels. Fig. 3 shows sample images from
the database. To reduce the computational cost and the memory
requirements of all algorithms, we downsample the images to
48' 42 pixels and treat each 2;016-dimensional vectorized image
as a data point.

Following the experimental setup of Elhamifar and Vidal
(2013), we divide the 38 subjects into 4 groups, where the first
three groups correspond to subjects 1 to 10, 11 to 20, 21 to 30,
and the fourth group corresponds to subjects 31 to 38. For each
of the first three groups we consider all choices of
n 2 f2;3;5;8;10g subjects and for the last group we consider all
choices of n 2 f2;3;5;8g. Finally, we apply all subspace clustering
algorithms for each trial, i.e., each set of n subjects.

In Table 5 we report Table 3 of Elhamifar and Vidal (2013). This
table shows the average and median subspace clustering errors of
different algorithms. The results are obtained by first applying the
Robust Principal Component Analysis (RPCA) algorithm of Candès
et al. (2011) to the face images of each subject and then applying
different subspace clustering algorithms to the low-rank compo-
nent of the data obtained by RPCA. The purpose of this experiment
is to show that when there are no outliers in the data, our solution
correctly identifies the subspaces. As described in Elhamifar and
Vidal, 2013, notice that LSA and SCC do not performwell, even with
de-corrupted data. Notice also that LRR-H does not perform well
for more than 8 subjects, showing that the post processing step
on the obtained low-rank coefficient matrix not always improves
the result of LRR. SSC and LRSC, on the other hand, perform very
well, with LRSC achieving perfect performance. In this test LRSC
corresponds to P5 + ADMM with an additional term hY1;A+ ACi,
where Y1 is the Lagrange multiplier for the equation A ¼ AC, with
parameters l0 ¼ 3s0 ¼ 0:5ð1:25=r1ðDÞÞ2, c ¼ 0:008, q ¼ 1:8. The
update step for the additional Lagrange multiplier and the aug-
mented coefficient sk is Y1;kþ1 ¼ Y1;k þ skðAkþ1 + Akþ1Ckþ1Þ and
skþ1 ¼ qsk. We also have repeated the test with our current imple-
mentations and also found the error to be consistently 0 across all
subjects. In our test we preprocessed each subject with
P5 + ADMM with parameters g ¼ 0, s ¼ 0:01, c ¼ 10+6 and run
for 10 iterations. Then we ran P3 with parameters g ¼ 0:04,
s ¼ 0:1 and a ¼ 0:1.

Table 6 shows the results of applying different clustering algo-
rithms to the original data, without first applying RPCA to each
group. Notice that the performance of LSA and SCC deteriorates
dramatically, showing that these methods are very sensitive to
gross errors. The performance of LRR is better, but the errors are
still very high, especially as the number of subjects increases. In
this case, the post processing step of LRR-H does help to signifi-
cantly reduce the clustering error. SSC-N, on the other hand,

Table 2
Parameter setup of different algorithms. K is the number of nearest neighbors used by
LSA to fit a local subspace around each data point, d is the dimension of each subspace
assumed by LSA and SCC, s is a parameter weighting the self-expressiveness error, a is
a parameter weighting noise, and c is a parameter weighting gross errors by the ‘1
(SSC, LRSC) or ‘2;1 (LRR) norms.

Parameter LSA SCC LRR SSC LRSC

Motion segmentation
K 8
d 4 3
s 420, 4:5'10

4ffiffiffiffiffiffi
MN
p , 6'10

4ffiffiffiffiffiffi
MN
p

a 800
mini maxj–i jd

>
i dj j

3000, 5000, 1

c 4 1 5, 1
g 0.03
l0 100
q 1.0 1.1

Face clustering
K 7
d 5 9
s 0.01, 0.03, 0.045, 0.07, 0.1
a 1 0.03, 0.045, 0.07, 0.1, 1
c 0.18 20

mini maxj–i kdjk1 10+6, 0.01, 1
g 0.03, 0.04
l0 0.03
q 1.0 1.5
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performs very well, achieving a clustering error of about 10% for 10
subjects. Table 7 shows the performance of different variants of
LRSC on the same data. P1 has the best performance for 2 and 3
subjects, and the worst performance for 5, 8 and 10 subjects. All
other variants of LRSC have similar performance, perhaps with
P5-IPT being the best. Overall, LRSC performs better than LSA,
SCC and LRR, and worse than LRR-H and SSC-N.

Finally, Fig. 4 shows the average computational time of each
algorithm as a function of the number of subjects (or equivalently
the number of data points). Note that the computational time of
SCC is drastically higher than other algorithms. This comes from
the fact that the complexity of SCC increases exponentially in the
dimension of the subspaces, which in this case is d ¼ 9. On the other
hand, SSC, LRR and LRSC use fast and efficient convex optimization
techniques which keep their computational time lower than that of
other algorithms. Overall, LRR and LRSC are the fastest methods.

7. Discussion and conclusion

We have proposed a new algorithm for clustering data drawn
from a union of subspaces and corrupted by noise/gross errors.
Our approach was based on solving a non-convex optimization
problem whose solution provides an affinity matrix for spectral
clustering. Our key contribution was to show that important par-
ticular cases of our formulation can be solved in closed form by
applying a polynomial thresholding operator to the SVD of the
data. A drawback of our approach to be addressed in the future
is the need to tune the parameters of our cost function. Further re-
search is also needed to understand the correctness of the resulting
affinity matrix in the presence of noise and corruptions. Finally, all
existing methods decouple the learning of the affinity from the
segmentation of the data. Further research is needed to integrate
these two steps into a single objective.

Fig. 2. Motion segmentation: given feature points on multiple rigidly moving objects tracked in multiple frames of a video (top), the goal is to separate the feature trajectories
according to the moving objects (bottom).

Table 3
Clustering error (%) of different variants of the LRSC algorithm on the Hopkins 155 database. The parameters in the first four columns are set as s ¼ 420, a ¼ 3000 for 2 motions,
a ¼ 5000 for 3 motions and c ¼ 5. The parameters in the last four columns are set as s ¼ 4:5'104ffiffiffiffiffiffi

MN
p and a ¼ 3000 for two motions, s ¼ 6'104ffiffiffiffiffiffi

MN
p and a ¼ 5000 for 3 motions, and c ¼ 5. For

P5-ADMM, we set l0 ¼ 100 and q ¼ 1:1. In all cases, we use homogeneous coordinates with g ¼ 0:1. Boldface indicates the top performing algorithm in each experiment.

Method P1 P3 P5-ADMM P5-IPT P1 P3 P5-ADMM P5-IPT

(a) 2F-dimensional data points
2 Motions
Mean 3.39 3.27 3.13 3.27 2.58 2.57 2.62 2.57
Median 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 Motions
Mean 7.28 7.29 7.31 7.29 6.68 6.64 6.76 6.67
Median 2.53 2.53 2.53 2.53 1.76 1.76 1.76 1.76

All
Mean 4.25 4.16 4.05 4.16 3.49 3.47 3.53 3.48
Median 0.00 0.19 0.00 0.19 0.09 0.09 0.00 0.09

(b) 4n-dimensional data points obtained by applying PCA to original data
2 Motions
Mean 3.19 3.28 3.93 3.28 2.59 2.57 3.43 2.57
Median 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 Motions
Mean 7.27 7.28 8.07 7.28 6.64 6.67 8.13 6.62
Median 2.54 2.54 3.76 2.54 1.76 1.76 2.30 1.76

All
Mean 4.09 4.16 4.85 4.17 3.49 3.48 4.48 3.47
Median 0.19 0.19 0.21 0.19 0.19 0.09 0.19 0.00
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Appendix A. The Von Neumann trace inequality

This appendix reviews two matrix product inequalities, which
we will use later in our derivations.

Lemma 1 (Von Neumann’s inequality). For any m' n real valued
matrices X and Y,

traceðX>YÞ 6
Xn

i¼1

riðXÞriðYÞ; ðA:1Þ

where r1ðXÞP r2ðXÞP - - -P 0 and r1ðYÞP r2ðYÞP - - -P 0 are
the descending singular values of X and Y respectively. The case of
equality occurs if and only if it is possible to find unitary matrices UX

and VX that simultaneously singular value-decompose X and Y in the
sense that

X ¼ UXRXV>X and Y ¼ UXRYV>X ; ðA:2Þ

where RX and RY denote the m' n diagonal matrices with the singular
values of X and Y, respectively, down in the diagonal.

Table 4
Clustering error (%) on the Hopkins 155 database. Boldface indicates the top performing algorithm in each experiment.

Method LSA SCC LRR LRR-H SSC SSC-N LRSC

(a) 2F-dimensional data points
2 Motions
Mean 4.23 2.89 4.10 2.13 2.07 1.52 2.57
Median 0.56 0.00 0.22 0.00 0.00 0.00 0.00

3 Motions
Mean 7.02 8.25 9.89 4.03 5.27 4.40 6.64
Median 1.45 0.24 6.22 1.43 0.40 0.56 1.76

All
Mean 4.86 4.10 5.41 2.56 2.79 2.18 3.47
Median 0.89 0.00 0.53 0.00 0.00 0.00 0.09

(b) 4n-dimensional data points obtained by applying PCA to original data
2 Motions
Mean 3:61 3:04 4:83 3:41 2.14 1:83 2:57
Median 0:51 0:00 0:26 0.00 0:00 0:00 0:00

3 Motions
Mean 7:65 7:91 9:89 4:86 5.29 4:40 6:62
Median 1:27 1:14 6:22 1:47 0.40 0:56 1:76

All
Mean 4:52 4:14 5:98 3:74 2.85 2:41 3:47
Median 0:57 0.00 0:59 0.00 0:00 0:00 0.00

Fig. 3. Face clustering: given face images of multiple subjects (top), the goal is to find images that belong to the same subject (bottom).

Table 5
Clustering error (%) of different algorithms on the Extended Yale B database after
applying RPCA separately to the images from each subject. Boldface indicates the top
performing algorithm in each experiment.

Method LSA SCC LRR LRR-H SSC-N LRSC

2 Subjects
Mean 6:15 1:29 0:09 0:05 0:06 0.00
Median 0.00 0.00 0.00 0.00 0.00 0.00

3 Subjects
Mean 11:67 19:33 0:12 0:10 0:08 0.00
Median 2:60 8:59 0.00 0.00 0.00 0.00

5 Subjects
Mean 21:08 47:53 0:16 0:15 0:07 0.00
Median 19:21 47:19 0.00 0.00 0.00 0.00

8 Subjects
Mean 30:04 64:20 4:50 11:57 0:06 0.00
Median 29:00 63:77 0:20 15:43 0.00 0.00

10 Subjects
Mean 35:31 63:80 0:15 13:02 0:89 0.00
Median 30:16 64:84 0.00 13:13 0:31 0.00

Table 6
Clustering error (%) of different algorithms on the Extended Yale B database without
pre-processing the data. Boldface indicates the top performing algorithm in each
experiment.

Method LSA SCC LRR LRR-H SSC-N

2 Subjects
Mean 32.80 16.62 9.52 2.54 1.86
Median 47.66 7.82 5.47 0.78 0.00

3 Subjects
Mean 52:29 38:16 19:52 4:21 3.10
Median 50.00 39.06 14.58 2.60 1.04

5 Subjects
Mean 58:02 58:90 34:16 6:90 4.31
Median 56.87 59.38 35.00 5.63 2.50

8 Subjects
Mean 59:19 66:11 41:19 14:34 5.85
Median 58.59 64.65 43.75 10.06 4.49

10 Subjects
Mean 60:42 73:02 38:85 22:92 10.94
Median 57.50 75.78 41.09 23.59 5.63
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Proof. See Mirsky (1975). h

Lemma 2. For any n' n real valued, symmetric positive definite
matrices X and Z,

traceðXZÞP
Xn

i¼1

riðXÞrn+iþ1ðZÞ; ðA:3Þ

where r1ðXÞP r2ðXÞP - - -P 0 and r1ðZÞP r2ðZÞP - - -P 0 are
the descending singular values of X and Z, respectively. The case of
equality occurs if and only if it is possible to find a unitary matrix UX

that simultaneously singular value-decomposes X and Z in the sense
that

X ¼ UXRXU>X and Z ¼ UXPRZP>U>X ; ðA:4Þ

where RX and RZ denote the n' n diagonal matrices with the singular
values of X and Z, respectively, down in the diagonal in descending
order, and P is a permutation matrix such that PRZP> contains the
singular values of Z in the diagonal in ascending order.

Proof. Let Y ¼ kI + Z, where k P kZk2. Then
traceðXYÞ ¼ traceðXðkI + ZÞÞ ¼ ktraceðXÞ + traceðXZÞ. Also,

traceðXYÞ 6
Xn

i¼1

riðXÞriðYÞ ¼
Xn

i¼1
riðXÞriðkI + ZÞ

¼
Xn

i¼1

riðXÞ k+ rn+iþ1ðZÞð Þ

¼ ktraceðXÞ +
Xn

i¼1
riðXÞrn+iþ1ðZÞ: ðA:5Þ

It follows from Lemma 1 that traceðXZÞP
Pn

i¼1riðXÞrn+iþ1ðZÞ,
as claimed. Moreover, the equality is achieved if an only if there
exists a matrix UX (recall that X and Z are symmetric) such that
X ¼ UXRXU>X and Y ¼ UXRYU>X . Therefore,

Z ¼ kI + Y ¼ kI + UXRYU>X ¼ kI + UXRkI+ZU>X
¼ kI + UXðkI +PRZP>ÞU>X ¼ UXPRZP>U>X ðA:6Þ

as claimed. h

Appendix B. Proofs of the main theorems

Theorem 6. Let A ¼ UKV> be the SVD of A, where the diagonal
entries of K ¼ diagðfkigÞ are the singular values of A in decreasing
order. The optimal solution to P1 is

C ¼ VPsðKÞV> ¼ V1 I + 1
sK

+2
1

# $
V>1 ; ðB:1Þ

where the operator Ps acts on the diagonal entries of K as

PsðxÞ ¼
1+ 1

sx2 x > 1=
ffiffiffi
s
p

;

0 x 6 1=
ffiffiffi
s
p

;

(
ðB:2Þ

and U ¼ ½U1U2#, K ¼ diagðK1;K2Þ and V ¼ ½V1V2# are partitioned
according to the sets I1 ¼ fi : ki > 1=

ffiffiffi
s
p
g and I2 ¼ fi : ki 6 1=

ffiffiffi
s
p
g.

Moreover, the optimal value is

UsðAÞ¼
:X

i2I1

1+ 1
2s k

+2
i

# $
þ s
2

X

i2I2

k2i : ðB:3Þ

Proof. Let A ¼ UKV> be the SVD of A and C ¼ UCDU>C be the eigen-
value decomposition (EVD) of C. The cost function of P1 reduces to

kUCDU>C k) þ
s
2
kUKV>ðI + UCDU>C Þk

2
F

¼ kDk) þ
s
2
kKV>UCðI + DÞU>C k

2
F

¼ kDk) þ
s
2
kKWðI + DÞk2F ; ðB:4Þ

where W ¼ V>UC . To minimize this cost with respect to W, we only
need to consider the last term of the cost function, i.e.,

kKWðI + DÞk2F ¼ trace ðI + DÞ2W>K2W
' (

: ðB:5Þ

Applying Lemma 2 to X ¼WðI + DÞ2W> and Z ¼ K2, we obtain
that for all unitary matrices W

min
W

trace ðI + DÞ2W>K2W
' (

¼
XN

i¼1
ri ðI + DÞ2
' (

rn+iþ1ðK2Þ; ðB:6Þ

where the minimum is achieved by a permutation matrix W ¼ P>

that sorts the diagonal entries of K2 in ascending order, i.e., the
diagonal entries of PK2P> are in ascending order.

Let the ith largest entry of ðI + DÞ2 and K2 be, respectively,
ð1+ diÞ2 ¼ ri ðI + DÞ2

' (
and m2n+iþ1 ¼ k2i ¼ riðK2Þ. Then

Table 7
Clustering error (%) of our algorithms on the Extended Yale B database without pre-
processing the data. The parameters of LRSC P1 and P3 are set as s ¼ 0:045, and
a ¼ 0:045, while the coefficient for homogeneous coordinates is set as g ¼ 0:03. P5-
ADMM was run for 20 iterations, with parameters s ¼ 0:03, c ¼ 0:01, g ¼ 0:03,
l0 ¼ 0:03 and q ¼ 1:5. P5-IPT was run for 10 iterations, with parameters a ¼ 0:07,
s ¼ 0:07, c ¼ 0:01, and g ¼ 0:03.

P1 P3 P5-ADMM P5-IPT

2 Subjects
3.15 4.28 3.27 4.52
2.34 3.91 2.34 3.91

3 Subjects
4.71 6.23 5.46 5.80
4.17 5.73 4.17 5.73

5 Subjects
13.06 14.31 14.31 8.97
8.44 7.81 8.44 7.81

8 Subjects
26.83 23.73 29.91 22.61
28.71 27.83 30.27 26.46

10 Subjects
35.89 31.25 36.88 29.01
34.84 27.65 36.25 26.88

Fig. 4. Average computational time (s) of the algorithms on the Extended Yale B
database as a function of the number of subjects.
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min
W
kDk) þ

s
2
kKWðI + DÞk2F ¼

XN

i¼1
jdijþ

s
2

XN

i¼1
m2i ð1+ diÞ2: ðB:7Þ

To find the optimal D, we can solve for each di independently as
di ¼ argmindjdjþ s

2 m2i ð1+ dÞ2. As shown, e.g., by Parikh and Boyd
(2013) , the solution to this problem can be found in closed form
using the shrinkage-thresholding operator in (7), which gives

di ¼ S 1
sm2

i

ð1Þ ¼
1+ 1

sm2
i

mi > 1=
ffiffiffi
s
p

0 mi 6 1=
ffiffiffi
s
p

(
: ðB:8Þ

Then, di ¼ Psðkn+iþ1Þ, which can be compactly written as
D ¼ PPsðKÞP>. Therefore,

P>DP ¼ PsðKÞ ¼
I + 1

sK
+2
1 0

0 0

" #

; ðB:9Þ

where K ¼ diagðK1;K2Þ is partitioned according to the sets
I1 ¼ fi : ki > 1=

ffiffiffi
s
p
g and I2 ¼ fi : ki 6 1=

ffiffiffi
s
p
g.

To find the optimal W, notice from Lemma 2 that the equality

trace ðI + DÞ2W>K2W
' (

¼
PN

i¼1ð1+ diÞ2k2n+iþ1 is achieved if and

only if there exists a unitary matrix UX such that

ðI + DÞ2 ¼ UXðI + DÞ2U>X and W>K2W ¼ UXPK2P>U>X : ðB:10Þ

Since the SVD of a matrix is unique up to the sign of the singular
vectors associated with different singular values and up to a
rotation and sign of the singular vectors associated with repeated
singular values, we conclude that UX ¼ I up to the aforementioned
ambiguities of the SVD of ðI + DÞ2. Likewise, we have that
W> ¼ UXP up to the aforementioned ambiguities of the SVD of
K2. Now, if K2 has repeated singular values, then ðI + DÞ2 has
repeated eigenvalues at the same locations. Therefore,
W> ¼ UXP ¼ P up to a block-diagonal transformation, where each
block is an orthonormal matrix that corresponds to a repeated
singular value of D. Nonetheless, even though W may not be
unique, the matrix C is always unique and equal to

C ¼ UCDU
>
C ¼ VWDW>V> ¼ VP>DPV>

¼ V1 V2½ # I + 1
sK

+2
1 0

0 0

" #

V1 V2½ #> ¼ V1ðI +
1
sK

+2
1 ÞV

>
1 ; ðB:11Þ

as claimed.
Finally, the optimal C is such that AC ¼ U1ðK1 + 1

sK
+1
1 ÞV

>
1 and

A+ AC ¼ U2K2V>2 þ 1
sU1K1V>1 . This shows (22), because

kCk) þ
s
2
kA+ ACk2F ¼

X

i2I1

1+ 1
s k

+2
i

# $
þ s
2

X

i2I1

k+2i

s2 þ
X

i2I2

k2i

 !
;

as claimed. h

Theorem 3. Let D ¼ URV> be the SVD of the data matrix D. The opti-
mal solutions to P3 are of the form

A ¼ UKV> and C ¼ VPsðKÞV>; ðB:12Þ

where each entry of K ¼ diagðk1; . . . ; knÞ is obtained from each entry of
R ¼ diagðr1; . . . ;rnÞ as the solutions to

r ¼ wðkÞ¼:
kþ 1

as k
+3 if k > 1=

ffiffiffi
s
p

kþ s
a k if k 6 1=

ffiffiffi
s
p

(

; ðB:13Þ

that minimize

/ðk;rÞ¼: a
2
ðr+ kÞ2 þ

1+ 1
2s k

+2 k > 1=
ffiffiffi
s
p

s
2 k

2 k 6 1=
ffiffiffi
s
p

(
: ðB:14Þ

Proof. The proof of this result will be done in two steps. First, we
will show that the optimal C can be computed in closed form from
the SVD of A. Second, we will show that the optimal A can be
obtained in closed form from the SVD of D.

A closed-form solution for C. Notice that when A is fixed, P3

reduces to P1. Therefore, it follows from Theorem 1 that the
optimal solution for C is C ¼ VPsðKÞV>, where A ¼ UKV> is the
SVD of A. Moreover, it follows from (22) that if we replace the
optimal C into the cost of P3, then P3 is equivalent to

min
A

UsðAÞ þ
a
2
kD+ Ak2F : ðB:15Þ

A closed-form solution for A. Let D ¼ URV> and A ¼ UAKV>A be the
SVDs of D and A, respectively. Then,

kD+ Ak2F ¼ kURV
> + UAKV>A k

2
F ;

¼ kRk2F + 2traceðVRU>UAKV>A Þ þ kKk
2
F ;

¼ kRk2F + 2traceðRW1KW>
2 Þ þ kKk

2
F ;

ðB:16Þ

where W1 ¼ U>UA and W2 ¼ V>VA. Therefore, the minimization
over A in (B.15) can be carried out by minimizing first with respect
to W1 and W2 and then with respect to K.

The minimization over W1 and W2 is equivalent to

max
W1 ;W2

traceðRW1KW>
2 Þ: ðB:17Þ

By letting X ¼ R and Y ¼W1KW>
2 in Lemma 1, we obtain

max
W1 ;W2

traceðRW1KW
>
2 Þ ¼

Xn

i¼1

riðRÞriðKÞ ¼
Xn

i¼1

riki: ðB:18Þ

Moreover, the maximum is achieved if and only if there exist
orthogonal matrices UW and VW such that

R ¼ UWRV>W and W1KW>
2 ¼ UWKV>W : ðB:19Þ

Hence, the optimal solutions are W1 ¼ UW ¼ I and W2 ¼ VW ¼ I
up to a unitary transformation that accounts for the sign and rota-
tional ambiguities of the singular vectors of R. This means that A
and D have the same singular vectors, i.e., UA ¼ U and VA ¼ V ,
and that kD+ Ak2F ¼ kUðR+KÞV>k2F ¼ kR+ Kk2F . By substituting
this expression for kD+ Ak2F into (B.15), we obtain

min
K

X

i2I1

ð1+ 1
2s k

+2
i Þ þ

s
2

X

i2I2

k2i þ
a
2

X

i

ðri + kiÞ2; ðB:20Þ

where I1 ¼ fi : ki > 1=
ffiffiffi
s
p
g and I2 ¼ fi : ki 6 1=

ffiffiffi
s
p
g.

It follows from the above equation that the optimal ki can be
obtained independently for each ri by minimizing the ith term of
the above summation, which is of the form /ðk;rÞ in (29). The first
order derivative of / is given by

@/
@k
¼ aðk+ rÞ þ

1
s k

+3 k > 1=
ffiffiffi
s
p

sk k 6 1=
ffiffiffi
s
p

(
: ðB:21Þ

Therefore, the optimal k’s can be obtained as the solutions of the
nonlinear equation r ¼ wðkÞ in (28) that minimize (29). This com-
pletes the proof of Theorem 3. h

Theorem 4. There exists a r) > 0 such that the solutions to (28) that
minimize (29) can be computed as

k ¼ Pa;sðrÞ¼:
b1ðrÞ if r 6 r)
b3ðrÞ if r > r);

!
ðB:22Þ

where b1ðrÞ ¼
: a

aþs r and b3ðrÞ is the real root of the polynomial
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pðkÞ ¼ k4 + rk3 þ 1
as ¼ 0 ðB:23Þ

that minimizes (29). If 3s 6 a, the solution for k is unique and

r) ¼ w
1ffiffiffi
s
p

# $
¼ aþ s

a
ffiffiffi
s
p : ðB:24Þ

If 3s > a, the solution for k is unique, except when r satisfies

/ðb1ðrÞ;rÞ ¼ /ðb3ðrÞ;rÞ; ðB:25Þ

and r) must lie in the range

4
3

ffiffiffiffiffiffi
3
as

4

r
< r) <

aþ s
a

ffiffiffi
s
p : ðB:26Þ

Proof. When 3s 6 a, the solution to r ¼ wðkÞ that minimizes
/ðk;rÞ is unique, as illustrated in Fig. 1(b). This is because

@2/

@k2
¼ a+ 3

s k
+4 k > 1=

ffiffiffi
s
p

aþ s k 6 1=
ffiffiffi
s
p

(
ðB:27Þ

is strictly positive, hence / is a strictly convex function of k. When
k 6 1ffiffi

s
p , the unique solution to r ¼ wðkÞ is given by

k ¼ b1ðrÞ¼
: a
aþ sr: ðB:28Þ

From this equation we immediately conclude that r) ¼ aþs
a
ffiffi
s
p .

Now, if k > 1ffiffi
s
p , then k must be one of the real solutions of the poly-

nomial in (B.23). Since 3s 6 a, this polynomial has a unique real
root with multiplicity 2, which we denote as b3ðrÞ.

When 3s > a, we have k ¼ b1ðrÞ if r < h1¼
: 4
3

ffiffiffiffi
3
as

4
q

and k ¼ b3ðrÞ
if r > h3¼

: aþs
a
ffiffi
s
p , as illustrated in Fig. 1(c). However, if h1 6 r 6 h3

there could be up to three solutions for k. The first candidate
solution is b1ðrÞ. The remaining two candidate solutions b2ðrÞ and
b3ðrÞ are the two real roots of the polynomial in (B.23), with b2ðrÞ
being the smallest and b3ðrÞ being the largest root. The other two
roots of p are complex. Out of the three candidate solutions, b1ðrÞ
and b3ðrÞ correspond to a minimum and b2ðrÞ corresponds to a
maximum, because

b1ðrÞ 6 1=
ffiffiffi
s
p

; b2ðrÞ <
ffiffiffiffiffiffi
3
as

4

r
and b3ðrÞ >

ffiffiffiffiffiffi
3
as

4

r
; ðB:29Þ

and so @2/
@k2

is positive for b1, negative for b2 and positive for b3.
Therefore, except when r is such that (B.25) holds true, the solution
to r ¼ wðkÞ that minimizes (29) is unique and equal to

k ¼
b1ðrÞ if /ðb1ðrÞ;rÞ < /ðb3ðrÞ;rÞ
b3ðrÞ if /ðb1ðrÞ;rÞ > /ðb3ðrÞ;rÞ:

!
ðB:30Þ

To show that k can be obtained as in (B.22), we need show that
there exists a r) > 0 such that /ðb1ðrÞ;rÞ < /ðb3ðrÞ;rÞ for r < r)
and /ðb1ðrÞ;rÞ > /ðb3ðrÞ;rÞ for r > r). Because of the intermedi-
ate value theorem, it is sufficient to show that

f ðrÞ ¼ /ðb1ðrÞ;rÞ + /ðb3ðrÞ;rÞ ðB:31Þ

is continuous and increasing for r 2 ½h1; h3#, negative at h1 and posi-
tive at h3, so that there is a r) 2 ðh1; h3Þ such that f ðr)Þ ¼ 0. The
function f is continuous in ½h1; h3#, because (a) / is a continuous
function of ðk;rÞ, (b) the roots of a polynomial (b1 and b2) vary con-
tinuously as a function of the coefficients (r) and (c) the composi-
tion of two continuous functions is continuous. Also, f is
increasing in ½h1; h3#, because

df
dr ¼

@/
@k

))))
ðb1 ;rÞ

db1

dr þ
@/
@r

))))
ðb1 ;rÞ

+ @/
@k

))))
ðb3 ;rÞ

db3

dr +
@/
@r

))))
ðb3 ;rÞ

¼ 0þ aðr+ b1Þ + 0+ aðr+ b3Þ ¼ aðb3 + b1Þ > 0:

Now, notice from Fig. 1(c) that when r < h1 the optimal solution is

k ¼ b1. When r ¼ h1, b1 ¼ 4a
3ðaþsÞ

ffiffiffiffi
3
as

4
q

is a minimum and

b2 ¼ b3 ¼
ffiffiffiffi
3
as

4
q

is an inflection point, thus the optimal solution is

k ¼ b1.
1 When r > h3, the optimal solution is b3. Finally, when

r ¼ h3;b1 ¼ b2 ¼ 1ffiffi
s
p is a maximum and b3 is a minimum, thus the

optimal solution is k ¼ b3. Therefore, the threshold for r must lie
in the range

4
3

ffiffiffiffiffiffi
3
as

4

r
< r) <

aþ s
a

ffiffiffi
s
p : ! ðB:32Þ
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