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T he past few years have witnessed an explo-
sion in the availability of data from multi-
ple sources and modalities. For example,
millions of cameras have been installed
in buildings, streets, airports, and cities

around the world. This has generated extraordinary advan-
ces on how to acquire, compress, store, transmit, and process
massive amounts of complex high-dimensional data.
Many of these advances have relied on the observation

that, even though these data sets are high dimensional, their
intrinsic dimension is often much smaller than the dimension of the

ambient space. In computer vision, for example, the number of pixels in an
image can be rather large, yet most computer vision models use only a few

parameters to describe the appearance, geometry, and dynamics of a scene. This has motivated the
development of a number of techniques for finding a low-dimensional representation of a high-dimen-
sional data set. Conventional techniques, such as principal component analysis (PCA), assume that the
data are drawn from a single low-dimensional subspace of a high-dimensional space. Such approaches
have found widespread applications in many fields, e.g., pattern recognition, data compression, image
processing, and bioinformatics.

In practice, however, the data points could be drawn from multiple subspaces, and the mem-
bership of the data points to the subspaces might be unknown. For instance, a video sequence
could contain several moving objects, and different subspaces might be needed to describe the
motion of different objects in the scene. Therefore, there is a need to simultaneously cluster the
data into multiple subspaces and find a low-dimensional subspace fitting each group of points.
This problem, known as subspace clustering, has found numerous applications in computer
vision (e.g., image segmentation [1], motion segmentation [2], and face clustering [3]), image pro-
cessing (e.g., image representation and compression [4]), and systems theory (e.g., hybrid system
identification [5]).
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A number of approaches to sub-
space clustering have been pro-
posed in the past two decades. A
review of methods from the data-
mining community can be found
in [6]. This article will present
methods from themachine learning
and computer vision communities, including algebraic methods
[7]–[10], iterative methods [11]–[15], statistical methods [16]–[20],
and spectral clustering-based methods [7], [21]–[27]. We review
these methods, discuss their advantages and disadvantages, and
evaluate their performance on the motion segmentation and face-
clustering problems.

THE SUBSPACE CLUSTERING PROBLEM
Consider the problem of modeling a collection of data points
with a union of subspaces, as illustrated in Figure 1. Specifically,
let fxj 2 RDgNj¼1 be a given set of points drawn from an unknown
union of n ! 1 linear or affine subspaces fSigni¼1 of unknown
dimensions di ¼ dim (Si), 05di5D, i ¼ 1; . . . ; n. The subspa-
ces can be described as

Si ¼ fx 2 RD : x ¼ li þ Uiyg, i ¼ 1, . . . , n, (1)

where li 2 RD is an arbitrary point in subspace Si that can be
chosen as li ¼ 0 for linear subspaces, Ui 2 RD3 di is a basis for
subspace Si, and y 2 Rdi is a low-dimensional representation for
point x. The goal of subspace clustering is to find the number of
subspaces n, their dimensions fdigni¼1, the subspace bases
fUigni¼1, the points flig

n
i¼1, and the segmentation of the points

according to the subspaces.
When the number of subspaces is equal to one, this problem

reduces to finding a vector l 2 RD, a basis U 2 RD3 d , a low-
dimensional representation Y ¼ ½y1; . . . ; yN $ 2 Rd3N , and the
dimension d. This problem is known as PCA [28]. (The problem of
matrix factorization dates back to the work of Beltrami [29]
and Jordan [30]. In the context of stochastic signal process-
ing, PCA is also known as Karhunen-Loeve transform [31].
In the applied statistics literature, PCA is also known as Eck-
art-Young decomposition [32].) PCA can be solved in a remark-
ably simple way: l ¼ (1=N)

PN
j¼1 xj is the mean of the data

points (U ;Y ) can be obtained from the rank-d singular value
decomposition (SVD) of the (mean-subtracted) data matrix X ¼
½x1 % l, x2 % l, . . . , xN % l$ 2 RD3Nas

U ¼ U and Y ¼ RV>, where X ¼ URV>, (2)

and d can be obtained as d ¼ rank(X) with noise-free data
or using model-selection techniques when the data are
noisy [28].

When n41, the subspace clustering problem becomes sig-
nificantly more difficult due to a number of challenges.

n First, there is a strong coupling between data segmenta-
tion and model estimation. Specifically, if the segmentation
of the data is known, one could easily fit a single subspace

to each group of points using
standard PCA. Conversely, if
the subspace parameters were
known, one could easily find
the data points that best fit
each subspace. In practice,
neither the segmentation of

the data nor the subspace parameters are known, and one
needs to solve both problems simultaneously.
n Second, the distribution of the data inside the subspaces
is generally unknown. If the data within each subspace are
distributed around a cluster center and the cluster centers
for different subspaces are far apart, the subspace clustering
problem reduces to the simpler and well-studied central
clustering problem. However, if the distribution of the data
points in the subspaces is arbitrary, the subspace clustering
problem cannot be solved by central clustering techniques.
In addition, the problem becomes more difficult when many
points lie close to the intersection of two or more subspaces.
n Third, the position and orientation of the subspaces rela-
tive to each other can be arbitrary. As we will show later,
when the subspaces are disjoint or independent, the sub-
space clustering problem can be solved more easily. How-
ever, when the subspaces are dependent, the subspace
clustering problem becomes much harder. (n linear sub-
spaces are disjoint if every two subspaces intersect only at
the origin. n linear subspaces are independent if the
dimension of their sum is equal to the sum of their dimen-
sions. Independent subspaces are disjoint, but the converse
is not always true. n affine subspaces are disjoint, inde-
pendent, if so are the corresponding linear subspaces in
homogeneous coordinates.)
n The fourth challenge is that the data can be corrupted by
noise, missing entries, and outliers. Although robust estima-
tion techniques for handling such nuisances have been devel-
oped for the case of a single subspace, the case of multiple
subspaces is not well understood.
n The fifth challenge is model selection. In classical PCA,
the only parameter is subspace dimension, which can be
found by searching for the subspace of the smallest dimension

S1 S2

S3

3

[FIG1] A set of sample points inR3 drawn from a union of three
subspaces: two lines and a plane.

A NUMBER OF APPROACHES
TO SUBSPACE CLUSTERING HAVE
BEEN PROPOSED IN THE PAST
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that fits the data with a given accuracy. In the case of
multiple subspaces, one can fit the data with N different
subspaces of dimension one, i.e., one subspace per data
point, or with a single subspace of dimension D. Obviously,
neither solution is satisfactory. The challenge is to find a
model-selection criteria that favors a small number of sub-
spaces of small dimensions.
In what follows, we present a number of subspace clustering

algorithms and show how they try to address these challenges.

SUBSPACE CLUSTERING ALGORITHMS

ALGEBRAIC ALGORITHMS
We first review two algebraic algorithms for clustering noise-
free data drawn frommultiple linear subspaces, i.e., li ¼ 0.

The first algorithm is based on linear algebra, specifically
matrix factorization, and is provably correct for independent sub-
spaces. The second one is based on polynomial algebra and is
provably correct for both dependent and independent subspaces.

Although these algorithms are designed for linear subspaces,
in the case of noiseless data, they can also be applied to affine
subspaces by using homogeneous coordinates, thus interpreting
an affine subspace of dimension d in RD as a linear subspace of
dimension d þ 1 in RDþ1. (The homogeneous coordinates of
x 2 RD are given by ½x>1$> 2 RDþ1.)

Also, while these algorithms operate under the assumption
of noise-free data, they provide great insights into the geometry
and algebra of the subspace clustering problem. Moreover, they
can be extended to handle moderate amounts of noise.

MATRIX FACTORIZATION-BASED ALGORITHMS
These algorithms obtain the segmentation of the data from a
low-rank factorization of the data matri X. Hence, they are a
natural extension of PCA from one to multiple independent
linear subspaces.

Specifically, let Xi 2 RD3Ni be the matrix containing the Ni

points in subspace i. The columns of the data matrix can be
sorted according to the n subspaces as ½X1,X2, . . . ,Xn$ ¼ XC,
where C 2 RN 3N is an unknown permutation matrix. Because
each matrix Xi is of rank di, it can be factorized as

Xi ¼ UiYi i ¼ 1, . . . , n, (3)

where Ui 2 RD3 di is an orthogonal basis for subspace i and
Yi 2 Rdi 3Ni is the low-dimensional representation of the points
with respect to Ui. Therefore, if the subspaces are independent,
then r ¼D rank(X) ¼

Pn
i¼1 di " minfD,Ng and

XC ¼ U1,U2, & & & ,Un½ $

Y1
Y2

. .
.

Yn

2

6664

3

7775 ¼D UY , (4)

where U 2 RD3 r and Y 2 Rr3N . The subspace clustering prob-
lem is then equivalent to finding a permutation matrix C, such

that XC admits a rank-r factorization into a matrix U and a block
diagonal matrix Y . This idea is the basis for the algorithms of
Boult and Brown [7], Costeira and Kanade [8], and Gear [9],
which compute C from the SVD of X [7], [8] or from the row
echelon canonical form of X [9].

Specifically, the Costeira and Kanade algorithm proceeds as
follows. Let X ¼ URV> be the rank-r SVD of the data matrix,
i.e., U 2 RD3 r, R 2 Rr3 r, and V 2 RN 3 r. Also, let

Q ¼ VV> 2 RN 3N : ð5Þ

As shown in [2] and [33], the matrix Q is such that

Qjk ¼ 0 if points j and k are in different subspaces: (6)

In the absence of noise, (6) can be used to obtain the segmenta-
tion of the data by applying spectral clustering to the eigenvectors
of Q [7] (see the ‘‘Spectral Clustering-Based Methods’’ section)
or by sorting and thresholding the entries of Q [8], [34]. For
instance, [8] obtains the segmentation by maximizing the sum of
the squared entries of Q in different groups, while [34] finds the
groups by thresholding a subset of the rows of Q. However, as
noted in [33] and [35], this thresholding process is very sensitive to
noise. Also, the construction of Q requires knowledge of the rank
ofX, and using the wrong rank can lead to very poor results [9].

Wu et al. [35] use an agglomerative process to reduce the effect
of noise. The entries of Q are first thresholded to obtain an initial
oversegmentation of the data. A subspace is then fit to each group
Gi, and two groups are merged when the distance between their
subspaces is below a threshold. A similar approach is followed by
Kanatani et al. [33], [36], except that the geometric Akaike informa-
tion criterion [37] is used to decide when tomerge the two groups.

Although these approaches indeed reduce the effect of noise, in
practice, they are not effective because the equation Qjk ¼ 0 holds
only when the subspaces are independent. In the case of dependent
subspaces, one can use the subset of the columns of V that do not
span the intersections of the subspaces. Unfortunately, we do not
know which columns to choose a priori. Zelnik-Manor and Irani
[38] propose to use the top columns ofV to defineQ. However, this
heuristic is not provably correct. Another issue with factorization-
based algorithms is that, with a few exceptions, they do not provide
a method for computing the number of subspaces, n, and their
dimensions, fdigni¼1. The first exception is when n is known. In
this case, di can be computed from each group after the segmenta-
tion has been obtained. The second exception is for independent
subspaces of equal dimension d. In this case rank(X) ¼ nd, hence
wemay determine n when d is known or vice versa.

GENERALIZED PCA
Generalized PCA (GPCA; see [10] and [39]) is an algebraic-
geometric method for clustering data lying in (not necessarily
independent) linear subspaces. The main idea behind GPCA is
that one can fit a union of n subspaces with a set of polynomials
of degree n, whose derivatives at a point give a vector normal to
the subspace containing that point. The segmentation of the
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data is then obtained by grouping these normal vectors using
several possible techniques.

The first step of GPCA, which is not strictly needed, is to
project the data points onto a subspace of RD of dimension
r ¼ dmax þ 1, where dmax ¼ maxfd1, . . . , dng. (The value of r is
determined using model-selection techniques when the subspace
dimensions are unknown.) The rationale behind this step is as fol-
lows. Since the maximum dimension of each subspace is dmax, a
projection onto a generic subspace of RD of dimension dmax þ 1
preserves the number and dimensions of the subspaces with
probabilty one. As a by-product, the subspace clustering problem
is reduced to clustering subspa-
ces of dimension at most dmax

in Rdmaxþ1. As we shall see, this
step is very important to reduce
the computational complexity
of the GPCA algorithm. With an
abuse of notation, we will denote
the original and projected sub-
spaces as Si, and the original and projected data matrix as

X ¼ ½x1, . . . , xN $ 2 RD3N or Rr3N : (7)

The second step is to fit a homogeneous polynomial of degree
n to the (projected) data. The rationale behind this step is as fol-
lows. Imagine, for instance, that the data came from the union
of two planes in R3, each one with normal vector bi 2 R3. The
union of the two planes can be represented as a set of points,
such that p(x) ¼ (b>1 x)(b

>
2 x) ¼ 0. This equation is nothing but

the equation of a conic of the form

c1x21 þ c2x1x2 þ c3x1x3 þ c4x22 þ c5x2x3 þ c6x23 ¼ 0: (8)

Imagine now that the data came from the plane b>x ¼ 0 or
the line b>1 x ¼ b>2 x ¼ 0. The union of the plane and the line is
the set of points, such that p1(x) ¼ (b>x)(b>1 x) ¼ 0 and
p2(x) ¼ (b>x)(b>2 x) ¼ 0. More generally, data drawn from the
union of n subspaces of Rr can be represented with polynomials
of the form p(x) ¼ (b>1 x) & & & (b

>
n x) ¼ 0, where the vector bi 2 Rr

is orthogonal to Si. Each polynomial is of degree n in x and can be
written as c>mn(x), where c is the vector of coefficients and mn(x)
is the vector of all monomials of degree n in x. There are

Mn(r)¼
nþ r%1

n

! "

independent monomials; hence, c 2 RMn(r).
In the case of noiseless data, the vector of coefficients c of

each polynomial can be computed from

c>½mn(x1), mn(x2), & & & , mn(xN )$ ¼
D c>Vn ¼ 0> (9)

and the number of polynomials is simply the dimension of the
null space of Vn. While in general the relationship between
the number of subspaces, n, their dimensions, fdigni¼1, and the

number of polynomials involves the theory of Hilbert functions
[40], in the particular case where all the dimensions are equal to
d and r ¼ d þ 1, there is a unique polynomial that fits the data.
This fact can be exploited to determine both n and d. For exam-
ple, given d, n can be computed as

n ¼ minfi : rank(V i) ¼ Mi(r)% 1g: (10)

In the case of data contaminated with small-to-moderate
amounts of noise, the polynomial coefficients (9) can be found
using least squares—the vectors c are the left singular vectors of

Vn corresponding to the small-
est singular values. To handle
larger amounts of noise in the
estimation of the polynomial
coefficients, one can resort to
techniques from robust statis-
tics [20] or rank minimization
[41]. Model-selection techni-

ques can be used to determine the rank of Vn and, hence, the
number of polynomials, as shown in [42]. Model-selection
techniques can also be used to determine the number of sub-
spaces of equal dimensions in (10), as shown in [10]. However,
determining n and fdigni¼1 for subspaces of different dimen-
sions from noisy data remains a challenge. The reader is
referred to [43] for a model-selection criteria called minimum
effective dimension, which measures the complexity of fitting
n subspaces of dimensions fdigni¼1 to a given data set within a
certain tolerance, and to [40] and [42] for algebraic relation-
ships among n, fdigni¼1 and the number of polynomials, which
can be used for model-selection purposes.

The last step is to compute the normal vectors bi from the vec-
tor of coefficients c. This can be done by taking the derivatives of
the polynomials at a data point. For example, if n ¼ 2, we have
rp(x) ¼ (b>2 x)b1 þ (b>1 x)b2. Thus, if x belongs to the first sub-
space, thenrp(x) ) b1. More generally, in the case of n subspaces,
we have p(x) ¼ (b>1 x) & & & (b

>
n x) and rp(x) ) bi if x 2 Si . We can

use this result to obtain the set of all normal vectors to Si from
the derivatives of all the polynomials at x 2 Si . This gives us a
basis for the orthogonal complement of Si from which we can
obtain a basis Ui for Si. Therefore, if we knew one point per sub-
space, fyi 2 Signi¼1, we could compute the n subspace bases
fUigni¼1 from the gradient of the polynomials at fyig

n
i¼1 and then

obtain the segmentation by assigning each point fxjgNj¼1 to its clos-
est subspace. A simple method for choosing the points fyig

n
i¼1 is to

select any data point as y1 to obtain the basis U1 for the first sub-
space S1. After removing the points that belong to S1 from the data
set, we can choose any of the remaining data points as y2 to obtain
U2, hence S2, and then repeat this process until all the subspaces
are found. In the ‘‘Spectral Clustering-Based Methods’’ section, we
will describe an alternativemethod based on spectral clustering.

The first advantage of GPCA is that it is an algebraic algo-
rithm; thus, it is computationally cheap when n and d are
small. Second, intersections between subspaces are automati-
cally allowed; hence, GPCA can deal with both independent and

GENERALIZED PCA IS AN ALGEBRAIC-
GEOMETRIC METHOD FOR
CLUSTERING DATA LYING IN

(NOT NECESSARILY INDEPENDENT)
LINEAR SUBSPACES.
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dependent subspaces. Third, in the noiseless case, it does not
require the number of subspaces or their dimensions to be
known beforehand. Specifically, the theory of Hilbert functions
may be used to determine n and fdig, as shown in [40].

The first drawback of GPCA is that its complexity increases expo-
nentially with n and fdig. Specifically, each vector c is of dimension
O(Mn(r)), while there are only O(r

Pn
i¼1 ðr % di)Þ unknowns in

the n sets of normal vectors. Second, the vector c is computed using
least squares; thus, the computation of c is sensitive to outliers.
Third, the least-squares fit does not take into account nonlinear
constraints among the entries of c (recall that pðx) must factorize
as a product of linear factors). These issues cause the performance
of GPCA to deteriorate as n increases. Fourth, themethod in [40] to
determine n and fdigni¼1 does not handle noisy data. Fifth, while
GPCA can be applied to affine
subspaces by using homogene-
ous coordinates, in our experi-
ence, this does not work very
well when the data are conta-
minated with noise.

ITERATIVE METHODS
A very simple way of improving
the performance of algebraic algorithms in the case of noisy data
is to use iterative refinement. Intuitively, given an initial seg-
mentation, we can fit a subspace to each group using classical
PCA. Then, given a PCA model for each subspace, we can assign
each data point to its closest subspace. By iterating these two
steps, we can obtain a refined estimate of the subspaces and seg-
mentation. This is the basic idea behind the K-planes [11] algo-
rithm, which generalizes the K-means algorithm [44] from data
distributed around multiple cluster centers to data drawn from
multiple hyperplanes. The K-subspaces algorithm [12], [13]
further generalizes K-planes frommultiple hyperplanes to multi-
ple affine subspaces of any dimensions and proceeds as follows.
Let wij ¼ 1 if point j belongs to subspace i and wij ¼ 0 otherwise.
Referring back to (1), assume that the number of subspaces n and
the subspace dimensions fdigni¼1 are known. Our goal is to find
the points fli 2 RDgni¼1, the subspace bases fUi 2 RD3 digni¼1,
the low-dimensional representations fYi 2 Rdi 3Nigni¼1, and the
segmentation of the data fwijgj¼1, ...,N

i¼1, ..., n . We can do so by minimiz-
ing the sum of the squared distances from each data point to
its own subspace

min
flig, fUig, fyig, fwijg

Xn

i¼1

XN

j¼1

wij k xj % li % Uiyj k2

subject to wij 2 f0, 1g and
Xn

i¼1

wij ¼ 1: (11)

Given flig, fUig, and fyjg, the optimal value forwij is

wij ¼
1 if i ¼ arg min

k¼1, ...,n
kxj % lk % Ukyj k2

0 else
:

(

(12)

Given fwijg, the cost function in (11) decouples as the sum of n
cost functions, one per subspace. Since each cost function is
identical to that minimized by standard PCA, the optimal values
for li, Ui, and yj are obtained by applying PCA to each group of
points. The K-subspaces algorithm then proceeds by alternating
between assigning points to subspaces and reestimating the sub-
spaces. Since the number of possible assignments of points to
subspaces is finite, the algorithm is guaranteed to converge to a
local minimum in a finite number of iterations.

The main advantage of K-subspaces is its simplicity since it
alternates between assigning points to subspaces and estimating
the subspaces via PCA. Another advantage is that it can handle
both linear and affine subspaces explicitly. The third advantage
is that it converges to a local optimum in a finite number of

iterations.However,K-subspaces
suffers from a number of draw-
backs. First, its convergence to
the global optimum depends
on a good initialization. If a
random initialization is used,
several restarts are often needed
to find the global optimum. In
practice, one may use any of the

algorithms described in this article to reduce the number of
restarts needed. We refer the reader to [22] and [45] for two addi-
tional initialization methods. Second, K-subspaces is sensitive to
outliers, partly due to the use of the ‘2-norm. This issue can be
addressed using a robust norm, such as the ‘1-norm, as done by
the median K-flat algorithm [15]. However, this results in a more
complex algorithm, which requires solving a robust PCA problem
at each iteration. Alternatively, one can resort to nonlinear mini-
mization techniques, which are only guaranteed to converge to a
local minimum. Third, K-subspaces requires n and fdigni¼1 to be
known beforehand. One possible avenue to be explored is to use
the model-selection criteria for mixtures of subspaces proposed in
[43]. We refer the reader to [45] and [46] for a more detailed analy-
sis of some of the aforementioned issues.

STATISTICAL METHODS
The approaches described so far seek to cluster the data according
tomultiple subspaces usingmostly algebraic and geometric proper-
ties of a union of subspaces. While these approaches can handle
noise in the data, they do not make explicit assumptions about the
distribution of data inside the subspaces or about the distribution of
noise. Therefore, the estimates they provide are not optimal, e.g., in
a maximum likelihood (ML) sense. This issue can be addressed by
defining a proper generativemodel for the data, as described next.

MIXTURE OF PROBABILISTIC PCA
Resorting back to the geometric PCA model (1), probabilistic PCA
(PPCA) [47] assumes that the datawithin a subspaceS is generated as

x ¼ lþ Uyþ !, (13)

where y and ! are independent zero-mean Gaussian random vec-
tors with covariance matrices I and r2I, respectively. Therefore,

A VERY SIMPLEWAYOF IMPROVING
THE PERFORMANCE OF ALGEBRAIC
ALGORITHMS IN THE CASE OF NOISY

DATA IS TO USE ITERATIVE
REFINEMENT.
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x is also Gaussian with mean l and covariance matrix
R ¼ UU> þ r2I. It can be shown that the ML estimate of l is
the mean of the data, and ML estimates of U and r can be
obtained from the SVD of the data matrix X.

PPCA can be naturally extended to a generative model for a
union of subspaces [n

i¼1Si by using a mixture of PPCA (MPPCA)
model [16]. Let G(x;l,R) be the probability density function of a
D-dimensional Gaussian with mean l and covariance matrix R.
MPPCA uses a mixture of Gaussians model

p(x) ¼
Xn

i¼1

piG( x;li, UiU>
i þ r2i I),

Xn

i¼1

pi ¼ 1, (14)

where the parameter pi, called the mixing proportion, represents
the a priori probability of drawing
a point from subspace Si . The
ML estimates of the parameters
of this mixture model can be
found using expectation maxi-
mization (EM) [48]. EM is an
iterative procedure that alter-
nates between data segmenta-
tion and model estimation. Specifically, given initial values
(eli, ~Ui, ~ri, ~pi) for the model parameters, in the E-step, the proba-
bility that xj belongs to subspace i is estimated as

~pij ¼
G(xj;li, ~Ui ~U>

i þ ~r2i I)~pi
p(xj)

, (15)

and in the M-step, the ~pijs are used to recompute the subspace
parameters using PPCA. Specifically, pi and li are updated as

~pi ¼
1
N

XN

j¼1

~pij and eli ¼
1

N ~pi

XN

j¼1

~pij xj, (16)

and ri and Ui are updated from the SVD of

~Ri ¼
1

N ~pi

XN

j¼1

~pij(xj % eli)(xj % eli)
>: (17)

These two steps are iterated until convergence to a local max-
ima of the log-likelihood. Notice that MPPCA can be seen as a
probabilistic version of K-subspaces that uses soft assignments
pij 2 ½0; 1$ rather than hard assignments wij ¼ f0; 1g.

As in the case of K-subspaces, the main advantage of
MPPCA is that it is a simple and intuitive method, where each
iteration can be computed in closed form by using PPCA. More-
over, the MPPCA model is applicable to both linear and affine
subspaces and can be extended to accommodate outliers [49]
and missing entries in the data points [50]. However, an impor-
tant drawback of MPPCA is that the number and dimensions of
the subspaces need to be known beforehand. One way to
address this issue is to put a prior on these parameters, as
shown in [51]. A second drawback is that MPPCA is not optimal
when the data inside each subspace or the noise is not Gaussian.

A third drawback is that MPPCA often converges to a local
maximum; hence, a good initialization is critical. The initiali-
zation problem can be addressed by using any of the methods
described earlier for K-subspaces. For example, the multistage
learning (MSL) algorithm [17] uses the factorization method of
[8] followed by the agglomerative refinement steps of [33] and
[36] for initialization.

AGGLOMERATIVE LOSSY COMPRESSION
The agglomerative lossy compression (ALC) algorithm [18]
assumes that the data are drawn from amixture of degenerate Gaus-
sians. However, unlike MPPCA, ALC does not aim to obtain an ML
estimate of the parameters of the mixture model. Instead, it looks
for the segmentation of the data that minimizes the coding length

needed to fit the points with a
mixture of degenerate Gaussians
up to a given distortion.

Specifically, the number of
bits needed to optimally code N
independent identically distrib-
uted (i.i.d.) samples from a zero-
mean D-dimensional Gaussian,

i.e., X 2 RD3N , up to a distortion d can be approximated as
½(N þ D)=2$ log2 det (I þ (D=d2N)XX>). Thus, the total number
of bits for coding amixture of Gaussians can be approximated as

Xn

i¼1

Ni þ D
2

log2 det I þ D
d2Ni

XiX>
i

! "
% Ni log2

Ni

N

! "
, (18)

where Xi 2 RD3Ni is the data from subspace i, and the last term
is the number of bits needed to code (losslessly) the membership
of the N samples to the n groups.

The minimization of (18) over all possible segmentations of
the data is, in general, an intractable problem. ALC deals with
this issue by using an agglomerative clustering method. Ini-
tially, each data point is considered as a separate group. At each
iteration, two groups are merged if doing so results in the great-
est decrease of the coding length. The algorithm terminates
when the coding length cannot be further decreased. Similar
agglomerative techniques have been used [52], [53], though
with a different criterion for merging subspaces.

ALC can naturally handle noise and outliers in the data. Specif-
ically, it is shown in [18] that outliers tend to cluster either as a
single group or as small separate groups depending on the dimen-
sion of the ambient space. Also, in principle, ALC does not need to
know the number of subspaces and their dimensions. In practice,
however, the number of subspaces is directly related to the param-
eter d. When d is chosen to be very large, all the points could be
merged into a single group. Conversely, when d is very small, each
point could end up as a separate group. Since d is related to the
variance of the noise, one can use statistics on the data to deter-
mine d (see [22] and [33] for possible methods). When the number
of subspaces is known, one can run ALC for several values of d, dis-
card the values of d that give the wrong number of subspaces, and
choose the d that results in the segmentation with the smallest

AN IMPORTANT DRAWBACK OF
MPPCA IS THAT THE NUMBER AND
DIMENSIONS OF THE SUBSPACES

NEED TO BE KNOWN BEFOREHAND.
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coding length. This typically increases the computational
complexity of the method. Another disadvantage of ALC, perhaps
the major one, is that there is no theoretical proof for the opti-
mality of the agglomerative procedure.

RANDOM SAMPLE CONSENSUS
Random sample consensus (RANSAC) [54] is a statistical method
for fitting a model to a cloud of points corrupted with outliers in a
statistically robust way. More specifically, if d is the minimum
number of points required to fit a model to the data, RANSAC ran-
domly samples d points from the data, fits a model to these d
points, computes the residual of each data point to this model,
and chooses the points whose residual is below a threshold as the
inliers. The procedure is then repeated for d sample points, until
the number of inliers is above a
threshold, or enough samples
have been drawn. The outputs
of the algorithm are the param-
eters of the model and the
labeling of inliers and outliers.

In the case of clustering sub-
spaces of equal dimension d,
the model to be fit by RANSAC
is a subspace of dimension d. Since there are multiple subspaces,
RANSAC proceeds in a greedy fashion by fitting one subspace at a
time as follows:

1) Apply RANSAC to the original data set and recover a basis
for the first subspace along with the set of inliers. All points in
other subspaces are considered as outliers to the first subspace.
2) Remove the inliers from the current data set and repeat
Step 1 to find the second subspace and so on until all the
subspaces are recovered.
3) For each set of inliers, use PCA to find an optimal basis
for each subspace. Segment the data into multiple subspa-
ces by assigning each point to its closest subspace.
The main advantage of RANSAC is its ability to handle out-

liers explicitly. Also, notice that RANSAC does not require the
subspaces to be independent, because it computes one subspace
at a time. Moreover, RANSAC does not need to know the number
of subspaces beforehand. In practice, however, determining the
number of subspaces depends on the user-defined thresholds.
An important drawback of RANSAC is that its performance dete-
riorates quickly as the number of subspaces n increases, because
the probability of drawing d inliers reduces exponentially with
the number of subspaces. Therefore, the number of trials needed
to find d points in the same subspace grows exponentially with
the number and dimension of the subspaces. As shown in [55],
this issue can be addressed by introducing a nonuniform prior
in the sampling strategy so that points in the same subspace are
more likely to be chosen than points in different subspaces.
Another critical drawback of RANSAC is that it requires the
dimension of the subspaces to be known and equal. In the case
of subspaces of different dimensions, one could start from the
largest to the smallest dimension or vice versa. However, those
procedures suffer from a number of issues, as discussed in [20].

SPECTRAL CLUSTERING-BASED METHODS
Spectral clustering algorithms (see [56] for a review) are a very
popular technique for clustering high-dimensional data. These
algorithms construct an affinity matrix A 2 RN 3N , whose
(j, k)th entry measures the similarity between points j and k.
Ideally, Ajk ¼ 1 if points j and k are in the same group and
Ajk ¼ 0 if points j and k are in a different group. A typical
measure of similarity is Ajk ¼ exp (% dist2jk), where distjk is
some distance between points j and k. Given A, the segmenta-
tion of the data is obtained by applying the K-means algorithm to
the eigenvectors of a matrix L 2 RN 3N formed from A. Specifi-
cally, if fU jgNj¼1 are the eigenvectors of L, then n * N eigenvec-
tors are chosen and stacked into a matrix V 2 RN 3 n. The
K-means algorithm is then applied to the rows of V . Typical

choices for L are the affinity
matrix itself, L ¼ A, the Lapla-
cian, L ¼ diag(A1)% A, where
1 is the vector of all ones, and the
normalized Laplacian, Lsym ¼
I % diag(A1)%1=2Adiag(A1)%1=2.
Typical choices for the eigen-
vectors are the top n eigenvec-
tors of the affinity or the bottom

n eigenvectors of the (normalized) Laplacian, where n is the num-
ber of groups.

One of the main challenges in applying spectral clustering to
the subspace clustering problem is to define a good affinity matrix.
This is because two points could be very close to each other but lie
in different subspaces (e.g., near the intersection of two subspa-
ces). Conversely, two points could be far from each other but lie
in the same subspace. As a consequence, one cannot use the
typical distance-based affinity.

In what follows, we review some of the methods for building
a pairwise affinity for points lying in multiple subspaces. The
first two methods (factorization and GPCA) are designed for lin-
ear subspaces, though they can be applied to affine subspaces by
modifying the affinity or using homogeneous coordinates. The
remaining methods can handle either linear or affine subspaces.

FACTORIZATION-BASED AFFINITY
Interestingly, one of the first subspace clustering algorithms is
based on both matrix factorization and spectral clustering.
Specifically, the algorithm of Boult and Brown [7] obtains the
segmentation of the data from the eigenvectors of the matrix
Q ¼ VV> in (6). Since these eigenvectors are the singular vec-
tors of X, the segmentation is obtained by clustering the rows of
V. However, recall that the affinity Ajk ¼ Qjk has a number of
issues. First, it is not necessarily the case that Ajk + 1 when points
i and j are in the same subspace. Second, the equation Qjk ¼ 0 is
sensitive to noise, and it is valid only for independent subspaces.

GPCA-BASED AFFINITY
As noticed in [2] and [57], the GPCA algorithm can also be used
to define an affinity between two points. Specifically, recall that
an estimate Ŝj of the subspace passing through the point xj can

RANDOM SAMPLE CONSENSUS IS A
STATISTICALMETHOD FOR FITTING A

MODEL TO A CLOUDOF POINTS
CORRUPTEDWITH OUTLIERS IN A
STATISTICALLY ROBUSTWAY.
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be obtained from the derivatives of the polynomials p(x) at xj.
Let hmjk be the mth principal angle between Ŝj and Ŝk, for
j; k ¼ 1; . . . ,N . One can use these angles to define an affinity as

Ajk ¼
Ymin (dj , dk)

m¼1

cos2(hmjk): (19)

Notice that this affinity is applicable only to linear subspaces,
because it only captures the similarity between the subspace
bases. To see this, notice that when two affine subspaces are par-
allel to each other, all their principal angles are equal to zero;
hence, Ajk is equal to one not only for points j and k in the same
subspace, but also for points j and k in two different subspaces.
Therefore, in the case of data drawn from affine subspaces, Ajk
needs to be modified to also incorporate an appropriate distance
between points j and k. We will discuss ways to do this in the
next paragraph. Given a pairwise affinity, GPCA finds the seg-
mentation of the data by applying spectral clustering to the nor-
malized Laplacian.

LOCAL SUBSPACE AFFINITY
AND SPECTRAL LOCAL BEST-FIT FLATS
The local subspace affinity (LSA) [21] and spectral local best-fit flats
(SLBF) [22] algorithms are based on the observation that a point
and its nearest neighbors (NNs) often belong to the same subspace.
Therefore, we can fit an affine subspace Ŝj to each point j and its d-
NNs using, e.g., PCA. In practice, we can chooseK ! d NNs; hence,
d does not need to be known exactly: we only need an upper bound.

Then, if two points j and k lie in the same subspace Si, their
locally estimated subspaces Ŝj and Ŝk should be the same, while
if the two points lie in different subspaces, Ŝj and Ŝk should be
different. Therefore, we can use a distance between Ŝj and Ŝk to
define an affinity between the two points.

The first (optional) step of the LSA and SLBF algorithms is
to project the data points onto a subspace of dimension r ¼
rank(X) using the SVD of X. With noisy data, the value of r is
determined using model-selection techniques. In the case of
data drawn from linear subspaces, the LSA algorithm projects
the resulting points inRr onto the hypersphereSr%1.

The second step is to compute the K-NNs of each point j
and to fit a local affine subspace Ŝj to the point and its neigh-
bors. LSA assumes that K is specified by the user and finds
K-NN using the angle between the two data points or as a
metric. PCA is then used to fit the local subspace Ŝj. The sub-
space dimension dj is then determined using model-selection
techniques. SLBF determines both the number of neighbors Kj

and the subspace Ŝj for each point j automatically. It does so by
searching for the smallest value of Kj that minimizes a certain
fitting error.

The third step of LSA is to compute an affinity matrix as

Ajk ¼ exp %
Xmin (dj , dk)

m¼1

sin2(hmjk)

" #

, (20)

where hmjk is the mth principal angle between the estimated
subspaces Ŝj and Ŝk. As in the case of the GPCA-based affinity in
(19), the affinity in (20) is applicable only to linear subspaces.
SLBF addresses this issue by using the affinity

Ajk ¼ exp (% d̂jk=2r2j )þ exp (% d̂jk=2r2k), (21)

where rj measures how well point j and its Kj-NNs are fit by Ŝj,

d̂jk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dist(xj, Ŝk)dist(xk, Ŝj)

q
, and dist(x; S) is the Euclidean

distance from point x to subspace S. Notice that this affinity uses
the distance from points to subspaces; thus, it is applicable to
both linear and affine subspaces. Given a pairwise affinity, LSA
and SLBF find the segmentation of the data by applying spectral
clustering to the normalized Laplacian.

The LSA and SLBF algorithms have two main advantages
when compared with GPCA. First, outliers are likely to be rejected,
because they are far from all the points, and so they are not con-
sidered as neighbors of the inliers. Second, LSA requires only
O(ndmax) data points, while GPCA needs O(Mnðdmax þ 1)Þ. On
the other hand, LSA has two main drawbacks. First, the neigh-
bors of a point could belong to a different subspace. This is more
likely to happen near the intersection of two subspaces. Second,
the selected neighbors may not span the underlying subspace.
Thus, K needs to be small enough so that only points in the
same subspace are chosen and large enough so that the neigh-
bors span the local subspace. SLBF resolves these issues by
choosing the size of the neighborhood automatically.

Notice also that both GPCA and LSA are based on a linear pro-
jection followed by spectral clustering. While in principle both
algorithms can use any linear projection, GPCA prefers to use the
smallest possible dimension r ¼ dmax þ 1, so as to reduce the
computational complexity. On the other hand, LSA uses a slightly
larger dimension r ¼ rank(X)" P

di. This is because if the
dimension of the projection is too small [less than rank(X)], the
projected subspaces become dependent. While in theory, LSA
can handle both independent and dependent subspaces, the
projection increases the dimension of the intersection of two
subspaces; hence, many of the data points could be projected
close to the intersection. As a consequence, LSA does not per-
form as well with dependent subspaces, as the experiments will
show. Another major difference between LSA and GPCA is that
LSA fits a subspace locally around each projected point, while
GPCA uses the gradient of a polynomial that is globally fit to the
projected data.

LOCALLY LINEAR MANIFOLD CLUSTERING
The locally linear manifold clustering (LLMC) algorithm [23] is
also based on fitting a local subspace to a point and its K-NNs.
Specifically, every point j is written as an affine combination of
all other points k 6¼ j. The coefficients wjk are found in closed
form by minimizing the cost

XN

j¼1

k xj %
X

k6¼j

wjk xk k2 ¼k (I %W )X> k2F , (22)
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where Xk k2F¼
P

Xi
2
J is the Frobenius norm of X, subject toP

k6¼j wjk ¼ 1 and wjk ¼ 0 if xk is not a K-NN of xj. Then, the
affinity matrix and the matrix L are built as

A ¼ W þW>% W>W and L ¼ (I %W )>(I %W ): (23)

It is shown in [23] that when every point and its K-NNs are
always in the same subspace, then there are vectors v in the null
space of L with the property that vj ¼ vk when points j and k are
in the same subspace. However,
these vectors are not the only
vectors in the null space of L;
hence, spectral clustering is not
directly applicable. In this case, a
procedure for properly selecting
linear combinations of the eigen-
vectors of L is needed, as dis-
cussed in [23].

A first advantage of LLMC is its robustness to outliers. This is
because, as in the case of LSA and SLBF, outliers are often far
from the inliers, hence it is unlikely that they are chosen as
neighbors of the inliers. Another important advantage of LLMC
is that it is also applicable to nonlinear subspaces, while all the
other methods discussed so far are only applicable to linear (or
affine) subspaces. However, LLMC suffers from the same disad-
vantage of LSA, namely, that it has problems with points near
the intersections, because it is not always the case that a point and
its K-NNs are in the same subspace. Also, properly choosing the
number of NNs is a challenge. These issues could be resolved by
choosing the neighborhood automatically, as done by SLBF.
Finally, even though, in theory, LLMC can handle both de-
pendent and independent subspaces, in practice, it does not
perform as well with dependent subspaces for the same rea-
sons as for LSA.

SPARSE SUBSPACE CLUSTERING
Sparse subspace clustering (SSC) [24], [25] is also based on the
idea of writing a data point as a linear or affine combination of
neighboring data points. However, while LSA, SLBF, and LLMC
use the angular or Euclidean distance between two points to
choose the K-NNs, SSC uses the principle of sparsity to choose
any of the remaining data points (N % 1 , K) as a possible
neighbor. Specifically, SSC relies on the fact that a point in a lin-
ear or affine subspace of dimension d can always be written as a
linear or affine combination of d or d þ 1 data points in the
same subspace. Therefore, if we write a data point xj 2 Si as a
linear or affine combination of all other N % 1 data points
fxkgk6¼j drawn from [n

i¼1Si with di ¼ dim (Si), then a sparse lin-
ear or affine combination can be obtained by choosing di or
di þ 1 nonzero coefficients corresponding to points from Si.
This sparse linear or affine combination xj ¼

P
k6¼j wjkxk can be

found by minimizing the number of nonzero coefficients wjk,
subject to

P
wjk ¼ 1 in the case of affine subspaces. Since this

problem is combinatorial, the SSC algorithm solves the follow-
ing simpler ‘1 optimization problem instead

min
fwjkg

X

k 6¼j

jwjkj s:t: xj ¼
X

k 6¼j

wjk xk

!
and

X

k 6¼j

wjk ¼ 1
"
: (24)

It is shown in [24] and [25] that, when the subspaces are
either independent or disjoint, the solution to the optimization
problem in (24) is such that wjk ¼ 0 only if points j and k are in
different subspaces. In other words, a sparse representation is
obtained, where each point is written as a linear or affine combi-
nation of a few points in its own subspace.

In the case of data contami-
nated by noise, the SSC algo-
rithm does not attempt to write
a data point as an exact linear
or affine combination of other
points. Instead, a penalty in the
‘2-norm of the error is added
to the ‘1 norm. Specifically, the
sparse coefficients are found

by solving the problem

min
fwjkg

X

k6¼j

jwjkjþk k xj%
X

k6¼j

wjk xk k2
!
s:t :

X

k 6¼j

wjk ¼ 1
"
, (25)

where k40 is a parameter. Obviously, different solutions for
fwjkg will be obtained for different choices of the parameter k.
However, we are not interested in the specific values of wjk: all
what matters is that, for each point j, the top nonzero coeffi-
cients come from points in the same subspace.

In the case of data contaminated with outliers, the SSC algo-
rithm assumes that xj ¼

P
k 6¼j wjkxk þ ej, where the vector of

outliers ej is also sparse. The sparse coefficients and the outliers
are found by solving the problem

min
fwjkg, fejg

X

k 6¼j

jwjkjþ k ej k1 þk k xj %
X

k6¼j

wjk xk % ej k2 (26)

subject to
P

k6¼j wjk ¼ 1 in the case of affine subspaces.
Given a sparse representation for each data point, the pair-

wise affinity matrix is defined as

A ¼ jW jþ jW>j: (27)

The segmentation is then obtained by applying spectral cluster-
ing to the Laplacian.

The SSC algorithm presents several advantages with respect
to all the algorithms discussed so far. With respect to factoriza-
tion-based methods, the affinity in (27) is very robust to noise.
This is because the solution changes continuously with the
amount of noise. Specifically, with moderate amounts of noise,
the top nonzero coefficients will still correspond to points in the
same subspace. With larger amounts of noise, some of the non-
zero coefficients will come from other subspaces. These mis-
takes can be handled by spectral clustering, which is also robust
to noise (see [56]). With respect to GPCA, SSC is more robust to
outliers because, as in the case of LSA, SLBF, and LLMC, it is

SSC RELIES ON THE FACT THAT A
POINT IN A LINEAR OR AFFINE

SUBSPACE OF DIMENSION D CAN
ALWAYS BEWRITTEN AS A LINEAR OF
AFFINE COMBINATION OF DOR Dþ 1

DATA IN THE SAME SUBSPACE.
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very unlikely that a point in a subspace will write itself as a lin-
ear combination of a point that is very far from all of the subspa-
ces. Also, the computational complexity of SSC does not grow
exponentially with the number of subspaces and their dimen-
sions. Nonetheless, it requires solving N optimization problems
in O(N) variables, as per (24), (25), or (26), hence, it can be slow.
With respect to LSA and LLMC, the great advantage of SSC is
that the neighbors of a point are automatically chosen, without
having to specify the value of K . Moreover, the dimension of the
individual subspaces does not need to be known beforehand and
can be estimated from the number of nonzero coefficients. More
importantly, the SSC algorithm is provably correct for independ-
ent [24] and disjoint [25] subspaces; hence, its performance is not
affected when the NNs of a point (in the traditional sense) do not
come from the same subspace containing that point. Another
advantage of SSC over GPCA is that it does not require the data to
be projected onto a low-dimensional subspace. A possible disad-
vantage of SSC is that it is provably correct only in the case of
independent or disjoint subspaces. However, the experiments will
show that SSC performs well also for dependent subspaces.

LOW-RANK REPRESENTATION
This algorithm [26] is very similar to SSC, except that it aims to
find a low-rank representation (LRR) instead of a sparse repre-
sentation. Before explaining the connection further, let us first
rewrite the SSC algorithm in a matrix form. Specifically, recall
that SSC requires solvingN optimization problems in O(N) varia-
bles, as per (24). TheseN optimization problems can be written as
a single optimization problem in O(N2) variables as

min
fwjkg

XN

j¼1

X

k 6¼j

jwjkj s:t: xj ¼
X

k6¼j

wjk xk

!
and

X

k6¼j

wjk ¼ 1
"
: (28)

This problem can be rewritten in matrix form as

min
W

k W k1 s:t: X ¼ XW>, diag(W ) ¼ 0 (and W1 ¼ 1): (29)

Similarly, in the case of data contaminated with noise, the N
optimization problems in (25) can be written as

min
W ,E

k W k1 þk k E k2F

s:t: X ¼ XW> þ E, diag(W ) ¼ 0 (and W1 ¼ 1): (30)

The LRR algorithm aims to minimize rank(W ) instead of
k W k1. Since this rank-minimization problem is nondeterministic
polynomial (NP) time hard, the authors replace the rank ofW by its
nuclear norm k W k-¼

P
ri(W ), where ri(W ) is the ith singular

value ofW . In the case of noise-free data drawn from linear (affine)
subspaces, this leads to the following (convex) optimization problem

min
W

k W k- s:t: X ¼ XW> (and W1 ¼ 1): (31)

It can be shown that when the data are noise free and drawn
from independent linear subspaces, the optimal solution to (31)
is given by the matrix Q of the Costeira and Kanade algorithm,

as defined in (5). Recall from (6) that this matrix is such that
Qjk ¼ 0 when points j and k are in different subspaces, hence it
can be used to build an affinity matrix.

In the case of data contaminated with noise or outliers, the
LRR algorithm solves the (convex) optimization problem

min
W

k W k- þk k E k2, 1 s:t: X ¼ XW> þ E (and W1 ¼ 1),

(32)

where k E k2;1¼
PN

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
j¼1 jEjkj2

q
is the ‘2;1 norm of the

matrix of errors E. Notice that this problem is analogous to (30),
except that the ‘1 and Frobenius norms are replaced by the
nuclear and ‘2;1 norms, respectively.

The LRR algorithm proceeds by solving the optimization
problem in (32) using an augmented Lagrangian method. The
optimal W is used to define an affinity matrix A as in (27). The
segmentation of the data is then obtained by applying spectral
clustering to the normalized Laplacian.

One of the main attractions of LRR is that it provides a theo-
retical justification for the Costeira and Kanade algorithm. A
second advantage is that, similarly to SSC, the optimization
problem is convex. One drawback of LLR is that it is provably
correct only in the case of noiseless data drawn from independ-
ent subspaces. Another drawback is that the optimization prob-
lem involves O(N2) variables.

SPECTRAL CURVATURE CLUSTERING
The methods discussed so far choose a data point plus d NNs
(LSA, SLBF, LLMC) or d sparse neighbors (SSC), fit an affine
subspace to each of these N groups of d þ 1 points, and build a
pairwise affinity by comparing these subspaces. In contrast,
multiway clustering techniques such as [27], [58], and [59]
are based on the observation that a minimum of d þ 1 points
are needed to define an affine subspace of dimension d (d for
linear subspaces). Therefore, they consider d þ 2 points, build
a measure of how likely these points are to belong to the same
subspace, and use this measure to construct an affinity between
two points.

Specifically, let Xdþ2 ¼ fxj‘g
dþ2
j¼1 be d þ 2 randomly chosen

data points. One possible affinity is the volume of the (d þ 1)-
simplex formed by these points, vol(Xdþ2), which is equal to
zero if the points are in the same subspace. However, one
issue with this affinity is that it is not invariant to data trans-
formations, e.g., scaling of the d þ 2 points. The spectral
curvature clustering (SCC) algorithm [27] is based on the
concept of polar curvature, which is also zero when the points
are in the same subspace. The multiway affinity Aj1, j2, ..., jdþ2

is defined as

exp % 1
2r2

diam2(Xdþ2)
Xdþ2

‘¼1

(d þ 1)!2vol2(Xdþ2)Q
m6¼‘

1"m"dþ2 k xjm% xj‘ k2

0

@

1

A (33)

if j1, j2, . . . , jdþ2 are distinct and zero otherwise, where
diam(Xdþ2) is the diameter of Xdþ2. Notice that this affinity is
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invariant to scaling of the data points while the volume is not.
A pairwise affinity matrix is then defined as

Ajk ¼
X

j2, ..., jdþ12f1, ...,Ng
Aj, j2, ..., jdþ2Ak, j2, ..., jdþ2 : (34)

This requires computing O(Ndþ2) entries ofA and summing
over O(Ndþ1) elements of A. Therefore, the computational
complexity of SCC grows expo-
nentially with the dimension
of the subspaces. A practical
implementation of SCC uses
a fixed number c of (d þ 1)-
tuples (c * Ndþ1) for each point
to build the affinity A. A choice
of c + c0ndþ2 is suggested in
[27], which is much smaller but still exponential in d. In practice,
the method appears to be not too sensitive to the choice of c but
more importantly to how the d þ 1 points are chosen. Reference
[27] argues that a uniform sampling strategy does not performwell,
because many samples could contain subspaces of different dimen-
sions. To avoid this, two stages of sampling are performed. The first
stage is used to obtain an initial clustering of the data. In the second
stage, the initial clusters are used to guide the sampling and thus
obtain a better affinity. Given A, the segmentation is obtained by
applying spectral clustering to the normalized Laplacian. One dif-
ference of SCC with respect to the previous methods is that SCC
uses a procedure for initializingK-means based onmaximizing the
variance among all possible combinations ofK rows of V .

One advantage of SCC (and also of SSC) over LSA, SLBF, and
LLMC is that it uses points from the entire data set to define the
affinity between two points, while LSA, SLBF, and LLMC restrict
themselves to K-NNs. This ultimately results in better affinities
because it is less likely that they are built using points from different
subspaces. One advantage of SCC over factorization-based methods
and GPCA is that it can handle noisy data drawn from both linear
and affine subspaces. Another advantage of SCC over GPCA is that it
does not require the data to be projected onto a low-dimensional
subspace. Also, when the data are sampled from a mixture of distri-
butions concentrated around multiple affine subspaces, SCC per-
forms well with overwhelming probability, as shown in [60]. Finally,
SCC can be extended to nonlinear manifolds by using kernel meth-
ods [61]. However, the main drawbacks of SCC are that it requires
sampling of the affinities to reduce the computational complexity
and that it requires the subspaces to be of known and equal dimen-
sion d. In practice, the algorithm can still be applied to subspaces of
different dimensions by choosing d ¼ dmax, but the effect of this
choice on the definition of spectral curvature remains unknown.

APPLICATIONS IN COMPUTER VISION

MOTION SEGMENTATION FROM
FEATURE POINT TRAJECTORIES
Motion segmentation refers to the problem of separating a
video sequence into multiple spatiotemporal regions corre-
sponding to different rigid-body motions. Most existing motion

segmentation algorithms proceed by first extracting a set of
point trajectories from the video using standard tracking meth-
ods. As a consequence, the motion segmentation problem is
reduced to clustering these point trajectories according to the
different rigid-body motions in the scene.

The mathematical models needed to describe the motion of
the point trajectories vary depending on the type of camera

projection model. Under the
affine model, all the trajectories
associated with a single rigid
motion live in a three-dimen-
sional (3-D) affine subspace.
To see this, let fxfj 2 R2gf¼1;..., F

j¼1;...,N
denote the two-dimensional
(2-D) projections ofN 3-D points

fXj 2 R3gNj¼1 on a rigidly moving object onto F frames of a mov-
ing camera. The relationship between the tracked feature points
and their corresponding 3-D coordinates is

xfj ¼ Af
Xj
1

$ %
, (35)

where Af 2 R23 4 is the affine motion matrix at frame f . If we
form a matrix containing all the F tracked feature points corre-
sponding to a point on the object in a column, we get

x11 & & & x1N
..
. ..

.

xF1 & & & xFN

2

64

3

75

2F3N

¼
A1
..
.

AF

2

64

3

75

2F3 4

X1 & & &XN
1 & & & 1

$ %

43N
: (36)

We can briefly write this as W ¼ MS>, where M 2 R2F3 4 is
called the motion matrix and S 2 RN 3 4 is called the structure
matrix. Since rank(M)"4 and rank(S)"4 we get

rank(W ) ¼ rank(MS>)" min (rank(M), rank(S))" 4: (37)

Moreover, since the last row of S> is one, the feature point tra-
jectories of a single rigid-body motion lie in an affine subspace
ofR2F of dimension at most three.

Assume now that we are given N trajectories of n rigidly
moving objects. Then, these trajectories lie in a union of n affine
subspaces in R2F . The 3-D motion segmentation problem is the
task of clustering these N trajectories into n different groups
such that the trajectories in the same group represent a single
rigid-body motion. Therefore, the motion segmentation problem
reduces to clustering a collection of point trajectories according
tomultiple affine subspaces.

In what follows, we evaluate a number of subspace clustering
algorithms on the Hopkins155 motion segmentation database,
which is available online at http://www.vision.jhu.edu/data/
hopkins155 [57]. The database consists of 155 sequences of two
and three motions, which can be divided into three main catego-
ries: checkerboard, traffic, and articulated sequences. The checker-
board sequences contain multiple objects moving independently
and arbitrarily in 3-D space, hence the motion trajectories are

ONE ADVANTAGE OF SCC OVER
FACTORIZATION-BASEDMETHODS
AND GPCA IS THAT IT CAN HANDLE
NOISY DATA DRAWN FROM BOTH
LINEAR AND AFFINE SUBSPACES.
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expected to lie in independent affine subspaces of dimension
three. The traffic sequences contain cars moving independ-
ently on the ground plane, hence the motion trajectories are ex-
pected to lie in independent affine subspaces of dimension two.
The articulated sequences contain motions of people, cranes, etc.,
where object parts do not move independently, and so the motion
subspaces are expected to be dependent. For each sequence, the
trajectories are extracted auto-
matically with a tracker and
outliers are manually removed.
Therefore, the trajectories are
corrupted by noise but do not
have missing entries or outliers.
Figure 2 shows sample images
from videos in the database with
the feature points superimposed.

To make our results comparable to those in the existing liter-
ature, for each method we apply the same preprocessing steps
described in their respective articles. Specifically, we project the
trajectories onto a subspace of dimension r " 2F using either
PCA (GPCA, RANSAC, LLMC, LSA, ALC, and SCC) or a random
projection matrix (SSC) whose entries are drawn from a Ber-
noulli (SSC-B) or normal (SSC-N) distribution. Historically,
there have been two choices for the dimension of the projection:
r ¼ 5 and r ¼ 4n. These choices are motivated by algebraic
methods, which model 3-D affine subspaces as four-dimensional
(4-D) linear subspaces. Since dmax ¼ 4, GPCA chooses r ¼
dmax þ 1 ¼ 5, while factorization methods use the fact that for
independent subspaces r ¼ rank(X) ¼ 4n. In our experiments,

we use r ¼ 5 for GPCA and RANSAC and r ¼ 4n for GPCA,
LLMC, LSA, SCC, and SSC. For ALC, r is chosen automati-
cally for each sequence as the minimum r such that
r ! 8 log (2F=r). We will refer to this choice as the sparsity pre-
serving (sp) projection. We refer the reader to [62] for more
recent work that determines the dimension of the projec-
tion automatically. Also, for the algorithms that make use of

K-means, either a single re-
start is used when initialized
by another algorithm (LLMC,
SCC), or ten restarts are used
when initialized at random
(GPCA, LLMC, LSA). SSC uses
20 restarts.

For each algorithm and
each sequence, we record the

classification error defined as

Classification error ¼ number of misclassified points
total number of points3 100%

: (38)

Table 1 reports the average and median misclassification
errors, and Figure 3 shows the percentage of sequences for which
the classification error is below a given percentage of misclassifi-
cation. More detailed statistics with the classification errors and
computation times of each algorithm on each of the 155 sequen-
ces can be found at http://www.vision.jhu.edu/data/hopkins155/.

By looking at the results, we can draw the following conclu-
sions about the performance of the algorithms tested.

(a) (b) (c)

(d) (e) (f)

[FIG2] Sample images from some sequences in the database with tracked points superimposed: (a) 1R2RCT_B, (b) 2T3RCRT, (c) cars3,
(d) cars10, (e) people2, and (f) kanatani3.

MOTION SEGMENTATION REFERS TO
THE PROBLEMOF SEPARATING A
VIDEO SEQUENCE INTOMULTIPLE

SPATIOTEMPORAL REGIONS
CORRESPONDING TO DIFFERENT

RIGID-BODYMOTIONS.
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GPCA
To avoid using multiple polynomials, we use an
implementation of GPCA based on hyperplanes in
which the data are interpreted as a subspace of
dimension r % 1 inRr, where r ¼ 5 or r ¼ 4n.

For two motions, GPCA achieves a classifica-
tion error of 4.59% for r ¼ 5 and 4.10% for r ¼ 4n.
Notice that GPCA is among the most accurate meth-
ods for the traffic and articulated sequences, which
are sequences with dependent motion subspaces.
However, GPCA has higher errors on the checker-
board sequences, which constitute a majority of the
database. This result is expected because GPCA is
best designed for dependent subspaces. Notice also
that increasing r from 5 to 4n improves the results
for checkerboard sequences but not for the traffic
and articulated sequences. This is also expected
because the rank of the data matrix should be high
for sequences with full-dimensional and independ-
ent motions (checkerboard) and low for sequences
with degenerate (traffic) and dependent (articulated)
motions. This suggests that using model selection to
determine a different value of r for each sequence
should improve the results.

For three motions, the results are completely dif-
ferent with a segmentation error of 29–37%. This is
expected because the number of coefficients fitted
by GPCA grows exponentially with the number of
motions, while the number of feature points remains
of the same order. Furthermore, GPCA uses a least-
squares method for fitting the polynomial, which
neglects nonlinear constraints among the coefficients.
The number of nonlinear constraints neglected also
increases with the number of subspaces.

RANSAC
The results for this purely statistical algorithm are
similar to what we found for GPCA. In the case of
two motions, the results are a bit worse than those
of GPCA. In the case of three motions, the results
are better than those of GPCA but still quite far from
those of the best-performing algorithms. This is
expected because, as the number of motions increases,
the probability of drawing a set of points from the
same group reduces significantly. Another drawback
of RANSAC is that its performance varies between
two runs on the same data. Our experiments report
the average performance by more than 1,000 trials
for each sequence.

LSA
When the dimension of the projection is chosen as
r ¼ 5, this algorithm performs worse than GPCA.
This is because the points in different subspaces are
closer to each other when r ¼ 5, and so a point from
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a different subspace is more likely to be chosen as an NN. GPCA,
on the other hand, is not affected by points near the intersection
of the subspaces. The situation is completely different when
r ¼ 4n. In this case, LSA clearly outperforms GPCA and RAN-
SAC, achieving an error of 3.45% for two groups and 9.73% for
three groups. These errors could be further reduced by using
model selection to determine the dimension of each subspace.
Another important thing to observe is that LSA performs better on
the checkerboard sequences, but has larger errors than GPCA
on the traffic and articulated sequences. This confirms that LSA
has difficulties with dependent subspaces.

LLMC
The results of this algorithm also represent a clear improvement
over GPCA and RANSAC, especially for three motions. The only
cases where GPCA outperforms LLMC are for traffic and articu-
lated sequences. This is expected because LLMC is not designed
to handle dependent subspaces. Unlike LSA, LLMC is not sig-
nificantly affected by the choice of r, with a classification error
of 5:15% for r ¼ 5 and 4:97% for r ¼ 4n. Notice also that the
performance of LLMC improves when initialized with GPCA to
4:87% for r ¼ 5 and 4:37% for r ¼ 4n. However, there are a
few sequences for which LLMC performs worse than GPCA
even when LLMC is initialized by GPCA. This happens for
sequences with dependent motions, which are not well handled
by LLMC.

MSL
By looking at the average classification error, we can see that
MSL, LSA, and LLMC have a similar accuracy. Furthermore,
their segmentation results remain consistent when going from
two to three motions.

However, sometimes the MSL method gets stuck in a local
minimum. This is reflected by high classification errors for
some sequences, as can be seen by the long tails in Figure 3.

ALC
This algorithm represents a significant increase in perform-
ance with respect to all previous algorithms, especially for the
checkerboard sequences, which constitute the majority of
the database. However, ALC does not perform very well on the
articulated sequences. This is because ALC typically needs the
samples from a group to cover the subspace with sufficient
density, while many of the articulated scenes have very few fea-
ture point trajectories. With regard to the projection dimen-
sion, the results indicate that, overall, ALC performs better
with an automatic choice of the projection rather than with a
fixed choice of r ¼ 5. One drawback of ALC is that it needs to be
run about 100 times for different choices of the distortion
parameter d to obtain the right number of motions and the best
segmentation results.

SCC
This algorithm performs even better than ALC in almost all
motion categories. The only exception is for the articulated

sequences with three motions. This is because these sequences
contain few trajectories for the sampling strategy to operate cor-
rectly. Another advantage of SCC with respect to ALC is that it is
not very sensitive to the choice of the parameter c (number of
sampled subsets), while ALC needs to be run for several choices
of the distortion parameter d. Notice also that the performance
of SCC is not significantly affected by the dimension of the pro-
jection r ¼ 5, r ¼ 4n, or r ¼ 2F.

SSC
This algorithm performs extremely well not only for checker-
board sequences, which have independent and fully dimensional
motion subspaces, but also for traffic and articulated sequences,
which are the bottleneck of almost all existing methods, because
they contain degenerate and dependent motion subspaces. This
is surprising because the algorithm is provably correct only for
independent or disjoint subspaces. Overall, the performance of
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SSC is not very sensitive to the choice of the projection (Bernoulli
versus normal), though SSC-N gives slightly better results. We
have also observed that SSC is not sensitive to the dimension
of the projection (r ¼ 5 versus r ¼ 4n versus r ¼ 2F) or the
parameter k.

SLBF
This algorithm performs extremely well for all motion sequences.
Its performance is essentially on par with that of SSC. We refer
the reader to [22] for additional experiments.

FACE CLUSTERING UNDER
VARYING ILLUMINATION
Given a set of images fIj 2 RDgNj¼1 of n different faces taken from
the same viewpoint under varying illumination conditions, the
face clustering problem consists of clustering the images accord-
ing to the identity of the person. For a Lambertian object, it has
been shown that the set of all images taken under all lighting con-
ditions forms a cone in the image space, which can be well
approximated by a low-dimensional subspace [3]. Therefore, the
face clustering problem reduces to clustering a set of images
according to multiple subspaces.

Table 2 shows the experiments from [22], which evaluate
the performance of the GPCA, ALC, SCC, SLBF, and SSC algo-
rithms on the face clustering problem. The experiments are
performed on the Yale faces B database, which is available
at http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html. This
database consists of 103 93 64 images of ten faces taken
under nine different viewpoints and 64 different illumination
conditions. Nine subsets containing the images of the frontal
views of the following n ¼ 2; . . . , 10 individuals are consid-
ered: {5, 8}, {1, 5, 8}, {1, 5, 8, 10}, {1, 4, 5, 8, 10}, {1, 2, 4, 5, 8,
10}, {1, 2, 4, 5, 7, 8, 10}, {1, 2, 4, 5, 7, 8, 9, 10}, {1, 2, 3, 4, 5, 7,
8, 9, 10}, and {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. For computational
efficiency, the images are downsampled to 1203 160 pixels.
Since this number is still large compared with the dimension
of the subspaces, PCA is used to project the images onto a sub-
space of dimension r ¼ 5 for GPCA and r ¼ 20 for ALC, SCC,
SLBF, and SSC. In all cases, the dimension of the subspaces is
set to d ¼ 2.

By looking at the results, we can draw the following conclu-
sions about the performance of the algorithms tested.

GPCA
This algorithm does not perform very well. This is attributed
to the fact that it is very hard to distinguish faces from only

five dimensions. While one could have chosen to project the
faces to a space of larger dimension, GPCA cannot handle a
large number of variables, especially as the number of
groups increases.

SCC
This algorithm performs better than GPCA, achieving a perfect
classification for n " 4. However, as n increases from 5 to 10,
the classification error ranges from 1.1% to 6.6%.

SSC
This algorithm performs very well, achieving perfect classifica-
tion for n " 8 and classification errors of 2.4% and 4.6% for
n ¼ 9 and n ¼ 10, respectively.

SLBF
This algorithm performs very well, slightly better than SSC. It
achieves perfect classification for n " 8 and errors of 1.2% and
0.9% for n ¼ 9 and n ¼ 10, respectively.

ALC
This algorithm performs extremely well, achieving 100% accu-
racy in all cases. However, this requires using the algorithm
from [22] to set the parameter d. When multiple values of d are
chosen, the error goes up to 50% for n ¼ 2 and stays at 0% in
other cases, as reported in [22].

Although these experiments show very promising results,
we believe there is still plenty of room for improvement. For
example, the face clustering problem is more challenging
from nonfrontal faces, thus it would be natural to evaluate the
algorithms for nonfrontal faces and see if their performance
deteriorates. Also, many of the images in the Yale faces B data-
base contain not only faces but also background, which can
facilitate the clustering of the images using the background
intensities. Thus, it would be natural to evaluate the algo-
rithms on the cropped images and see if their performance
deteriorates. Finally, one could also explore several choices
for the subspace dimensions d and for the dimension of the
projection D.

CONCLUSIONS AND FUTURE DIRECTIONS
Over the past few decades, significant progress has been made in
clustering high-dimensional data sets distributed around a col-
lection of linear and affine subspaces. This article presented a
review of such progress, which included a number of existing
subspace clustering algorithms together with an experimental
evaluation on the motion segmentation and face clustering prob-
lems in computer vision.

While earlier algorithms were designed under the assump-
tions of perfect data and knowledge of the number of subspaces
and their dimensions, throughout the years algorithms started
to handle noise, outliers, data with missing entries, unknown
number of subspaces, and unknown dimensions.

In the case of noiseless data drawn from linear subspaces, the
theoretical correctness of existing algorithms is well studied.

[TABLE 2] MEAN PERCENTAGE OFMISCLASSIFICATION ON
CLUSTERING YALE FACE B DATA SET.

n 2 3 4 5 6 7 8 9 10

GPCA 0.0 49.5 0.0 26.6 9.9 25.2 28.5 30.6 19.8
SCC 0.0 0.0 0.0 1.1 2.7 2.1 2.2 5.7 6.6
SSC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.4 4.6
SLBF 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 0.9
ALC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Some algorithms are provably
correct for independent subspa-
ces, others are provably correct
for disjoint subspaces, and others
are able to handle an unknown
number of subspaces of un-
known dimensions in an arbi-
trary configuration. However,
a theoretical analysis of the
applicability of many methods to affine subspaces in the noise-
less case is still due.

In the case of noisy data, the theoretical correctness of exist-
ing algorithms is largely untouched. To the best of our knowl-
edge, the first works in this direction are [45] and [60]. By and
large, most existing algorithms assume that the number of sub-
spaces and their dimensions are known. While some algorithms
can provide estimates for these quantities, their estimates come
with no theoretical guarantees. In our view, the development of
theoretically sound algorithms for finding the number of sub-
spaces and their dimension in the presence of noise and outliers
is a very important open challenge.

On the other hand, it is important to mention that most
existing algorithms operate in a batch fashion. In real-time
applications, it is important to cluster the data as it is being col-
lected, which motivates the development of online subspace clus-
tering algorithms. The works of [15] and [63] are two examples in
this direction.

Finally, in our view, the grand challenge for the next decade
will be to develop clustering algorithms for data drawn from
multiple nonlinear manifolds. The works of [64]–[67] have
already considered the problem of clustering quadratic, bilin-
ear, and trilinear surfaces using algebraic algorithms designed
for noise-free data. The development of methods that are appli-
cable to more general manifolds with corrupted data is still at
its infancy.
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