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Conclusions 

Iterative Constraint Selection 

• OCS is only guaranteed to work when 𝑝( ∙ ; 𝐜∞) has only one zero; however, 

with low SNR this assumption may fail. 

• In this case, we find a new solution for 𝐜 subject to 𝑝(𝑥1; 𝐜) ≥ 𝟎, where 𝑥1 is 

the minimum of 𝑝( ∙ ; 𝐜𝑂𝐶𝑆).  
• Iteratively adding the minimum of the current estimate to the set of 

constraints generates a converging sequence 𝐜𝑛 → 𝐜∞.  

• We compare our methods OCS and ICS with LS, DC, and EC.  

• We reconstruct a set of 375 synthetic 1-, 2-, and 3-fiber ODFs distorted with 

SNR of 4, 8, and 12 dB, as well as a real HARDI brain data set.  

• We evaluate the overall performance of each method using three metrics: 

• OCS is the fastest method, with a runtime of 

0.5ms per ODF. 

• Runtime of ICS is comparable to that of DC.  

• Overall, ICS outperforms the state-of-the-art EC 

by producing ODFs that are closer to the optimal 

nonnegative ODF and improving runtime. 
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NIH grant 5T32EB010021-03. 

• We propose two methods for estimating a nonnegative ODF from HARDI 

data:  

• OCS solves a quadratic problem subject to one constraint and is guaranteed 

to produce a nonnegative ODF under some condition.  

• ICS iteratively solves a quadratic problem subject to multiple linear 

constraints and is guaranteed to converge to the correct solution.  

• Experiments showed that our methods produce more accurate solutions than 

prior work at a reduced runtime . 

• High Angular Resolution Diffusion Imaging (HARDI) can be used to study 

the neuronal fiber architecture of the brain in order to study causes of 

neurological diseases. 

• Current Q-Ball Imaging (QBI) methods [1,2,3] estimate the Orientation 

Distribution Function (ODF) 𝑝 𝑥 ,  𝑥 ∈ S2, using a Spherical Harmonics 

(SH) basis representation for the HARDI signal 𝑠 𝑥 , 𝑥 ∈ S2. 

• We propose two methods for estimating nonnegative ODFs from HARDI 

data. 

HARDI Signal 

ODFs per voxel 

State of the Art 

• The key idea behind our approach is that P∞ is equivalent to  

min𝒄∈𝑹𝑳 ∥ Bc−s ∥𝟐  s.t.  min𝑥∈S2
𝑝 𝑥; 𝐜 ≥ 𝟎. 

• Therefore, one may hope that only one constraint needs to be enforced.  

• Indeed, when 𝑝( ∙ ; 𝐜∞) has only one zero, 𝑥0, the constraint 𝑝(𝑥0; 𝐜) ≥ 𝟎 
suffices to recover 𝐜∞.  

• To find 𝑥0, we solve an optimization problem on the sphere S². 

Note that the minimum in this 1D example is at x = 4.5. However, to obtain nonnegativity 

everywhere, we enforce 𝑝(4.67) ≥ 0. 

𝐜𝑳𝑺 = argmin𝒄∈𝑹𝑳 ∥ Bc−s ∥𝟐 

𝐜∞ = argmin𝒄∈𝑹𝑳 ∥ Bc−s ∥𝟐   s.t.  𝑝 𝑥, 𝐜 ≥ 0 ∀𝑥 ∈ 𝑆
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(1) Least-Squares Solution  (2) Find 𝑥0, enforce 𝑝(𝑥0) ≥ 0 (3) OCS Solution 

• Minimization with only one constraint, 𝑝(𝑥0; 𝐜) ≥ 𝟎, is done at negligible 

computational cost in closed form. 

𝐜𝑂𝐶𝑆 = 𝐜𝐿𝑆 −
4𝜋+𝑌(𝑥0)

T𝐜𝐿𝑆

𝑌(𝑥0)
T(𝐁T𝐁)−𝟏𝑌(𝑥0)

 (𝐁T𝐁)−𝟏𝑌(𝑥0) OCS2 

Each line represents one nonnegativity constraint 

𝑝(𝑥; 𝐜) ≥ 𝟎. The intersected half-spaces characterize 

the (nonnegative) ODFs (red). If the optimal ODF 

𝑝( ∙ ; 𝐜∞) has only one zero, such that there is only 

one tangent through 𝐜∞, then this tangent can be 

found by maximizing the (𝐁T𝐁)−𝟏 -weighted 

distance (represented by its level sets) to 𝐜𝐿𝑆. 
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Ground Truth 

Synthetic fiber field reconstructed with state-of-the-art  

methods in comparison to the proposed method ICS and 

the ground truth ODFs.  
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𝑥0 = argmaxx∈S²
−4𝜋 − 𝑌(𝑥)T𝐜𝐿𝑆

𝑌(𝑥)T(𝐁T𝐁)−𝟏𝑌(𝑥)
 OCS1 

ICS solution 𝐜𝟏 = 𝐜𝑶𝑪𝑺 𝐜𝒏+𝟏 

• However, due to signal noise, ODF estimates may contain negative values, 

which are physically impossible and thus incorrect. 

• EC always provides nonnegative ODFs, but has a runtime on the order of 10s 

per ODF and does not provide solutions of P∞. 

• The discretely constrained (DC) method [4] enforces nonnegativity on a 

finite grid, which does not guarantee nonnegativity everywhere. 

• The eigenvalue constrained (EC) method [5] guarantees nonnegativity, but 

does not solve P∞, which can result in a distorted estimate of the ODF. 

• The fundamental challenge is that there are infinitely many constraints. 


