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ABSTRACT

We consider the problem of estimating a nonnegative orienta-
tion distribution function (ODF) from high angular resolution
diffusion images. Since enforcing nonnegativity of the ODF
for all directions on the sphere leads to an optimization prob-
lem with infinitely many constraints, prior work cannot guar-
antee the nonnegativity of the estimated ODF. The first contri-
bution of this paper is to show that, under certain conditions,
a single constraint is sufficient to guarantee the nonnegativ-
ity of the estimated ODF in all directions. Otherwise, when
these conditions are violated, we propose an iterative algo-
rithm that enforces one constraint at a time and is guaranteed
to converge to the optimal nonnegative ODF. Experiments on
synthetic and real data show that our methods produce more
accurate solutions than prior work at a reduced runtime.

Index Terms— Diffusion MRI, HARDI, estimation of
nonnegative ODFs, semi-infinite optimization.

1. INTRODUCTION

High-angular resolution diffusion imaging (HARDI) [1] is a
non-invasive imaging technique that can be used to study the
architecture of the brain. This can be done by estimating the
local orientation of white matter fiber tracts as the peaks of the
orientation distribution function (ODF), which measures the
probability of water diffusion in each direction on the sphere.

Current methods for estimating the ODF from HARDI
data represent the ODF in terms of a spherical harmonic (SH)
basis [2] and solve for the SH coefficients using least squares
[3, 4]. However, ODFs estimated by least squares from noisy
HARDI data may have negative values, which is physically
and theoretically incorrect for a probability density function.

Solving for an ODF subject to nonnegativity constraints
requires solving an optimization problem with infinitely many
constraints, one per each direction on the sphere. The work
of [5] aims to address this issue by enforcing nonnegativity
at a finite number of fixed directions. However, this does not
guarantee the nonnegativity of the ODF in all directions. A
number of methods have attempted to go further and enforce
nonnegativity on the continuous domain. The work of [6] at-
tempts to iteratively enforce nonnegativity of the fiber orien-
tation distribution (FOD) function, but their model does not
guarantee nonnegativity everywhere. The work of [7] esti-

mates the SH coefficients of the square root of the ODF and
then simply squares the resulting function to obtain a nonneg-
ative ODF. However, this result need not coincide with the
optimal nonnegative ODF. The work of [8] proposes to en-
force that a linear transformation of the homogeneous poly-
nomial basis be positive definite. However, this requires a
full rank assumption, which may not guarantee nonnegativity
everywhere. The work of [9] shows that enforcing nonnega-
tivity in all directions is equivalent to enforcing the positive
semi-definiteness of an infinite matrix built from the SH co-
efficients. However, we will see that their solution does not
coincide with the optimal solution of the original optimization
problem with infinite constraints.

In this paper, we show that, under certain conditions, the
nonnegativity of the ODF can be guaranteed by enforcing
only one optimal constraint. Otherwise, nonnegativity of the
ODF can be enforced iteratively by adding the most violated
constraints one by one until convergence. Our experiments
on synthetic and real HARDI data show that our methods not
only reduce the amount of negativity of existing methods, but
also produce ODFs that are much closer to the optimum of
the original optimization problem with infinite constrains at a
significantly reduced runtime.

2. ODF ESTIMATION PROBLEM

2.1. Spherical Harmonic Representation

We model the distribution of water diffusion at each voxel
with an ODF, i.e., a probability density function on the sphere,
p(x) for x € S?. The ODF is related to the HARDI signal
S(g) along a spatial gradient direction g € S? by [4]
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where FRT is the Funk-Radon transform, V% is the Laplace-
Beltrami operator on S?, and Sy is the baseline MRI signal.
The transformed signal s(g) £ In(— ln(%‘g))) is a real
spherical function, which can be written as a linear combina-
tion of modified SH basis functions Y; : S* — R (with no-

tation as in [2]) as s(g) = Zf’:l ¢;Y;(g), where ¢ & 15,
are the SH coefficients with respect to a modified SH basis
of orderup to L, and R = %Q(LH) Recall that the mod-

ified SH basis functions Y; are eigenfunctions of the Funk-



Radon transform and of the Laplace-Beltrami operator, i.e.,
FRT(Y;) = \;Y; and VZ(Y;) = {;Y;. Thus, we can express
p(x) as a linear combination of modified SH functions as
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Since Y; integrates to 0 over S?, p(z; ¢) integrates to 1.

2.2. Nonnegative ODF Estimation Problem

To estimate the ODF p(z; ¢) from samples of the HARDI sig-
nal s(g), we must recover the SH coefficient vector c subject
to the constraint that p(z; c) be nonnegative for all z € S2.
This leads to the nonnegative ODF estimation problem:

(Peo)

where B = [Y;(g)]/L, is the G x R matrix of SH basis func-
tions sampled at G fixed gradient directions g = [¢;]% ; and
s = s(g) € R is the sampled HARDI signal. We assume
that B is of full column rank. We refer to this problem as (P,)
since we have a continuum of infinitely many constraints.

min [|[Bec —s||3 s.t. p(z;c) >0 VoeS?
ceRE

2.3. Previous ODF Estimation Methods

Previous ODF estimation methods [3, 4] recover the coeffi-
cient vector ¢ by disregarding the nonnegativity constraints,
which leads to the following least-squares (LS) solution

co = argmin |[Bc —s||?> = (BTB) 'BTs. (LS)

ceRR

The approximate method of [5] enforces nonnegativity at a
finite number of fixed grid points x £ [z;], and solves a
quadratic optimization problem with a finite set of constraints:

in [|Bc —s2 s.t. i) >0, i=1,..., M.
Inin |[Be —s|; s.t. plzije) 20, (DC)

We refer to this method as Discretely Constrained (DC). How-
ever, notice that enforcing nonnegativity at a finite set of fixed
x;’s does not guarantee nonnegativity for all z € S2.

3. PROPOSED ODF ESTIMATION METHODS

In this paper, we propose (to the best of our knowledge) the
first method that is able to guarantee nonnegativity of the opti-
mal ODF in all directions on the sphere. The key idea behind
our approach is that (P..) is equivalent to

in [Bc—s||3 s.t. mi :c) > 0.
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Therefore, in theory, we only need to enforce one constraint,
namely p(z*,c) > 0, where * = arg min_ p(z; c). In prac-
tice, however, we face two challenges. First, 2* depends on
c, which is unknown. Thus, we cannot compute z* without
knowing c in the first place. Second, z* may not be unique.
This means that we may need to enforce more than one con-
straint, one per global minimizer. In what follows, we show

how to address each of these issues. In §3.2 we show that if
there is a unique active constraint at the optimum, this con-
straint can be found by solving an optimization problem in
S2. Then, in §3.3 we show that if the minimizer of (P) is not
unique, one can still find the set of active constraints through
a provably convergent iterative procedure. Before proceeding
further, in §3.1 we study the geometry of the set of constraints.

3.1. Geometry of the Set of Constraints
Let us consider the general optimization problem

nTc <b V(n,b) €C, (PO)

min f(c) s.t.
where f: R — Ris strictly convex and C'is compact. Since
for each z € S?, the constraint p(x;c) > 0 is a half-space
of the form nTc < b with normal vector n = —Y (z) £
[f@-(x)]f:l € RE, where Y;(x) £ \;¢,Y;(z), and intercept
b = 4rm € R, we see that (P,) is a particular case of (PO) with
f(c) = ||Bc—s|? and C = {(=Y(x),47): z € S?}. Now,
since half-spaces are convex, the intersection of such half-
spaces forms a convex set that we refer to as C = {c : nTc <
b ¥(n,b) € C}. Thus, (P0) is a convex optimization problem
with a unique global optimum c*. Moreover, the boundary of

C is defined by a subset of all the constraints, as stated next.

Lemma 1. For each point ¢ € OC in the boundary of C, there
is a constraint (n,b) € C passing through it, i.e., nTc = b.
Moreover, the boundary is differentiable at c if and only if
there is exactly one constraint (n,b) € C passing through it.
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Thanks to Lemma 1, the
optimization problem (PO)
can be illustrated as in Fig-
ure 1. Here, we assume
that the solution ¢y to the
unconstrained problem (LS)
does not belong to C, oth- c

erwise, p(x;cg) would be LA

already nonnegative. Now,
Fig. 1. Feasible set C, level

since ¢ ¢ C, the global
sets of f and normal n* at c*.

minimizer of (P0), c*, must
lie on the boundary of C.

3.2. Optimal Constraint Selection (OCS) Method

Assume that JC is differentiable at ¢* so that there is only one
active constraint (n*, b*) € C passing through c*. Then, we
can minimize f subject to this constraint alone (see Theorem
2). Moreover, by looking at Figure 1, we can see that the
optimal constraint (n*, b*) is the one that maximizes the value
of f among those that do not contain ¢ (see Theorem 3).

Theorem 2. If there is only one active constraint (n*, b*)
passing through c*, then problem (P0) is equivalent to

min f(c) s.t. n*Te <" (P1)
[



Proof. Since c* lies in the feasible set of (P1), it suffices to
show that f(c*) < f(c) foreach ¢ # ¢* such thatn*Tc < b*.
Assume for the sake of contradiction that there exists ¢ such
that n*7¢ < b* and f(€) < f(c*). For the case n*T¢ < b*,
the strong convexity of f implies that f(c* + (¢ — c*)) <
f(c*) for 0 < ¢t < 1. But by Lemma 1, 0C is differentiable
at ¢*, so ¢* + t(€¢ — ¢*) must be in C for small ¢ because
n*T(¢ — ¢*) < 0. This contradicts the optimality of ¢*. The
case n*T¢ = b* can be treated as above if we replace € by
¢—en*, where € is chosen such that f(€—en*) < f(c*). O

Theorem 3. If there is only one active constraint (n*,b*)
passing through c*, this constraint can be found by solving

) o b ein f(e). (P2)

Proof. From Theorem 2 we have ming«re—p« f(c) = f(c*).
Hence, we need to show that minyre—p f(c) < f(c*) for all
(n,b) € C such that (n,b) # (n*,b") and nTco > b. For,

b—nTc*

let C = C + W(CO — c*) and note that nTé — b It
follows from the strong convexity of f that

_min f(c) < f(€) < f(c"), )
because ¢ is on the line segment connecting c* and cy. U

The importance of these results is that they allow us to
solve (P,) by solving a much simpler optimization problem
over the sphere. To see this, notice that the minimization of f
subject to a single constraint can be done in closed form as

(b—nTcp)?

min f(c) = f(co) + nT(BTB)_ll’l

c:nTc=b
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Recall now that b = 47 andn = —Y (z) 2 [Y; ()], with
Yj(z) 2 \j£;Y;(x) as per (2). Therefore, the optimization
problem in (P2) reduces to
(47 4+ Y (2) " co)?
max —— =
2 Y (@) (BTB) V(@)

which is in turn equivalent to the unconstrained problem

s.t. 4m + Y () co <0, (6)
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We can solve this problem by minimizing over a fixed grid of
10,000 spherical coordinates (¢, ¢), where z = z(0, ¢).

3.3. Iterative Constraint Selection (ICS) Method

It follows from Theorem 2 that, under certain conditions, the
ODF associated with the solution to (P1) is guaranteed to be
nonnegative. While we cannot verify the conditions of Theo-
rem 2 a priori, it follows from Proposition 4 that if the ODF
associated with the solution to (P1) is nonnegative, then it
must be optimal. In other words, we can verify whether (P1)
gives a solution to (P0) a posteriori.

Proposition 4. (P2) attains a finite maximum even if OC is
not differentiable at c*. Let (i, b) be one of the maximizing
constraints. Then, the minimizer © of (P1) with constraint
(1, b) is the minimizer of (PO) if and only if it is in C.

When the condition of Proposition 4 fails, i.e., if there ex-
ists (n,b) € C such that nT¢ > b, we can find a new solution
for ¢ subject to nTc < b. We can then repeat this process of
adding one constraint at a time and minimizing f subject to
these constraints until the solution for ¢ belongs to C. This
generates a sequence of solutions ¢ as described in Alg. 1.
Theorem 5 shows that this iterative procedure converges to c*.

Algorithm 1 (Iterative Constraint Selection)

1: Initialization: Choose a (finite) set of constraints I C C.
2: Setc <+ argmin f(¢) s.t. nTc<b V(n,b) el
3: if max(ypecn’c — 0> 0, then
4 I+ I'U{argmax, ,cc n'c — b},
5: go to step 2;
6: else

7: c’+c
8: end if

Theorem 5. Algorithm I converges to c*.

Proof. Let c; and I; denote, respectively, the values of ¢ and 1
at the ith iteration of Algorithm 1. Let C; = {c € R®|nTc <
bV(n,b) € I;}. To show that c; converges to c* it suffices to
show that every subsequence c;, has a subsubsequence that
converges to c*. By definition, we have C; O C for every
i € N. Thus, f(c;) < f(c*) and since {c|f(c) < f(c*)} is
bounded, it follows that there is a converging subsubsequence
ci,, — €. Without loss of generality we assume that ¢; —
€. First, we show that € € C. Assuming that € ¢ C, we
can find (1,b) € C such that ¢ £ nT¢ — b > 0. Choose
K £ maxypec |n| and N such that ||c; — €| < ;% forall
i > N. With (n,b) = Iny11\In, it follows that

n"cy 1 —b=e— (A€ —b) +nTcy —b+nT(cyy1—cy)
>e—(MTe—b)+nTcy —b+nT(cyii—cy)
=e+n"(cy —C€)+nT(cyi1 —cn)
> e~ Koy — o - Kllexs: — ex|

>6—K(—+2—) ¢

AK T T4K T o
which contradicts cy+1 € Cy41. Now, € = c* follows from
f(©) =lim; o f(c;) < f(c¥). O

While Alg. 1 is guaranteed to converge, the number of
iterations could be infinite. In this case, the number of con-
straints could be infinite as well. In our implementation, we
enforce nonnegativity up to an arbitrary threshold 7 < 0 in
step 3 of Alg. 1, i.e., we check if nTc — b > 7. This guar-
antees convergence in a finite number of iterations (typically
3), but does not guarantee nonnegativity everywhere. We find
this to give a good compromise between accuracy and speed.



Distance from Solution p*

Negativity Runtime
@ 0.3 HLS o °
% 0.25 5 w5
B 02 ®DC S 4 mLS S 4 e
2 015 WEC =3 ®DC Z 3
E o1 ocs g, oCs g 2 mICs
& g 2
0.05 mICS A WICS é 1
0 0 g )
12 brain 12 blaln 12 brain
SNR (dB) SNR (dB) SNR (dB)

Fig. 2: Performance of the Least-Squares (LS), Discretely Constrained (DC) and Eigenvalue Constraint (EC) methods compared
to that of our Optimal Constraint Selection (OCS), and Iterative Constraint Selection (ICS) methods on synthetic and brain data.

4. EXPERIMENTS

We compare our methods OCS and ICS with LS, DC, and [9],
which we call Eigenvalue Constraint (EC), on a synthetic field
of 375 1-, 2-, and 3-fiber ODFs distorted with SNR of 4, &,
and 12 dB as well as areal HARDI brain data set. We evaluate
the overall performance of each method using three metrics:
1) the average Riemannian distance to the optimal solution p*
of (P), i.e., the optimal nonnegative ODF computed by the
DC method with 1 million constraints obtained from 1 million
discrete grid points on the sphere, 2) the average percentage
of negative values remaining in the estimated ODF, evaluated
over 1 million discrete grid points, and 3) the average runtime
per ODF. In the left plot of Figure 2 we see that our methods
produce ODFs that are very close to p*, while the state-of-
the-art EC method does no better than DC and LS. From the
center plot we see that OCS exhibits some negative values
whenever the conditions of Theorem 2 are violated. Here ICS
also shows a slight percentage of negative values due to the
use of a threshold 7 = —5 x 10~ in step 3 of Alg. 1. The
percentage of negativity of EC was always zero, but EC had a
runtime on the order of 10s per ODF. In sharp contrast, OCS
is the fastest method, with a runtime of 0.5ms per ODF. This
is expected because OCS enforces only one constraint. On
the other hand, the runtime of ICS is comparable to that of
DC. Overall, ICS outperforms the state-of-the-art EC by pro-
ducing ODFs that are closer to the optimal nonnegative ODF,
reducing the amount of negativity, and improving runtime.

5. CONCLUSION

We proposed two methods for estimating a nonnegative ODF
from HARDI data. The first (OCS) solves a quadratic prob-
lem subject to one constraint and is guaranteed to produce a
nonnegative ODF under some conditions. The second (ICS)
iteratively solves a quadratic problem subject to multiple lin-
ear constraints and is guaranteed to converge to the correct so-
lution, which would have required infinitely many constraints.
Our experiments showed that our methods produce more ac-
curate solutions than prior work at a reduced runtime.
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