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Abstract

Detecting, counting, and classifying various cell types in

images of human blood is important in many biomedical ap-

plications. However, these tasks can be very difficult due to

the wide range of biological variability and the resolution

limitations of many imaging modalities. This paper pro-

poses a new approach to detecting, counting and classifying

white blood cell populations in holographic images, which

capitalizes on the fact that the variability in a mixture of

blood cells is constrained by physiology. The proposed ap-

proach is based on a probabilistic generative model that de-

scribes an image of a population of cells as the sum of atoms

from a convolutional dictionary of cell templates. The class

of each template is drawn from a prior distribution that

captures statistical information about blood cell mixtures.

The parameters of the prior distribution are learned from

a database of complete blood count results obtained from

patients, and the cell templates are learned from images

of purified cells from a single cell class using an exten-

sion of convolutional dictionary learning. Cell detection,

counting and classification is then done using an extension

of convolutional sparse coding that accounts for class pro-

portion priors. This method has been successfully used to

detect, count and classify white blood cell populations in

holographic images of lysed blood obtained from 20 nor-

mal blood donors and 12 abnormal clinical blood discard

samples. The error from our method is under 6.8% for all

class populations, compared to errors of over 28.6% for all

other methods tested.

1. Introduction

Object detection and classification in images of biolog-

ical specimens has many potential applications in diagnos-

ing disease and predicting patient outcome. However, due

to the wide range of possible imaging modalities, biologi-

cal data can potentially suffer from low resolution images

or significant biological variability from patient to patient.

Moreover, many state-of-the-art object detection and classi-

fication methods in computer vision require large amounts

of annotated data for training, but such annotations are often

not readily available for biological images, as the annotator

must be an expert in the specific type of biological data. Ad-

ditionally, many state-of-the-art object detection and classi-

fication methods are designed for images containing a small

number of object instances per class, while biological im-

ages can contain thousands of object instances.

One particular application that highlights many of these

challenges is holographic lens-free imaging (LFI). LFI is

often used in medical applications of microscopy due to its

ability to produce images of cells with a large field of view

(FOV) with minimal hardware requirements. However, a

key challenge is that the resolution of LFI is often low when

the FOV is large, making it difficult to detect and classify

cells [1] [6] [4]. The task of cell classification is further

complicated due to the fact that cell morphologies can also

vary dramatically from person to person, especially when

disease is involved. Additionally, annotations are typically

not available for individual cells in the image, and one might

only be able to obtain estimates of the expected proportions

of various cell classes via the use of a commercial hematol-

ogy blood analyzer.

In prior work [15, 16], LFI images have been used for

counting fluorescently labeled white blood cells (WBCs),

but not for the more difficult task of classifying WBCs into

their various subtypes, e.g., monocytes, lymphocytes, and

granulocytes. In [10], the authors suggest using LFI images

of stained WBCs for classification, but they do not provide

quantitative classification results. Existing work on WBC

classification uses high-resolution images of stained cells

from a conventional microscope and attempts to classify

cells using hand-crafted features and/or neural networks

[2, 11, 9, 3]. However, without staining and/or high reso-

lution images, the cell details (i.e., nucleus and cytoplasm)

are not readily visible, making our task of WBC classifica-

tion significantly more difficult. Furthermore, purely data-

driven approaches, such as neural networks, typically re-

quire large amounts of annotated data to succeed, which is

not available for lens free images of WBCs.

Paper contributions. This paper considers the problem of

detecting, counting, and classifying various subcategories

of WBCs, e.g. monocytes, lymphocytes, and granulocytes,

in reconstructed lens free images. Unlike typical computer

vision problems, each image has hundreds to thousands of

instances of each object category and each training image
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Figure 1: Sample image of WBCs containing a mixture of granulocytes, lymphocytes, and monocytes, in addition to lysed

red blood cell debris (left). The region in the white box (zoomed-in, right) shows a typical region of the image, where cells

belonging to different classes are sparsely distributed.

is annotated only with the expected number of object in-

stances per class in an image. Thus, a key challenge is that

there are no bounding box annotations for any object in-

stances.

We address this challenge by developing a new proba-

bilistic generative model of an image. Conditioned on the

total number of objects, the model generates the number of

object instances for each class according to a prior model

for the class proportions. Then, for each object instance,

the model generates the object’s location as well as a con-

volutional template describing the object’s appearance. An

image is then generated as the superposition of the convo-

lutional templates associated with all object instances.

Given the model parameters, we show that the problem

of detecting, counting and classifying object instances in

new images can be formulated as an extension of the con-

volutional sparse coding problem, which can be solved in

a greedy manner, similar to [12, 8, 14]. However, unlike

the above methods, our generative model utilizes class pro-

portion priors, which greatly enhances our ability to jointly

classify multiple object instances, in addition to providing

a principled stopping criteria for determining the number of

objects for our greedy method. We also address the prob-

lem of learning the model parameters from known cell type

proportions, which we formulate as an extension of convo-

lutional dictionary learning with priors on class proportions.

We evaluate our proposed convolutional sparse coding

method with class proportion priors on LFI images of hu-

man blood samples. Our experiments for the task of es-

timating the proportions of WBCs show that our method

clearly outperforms not only standard convolutional sparse

coding but also support vector machines and convolutional

neural networks. Furthermore, we test the proposed method

on blood samples from both healthy donors and donors with

abnormal WBC concentrations due to various pathologies

which are rare events in the prior model, demonstrating that

our method is able to provide promising results across a

wide range of biological variability and for cases that are

not likely a priori under our prior model.

Paper outline. The remainder of the paper is organized

as follows. Section 2 describes the probabilistic genera-

tive model for WBC images. Section 3 discusses the in-

ference problem for detecting, counting, and classifying

cells, and Section 4 discusses the problem of learning the

model parameters. Section 5 presents experimental results

in counting and classifying WBCs and compares the pro-

posed method to standard convolutional sparse coding and

other methods. Section 6 gives the conclusions.

2. Generative Model for Cell Images

Let I be an observed image containing N WBCs, where

each cell belongs to one of C distinct classes. Cells from all

classes are described by a collection of K class templates

{dk}
K
k=1 that describe the variability of cells within each

class. Figure 1 shows a typical LFI image of human blood

diluted in a lysing solution that causes the red blood cells

to break apart, leaving predominately just WBCs and red

blood cell debris. Note that the cells are relatively spread

out in space, so we make the assumption that each cell does

not overlap with a neighboring cell and that a cell can be

well approximated by a single cell template, each one cor-

responding to a single, known class. The cell templates can

thus be used to decompose the image containing N cells

into the sum of N images, each containing a single cell.

Specifically, the image intensity at pixel (x, y) is generated

as

I(x, y) =

N
∑

i=1

αi[dki
⋆ δxi,yi

](x, y) + ǫ(x, y), (1)

where (xi, yi) denotes the location of the ith cell, δxi,yi
is

shorthand for δ(x − xi, y − yi), ⋆ is the 2D convolution

operator, ki denotes the index of the template associated

with the ith cell, the coefficient αi scales the template dki

to represent the ith cell, and the noise ǫ(x, y) ∼ N(0, σ2
I )

is assumed to be i.i.d. zero-mean Gaussian noise with stan-

dard deviation σI at each pixel (x, y). Under this model, the

probability of generating an image I , given that there are N
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cells at locations x = {xi, yi}
N
i=1 described by K templates

with indices k = {ki}
N
i=1 and strengths α = {αi}

N
i=1 is

given by the multivariate Gaussian

p(I | k,α,x, N) =

(2πσ2
I )

−
PI
2 exp

(

−
‖I −

∑N
i=1 αidki

⋆ δxi,yi
‖2F

2σ2
I

)

, (2)

where PI denotes the number of pixels in image I .

To complete the model, we need to define a prior for

the distribution of the cells in the image p(k,α,x, N). To

that end, we assume that the template indices, strengths and

locations are independent given N , i.e.,

p(k,α,x, N) = p(k | N)p(α | N)p(x | N)p(N). (3)

Therefore, to define the prior model, we simply need to de-

fine each one of the terms in the right hand side of (3). Note

that this assumption of conditional independence makes

sense when the cells are of similar scale and the illumina-

tion conditions are relatively uniform across the FOV, as is

the case for our data.

To define the prior model on template indices, we model

each template dk as corresponding to one of the C classes,

denoted as class(k). Therefore, given ki and N , the class

si of the ith cell is a deterministic function of the template

index, si = class(ki). Next, we assume that all templates

associated with one class are equally likely to describe a cell

from that class. That is, we assume that the prior distribu-

tion of the template given the class is uniform, i.e.,

p(ki | si) =
1(class(ki) = si)

tsi
, (4)

where tc is the number of templates for class c. We then

assume that the prior probability that a cell belongs to a

class is independent of the number of cells in the image,

i.e., p(si = c | N) = p(si = c). Here we denote the

probability of a cell belonging to class c as

p(si = c) = µc, (5)

where
∑C

c=1 µc = 1. Next, we assume that the classes of

each cell are independent from each other and thus the joint

probability of all cells being described by templates k and

belonging to classes s = {si}
N
i=1 can be expressed as

p(k, s | N) =

N
∏

i=1

p(ki | si)p(si)=

N
∏

i=1

µsi

tsi
1(class(ki)=si)

=

C
∏

c=1

(

µc

tc

)nc

1(class(k) = s), (6)

where nc =
∑N

i=1 1(si = c) is the number of cells in

class c. The above equation, together with the constraint

class(k) = s, completes the definition of p(k | N) as

p(k | N) =

N
∏

i=1

µclass(ki)

tclass(ki)
. (7)

To define the prior on the strengths of the cell detections,

α, we assume that they are independent and exponentially

distributed with parameter η,

p(α|N) =
1

ηN
exp

(

−
∑N

i=1 αi

η

)

, (8)

and we note that this is the maximum entropy distribution

for the detections under the assumption that the detection

parameter is positive and has mean η.

To define the prior on the distribution of the cell loca-

tions, we assume a uniform distribution in space, i.e.,

p(x | N) =

N
∏

i=1

1

PI

=
1

PN
I

. (9)

To define the prior on the number of cells in the image, we

assume a Poisson distribution with mean λ, i.e.,

p(N) = e−λλ
N

N !
. (10)

Both assumptions are adequate because the imaged cells are

diluted, in suspension and not interacting with each other.

In summary, the joint distribution of all the variables of

the proposed generative model (see Figure 2 for dependen-

cies among variables) can be written as follows:

p(I,k,α,x, N) =

p(I | k,α,x, N)p(k|N)p(α|N)p(x|N)p(N)

=
λN

eλ(2πσ2
I )

PI
2 (PIη)

N
N !

exp

(

−
∑N

i=1 αi

η

)

(11)

exp

(

−
‖I −

∑N
i=1 αidki

⋆ δxi,yi
‖2F

2σ2
I

)

N
∏

i=1

µclass(ki)

tclass(ki)
.

3. Inference for Cell Detection, Classification,

and Counting

Given an image, we need to detect, count, and classify

all the cells and then predict cell proportions. In order to do

this inference task, we maximize the log likelihood,

(k̂, α̂, x̂, N̂) = argmax
k,α,x,N

p(k,α,x, N | I)

= argmax
k,α,x,N

log p(I,k,α,x, N).
(12)
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Figure 2: Generative model dependencies for an image.

Assuming the parameters of the modeled distributions are

known, the inference problem is equivalent to

min
k,α>0,x,N

[

‖I −
∑N

i=1 αidki
⋆ δxi,yi

‖2F
2σ2

I

+
1

η

N
∑

i=1

αi

−
N
∑

i=1

log

(

µclass(ki)

tclass(ki)

)

+N log

(

ηPI

λ

)

+ log(N !)

]

.

(13)

3.1. Cell Detection and Classification

Assume for now that the number of cells N in an im-

age is known. To perform cell detection and classification,

we would like to solve the inference problem in Equation

(13) over x, k, and α. Rather than solving for all N cell

detections and classifications in one iteration, we employ a

greedy method that uses N iterations, in which each itera-

tion solves for a single cell detection and classification.

We begin by defining the residual image at iteration i as

Ri = I −

i
∑

j=1

αjdkj
⋆ δxjyj

. (14)

Initially, the residual image is equal to the input image, and

as each cell is detected, its approximation is removed from

the residual image. At each iteration, the optimization prob-

lem for x, k, and α can be expressed in terms of the residual

as

min
xi,yi,αi>0,ki

[

‖Ri−1 − dki
⋆ αiδxi,yi

‖2F +
2σ2

I

η
αi

− 2σ2
I log

(

µclass(ki)

tclass(ki)

)]

.

(15)

Given xi, yi and ki, the solution for α̂i is given by

α̂i =

Sσ2

I
η

((dki
⊙Ri−1)(xi, yi))

‖dki
‖2F

, (16)

where Sτ (α) = max{α − τ, 0} is the shrinkage threshold-

ing operator and ⊙ is the correlation operator. We can then

solve for the remaining variables in (15) by plugging in the

expressions for α̂i(xi, yi, ki) and simplifying, which leads

to

(x̂i, ŷi, k̂i) = argmax
xi,yi,ki

[

(

(dki
⊙Ri−1)(xi, yi)−

σ2

I

η

)2

‖dki
‖2F

+2σ2
I log

(

µclass(ki)

tclass(ki)

)]

.

(17)

Note that although at first glance Equation (17) appears to

be somewhat challenging to solve as it requires searching

over all object locations and templates, the problem can, in

fact, be solved very efficiently by employing a max-heap

data structure and only making local updates to the max-

heap at each iteration, as discussed in [14].

3.2. Cell Counting

Cell counting amounts to finding the optimal value for

the number of cells in the image, N , in (13). The objective

function for N , plotted in Figure 3 (left), at each iteration is

f(N) =
‖RN‖2F
2σ2

I

+
1

η

N
∑

i=1

αi −

N
∑

i=1

log

(

µclass(ki)

tclass(ki)

)

+N log

(

ηPI

λ

)

+ log(N !). (18)

Notice that in the expression for f(N), the residual’s norm

‖RN‖2F should be decreasing with each iteration as cells

are detected and removed from the residual image. Note

also that αi is positive, and µsii/tsi < 1, so assuming that

ηPI > λ (which is typically easily satisfied), all terms in

the expression for f(N) except the residual term should be

increasing with N . This suggests that we stop searching for

cells when f(N) begins to increase, i.e., f(N) > f(N−1).
The above condition can be expressed as

αN

η
−

2RN⊙dkN
αN+‖dkN

‖2

Fα2

N

2σ2

I

+log
(

ηPINtsN
λµsN

)

> 0. (19)

Moreover, if RN ⊙ dkN
≥

σ2

I

η
, it follows from (16) that

RN ⊙ dkN
= αN‖dkN

‖2F +
σ2

I

η
. Substituting this into (19)

leads to the following stopping criteria

α2
N <

2σ2
I

‖dkN
‖2F

log

(

ηPINtsN
λµsN

)

. (20)

That is, we should stop cell counting when the square

of the strength of the detection decreases below the stop-

ping condition. Notice that the stopping condition is class-

dependent, as both µc and tc will depend on which class c
is selected to describe the N th cell. Although the stopping

criteria for different classes might not fall in the same range,

the iterative process will not terminate until the detections
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Figure 3: (Left) The greedy cell counting scheme stops

at the minimum of f(N). (Right) The stopping condition

is class dependent. Only two WBC classes, lymphocytes

(lymph.) and granulocytes (gran.), are shown for ease of

visualization. The stopping condition is the right hand side

of Equation 20, and the squared coefficients are α2. Both

classes reach their stopping condition at around the same

iteration, despite having different coefficient values.

from all classes are completed. For example, notice in Fig-

ure 3 that although the coefficients for one class (shown in

orange) are larger than those for a second class (shown in

blue), both cell classes reach their respective stopping con-

ditions at around the same iteration.

The class-dependent stopping condition is a major ad-

vantage of our model, compared to standard convolutional

sparse coding. Indeed, notice that if the class proportion

prior term is eliminated from (18), then the stopping crite-

ria in (20) does not depend on the class because w.l.o.g. one

can assume that the dictionary atoms are unit norm, i.e.,

‖dk‖ = 1. As a consequence, the greedy procedure will

tend to select classes with larger cells because they reduce

the residual term ‖RN‖2F more. Our model alleviates this

problem because when µc is small, the threshold in (20) in-

creases and so our method stops selecting cells from class c.
In summary, the greedy method described by Equations

(14), (17) for detecting and classifying cells, together with

the stopping condition in Equation (20) for counting cells

give a complete method for doing inference in new images.

4. Parameter Learning

In the previous section we described the method used for

inferring the latent variables, {α,k,x, N}, of our genera-

tive convolutional model in (11) given an image I . How-

ever, before we can do inference on new images, we must

first learn the parameters {σI , {dk}
K
k=1, η, λ, {µc}

C
c=1} of

our model. In typical object detection and classification

models, this is usually accomplished by having access to

training data which provides manual annotations of many of

the latent variables (for example, object locations and object

class). However, our application is uniquely challenging in

that we do not have access to manual annotations, so in-

stead we exploit using two datasets for learning our model

parameters: 1) a complete blood count (CBC) database of

approximately 300, 000 patients of the Johns Hopkins hos-

pital system and 2) LFI images taken of cells from only

one WBC subclass obtained by experimentally purifying a

blood sample to isolate cells from a single subclass.

Population Parameters. First, to learn the model parame-

ters that correspond to the expected number of cells and the

proportions of the various subclasses we utilize the large

CBC database, which provides the total number of WBCs

as well as the proportion of each subclass of WBC (i.e.,

monocytes, granulocytes, and lymphocytes) for each of the

approximately 300, 000 patients in the dataset. From this,

we estimate λ and {µc}
C
c=1 as

λ =
1

Jcbc

Jcbc
∑

j=1

N j , µc =

∑Jcbc

j=1 n
j
c

∑Jcbc

j=1 N
j

(21)

where Jcbc ≈ 300, 000 is the number of patient records in

the dataset and (N j , nj
c) are the total number of WBCs and

number of WBCs of class c, respectively, for patient j (ap-

propriately scaled to match the volume and dilution of blood

that we image with our LFI system).

Imaging Parameters. With these population parameters

fixed, we are now left with the task of learning the remain-

ing model parameters which are specific to the LFI images

θ = {σI , {dk}
K
k=1, η}. To accomplish this task, we em-

ploy a maximum likelihood scheme using LFI images of

purified samples which contain WBCs from only one of the

subclasses. Specifically, because the samples are purified

we know that all cells in an image are from the same known

class, but we do not know the other latent variables, so to

use a maximum likelihood scheme, one needs to maximize

the log likelihood with respect to the model parameters, θ,

by marginalizing over the latent variables {α,k,x, N},

θ̂ = argmax
θ

J
∑

j=1

log p(Ij) = argmax
θ

J
∑

j=1

log(△) (22)

△ =
∑

kj ,Nj

∫∫

p(Ij ,αj ,kj ,xj , N j) dαj dxj ,

where J denotes the number of images of purified samples.

However, solving for the θ̂ parameters directly from 22

is difficult due to the integration over the latent variables

{α,k,x, N}. Instead, we use an approximate expectation

maximization (EM) algorithm to find the optimal param-

eters by alternating between updating the latent variables,

given the parameters and updating the parameters, given the

latent variables. Specifically, note that the exact EM update

step for new parameters θ, given current parameters θ̂, is

θEM =argmax
θ

J
∑

j=1

∑

kj ,Nj

∫∫

[

p
θ̂
(αj ,kj ,xj , N j |Ij)

log
(

pθ(I
j ,xj , N j ,αj ,kj)

)]

dαj dxj , (23)
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which can be simplified by approximating with a delta func-

tion p
θ̂
(α,k,x, N |I) = δ(α − α̂,k − k̂,x − x̂, N − N̂),

as in [7], where

(α̂,k̂, x̂, N̂)=argmax
α,k,x,N

p
θ̂
(α,k,x, N |I). (24)

The above assumption leads to the approximation

θ̂approx = argmax
θ

J
∑

j=1

log pθ(I
j , α̂j , k̂j , x̂j , N̂ j). (25)

Using this approximate EM framework, we then alternate

between updating the latent variables given the old parame-

ters and updating the parameters, given the latent variables:

(α̂j ,k̂j , x̂j , N̂ j) =

argmin
α

j>0,kj ,xj ,Nj

[‖Ij −
∑Nj

i=1 d̂kj
i
⋆ αj

i δxj
i
,y

j
i
‖2F

2σ̂I
2

+

∑Nj

i=1 α
j
i

η̂
+N j log

(

ηPI

λ

)

+ log(N j !)

]

(26)

subject to class(kji ) = sj ∀(i, j)

and

max
θ

J
∑

j=1

[

−
‖Ij −

∑Nj

i=1 α̂
j
idk̂j

i
⋆ δ

x̂
j
i
,ŷ

j
i
‖2F

2σ2
I

−

∑Nj

i=1 α̂
j
i

η

−
PI

2
log
(

2πσ2
I

)

−N j log (PIη)

]

. (27)

Note that the latent variable inference in (26) is equivalent

to the inference described in Section 3 except that because

we are using purified samples we know the class of all cells

in the image, sj , so the prior p(k|N) is replaced by the

constraint on the template classes.

Unfortunately, the optimization problem in Equation 27

that was obtained via approximation is not well defined,

since the objective goes to infinity when η → 0 and α̂ → 0
with the norm of the templates, {dk}

K
k=1, going to ∞. To

address these issues, we fix the signal to noise ratio (SNR)

of η

σ2

I

to a constant and constrain the ℓ1 norms of the tem-

plates to be equal to enforce that the mean value of a pixel

for any cell is the same regardless of the class type1. Subject

to these constraints, we solve (27) for η and the templates

by

η =

∑J
j=1

∑Nj

i=1 α̂
j
i

∑J
j=1 N̂

j
, dl =

∑

(i,j)∈W zji
∑

(i,j)∈W α̂j
i

, (28)

1Our images are non-negative, so with our template update scheme the

templates are also always non-negative. As a result the ℓ1 norm is propor-

tional to the mean pixel value of the template.
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Figure 4: (Top) Learned templates of WBCs. Each template

belongs to either the granulocyte (top left), lymphocyte (top

middle), or monocyte (top right) class of WBCs. (Bottom)

Statistical training data obtained from the CBC dataset. The

overlaid histograms of class proportions (bottom left) show

that most patients have many more granulocytes than mono-

cytes or lymphocytes. Notice that the histogram of concen-

trations of WBCs (bottom right) has a long tail.

where W = {(i, j) : k̂ji = l} and zji is a patch with the

same size as the templates, extracted from Ij centered at

(x̂j
i , ŷ

j
i ). The templates are then normalized to have unit

ℓ1 norm and σI is set based on the fixed signal-to-noise ra-

tio, σ2
I = η

SNR
, where the SNR is estimated as the ratio

of ℓ2 norms between background patches of the image and

patches containing cells. Note that because all of the dictio-

nary updates decouple by training image and each training

image contains only one cell class, our procedure is equiv-

alent to learning a separate dictionary for each cell class

independently.

5. Results

The proposed cell detection, counting and classification

method was tested on reconstructed holographic images of

lysed blood, which contain three sub-populations of WBCs

(granulocytes, lymphocytes and monocytes) as well as lysed

red blood cell debris, such as the image shown in Figure

1. The recorded holograms were reconstructed into images

using the sparse phase retrieval method [5], and the absolute

value of the complex reconstructed image was used for both

training and testing.

5.1. Training Results

Using the purified cell images, we learned the templates

shown in Figure 4. Notice that the lymphocyte templates

are smaller than the granulocyte and monocyte templates,

consistent with what is known about WBCs. The templates

have low resolution due to the low resolution, large field

of view images obtained with lens-free imaging. To learn
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the prior class proportions and the mean number of cells

per image, we utilize the database of CBC results. Figure 4

shows histograms of the class proportions of granulocytes,

lymphocytes, and monocytes, in addition to a histogram of

the total WBC concentrations, from the CBC database.

5.2. Detection, Counting, and Classification Results

Cell detection, counting, and classification with the pro-

posed method was tested on a dataset consisting of lysed

blood for 32 donors. The blood comes from both healthy

volunteer donors and clinical discards from hospital pa-

tients. The clinical discards were selected for having ab-

normal granulocyte counts, which often coincides with ab-

normal lymphocyte, monocyte, and WBC counts as well

due to various pathologies. We were therefore able to test

our method on both samples that are well described by the

mean of the probability distribution of class proportions as

well as samples that lie on the tail of the distribution.

Our proposed method shows promising results. Figure

5 (left) shows a small region of an image overlaid with de-

tections and classifications predicted by our method. Be-

cause we lack ground truth detections and classifications

for individual cells in our testing data, we turn to count-

ing and classification results for cell populations to eval-

uate our method’s performance. Each donor’s blood was

divided into two parts– one part was imaged with a lens-

free imager to produce at least 20 images, and the other

portion of blood was sent for analysis in a standard hema-

tology analyzer. The hematology analyzer provided ground

truth concentrations of WBCs and ground truth cell class

proportions of granulocytes, lymphocytes, and monocytes

for each donor. By estimating the volume of blood being

imaged and the blood’s dilution in lysis buffer, we extrapo-

lated ground truth WBC counts per image from the known

concentrations.

A comparison of the cell counts obtained by our pro-

posed method and the extrapolated counts obtained from

the hematology analyzer is shown in Figure 5 (right). Note

that all of the normal blood donors have under 1000 WBCs

per image, while the abnormal donors span a much wider

range of WBC counts. Observe there is a clear correlation

between the counts from the hematology analyzer and the

counts predicted by our method. Also note that errors in es-

timating the volume of blood being imaged and the dilution

of blood in lysis buffer could lead to errors in the extrapo-

lated cell counts.

Figure 6 (right) shows a comparison between the class

proportion predictions obtained from our method and the

ground truth proportions for both normal and abnormal

blood donors. As before, we do not have ground truth for in-

dividual cells, but for the entire blood sample. Notice once

again that the abnormal donors span a much wider range of

possible values than do the normal donors. For example,
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Figure 5: (Left) A a zoomed in region of one image, over-

laid with detections and classifications produced by our pro-

posed method. (Right) Results of cell counting. Cell counts

estimated by various methods are compared to results ex-

trapolated from a hematology analyzer. The methods shown

are thresholding (cyan), CSC without priors (black) and our

method (magenta). Results are shown for 20 normal blood

donors (x) and 12 abnormal clinical discards (o).

normal donors contain at least 15% lymphocytes, but ab-

normal donors contain as few as 2% lymphocytes. Despite

abnormal donors having WBC differentials widely varying

from the distribution mean learned by our model, we are

still able to predict their differentials with promising accu-

racy. Finally, note that WBC morphology can vary from

donor to donor, especially among clinical discards. Having

access to more purified training data from a wider range of

donors would likely improve our ability to classify WBCs.

5.3. Comparison with other methods

To quantify our method, we compare the counting and

classification ability of our method to standard convolu-

tional sparse coding (CSC) without priors as described in

[14], as well as to support vector machine (SVM), and con-

volutional neural networks (CNN) classifiers. The SVM

and CNN algorithms operate on extracted image patches of

detected cells, where the cells were detected via threshold-

ing, filtering detections by size (i.e., discarding objects that

were smaller or larger than typical cells).

Figure 5 shows the counting results and Figure 6 shows

the classification results obtained by the various methods.

Templates used for CSC without priors are trained from pu-

rified WBC populations, and the class assigned to each de-

tected cell corresponds to the class of the template that best

describes that cell. In terms of total WBC counts, standard

CSC performs similarly to our proposed method. This is

not surprising, as both methods iteratively detect cells until

the coefficient of detection falls beneath a threshold. How-

ever, an important distinction is that with standard CSC this

threshold is selected via a cross validation step, while in

the proposed method the stopping threshold is provided in

closed form via (20). Likewise, simple thresholding also

achieves very similar but slightly less accurate counts com-

pared to the convolutional encoding methods.
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Figure 6: The percentages of granulocytes (red), lymphocytes (blue), and monocytes (green) predicted by various methods

are compared to results from a hematology analyzer. The methods, from left to right, are: SVM on patches extracted from

images via thresholding, CSC without statistical priors, CNN on patches extracted from images via thresholding, and our

method. Results are shown for 20 normal blood donors (x) and 12 abnormal clinical discards (o).

Although in simply counting the number of WBCs per

image, the various methods all perform similarly, a wide di-

vergence in performance is observed in how the methods

classify cell types as can be seen in the classification results

in Table 1. CSC without a statistical model for the class pro-

portions is unable to reliably predict the proportions of gran-

ulocytes, lymphocytes, and monocytes in an image, while

our proposed method does a much better job. For only nor-

mal donors, the proposed method is able to classify all cell

populations with absolute mean error under 5%, while stan-

dard CSC mean errors are as large as 31% for granulocytes.

For the entire dataset, which contains both normal and ab-

normal blood data, the proposed method achieves on av-

erage less than 7% absolute error, while the standard CSC

method results in up to 30% average absolute error.

In addition to standard CSC, we also used the cell detec-

tions from thresholding to extract cell patches centered at

the detections and then classified the extracted cell patches

using both a support vector machine (SVM) and a con-

volutional neural network (CNN). The SVM performed a

one-versus-all classification with a Gaussian kernel using

cell patches extracted from the images taken from purified

samples to train the SVM. Additionally, we implemented

a CNN similar to that described in [3]. Specifically, we

kept the overall architecture but reduced the filter and max-

pooling sizes to account for our smaller input patches, re-

sulting in a network with 3 convolutional layers fed into 2

fully-connected layers with a max-pooling layer between

the second and third convolutional layer. Each convolu-

tional layer used ReLU non-linearities and a 3x3 kernel size

with 6, 16, and 120 filters in each layer, respectively. The

max-pooling layer had a pooling size of 3x3, and the in-

termediate fully-connected layer had 84 hidden units. The

network was trained via stochastic gradient descent using

the cross-entropy loss on 93 purified cell images from a sin-

gle donor. Note that the CNN requires much more training

data than our method, which requires only a few training

images.

Both the SVM and CNN classifiers perform considerably

worse than our proposed method, with the SVM producing

errors up to 32%. The CNN achieves slightly better perfor-

mance than the SVM and standard CSC methods, but errors

still reach up to 29%.

Mean Absolute Error Ours CSC SVM CNN

Granulocytes - normal 4.5 31.1 31.6 27.8

Lymphocytes - normal 4.6 9.5 11.1 12.8

Monocytes - normal 4.7 21.9 20.4 15.9

Granulocytes - all 6.8 30.1 31.8 28.6

Lymphocytes - all 5.6 8.3 10.1 11.6

Monocytes - all 5.5 22.3 22.8 18.9

Table 1: Mean absolute error between ground truth and pre-

dicted results for classification are shown for only normal

donors and for all donors. Classification results for the three

WBC classes are shown for our proposed method, CSC,

SVM, and CNN. Note results are for population propor-

tions.

6. Conclusion

We have proposed a generative model for images of pop-

ulations of WBC together with an algorithm for detection,

counting and classification of WBCs based on a convo-

lutional sparse coding method that incorporates statistical

population priors. Our method has been tested on and pro-

duced promising results on WBC images from both normal

donors and clinical discards.
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