
BLOOD CELL DETECTION AND COUNTING IN HOLOGRAPHIC LENS-FREE IMAGING
BY CONVOLUTIONAL SPARSE DICTIONARY LEARNING AND CODING

Florence Yellin, Benjamin D. Haeffele, and René Vidal
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ABSTRACT

We propose a convolutional sparse dictionary learning and
coding approach for detecting and counting instances of a
repeated object in a holographic lens-free image. The pro-
posed approach exploits the fact that an image containing a
single object instance can be approximated as the convolu-
tion of a (small) object template with a spike at the location
of the object instance. Therefore, an image containing mul-
tiple non-overlapping instances of an object can be approx-
imated as the sum of convolutions of templates with spikes.
Given one or more images, one can learn a dictionary of tem-
plates using a convolutional extension of the K-SVD algo-
rithm for sparse dictionary learning. Given a set of templates,
one can efficiently detect object instances in a new image us-
ing a convolutional extension of the matching pursuit algo-
rithm for sparse coding. Experiments on red blood cell (RBC)
and white blood cell (WBC) detection and counting demon-
strate that the proposed method produces promising results
without requiring additional post-processing.

Index Terms— Holography, lens-free imaging, convolu-
tional dictionary learning and coding, blood cell counting

1. INTRODUCTION

Lens-free imaging (LFI) is emerging as a promising tech-
nology for biological applications due to its minimal hard-
ware requirements and large field of view compared to con-
ventional microscopy [1]. One such application is high-
throughput cell detection and counting in an ultra-wide field
of view [2]. However, detecting objects in a lens-free image
is particularly challenging, because standard holographic re-
construction algorithms, such as forward propagation of the
hologram using the wide-angular spectrum (WAS) approxi-
mation [3], produce significant artifacts, commonly referred
to as twin-image artifacts (see Fig. 1 for an example). Conse-
quently, simple object detection methods such as thresholding
can fail, because reconstruction artifacts may appear as dark
as the object being imaged, producing many false positives.

Template matching (TM) is a classical algorithm for de-
tecting objects in images by finding correlations between an
image and one or more pre-defined object templates (see Fig.
1, top). TM is typically more robust to reconstruction artifacts
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Fig. 1: Three methods for detecting cells in an LFI image obtained
via standard holographic reconstruction, which is plagued by recon-
struction artifacts: TM (top), SC (middle), and CSC (bottom).

which do not resemble the templates. However, TM requires
the user to pre-specify the object templates: usually templates
are patches that must be extracted by hand from an image, and
the number of templates can be large if one must capture large
variability among object instances. Furthermore, TM requires
post-processing via non-maximal suppression and threshold-
ing, which are sensitive to several parameters.

Sparse dictionary learning is an unsupervised method for
learning templates of typical image patches, and sparse cod-
ing (SC) expresses each image patch in terms of these tem-
plates (see Fig. 1, middle). This method has been recently
applied to cell detection and counting in LFI with great results
[4]. However, SC can be computationally demanding as it re-
quires a highly redundant number templates to accommodate
the fact that an object need not be centered within a patch.
Moreover, SC requires every image patch to be coded even
though objects might only appear in a handful of patches. Fur-
thermore, SC must be used in conjunction with other object
detection methods, like thresholding.

In this paper we propose a convolutional sparse dictionary
learning and coding approach to object detection and count-
ing in LFI. Our approach exploits the fact that an image with



multiple object instances can be written as the sum of a few
images, each formed by convolving an object template with a
sparse location map (see Fig. 1, bottom). Since an image con-
tains a small number of instances relative to the total number
of pixels, object detection can be done efficiently using con-
volutional sparse coding (CSC), a greedy approach that ex-
tends the matching pursuit algorithm to convolutional coding.
Moreover, the collection of templates can be learned automat-
ically using convolutional sparse dictionary learning (CSDL),
a generalization of K-SVD to the convolutional case.

The proposed approach overcomes many of the limita-
tions of other object detection methods while retaining their
strengths. Similar to TM, CSC is not fooled by reconstruc-
tion artifacts. However, unlike TM, CSC does not use image
patches of predefined example objects as templates; instead
it learns the templates directly from the data. Another advan-
tage over both TM and SC is that CSC is a stand-alone method
for object detection that does not depend on post-processing
steps because the coding step directly locates objects. More-
over, if the number of objects in the image is known a-priori,
CSC is entirely parameter free, and if the number of objects
is unknown, there is a single parameter to be tuned. In addi-
tion, CSC does not suffer from the inefficiencies of SC, whose
complexity scales with the number of patches and the number
of highly redundant templates. In contrast, the runtime of
CSC scales with the number of objects in the image and the
number of templates needed to describe only centered objects.
Existing convolutional methods [5, 6, 7, 8] are computation-
ally intensive and not well-suited to detecting sparse objects
in large field of view images. Greedy methods for convolu-
tional coding [9, 10] are not fully developed and have not been
designed for LFI applications. These advantages make CSC
ideal for cell detection and counting in LFI, particularly when
the cells are sparse.

2. METHODS

2.1. Problem Formulation

Let I : Ω → R+, Ω ⊂ R2 be an observed image obtained
using, e.g., forward propagation of a hologram using the
WAS approximation [3]. Specifically, if H is the recorded
hologram, the image I is reconstructed as I = |T (z) ? H|
where ? is the 2D convolution operator and T (z) is the wide-
angular spectrum transfer function at a focal depth z. Assume
that the image contains N instances of an object at locations
{(xi, yi)}Ni=1. Both the number of instances and their loca-
tions are assumed to be unknown. Suppose also that we have
K object templates {dk : ω → R+}Kk=1, ω ⊂ Ω, that capture
the variations in shape of the object across multiple instances.
Let Ii be an image that contains only the ith instance of the
object at location (xi, yi) and let ki be the template that best
approximates the ith instance. We then have

Ii(x, y)≈dki(x−xi, y−yi)=dki(x, y)?δ(x−xi, y−yi), (1)

We can decompose I as I ≈
∑N
i=1 Ii, so that

I(x, y) ≈
N∑
i=1

αidki(x, y) ? δ(x− xi, y − yi), (2)

where the variable αi ∈ {0, 1} is such that αi = 1 if the ith

instance is present and αi = 0 otherwise, and is introduced to
account for the possibility that there are fewer object instances
in I when N is an upper bound for the number of objects. In
practice, we can relax the constraint on αi to αi ≥ 0 so that
the magnitude of αi measures the strength of the detection.
Observe that the same template can be chosen by multiple
object instances, so that good approximations can be obtained
with K � N . Fig. 1 provides a pictorial description of (2).

2.2. Cell Detection by Convolutional Sparse Coding

Assume for the time being that the templates {dk}Kk=1 are
known. Given an image I , our goal is to find the number
of object instances N (object counting) and their locations
{(xi, yi)}Ni=1 (object detection). As a byproduct we also need
to estimate which template ki best approximates the ith in-
stance. We can formulate this problem as

min
{αi,ki,xi,yi}

‖I −
N∑
i=1

αidki ? δxi,yi‖2`2 (3)

where δxi,yi is a shorthand notation for δ(·−xi, ·−yi). Since
solving (3) for all N objects in the image in one step is very
difficult, we use a greedy method to detect objects one at a
time (N steps are needed). This approach is an application
of matching pursuit for sparse coding [11] to a convolutional
objective. At step j, let Rj = I −

∑j
i=1 αidki ? δxi,yi be the

part of the input image that has not yet been coded, called the
residual image. Initially, none of the image has been coded
so R0 = I . After all N objects have been coded, RN will
contain background noise but no objects. The basic object
detection step that is used to locate the ith object can be for-
mulated as

min
αi,ki,xi,yi

‖Ri−1 − αiδxi,yi ? dki‖2`2 . (4)

For a fixed αi, it can be shown that the minimization problem
in (4) is equivalent to the maximization problem

max
ki,xi,yi

〈Ri−1 � dki , δxi,yi〉, (5)

where � denotes correlation and 〈·, ·〉 denotes the inner prod-
uct. Notice that the solution to problem (5) is to compute
the correlation of Ri−1 with all templates dk and select the
template and the location that give the maximum correlation
(similar to TM). Given the optimal ki, xi, yi, solving for αi
in (4) is a simple quadratic problem, whose solution can be
computed in closed form. These observations lead to the CSC
method in Algorithm 1.



Algorithm 1 (Convolutional Sparse Coding)
1: procedure CSC(I,D)
2: Choose threshold T
3: Initialize R0 = I , α̂0 =∞, and i = 0
4: Compute correlation matrix Q0 = R0 � [d1, ..., dK ]
5: while α̂i > T do . Termination criteria
6: (xi+1, yi+1, ki+1)← arg maxx,y,z Qi . Detect 1 object
7: αi+1 ← maxQi

8: α̂i+1 ← αi+1/α1

9: Ri+1 ← Ri − αi+1dki+1 ? δxi+1,yi+1 . Update residual
10: Qi+1 ← Ri+1 � [d1, ..., dK ] . Update correlations
11: i← i+ 1

Efficient Implementation of CSC. To obtain an efficient im-
plementation of Algorithm 1, let the size of each of the K
templates be m2 and the size of the image be M2, where we
have m � M . Initially, we need to perform K large convo-
lutions of size [m2]? [M2]. However, during each subsequent
iteration i, only a small (m2) patch of Ri, centered at (xi, yi),
must be updated. Consequently, onlyK(2m−1)2 elements of
Qi must be updated during each iteration, which can be done
quickly. Further efficiency is gained by noticing that one can
use a max-heap implementation to store the large (KM2) ma-
trix Q. The max(Q) operation that is performed during each
iteration isO

(
KM2

)
whenQ is stored as a matrix but is only

O (1) when Q is stored as a max-heap. The computational
gain of using a max-heap to store Q (eliminating N opera-
tions, each O

(
KM2

)
) far outweighs the computational cost

of maintaining the heap’s structure whenever Q is updated
(adding NK(2m− 1)2 operations, each O

(
log (KM2)

)
).

Termination Criteria. Because one object is located at each
iteration of the CSC algorithm, the key to accurate counting is
to terminate the algorithm at the right time. The sparse coeffi-
cients {αi} decrease with i as the chosen objects in the image
decreasingly resemble the templates. The algorithm is termi-
nated when α̂N = αN/α1 ≤ T , where T is a threshold cho-
sen by cross validation. This termination criteria allows CSC
to be used to code N objects when N is not known a priori.

2.3. Template Training with Convolutional Sparse Dictio-
nary Learning

Consider now the problem of learning the templates {dk}Kk=1.
The CSDL method minimizes the objective in (3), but
now also with respect to {dk}Kk=1 subject to the constraint
‖dk‖2 = 1. In general this would require solving a non-
convex optimization problem, so here we employ a greedy
approximation that uses a convolutional version of the K-
SVD algorithm [12], which alternates between CSC and
updating the dictionary. During the coding update step, the
dictionary is fixed, and the sparse coefficients and object
locations are updated using the CSC algorithm. During the
dictionary update step, the sparse coefficients and object lo-
cations are fixed, and the object templates are updated one at

Algorithm 2 (Convolutional Sparse Dictionary Learning)
1: procedure CSDL(I)
2: Choose numbers of iterations J and templates K
3: Initialize D0 with random, normalized patches of I
4: for j = 0 : (J − 1) do
5: {xj+1

i , yj+1
i , kj+1

i , αj+1
i }Ni=1 ← CSC(I,Dj) . Do CSC

6: for p = 1 : K do . Update each template
7: ∆p ← {i : kj+1

i = p}, n = ‖∆p‖0
8: if n > 1 then . n is number patches coded with dp
9: Ep ← I −

∑
i/∈∆p

αj+1
i dj

k
j+1
i

? δ
x
j+1
i ,y

j+1
i

10: {el}nl=1 ← Ep patches around {(xj+1
i , yj+1

i )}i∈∆p

11:
(
dj+1
p , {αj+1

i }
)
← SVD([e1(:), ..., en(:)])

12: else
13: dj+1

p ← max reconstruction error patch, normalized

a time. Specifically, the template dp is updated as

min
dp
‖Ep −

∑
i∈∆p

αiδxi,yi ? dp‖2`2 , (6)

whereEp = I−
∑
i/∈∆p

αidki?δxi,yi is a residual image asso-
ciated with the template dp and ∆p = {i : ki = p}. Since dp
affects only patches fromEp of the same size as the templates
and centered at {(xi, yi)}i∈∆p

, we can reduce problem (6) to
the standard patch-based dictionary update problem, which
is solved using the singular value decomposition [12]. This
leads to the method described in Algorithm 2. Once a dictio-
nary has been learned from training images, it can be used for
object detection and counting via CSC in new test images.

3. RESULTS

The proposed CSDL and CSC methods were applied to the
problem of detecting and counting RBCs and WBCs in holo-
graphic lens-free images reconstructed using a single, for-
ward propagation of the hologram via WAS approximation
[3]. Two different lens-free imaging setups were used to im-
age anti-coagulated human blood samples from five different
healthy donors each (ten donors in total). From each donor
and each imaging setup, two types of blood samples were im-
aged: (1) diluted (300:1) whole blood, which contained pri-
marily RBCs (in addition to a smaller number of platelets and
even fewer WBCs); and (2) diluted (5:1) lysed whole blood,
containing primarily WBCs and lysed RBC debris. WBCs
were more difficult to detect due to the lysed RBC debris. All
blood cells were imaged in suspension while flowing through
a micro-fluidic channel. Hematology analyzers were used to
obtain “ground truth” RBC and WBC concentrations from
each of the ten donors. Using the known dimensions of the
micro-fluidic channel and the known dilution ratio, we were
able to convert between cell counts and concentrations.

CSDL was used to learn four dictionaries, each learned
from a single image: A dictionary was learned for each imag-
ing setup (I1 and I2) and each blood sample type (RBC and



Table 1: This table shows percents error of cell counts obtained us-
ing CSDL and CSC, compared to extrapolated cell counts from a
hematology analyzer. Data came from ten donors; two LFI setups
(I1, I2) were used; and both RBC and WBC samples were imaged.

Donor # I1-RBC I2-RBC I1-WBC I2-WBC
1 -1.8% – -10.6% –
2 -6.3% – -3.3% –
3 -4.6% – -43.0% –
4 2.7% – -28.4% –
5 10.6% – -36.2% –
6 – -9.2% – -8.1%
7 – 10.1% – -24.6%
8 – 0.7% – 11.4%
9 – 8.7% – 12.1%

10 – 4.4% – -5.3%
Mean |%Error| 5.2% 6.7% 24.3% 12.3%

WBC). Ten iterations of the CSDL algorithm were used to
learn six RBC templates and seven WBC templates. The RBC
and WBC templates were 7x7 and 9x9 pixels, respectively
(WBCs are typically larger than RBCs). CSC was then ap-
plied to all data sets, approximately 2700 images in all (about
240, 50, 200, and 50 images per donor from datasets I1-RBC,
I2-RBC, I1-WBC, and I2-WBC, respectively). Table 1 shows
the error rate of the mean cell counts compared to cell counts
extrapolated from a hematology analyzer.

Finally, the results obtained using CSC are compared to
results obtained from SC, TM, and thresholding in Fig. 2.
Notice the tradeoff between image reconstruction time and re-
construction quality when using SC. Notice also that the run-
time of CSC is dependent on the number of cells and the num-
ber of templates required to describe the variation expected
among cells (more variation means more templates are re-
quired). Typical RBC images contain about 2500 cells, while
WBC images only contain around 250 cells. In the case of
the sparse WBCs, CSC is both more accurate and faster than
SC; in the case of the denser RBCs, CSC is slower but some-
times more accurate than SC. CSC performs worse than TM
for WBC images but better for RBC images; this could be due
to TM’s sensitivity to several post-processing parameters as
well as the pre-processing step of selecting by hand example
cells to use as templates. In contrast, CSC is reliant on only
a single parameter and requires no pre- or post-processing
steps. Lastly, CSC outperforms thresholding, which cannot
distinguish between image reconstruction artifacts and cells.

4. CONCLUSIONS

We presented a method based on convolutional sparse dictio-
nary learning and coding for detecting and counting objects
in reconstructed holographic lens-free images. We demon-
strated the advantages of our approach in counting red and
white blood cells. However, our method should be applicable
to holographic images of any objects with similar appearance.
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Fig. 2: There is a tradeoff between reconstruction accuracy and run-
time inherent in the patch-based SC. In contrast, the runtime of CSC
scales with the number of cells in the image (top). The counting error
rates for thresholding, TM, SC, and CSC are compared (bottom).
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