
Oracle Based Active Set Algorithm for Scalable Elastic Net Subspace Clustering

Chong You† Chun-Guang Li∗ Daniel P. Robinson‡ René Vidal†
†Center for Imaging Science, Johns Hopkins University

∗SICE, Beijing University of Posts and Telecommunications
‡Applied Mathematics and Statistics, Johns Hopkins University

Abstract

State-of-the-art subspace clustering methods are based
on expressing each data point as a linear combination of
other data points while regularizing the matrix of coeffi-
cients with `1, `2 or nuclear norms. `1 regularization is
guaranteed to give a subspace-preserving affinity (i.e., there
are no connections between points from different subspaces)
under broad theoretical conditions, but the clusters may not
be connected. `2 and nuclear norm regularization often im-
prove connectivity, but give a subspace-preserving affinity
only for independent subspaces. Mixed `1, `2 and nuclear
norm regularizations offer a balance between the subspace-
preserving and connectedness properties, but this comes at
the cost of increased computational complexity. This paper
studies the geometry of the elastic net regularizer (a mix-
ture of the `1 and `2 norms) and uses it to derive a provably
correct and scalable active set method for finding the op-
timal coefficients. Our geometric analysis also provides a
theoretical justification and a geometric interpretation for
the balance between the connectedness (due to `2 regular-
ization) and subspace-preserving (due to `1 regularization)
properties for elastic net subspace clustering. Our exper-
iments show that the proposed active set method not only
achieves state-of-the-art clustering performance, but also
efficiently handles large-scale datasets.

1. Introduction

In many computer vision applications, including image
representation and compression [19], motion segmentation
[6, 41, 34], temporal video segmentation [39], and face clus-
tering [18], high-dimensional datasets can be well approx-
imated by a union of low-dimensional subspaces. In this
case, the problem of clustering a high-dimensional dataset
into multiple classes or categories reduces to the problem of
assigning each data point to its own subspace and recover-
ing the underlying low-dimensional structure of the data, a
problem known in the literature as subspace clustering [37].

Prior Work. Over the past decade, the subspace clustering

problem has received a lot of attention in the literature and
many methods have been developed. Among them, spectral
clustering based methods have become extremely popular
[4, 48, 9, 10, 26, 25, 13, 38, 28, 7, 17, 32, 23, 36] (see [37]
for details). These methods usually divide the problem into
two steps: a) learning an affinity matrix that characterizes
whether two points are likely to lie in the same subspace,
and b) applying spectral clustering to this affinity. Arguably,
the first step is the most important, as the success of spectral
clustering depends on having an appropriate affinity matrix.

State-of-the-art methods for constructing the affinity ma-
trix are based on the self-expressiveness model [9]. Under
this model, each data point xj is expressed as a linear com-
bination of all other data points, i.e., xj =

∑
i6=j xicij+ej ,

where the coefficient cij is used to define an affinity be-
tween points i and j, and the vector ej captures deviations
from the self-expressive model. The coefficients are typi-
cally found by solving an optimization problem of the form

min
cj ,ej

r(cj) + γ · h(ej) s.t. xj = Xcj + ej , cjj = 0, (1)

where X = [x1, · · · ,xN] is the data matrix, cj =
[c1j , . . . , cNj]

> is the vector of coefficients, r(·) is a prop-
erly chosen regularizer on the coefficients, h(·) is a properly
chosen regularizer on the noise or corruption, and γ > 0 is
a parameter that balances these two regularizers.

The main difference among state-of-the-art methods lies
in the choice of the regularizer r(·). The sparse subspace
clustering (SSC) method [9] searches for a sparse represen-
tation using r(·) = ‖ · ‖1. While under broad theoretical
conditions (see [10, 35, 47]) the representation produced by
SSC is guaranteed to be subspace preserving (i.e., cij 6= 0
only if xi and xj are in the same subspace), the affinity
matrix may lack connectedness [29] (i.e., data points from
the same subspace may not form a connected component of
the affinity graph due to the sparseness of the connections,
which may cause over-segmentation). Other recently pro-
posed sparsity based methods, such as orthogonal matching
pursuit (OMP) [7, 46] and nearest subspace neighbor (NSN)
[32], also suffer from the same connectivity issue.

As an alternative, the least squares regression (LSR)

method [28] uses the regularizer r(·) = 1
2‖ · ‖

2
2. One ben-

efit of LSR is that the representation matrix is generally
dense, which alleviates the connectivity issue of sparsity
based methods. However, the representation is known to
be subspace preserving only when the subspaces are inde-
pendent,1 which significantly limits its applicability. Nu-
clear norm regularization based methods, such as low rank
representation (LRR) [26] and low rank subspace clustering
(LRSC) [13, 38], also suffer from the same limitation [44].

To bridge the gap between the subspace preserving and
connectedness properties, [44, 31, 12] propose to use mixed
norms. For example, the low rank sparse subspace clus-
tering (LRSSC) method [44], which uses a mixed `1 and
nuclear norm regularizer, is shown to give a subspace pre-
serving representation under conditions which are similar
to but stronger than those of SSC. However, the justifica-
tion for the improvements in connectivity given by LRSSC
is merely experimental. Likewise, [31, 12] propose to use a
mixed `1 and `2 norm given by

r(c) = λ‖c‖1 +
1− λ

2
‖c‖22, (2)

where λ ∈ [0, 1] controls the trade-off between the two reg-
ularizers. However, [31, 12] do not provide a theoretical
justification for the benefits of the method. Other subspace
clustering regularizers studied in [27] and [21] use the trace
lasso [15] and the k-support norm [1], respectively. How-
ever, no theoretical justification is provided in [27, 21] for
the benefit of their methods.

Another issue with the aforementioned methods [44, 31,
12, 27, 21] is that they do not provide efficient algorithms
to deal with large-scale datasets. To address this issue, [5]
proposes to find the representation of X by a few anchor
points that are sampled from X and then perform spectral
clustering on the anchor graph. In [33] the authors propose
to cluster a small subset of the original data and then classify
the rest of the data based on the learned groups. However,
both of these strategies are suboptimal in that they sacrifice
clustering accuracy for computational efficiency.
Paper Contributions. In this paper, we exploit a mixture
of `1 and `2 norms to balance the subspace preserving and
connectedness properties. Specifically, we use r(·) as in (2)
and h(e) = 1

2‖e‖
2
2. The method is thus a combination of

SSC and LSR and reduces to each of them when λ = 1
and λ = 0, respectively. In the statistics literature, the opti-
mization program using this regularization is called Elastic
Net and is used for variable selection in regression prob-
lems [49]. Thus we refer to this method as the Elastic Net
Subspace Clustering (EnSC).

This work makes the following contributions:

1. We propose an efficient and provably correct active-
set based algorithm for solving the elastic net prob-

1Subspaces {Sκ} are independent if dim(
∑
κ Sκ) =

∑
κ dim(Sκ).

lem. The proposed algorithm exploits the fact that the
nonzero entries of the elastic net solution fall into an
oracle region, which we use to define and efficiently
update an active set. The proposed update rule leads
to an iterative algorithm which is shown to converge to
the optimal solution in a finite number of iterations.

2. We provide theoretical conditions under which the
affinity generated by EnSC is subspace preserving, as
well as a clear geometric interpretation for the balance
between the subspace-preserving and connectedness
properties. Our conditions depend on a local character-
ization of the distribution of the data, which improves
over prior global characterizations.

3. We present experiments on computer vision datasets
that demonstrate the superiority of our method in terms
of both clustering accuracy and scalability.

2. Elastic Net: Geometry and a New Algorithm
In this section, we study the elastic net optimization

problem, and present a new active-set based optimization
algorithm for solving it. Consider the objective function

f(c; b, A) := λ‖c‖1 +
1− λ

2
‖c‖22 +

γ

2
‖b−Ac‖22, (3)

where b ∈ IRD, A = [a1, · · · ,aN] ∈ IRD×N , γ > 0, and
λ ∈ [0, 1) (the reader is referred to [45] for a study of the
case λ = 1). Without loss of generality, we assume that b
and {aj}Nj=1 are normalized to be of unit `2 norm in our
analysis. The elastic net model then computes

c∗(b, A) := arg min
c

f(c; b, A). (4)

We note that c∗(b, A) is unique since f(c; b, A) is a
strongly convex function; we use the notation c∗ in place
of c∗(b, A) when the meaning is clear.

In the next two sections, we present a geometric analysis
of the elastic net solution, and use this analysis to design an
active-set algorithm for efficiently solving (4).

2.1. Geometric structure of the elastic net solution

We first introduce the concept of an oracle point.

Definition 2.1 (Oracle Point). The oracle point associated
with the optimization problem (4) is defined to be

δ(b, A) := γ ·
(
b−Ac∗(b, A)

)
. (5)

When there is no risk of confusion, we omit the dependency
of the oracle point on b and A and write δ(b, A) as δ.

Notice that the oracle point is unique since c∗ is unique,
and that the oracle point cannot be computed until the op-
timal solution c∗ has been computed. The next result gives
a critical relationship involving the oracle point that is ex-
ploited by our active-set method (see [45] for the proof).

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

(a) λ = 1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−0.2

−0.1

0

0.1

0.2

(b) λ = 0.9

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−0.05

0

0.05

(c) λ = 0.3

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−0.02

−0.01

0

0.01

0.02

(d) λ = 0

Figure 1. Illustration of the structure of the solution c∗ for a data matrix A containing 100 randomly generated points in IR2, which are
shown as blue dots in the x-y plane. The z direction shows the magnitude for each coefficient c∗j . The red dot represents the oracle point
δ(b, A), with its direction denoted by the red dashed line. The value for γ is fixed at 50, but the value for λ varies as depicted.

Theorem 2.1. The solution c∗ to problem (4) satisfies

(1− λ)c∗ = Tλ(A>δ), (6)

where Tλ(·) is the soft-thresholding operator (applied com-
ponentwise to A>δ) defined as Tλ(v) = sgn(v)(|v| − λ) if
|v| > λ and 0 otherwise.

Theorem 2.1 shows that if the oracle point δ is known,
the solution c∗ can be written out directly. Moreover, it
follows from (5) and (6) that δ = 0 if and only if b = 0.

In Figure 1, we depict a two dimensional example of the
solution to the elastic net problem (4) for different values
of the tradeoff parameter λ. As expected, the solution c∗

becomes denser as λ decreases. Moreover, as predicted by
Theorem 2.1, the magnitude of the coefficient c∗j is a decay-
ing function of the angle between the corresponding dictio-
nary atom aj and the oracle point δ (shown in red). If aj is
far enough from δ such that |〈aj , δ〉| ≤ λ holds true, then
the corresponding coefficient c∗j is zero. We call the region
containing the nonzero coefficients the oracle region. We
can formally define the oracle region by using the quantity
µ(·, ·) to denote the coherence of two vectors, i.e.,

µ(v,w) :=
|〈v,w〉|
‖v‖2‖w‖2

. (7)

Definition 2.2 (Oracle Region). The oracle region associ-
ated with the optimization problem (4) is defined as

∆(b, A) :=
{
v ∈ IRD :‖v‖2 = 1, µ(v, δ) >

λ

‖δ‖2

}
. (8)

The oracle region is composed of an antipodal pair of
spherical caps of the unit ball of IRD that are located at the
symmetric locations ±δ/‖δ‖2, both with an angular radius
of θ = arccos(λ/‖δ‖2) (see Figure 2). From the definition
of the oracle region and Theorem 2.1, it follows that c∗j 6= 0
if and only if aj ∈ ∆(b, A). In other words, the support of
the solution c∗ are those vectors aj in the oracle region.

The oracle region also captures the behavior of the solu-
tion when columns from the matrix A are removed or new
columns are added. This provides the key insight into de-
signing an active-set method for solving the optimization.

δ
‖δ‖2

λ
‖δ‖2

Figure 2. The oracle region ∆(b, A) is illustrated in red. Note
that the size of the oracle region increases as the quantity λ/‖δ‖2
decreases, and vice versa.

Proposition 2.1. For any b ∈ IRD, A ∈ IRD×N and A′ ∈
IRD×N

′
, if no column of A′ is contained in ∆(b, A), then

c∗(b, [A,A′]) = [c∗(b, A)>, 0>N ′×1]>.

The interpretation for Proposition 2.1 is that the solution
c∗(b, A) does not change (modulo padding with additional
zeros) when new columns are added to the dictionary A, as
long as the new columns are not inside the oracle region
∆(b, A). From another perspective, c∗(b, [A,A′]) does not
change if one removes columns from the dictionary [A,A′]
that are not in the oracle region ∆(b, [A,A′]).

Proposition 2.2. For any b ∈ IRD, A ∈ IRD×N and A′ ∈
IRD×N

′
, denote c∗(b, [A,A′]) = [c>A, c

>
A′]>. If any column

of A′ lies within ∆(b, A) , then c>A′ 6= 0.

This result means that the solution to the elastic net prob-
lem will certainly be changed by adding new columns that
lie within the oracle region to the dictionary.

In the next section, we describe an efficient algorithm for
solving the elastic net problem (4) that is based on the geo-
metric structure and concentration behavior of the solution.

2.2. A new active-set algorithm

Although the elastic net optimization problem [49] has
been recently introduced for subspace clustering in [11, 12,
31], such prior work does not provide an efficient algorithm
that can handle large-scale datasets. In fact, such prior work

(a) Active set Tk (b) ∆(b, ATk
) (c) Active set Tk+1

Figure 3. Conceptual illustration of the ORGEN algorithm. All the
dots on the unit circle illustrate the dictionary A. (a) active set Tk
at step k, illustrated by red dots. (b) The oracle region ∆(b, ATk)
illustrated by red arcs. (c) The new active set Tk+1 illustrated in
green, which is the set of indices of points that are in ∆(b, ATk).

solves the elastic net problem using existing algorithms that
require calculations involving the full data matrix A (e.g.,
the accelerated proximal gradient (APG) [2] is used in [11]
and the linearized alternating direction method (LADM)
[24] is used in [31]). Here, we propose to solve the elas-
tic net problem (4) with an active-set algorithm that is more
efficient than both APG and LADM, and can handle large-
scale datasets. We call our new method (see Algorithm 1)
ORacle Guided Elastic Net solver, or ORGEN for short.

The basic idea behind ORGEN is to solve a sequence
of reduced-scale subproblems defined by an active set that
is itself determined from the oracle region. Let Tk be the
active set at iteration k. Then, the next active set Tk+1 is
selected to contain the indices of columns that are in the
oracle region ∆(b, ATk

), where ATk
denotes the submatrix

of A with columns indexed by Tk. We use Figure 3 for a
conceptual illustration. In Figure 3(a) we show the columns
of A that correspond to the active set Tk by labeling the
corresponding columns of ATk

in red. The oracle region
∆(b, ATk

) is the union of the red arcs in Figure 3(b). No-
tice that at the bottom left there is one red dot that is not
in ∆(b, ATk

) and thus must not be included in Tk+1, and
two blue dots that are not in Tk but lie in the oracle region
∆(b, ATk

) and thus must be included in Tk+1. In Figure
3(c) we illustrate Tk+1 by green dots. This iterative pro-
cedure is terminated once Tk+1 does not contain any new
points, i.e., when Tk+1 ⊆ Tk, at which time Tk+1 is the
support for c∗(b, A).

The next lemma helps explain why ORGEN converges.

Lemma 2.1. In Algorithm 1, if Tk+1 * Tk, then

f(c∗(b, ATk+1
); b, ATk+1

) < f(c∗(b, ATk
); b, ATk

).

The following convergence result holds for ORGEN.

Theorem 2.2. Algorithm 1 converges to the optimal solu-
tion c∗(b, A) in a finite number of iterations.

The result follows from Lemma 2.1, because it implies
that an active set can never be repeated. Since there are only
finitely many distinct active sets, the algorithm must even-
tually terminate with Tk+1 ⊆ Tk. The remaining part of

Algorithm 1 ORacle Guided Elastic Net (ORGEN) solver
Input: A = [a1, . . . ,aN] ∈ IRD×N , b ∈ IRD, λ and γ.

1: Initialize the support set T0 and set k ← 0.
2: loop
3: Compute c∗(b, ATk

) as in (4) using any solver.
4: Compute δ(b, ATk

) from c∗(b, ATk
) as in (5).

5: Active set update: Tk+1 ← {j : aj ∈ ∆(b, ATk
)}.

6: If Tk+1 ⊆ Tk, terminate; otherwise set k ← k + 1.
7: end loop

Output: A vector c such that cTk
= c∗(b, ATk

) and zeros
otherwise. Its support is Tk+1.

the proof establishes that if Tk+1 ⊆ Tk, then c∗(b, ATk+1
)

gives the nonzero entries of the solution.
ORGEN solves large-scale problems by solving a se-

quence of reduced-size problems in step 3 of Algorithm 1.
If the active set Tk is small, then step 3 is a small-scale
problem that can be efficiently solved. However, there is
no procedure in Algorithm 1 that explicitly controls the size
of Tk. To address this concern, we propose an alternative
to step 5 in which only a small number of new points—the
ones most correlated with δ—are added. Specifically,

5’ : Tk+1 = {j ∈ Tk : aj ∈ ∆(b, ATk
)} ∪ Sk, (9)

where Sk holds the indices of the largest n entries in
{|a>j δ(b, ATk

)| : j /∈ Tk, aj ∈ ∆(b, ATk
)}; ideally, n

should be chosen so that the size of Tk+1 is bounded by
a predetermined value Nmax that represents the maximum
size subproblem that can be handled in step 3. If Nmax is
chosen large enough that the second set in the union in (9)
is non-empty, then our convergence result still holds.
Initialization. We suggest the following procedure for
computing the initial active set T0. First, compute the so-
lution to (4) with λ = 0, which has a closed form solution
and can be computed efficiently if the ambient dimension
D of the data is not too big. Then, the l largest entries (in
absolute value) of the solution for some pre-specified value
l are added to T0. Our experiments suggest that this strategy
promotes fast convergence of Algorithm 1.

3. Elastic Net Subspace Clustering (EnSC)
Although the elastic net has been recently introduced for

subspace clustering in [31, 12], these works do not provide
conditions under which the affinity is guaranteed to be sub-
space preserving or potential improvements in connectivity.
In this section, we give conditions for the affinity to be sub-
space preserving and for the balance between the subspace-
preserving and connectedness properties. To the best of our
knowledge, this is the first time that such theoretical guar-
antees have been established.

We first formally define the subspace clustering problem.

Problem 3.1 (Subspace Clustering). Let X ∈ IRD×N be
a real-valued matrix whose columns are drawn from a union
of n subspaces of IRD, say

⋃n
`=1 S`, where the dimension

d` of the `-th subspace satisfies d` < D for ` = 1, . . . , n.
The goal of subspace clustering is to segment the columns
of X into their representative subspaces.

Let X = [x1, · · · ,xN], where each xj is assumed to
be of unit norm. Using the same notation as for (4), the
proposed EnSC computes c∗(xj , X−j) for each {xj}Nj=1,
i.e.,

c∗(xj , X−j) = arg min
c

f(c;xj , X−j), (10)

where X−j is X with the j-th column removed. In this sec-
tion, we focus on a given vector, say xj . We suppose that
xj ∈ S` for some `, and useX`

−j to denote the submatrix of
X with columns from S` except that xj is removed. Since
our goal is to use the entries of c∗(xj , X−j) to construct an
affinity graph in which only points in the same subspace are
connected, we desire the nonzero entries of c∗(xj , X−j)
to be a subset of the columns X`

−j so that no connections
are built between points from different subspaces. If this is
the case, we say that such a solution c∗(xj , X−j) is sub-
space preserving. On the other hand, we also want the
nonzero entries of c∗(xj , X−j) to be as dense as possible
in X`

−j so that within each cluster the affinity graph is well-
connected2. To some extent, these are conflicting goals: if
the connections are few, it is more likely that the solution is
subspace preserving, but the affinity graph of each cluster
is not well connected. Conversely, as one builds more con-
nections, it is more likely that some of them will be false,
but the connectivity is improved.

In the next two sections, we give a geometric interpre-
tation of the tradeoff between the subspace preserving and
connectedness properties, and provide sufficient conditions
for a representation to be subspace preserving.

3.1. Subspace-preserving vs. connected solutions

Our analysis is built upon the optimization problem
minc f(c;xj , X

`
−j). Note that its solution is trivially sub-

space preserving since the dictionary X`
−j is contained in

S`. We then treat all points from other subspaces as newly
added columns to X`

−j and apply Propositions 2.1 and 2.2.
We get the following geometric result.

Lemma 3.1. Suppose that xj ∈ S`. Then, the vector
c∗(xj , X−j) is subspace preserving if and only if xk /∈
∆(xj , X

`
−j) for all xk /∈ S`.

We illustrate the geometry implied by Lemma 3.1 in Fig-
ure 4, where we assume S` is a two dimensional subspace

2In fact, even when each cluster is well-connected, further improving
connectivity within clusters is still beneficial since it enhances the ability
of the subsequent step of spectral clustering in correcting any erroneous
connections in the affinity graph [42, 40].

S`

Figure 4. The structure of the solution for an example in IR3 asso-
ciated with a point xj (not shown) that lies in the 2-dimensional
subspace S`. The blue dots illustrate the columns of X`

−j , the
union of the two red regions is the oracle region ∆(xj , X

`
−j), and

the green points are vectors from other subspaces.

in IR3. The dictionary X`
−j is represented by the blue dots

in the plane and the oracle region ∆(xj , X
`
−j) is denoted

as the two red circles. The green dots are all other points
in the dictionary. Lemma 3.1 says that c∗(xj , X−j) is sub-
space preserving if and only if all green dots lie outside of
the red region.

To ensure that a solution is subspace preserving one de-
sires a small oracle region, while to ensure connectedness
one desires a large oracle region. These facts again high-
light the trade-off between these two properties. Recall that
the elastic net balances `1 regularization (promotes sparse
solutions) and `2 regularization (promotes dense solutions).
Thus, one should expect that the oracle region will decrease
in size as λ is increased from 0 towards 1. Theorem 3.1 for-
malizes this claim, but first we need the following definition
that characterizes the distribution of the data in X`

−j .

Definition 3.1 (inradius). The inradius of a convex body P
is the radius r(P) of the largest `2 ball inscribed in P .

To understand the next result, we comment that the size
of the oracle region ∆(xj , X

`
−j) is controlled by the quan-

tity λ/‖δ(xj , X
`
−j)‖2 as depicted in Figure 2.

Theorem 3.1. If xj ∈ S`, then

λ

‖δ(xj , X`
−j)‖2

≥
r2j

rj + 1−λ
λ

, (11)

where rj is the inradius of the convex hull of the sym-
metrized points in X`

−j , i.e.,

rj := r(conv{±xk : xk ∈ S` and k 6= j}). (12)

We define the right-hand-side of (11) to be zero when λ = 0.

The above theorem allows us to determine an upper
bound for the size of the oracle region. This follows since
a lower bound on the size of λ/‖δ(xj , X

`
−j)‖2 implies an

upper bound on the size of the oracle region (see (8) and
Figure 2). Also notice that the right hand side of (11) is
in the range [0, rj) and is monotonically increasing with λ.
Thus, it provides an upper bound on the area of the oracle
region, which decreases as λ increases. This highlights that
the trade-off between the subspace-preserving and connect-
edness properties is controlled by λ.

Remark 3.1. It would be nice if λ/‖δ(xj , X
`
−j)‖2 was in-

creasing as a function of λ (we already know that its lower
bound given in Theorem 3.1 is increasing in λ). However,
one can show using the data xj = [0.22, 0.72, 0.66]>,

X`
−j =

 −0.55 −0.82 −0.05 0.22
0.22 0.57 0.84 0.78
−0.80 0.00 0.55 0.58

 , (13)

and parameter choice γ = 10, that λ/‖δ‖ (with λ = 0.88)
is larger than λ/‖δ‖ (with λ = 0.95).

3.2. Conditions for a subspace-preserving solution

A sufficient condition for a solution to be subspace pre-
serving is obtained by combining the geometry in Lemma
3.1 with the bound on the size of the oracle region implied
by Theorem 3.1.

Theorem 3.2. Let xj ∈ S`, δj = δ(xj , X
`
−j) be the oracle

point, and rj be the inradius characterization of X`
−j as

given by (12). Then, c∗(xj , X−j) is subspace preserving if

max
k:xk /∈S`

µ(xk, δj) ≤
r2j

rj + 1−λ
λ

. (14)

Notice that in Theorem 3.2 the quantity δj is determined
from X`

−j and that it lies within the subspace S` by defini-
tion of δ(xj , X

`
−j). Thus the left-hand-side of (14) charac-

terizes the separation between the oracle point—which is in
S`—and the set of points outside of S`. On the right-hand-
side, rj characterizes the distribution of points in X`

−j . In
particular, rj is large when points are well spread within S`
and not skewed toward any direction. Finally, note that the
right-hand-side of (14) is an increasing function of λ, show-
ing that the solution is more likely to be subspace preserving
if more weight is placed on the `1 regularizer relative to the
`2 regularizer.

Theorem 3.2 has a close relationship to the sufficient
condition for SSC to give a subspace preserving solution
(the case λ = 1) [35]. Specifically, [35] shows that if
maxk:xk /∈S` µ(xk, δj) < rj , then SSC gives a subspace
preserving solution. We can observe that condition (14) ap-
proaches the condition for SSC as λ→ 1.

The result stated in Theorem 3.2 is a special case of the
following more general result.

Theorem 3.3. Let xj ∈ S`, δj = δ(xj , X
`
−j) be the oracle

point, and κj = maxk 6=j,xk∈S` µ(xk, δj) be the coherence
of δj with its nearest neighbor in X`

−j . Then, the solution
c∗(xj , X−j) is subspace preserving if

max
k:xk /∈S`

µ(xk, δj) ≤
κ2j

κj + 1−λ
λ

. (15)

The only difference between this result and that in Theo-
rem 3.2 is that κj is used instead of rj for characterizing the
distribution of points inX`

−j . We show in [45] that rj ≤ κj ,
which makes Theorem 3.3 more general than Theorem 3.2.
Geometrically, rj is large if the subspace S` is well-covered
by X`

j , while κj is large if the neighborhood of the oracle
closest to δj is well-covered, i.e., there is a point in X`

−j
that is close to δj . Thus, while the condition in Theorem
3.2 requires each subspace to have global coverage by the
data, the condition in Theorem 3.3 allows the data to be bi-
ased, and only requires a local region to be well-covered. In
addition, condition (15) can be checked when the member-
ship of the data points is known. This advantage allows us
to check the tightness of the condition (15), which is stud-
ied in more details in [45]. In contrast, condition (14) and
previous work on SSC [35, 43] use the inradius rj , which is
generally NP-hard to calculate [35, 44].

4. Experiments
4.1. ORGEN on synthetic data

We conducted synthetic experiments to illustrate the
computational efficiency of the proposed algorithm OR-
GEN. Three popular solvers are exploited: the regularized
feature sign search (RFSS) is an active set type method [20];
the LASSO version of the LARS algorithm [8] that is imple-
mented in the sparse modeling software (SPAMS); and the
gradient projection for sparse reconstruction (GPSR) algo-
rithm proposed in [14]. These three solvers are used to solve
the subproblem in step 3 of ORGEN, resulting in three im-
plementations of ORGEN. We also used the three solvers as
stand-alone solvers for comparison purposes.

In all experiments, the vector b and columns of A are all
generated independently and uniformly at random on the
unit sphere of IR100. The results are averages over 50 trials.

In the first experiment, we test the scaling behavior of
ORGEN by varyingN ; the results are shown in Figure 5(a).
We can see that our active-set scheme improves the com-
putational efficiency of all three solvers. Moreover, as N
grows, the improvement becomes more significant.

Next, we test the performance of ORGEN for various
values of the parameter λ that controls the tradeoff between
the subspace preserving and connectedness properties; the
running times and sparsity level are shown in Figures 5(b)
and 5(c), respectively. The performance of SPAMS is not

10
4

10
5

10
6

10
−2

10
−1

10
0

10
1

10
2

10
3

N

R
u
n
n
in
g
 t
im
e
(s
ec
)

RFSS

ORGEN(w. RFSS)

GPSR

ORGEN(w. GPSR)

SPAMS

ORGEN(w. SPAMS)

(a) Running time versus N

0 0.2 0.4 0.6 0.8 1
10

−1

10
0

10
1

10
2

λ

R
u
n
n
in
g
 t
im
e
(s
ec
)

RFSS

ORGEN(w. RFSS)

GPSR

ORGEN(w. GPSR)

(b) Running time versus λ

0

100

200

300

400

500

600

700

λ

#
N

o
n

z
e
ro

 e
n

tr
ie

s

0 0.2 0.4 0.6 0.8 1

(c) Sparsity versus λ

Figure 5. Performance with varying N and λ: (a) λ = 0.9 and N ∈ [5000, 106]; and (b, c) N = 100, 000 and λ ∈ [0.05, 0.999].

Table 1. Dataset information.
N (#data) D (ambient dim.) n (#groups)

Coil-100 7,200 1024 100
PIE 11,554 1024 68

MNIST 70,000 500 10
CovType 581,012 54 7

reported since it performs poorly even for moderately small
values of λ. For all methods, the computational efficiency
decreases as λ becomes smaller. For the two versions of
ORGEN, this is expected since the solution becomes denser
as λ becomes smaller (see Figure 5(c)). Thus the active sets
become larger, which leads directly to larger and more time
consuming subproblems in step 3.

4.2. EnSC on real data

In this section, we use ORGEN to solve the optimization
problems arising in EnSC, where each subproblem in step
3 is solved using the RFSS method. To compute the co-
efficient vectors c∗(xj , X−j), the parameter λ is set to be
the same for all j, while the parameter γ is set as γ = αγ0
where α > 1 is a hyperparameter and γ0 is the smallest
value of γ such that c∗(xj , X−j) is nonzero. The algo-
rithm is run for at most 2 iterations, as we observe that this
is sufficient for the purpose of subspace clustering and that
subsequent iterations do not boost performance. We mea-
sure clustering performance by clustering accuracy, which
is calculated as the best matching rate between the label pre-
dicted by the algorithm and that of the ground truth.
Datasets. We test our method on the four datasets presented
in Table 1. The Coil-100 dataset [30] contains 7,200 gray-
scale images of 100 different objects. Each object has 72
images taken at pose intervals of 5 degrees, with the images
being of size 32×32. The PIE dataset [16] contains images
of the faces of 68 people taken under 13 different poses,
43 different illuminations, and 4 different expressions. In
the experiments, we use the five near frontal poses and all
images under different illuminations and expressions. Each
image is manually cropped and normalized to 32× 32 pix-
els. The MNIST dataset [22] contains 70,000 images of

handwritten digits 0–9. For each image, we extract a fea-
ture vector of dimension 3,472 via the scattering convolu-
tion network [3], and then project to dimension 500 using
PCA. Finally, the Covtype database3 has been collected to
predict forest cover type from 54 cartographic variables.

Methods. We compare our method with several state-of-
the-art subspace clustering methods that may be catego-
rized into three groups. The first group contains TSC [17],
OMP [7], NSN [32], and SSC [9]. TSC is a variant of the
k-nearest neighbors method, OMP and NSN are two sparse
greedy methods, and SSC is a convex optimization method.
These algorithms build sparse affinity matrices and are com-
putationally efficient, and therefore can perform large-scale
clustering. For TSC and NSN we use the code provided
by the respective authors. We note that the code may not
be optimized for computational efficiency considerations.
For OMP, we use our implementation, which has been opti-
mized for subspace clustering. For SSC we use the SPAMS
solver described in the previous section.

The second group consists of LRSC and SSC (with a
different solver). We use the code provided by their respec-
tive authors, which uses the Alternating Direction Method
of Multipliers (ADMM) to solve the optimization problems.
To distinguish the two versions of SSC, we refer to this one
as SSC-ADMM and to the previous one as SSC-SPAMS.

The final group consists of ENSC [31] and KMP [21],
and are the closest in spirit to our method. Our method and
ENSC both balance the `1 and `2 regularizations, but ENSC
uses h(e) = ‖e‖1 to penalize the noise (see (1)) and the lin-
earized alternating direction method to minimize their ob-
jective. In KMP, the k-support norm is used to blend the
`1 and `2 regularizers. We implemented ENSC and KMP
according to the descriptions in their original papers.

Results. To the best of our knowledge, a comparison of all
these methods on large scale datasets has not been reported
in prior work. Thus, we run all experiments and tune the
parameters for each method to give the best clustering ac-
curacy. The results are reported in Table 2.

3http://archive.ics.uci.edu/ml/datasets/Covertype

Table 2. Performance of different clustering algorithms. The running time includes the time for computing the affinity matrix and for
performing spectral clustering. The sparsity is the number of nonzero coefficients in each representation cj averaged over j = 1, · · · , N .
The value “M” means that the memory limit of 16GB was exceeded, and the value “T” means that the time limit of seven days was reached.

TSC OMP NSN SSC-SPAMS SSC-ADMM LRSC ENSC KMP EnSC-ORGEN
Clustering accuracy (%)
Coil-100 61.32 33.64 50.32 53.75 57.10 55.76 51.11 61.97 69.24

PIE 22.15 11.28 35.02 39.05 41.94 46.65 21.40 16.55 52.98
MNIST 85.00 46.84 85.82 92.46 M M M M 93.79

CovType 35.45 48.76 38.04 T M M M M 53.52
Running time (min.)
Coil-100 2 2 11 16 127 3 8 63 3

PIE 3 8 25 67 412 12 25 361 13
MNIST 30 24 298 1350 - - - - 28

CovType 999 783 3572 - - - - - 1452
Sparsity
Coil-100 4 2 18 7.0 5.4 7199 7199 20.9 6.3

PIE 8 22 17 20.4 28.5 11553 11553 30.0 82.4
MNIST 8 10 12 25.4 - - - - 26.6

CovType 20 15 10 - - - - - 34.9

We see that our proposed method achieves the best clus-
tering performance on every dataset. Our method is also
among the most efficient in terms of computing time. The
methods SSC-ADMM, ENSC, LRSC and KMP cannot han-
dle large-scale data because they perform calculations over
the full data matrix and put the entire kernel matrixX>X in
memory, which is infeasible for large datasets. The method
of SSC-SPAMS uses an active set method that can deal with
massive data, however, it is computationally much less effi-
cient than our solver ORGEN.

For understanding the advantages of our method, in Ta-
ble 2 we report the sparsity of the representation coeffi-
cients, which is the number of nonzero entries in cj aver-
aged over all j = 1, . . . , N . For TSC, OMP and NSN,
the sparsity is directly provided as a parameter of the algo-
rithms. For SSC and our method EnSC-ORGEN, the spar-
sity is indirectly controlled by the parameters of the models.
We can see that our method usually gives more nonzero en-
tries than the sparsity based methods of TSC, OMP, NSN,
and SSC. This shows the benefit of our method: while the
number of correct connections built by OMP, NSN and SSC
are in general upper-bounded by the dimension of the sub-
space, our method does not have this limit and is capa-
ble of constructing more correct connections and produc-
ing well-connected affinity graphs. On the other hand, the
affinity graph of LRSC is dense, so although each cluster is
self-connected, there are abundant wrong connections. This
highlights the advantage of our method, which is flexible in
controlling the number of nonzero entries by adjusting the
trade-off parameter λ. Our results illustrate that this trade-
off improves clustering accuracy.

Finally, ENSC and KMP are two representatives of other
methods that also exploit the trade-off between `1 and `2

regularizations. A drawback of both works is that the
solvers for their optimization problems are not as effective
as our ORGEN algorithm, as they cannot deal with large
datasets due to memory requirements. Moreover, we ob-
serve that their algorithms converge to modest accuracy in a
few iterations but can be very slow in giving a high precision
solution. This may explain why their clustering accuracy is
not as good as that of EnSC-ORGEN. Especially, we see
that ENSC gives dense solutions although the true solution
is expected to be sparser, and this is explained by the fact
that the solution paths of their solver are dense solutions.

5. Conclusion
We investigated elastic net regularization (i.e., a mix-

ture of the `1 and `2 norms) for scalable and provable sub-
space clustering. Specifically, we presented an active set
algorithm that efficiently solves the elastic net regulariza-
tion subproblem by capitalizing on the geometric struc-
ture of the elastic net solution. We then gave theoretical
justifications—based on a geometric interpretation for the
trade-off between the subspace preserving and connected-
ness properties—for the correctness of subspace cluster-
ing via the elastic net. Extensive experiments verified that
that our proposed active set method achieves state-of-the art
clustering accuracy and can handle large-scale datasets.

Acknowledgments. C. You, D. P. Robinson and R. Vi-
dal are supported by the National Science Foundation un-
der grant 1447822. C.-G. Li is partially supported by Na-
tional Natural Science Foundation of China under grants
61273217 and 61511130081, and the 111 project under
grant B08004. The authors thank Ben Haeffele for insight-
ful comments on the design of the ORGEN algorithm.

References
[1] A. Argyriou, R. Foygel, and N. Srebro. Sparse prediction

with the k-support norm. In Neural Information Processing
Systems, pages 1466–1474, 2012. 2

[2] A. Beck and M. Teboulle. A fast iterative shrinkage-
thresholding algorithm for linear inverse problems. SIAM
Journal on Imaging Sciences, 2(1):183–202, Mar 2009. 4

[3] J. Bruna and S. Mallat. Invariant scattering convolution net-
works. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 35(8):1872–1886, 2013. 7

[4] G. Chen and G. Lerman. Spectral curvature cluster-
ing (SCC). International Journal of Computer Vision,
81(3):317–330, 2009. 1

[5] X. Chen and D. Cai. Large scale spectral clustering with
landmark-based representation. In AAAI Conference on Ar-
tificial Intelligence, 2011. 2

[6] J. Costeira and T. Kanade. A multibody factorization method
for independently moving objects. International Journal of
Computer Vision, 29(3):159–179, 1998. 1

[7] E. L. Dyer, A. C. Sankaranarayanan, and R. G. Baraniuk.
Greedy feature selection for subspace clustering. Journal of
Machine Learning Research, 14(1):2487–2517, 2013. 1, 7

[8] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least
angle regression. Annals of Statistics, 32(2):407–499, 2004.
6

[9] E. Elhamifar and R. Vidal. Sparse subspace clustering. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2009. 1, 7

[10] E. Elhamifar and R. Vidal. Sparse subspace clustering: Al-
gorithm, theory, and applications. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 35(11):2765–2781,
2013. 1

[11] Y. Fang, R. Wang, and B. Dai. Graph-oriented learning via
automatic group sparsity for data analysis. In IEEE Interna-
tional Conference on Data Mining, pages 251–259, 2012. 3,
4

[12] Y. Fang, R. Wang, B. Dai, and X. Wu. Graph-based learning
via auto-grouped sparse regularization and kernelized exten-
sion. IEEE Transactions on Knowledge and Data Engineer-
ing, 27(1):142–154, 2015. 2, 3, 4

[13] P. Favaro, R. Vidal, and A. Ravichandran. A closed form
solution to robust subspace estimation and clustering. In
IEEE Conference on Computer Vision and Pattern Recog-
nition, 2011. 1, 2

[14] M. Figueiredo, R. Nowak, and S. Wright. Gradient projec-
tion for sparse reconstruction: Application to compressed
sensing and other inverse problems. IEEE Journal of Se-
lected Topics in Signal Processing, 1(4):586–597, 2007. 6

[15] E. Grave, G. Obozinski, and F. Bach. Trace lasso: a trace
norm regularization for correlated designs. In Neural Infor-
mation Processing Systems, 2011. 2

[16] R. Gross, I. Matthews, J. F. Cohn, T. Kanade, and S. Baker.
Multi-PIE. Image Vision Computing, 28(5):807–813, 2010.
7

[17] R. Heckel and H. Bölcskei. Robust subspace clustering via
thresholding. CoRR, abs/1307.4891, 2013. 1, 7

[18] J. Ho, M. H. Yang, J. Lim, K. Lee, and D. Kriegman. Cluster-
ing appearances of objects under varying illumination condi-
tions. In IEEE Conference on Computer Vision and Pattern
Recognition, 2003. 1

[19] W. Hong, J. Wright, K. Huang, and Y. Ma. Multi-
scale hybrid linear models for lossy image representation.
IEEE Transactions on Image Processing, 15(12):3655–3671,
2006. 1

[20] B. Jin, D. Lorenz, and S. Schiffler. Elastic-net regulariztion:
error estimates and active set methods. Inverse Problems,
25(11), 2009. 6

[21] H. Lai, Y. Pan, C. Lu, Y. Tang, and S. Yan. Efficient k-
support matrix pursuit. In European Conference on Com-
puter Vision, pages 617–631, 2014. 2, 7

[22] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278 – 2324, 1998. 7

[23] C.-G. Li and R. Vidal. Structured sparse subspace clustering:
A unified optimization framework. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 277–286,
2015. 1

[24] Z. Lin, R. Liu, and Z. Su. Linearized alternating direction
method with adaptive penalty for low rank representation. In
Neural Information Processing Systems, 2011. 4

[25] G. Liu, Z. Lin, S. Yan, J. Sun, and Y. Ma. Robust recovery of
subspace structures by low-rank representation. IEEE Trans.
Pattern Analysis and Machine Intelligence, 35(1):171–184,
Jan 2013. 1

[26] G. Liu, Z. Lin, and Y. Yu. Robust subspace segmentation
by low-rank representation. In International Conference on
Machine Learning, 2010. 1, 2

[27] C. Lu, Z. Lin, and S. Yan. Correlation adaptive subspace seg-
mentation by trace lasso. In IEEE International Conference
on Computer Vision, 2013. 2

[28] C.-Y. Lu, H. Min, Z.-Q. Zhao, L. Zhu, D.-S. Huang, and
S. Yan. Robust and efficient subspace segmentation via least
squares regression. In European Conference on Computer
Vision, 2012. 1, 2

[29] B. Nasihatkon and R. Hartley. Graph connectivity in sparse
subspace clustering. In IEEE Conference on Computer Vi-
sion and Pattern Recognition, 2011. 1

[30] S. A. Nene, S. K. Nayar, and H. Murase. Columbia object
image library (COIL-100). Technical Report CUCS-006-96,
1996. 7

[31] Y. Panagakis and C. Kotropoulos. Elastic net subspace clus-
tering applied to pop/rock music structure analysis. Pattern
Recognition Letters, 38:46–53, 2014. 2, 3, 4, 7

[32] D. Park, C. Caramanis, and S. Sanghavi. Greedy subspace
clustering. In Neural Information Processing Systems, 2014.
1, 7

[33] X. Peng, L. Zhang, and Z. Yi. Scalable sparse subspace clus-
tering. IEEE Conference on Computer Vision and Pattern
Recognition, pages 430–437, 2013. 2

[34] S. Rao, R. Tron, R. Vidal, and Y. Ma. Motion segmentation
in the presence of outlying, incomplete, or corrupted trajec-
tories. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 32(10):1832–1845, 2010. 1

[35] M. Soltanolkotabi and E. J. Candès. A geometric analysis of
subspace clustering with outliers. Annals of Statistics, 2013.
1, 6

[36] M. Tsakiris and R. Vidal. Filtrated spectral algebraic sub-
space clustering. In ICCV Workshop on Robust Subspace
Learning and Computer Vision, pages 28–36, 2015. 1

[37] R. Vidal. Subspace clustering. IEEE Signal Processing Mag-
azine, 28(3):52–68, March 2011. 1

[38] R. Vidal and P. Favaro. Low rank subspace clustering
(LRSC). Pattern Recognition Letters, 43:47–61, 2014. 1,
2

[39] R. Vidal, Y. Ma, and S. Sastry. Generalized Principal Com-
ponent Analysis (GPCA). IEEE Transactions on Pattern
Analysis and Machine Intelligence, 27(12):1–15, 2005. 1

[40] R. Vidal, Y. Ma, and S. Sastry. Generalized Principal Com-
ponent Analysis. Springer Verlag, 2016. 5

[41] R. Vidal, R. Tron, and R. Hartley. Multiframe motion seg-
mentation with missing data using PowerFactorization, and
GPCA. International Journal of Computer Vision, 79(1):85–
105, 2008. 1

[42] U. von Luxburg. A tutorial on spectral clustering. Statistics
and Computing, 17, 2007. 5

[43] Y.-X. Wang and H. Xu. Noisy sparse subspace clustering. In
International Conference on Machine learning, 2013. 6

[44] Y.-X. Wang, H. Xu, and C. Leng. Provable subspace cluster-
ing: When LRR meets SSC. In Neural Information Process-
ing Systems, 2013. 2, 6

[45] C. You, C.-G. Li, D. Robinson, and R. Vidal. Oracle based
active set algorithm for scalable elastic net subspace cluster-
ing. Arxiv, 2016. 2, 6

[46] C. You, D. Robinson, and R. Vidal. Scalable sparse subspace
clustering by orthogonal matching pursuit. In IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2016. 1

[47] C. You and R. Vidal. Geometric conditions for subspace-
sparse recovery. In International Conference on Machine
Learning, pages 1585–1593, 2015. 1

[48] T. Zhang, A. Szlam, Y. Wang, and G. Lerman. Hybrid lin-
ear modeling via local best-fit flats. International Journal of
Computer Vision, 100(3):217–240, 2012. 1

[49] H. Zou and T. Hastie. Regularization and variable selection
via the elastic net. Journal of the Royal Statistical Society,
Series B, 67:301–320, 2005. 2, 3

