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Abstract

Subspace clustering methods based on `1, `2 or nuclear
norm regularization have become very popular due to their
simplicity, theoretical guarantees and empirical success.
However, the choice of the regularizer can greatly impact
both theory and practice. For instance, `1 regularization is
guaranteed to give a subspace-preserving affinity (i.e., there
are no connections between points from different subspaces)
under broad conditions (e.g., arbitrary subspaces and cor-
rupted data). However, it requires solving a large scale
convex optimization problem. On the other hand, `2 and
nuclear norm regularization provide efficient closed form
solutions, but require very strong assumptions to guarantee
a subspace-preserving affinity, e.g., independent subspaces
and uncorrupted data. In this paper we study a subspace
clustering method based on orthogonal matching pursuit.
We show that the method is both computationally efficient
and guaranteed to give a subspace-preserving affinity under
broad conditions. Experiments on synthetic data verify our
theoretical analysis, and applications in handwritten digit
and face clustering show that our approach achieves the
best trade off between accuracy and efficiency. Moreover,
our approach is the first one to handle 100,000 data points.

1. Introduction

In many computer vision applications, such as motion
segmentation [7, 31, 25], hand written digit clustering [38]
and face clustering [1, 18], data from different classes can
be well approximated by a union of low dimensional sub-
spaces. In these scenarios, the task is to partition the data
according to the membership of data points to subspaces.

More formally, given a set of points X = {xj ∈RD}Nj=1

lying in an unknown number n of subspaces {Si}ni=1 of
unknown dimensions {di}ni=1, subspace clustering is the
problem of clustering the data into groups such that each
group contains only data points from the same subspace.
This problem has received great attention in the past decade
and many subspace clustering algorithms have been devel-
oped, including iterative, algebraic, statistical, and spectral
clustering based methods (see [29] for a review).

Sparse and Low Rank Methods. Among existing tech-
niques, methods based on applying spectral clustering to an
affinity matrix obtained by solving an optimization problem
that incorporates `1, `2 or nuclear norm regularization have
become extremely popular due to their simplicity, theoreti-
cal correctness, and empirical success. These methods are
based on the so-called self-expressiveness property of data
lying in a union of subspaces, originally proposed in [10].
This property states that each point in a union of subspaces
can be written as a linear combination of other data points
in the subspaces. That is,

xj = Xcj and cjj = 0, or equivalently
X = XC and diag(C) = 0,

(1)

where X =
[
x1, . . . ,xN

]
∈ RD×N is the data matrix and

C =
[
c1, . . . , cN

]
∈ RN×N is the matrix of coefficients.

While (1) may not have a unique solution for C, there
exist solutions whose entries are such that if cij 6= 0, then
xi is in the same subspace as xj . For example, a point xj ∈
Si can always be written as a linear combination of di other
points in Si. Such solutions are called subspace preserving
since they preserve the clustering of the subspaces. Given a
subspace preserving C, one can build an affinity matrix W
between every pair of points xi and xj aswij = |cij |+|cji|,
and apply spectral clustering [32] to W to cluster the data.

To find a subspace preserving C, existing methods regu-
larize C with a norm ‖ · ‖, and solve a problem of the form:

C∗ = argmin
C

‖C‖ s.t. X = XC, diag(C) = 0. (2)

For instance, the sparse subspace clustering (SSC) algo-
rithm [10] uses the `1 norm to encourage the sparsity of C.
Prior work has shown that SSC gives a subspace-preserving
solution if the subspaces are independent [10, 12], or if the
data from different subspaces satisfy certain separation con-
ditions and data from the same subspace are well spread out
[11, 12, 36, 26]. Similar results exist for cases where data
is corrupted by noise [33, 27] and outliers [26]. Other self-
expressiveness based methods use different regularizations
on the coefficient matrix C. Least squares regression (LSR)
[22] uses `2 regularization on C. Low rank representation
(LRR) [20, 19] and low rank subspace clustering (LRSC)



[13, 30] use nuclear norm minimization to encourage C to
be low-rank. Based on these, [21, 23, 16, 35] study regular-
izations that are a mixture of `1 and `2, and [34, 39] propose
regularizations that are a blend of `1 and the nuclear norm.

The advantage of `2 regularized LSR and nuclear norm
regularized LRR and LRSC over sparsity regularized SSC
is that the solution for C can be computed in closed form
from the SVD of the (noiseless) data matrix X , thus they
are computationally more attractive. However, the resulting
C is subspace preserving only when subspaces are indepen-
dent and the data is uncorrupted. Thus, there is a need for
methods that both guarantee a subspace-preserving affinity
under broad conditions and are computationally efficient.
Paper Contributions. In this work we study the self-
expressiveness based subspace clustering method that uses
orthogonal matching pursuit (OMP) to find a sparse repre-
sentation in lieu of the `1-based basis pursuit (BP) method.
The method is termed SSC-OMP, for its kinship to the orig-
inal SSC, which is referred to as SSC-BP in this paper.

The main contributions of this paper are to find theoreti-
cal conditions under which the affinity produced by SSC-
OMP is subspace preserving and to demonstrate its effi-
ciency for large scale problems. Specifically, we show that:

1. When the subspaces and the data are deterministic,
SSC-OMP gives a subspace-preserving C if the sub-
spaces are independent, or else if the subspaces are
sufficiently separated and the data is well distributed.

2. When the subspaces and data are drawn uniformly at
random, SSC-OMP gives a subspace-preserving C if
the dimensions of the subspaces are sufficiently small
relative to the ambient dimension by a factor controlled
by the sample density and the number of subspaces.

3. SSC-OMP is orders of magnitude faster than the orig-
inal SSC-BP, and can handle up to 100,000 data points.

Related work. It is worth noting that the idea of using OMP
for SSC had already been considered in [9]. The core con-
tribution of our work is to provide much weaker yet more
succinct and interpretable conditions for the affinity to be
subspace preserving in the case of arbitrary subspaces. In
particular, our conditions are naturally related to those for
SSC-BP, which reveal insights about the relationship be-
tween these two sparsity-based subspace clustering meth-
ods. Moreover, our experimental results provide a much
more detailed evaluation of the behavior of SSC-OMP for
large-scale problems. It is also worth noting that conditions
under which OMP gives a subspace-preserving representa-
tion had also been studied in [36]. Our paper presents a
much more comprehensive study of OMP for the subspace
clustering problem, by providing results under deterministic
independent, deterministic arbitrary and random subspace
models. In particular, our result for deterministic arbitrary
models is much stronger than the main result in [36].

2. SSC by Orthogonal Matching Pursuit
The SSC algorithm approaches the subspace clustering

problem by finding a sparse representation of each point in
terms of other data points. Since each point in Si can be
expressed in terms of at most di � N other points in Si,
such a sparse representation always exists. In principle, we
can find it by solving the following optimization problem:

c∗j = argmin
cj

‖cj‖0 s.t. xj = Xcj , cjj = 0, (3)

where ‖c‖0 counts the number of nonzero entries in c.
Since this problem is NP hard, the SSC method in [10] re-
laxes this problem and solves the following `1 problem:

c∗j = argmin
cj

‖cj‖1 s.t. xj = Xcj , cjj = 0. (4)

Since this problem is called the basis pursuit (BP) problem,
we refer to the SSC algorithm in [10] as SSC-BP.

The optimization problems (3) and (4) have been studied
extensively in the compressed sensing community, see, e.g.,
the tutorials [2, 4], and it is well known that, under certain
conditions on the dictionaryX , their solutions are the same.
However, results from compressed sensing do not apply to
the subspace clustering problem because when the columns
of X lie in a union of subspaces the solution for C need
not be unique (see Section 3 for more details). This has
motivated extensive research on the conditions under which
the solutions of (3) or (4) are useful for subspace clustering.

It is shown in [10, 11, 12] that when the subspaces are
either independent or disjoint, and the data are noise free
and well distributed, both (3) and (4) provide a sparse rep-
resentation cj that is subspace preserving, as defined next.

Definition 1 (Subspace-preserving representation). A rep-
resentation c ∈ RN of a point x ∈ Si in terms of the dic-
tionary X =

[
x1, . . . ,xN

]
is called subspace preserving if

its nonzero entries correspond to points in Si, i.e.

∀j = 1, . . . , N, cj 6= 0 =⇒ xj ∈ Si. (5)

In practice, however, solving N `1-minimization prob-
lems over N variables may be prohibitive when N is large.
As an alternative, consider the following program:

c∗j = argmin
cj

‖xj−Xcj‖22 s.t. ‖cj‖0 ≤ k, cjj = 0. (6)

It is shown in [28, 8] that, under certain conditions, this
problem can be solved using the orthogonal matching pur-
suit (OMP) algorithm [24] (Algorithm 1). OMP solves the
problem minc ‖Ac − b‖22 s.t. ‖c‖0 ≤ k greedily by se-
lecting one column of A =

[
a1, . . . ,aM

]
at a time (the one

that maximizes the absolute value of the dot product with
the residual in line 3) and computing the coefficients for the
selected columns until k columns are selected. For subspace
clustering purposes, the vector c∗j ∈ RN (the jth column of
C∗ ∈ RN×N ), is computed as OMP(X−j ,xj) ∈ RN−1



Algorithm 1 : Orthogonal Matching Pursuit (OMP)
Input: A = [a1, . . . ,aM ] ∈ Rm×M , b ∈ Rm, kmax, ε.

1: Initialize k = 0, residual q0 = b, support set T0 = ∅.
2: while k < kmax and ‖qk‖2 > ε do
3: Tk+1 = Tk

⋃
{i∗}, where i∗ = argmax

i=1,...,M
|aTi qk|1.

4: qk+1 = (I−PTk+1
)b, where PTk+1

is the projection
onto the span of the vectors {aj , j ∈ Tk+1}.

5: k ← k + 1.
6: end while

Output: c∗ = argminc:Supp(c)⊆Tk
‖b−Ac‖2.

Algorithm 2 : Sparse Subspace Clustering by Orthogo-
nal Matching Pursuit (SSC-OMP)
Input: Data X = [x1, · · · ,xN ], parameters kmax, ε.

1: Compute c∗j from OMP(X−j ,xj) using Algorithm 1.
2: Set C∗ = [c∗1, · · · , c∗N ] and W = |C∗|+ |C∗>|.
3: Compute segmentation from W by spectral clustering.

Output: Segmentation of data X .

with a zero inserted in its jth entry, where X−j is the data
matrix with the jth column removed. AfterC∗ is computed,
the segmentation of the data is found by applying spectral
clustering to the affinity matrix W = |C∗|+ |C∗>| as done
in SSC-BP. The procedure is summarized in Algorithm 2.

3. Theoretical Analysis of SSC-OMP
OMP has been shown to be effective for sparse recovery,

with the advantage over BP that it admits simple, fast im-
plementations. However, note that existing conditions for
the correctness of OMP for sparse recovery are too strong
for the subspace clustering problem. In particular, note that
the matrix X need not satisfy the mutual incoherence [28]
or restricted isometry properties [8], as two points in a sub-
space could be arbitrarily close to each other. More im-
portantly, these conditions are not applicable here because
our goal is not to recover a unique sparse solution. In fact,
the sparse solution is not unique since any di linearly in-
dependent points from Si can represent a point xj ∈ Si.
Therefore, there is a need to find conditions under which
the output of OMP (which need not coincide with the solu-
tion of (6) or (3)) is guaranteed to be subspace preserving.

This section is devoted to studying sufficient conditions
under which SSC-OMP gives a subspace-preserving repre-
sentation. Our analysis assumes that the data is noiseless.
The termination parameters of Algorithm 1 are ε = 0 and
kmax large enough (e.g., kmax = M ). We also assume
that the columns of X are normalized to unit `2 norm. To
make our results consistent with state-of-the-art results, we
first study the case where the subspaces are deterministic,

1If argmax in step 3 of the algorithm gives multiple items, pick one
of them in a deterministic way, e.g., pick the one with the smallest index.

including both independent subspaces as well as arbitrary
subspaces. We then study the case where both the subspaces
and the data points are drawn at random.

3.1. Independent Deterministic Subspace Model

We first consider the case where the subspaces are fixed,
the data points are fixed, and the subspaces are independent.

Definition 2. A collection of subspaces {Si}ni=1 is called
independent if dim

(∑
i Si
)
=
∑
i dim(Si), where

∑
i Si

is defined as the subspace {
∑
i xi : xi ∈ Si}.

Notice that two subspaces are independent if and only
if they are disjoint, i.e., if they intersect only at the origin.
However, pairwise disjoint subspaces need not be indepen-
dent, e.g., three lines in R2 are disjoint but not independent.
Notice also that any subset of a set of independent sub-
spaces is also independent. Therefore, any two subspaces in
a set of independent subspaces are independent and hence
disjoint. In particular, this implies that if {Si}ni=1 are inde-
pendent, then Si and S(−i) :=

∑
m 6=i Sm are independent.

To establish conditions under which SSC-OMP gives a
subspace-preserving affinity for independent subspaces, it
is important to note that when computing OMP(X−j ,xj),
the goal is to select other points in the same subspace as xj .
The process for selecting these points occurs in step 3 of
Algorithm 1, where the dot products between all points xm,
m 6= j, and the current residual qk are computed and the
point with the highest product (in absolute value) is chosen.
Since in the first iteration the residual is q0 = xj , we could
immediately choose a point xm in another subspace when-
ever the dot product of xj with a point in another subspace
is larger than the dot product of xj with points in its own
subspace. What the following theorem shows is that, even
though OMP may select points in the wrong subspaces as
the iterations proceed, the coefficients associated to points
in other subspaces will be zero at the end. Therefore, OMP
(with ε = 0 and kmax = N − 1) is guaranteed to find a
subspace-preserving representation.

Theorem 1. If the subspaces are independent, OMP gives
a subspace-preserving representation of each data point.

Proof. [Sketch only] Assume that xj ∈ Si. Since ε = 0 and
kmax is large, OMP gives an exact representation, i.e., xj =
Xcj and cjj = 0. Thus, since Si and S(−i) are independent,
the coefficients of data points in S(−i) must be zero.

3.2. Arbitrary Deterministic Subspace Model

We will now consider a more general class of subspaces,
which need not be independent or disjoint, and investigate
conditions under which OMP gives a subspace-preserving
representation. In the following, Xi ∈ RD×Ni denotes the
submatrix of X containing the points in the ith subspace;
for any xj ∈ Si, Xi

−j ∈ RD×(Ni−1) denotes the matrix Xi



with the point xj removed; X i and X i−j denote respectively
the set of vectors contained in the columns of Xi and Xi

−j .
Now, it is easy to see that a sufficient condition for

OMP(X−j ,xj) to be subspace preserving is that for each
k in step 3 of Algorithm 1, the point that maximizes the dot
product lies in the same subspace as xj . Since q0 = xj and
q1 is equal to xj minus the projection of xj onto the sub-
space spanned by the selected point, say x̂, it follows that if
xj , x̂ ∈ Si then q1 ∈ Si. By a simple induction argument,
it follows that if all the selected points are in Si, then so
are the residuals {qk}. This suggests that the condition for
OMP(X−j ,xj) to be subspace preserving must depend on
the dot products between the data points and a subset of the
set of residuals (the subset contained in the same subspace
as xj). This motivates the following definition and lemma.

Definition 3. Let Q(A, b) be the set of all residual vectors
computed in step 4 of OMP(A, b). The set of OMP residual
directions associated with matrix Xi

−j and point xj ∈Si is
defined as:

Wi
j := {w =

q

‖q‖2
: q ∈ Q(Xi

−j ,xj), q 6= 0}. (7)

The set of OMP residual directions associated with the data
matrix Xi is defined asWi :=

⋃
j:xj∈Si

Wi
j .

Lemma 1. OMP gives a subspace-preserving representa-
tion for point xj ∈ Si in at most di iterations if

∀w ∈ Wi
j max

x∈
⋃

k 6=i Xk
|w>x| < max

x∈X i\{xj}
|w>x|. (8)

Proof. [Sketch only] By using an induction argument, it
is easy to see that the condition in (8) implies that the se-
quence of residuals of OMP(X−j ,xj) is the same as that
of the fictitious problem OMP(Xi

−j ,xj). Hence, the output
of OMP(X−j ,xj) is the same as that of OMP(Xi

−j ,xj),
which is, by construction, subspace-preserving.

Intuitively, Lemma 1 tells us that if the dot product be-
tween the residual directions for subspace i and the data
points in all other subspaces is smaller than the dot prod-
uct between the residual directions for subspace i and all
points in subspace i other than xj ∈ Si, then OMP gives a
subspace-preserving representation. While such a condition
is very intuitive from the perspective of OMP, it is not as in-
tuitive from the perspective of subspace clustering as it does
not rely on the geometry of the problem. Specifically, it
does not directly depend on the relative configuration of the
subspaces or the distribution of the data in the subspaces. In
what follows, we derive conditions on the subspaces and the
data that guarantee that the condition in (8) holds. Before
doing so, we need some additional definitions.

Definition 4. The coherence between two sets of points
of unit norm, X and Y , is defined as µ(X ,Y) =
maxx∈X ,y∈Y |〈x,y〉|.

The coherence measures the degree of “similarity” be-
tween two sets of points. In our case, we can see that the
left hand side of (8) is bounded above by the coherence be-
tween the setsWi and

⋃
k 6=i X k. As per (8), this coherence

should be small, which implies that data points from differ-
ent subspaces should be sufficiently separated (in angle).

Definition 5. The inradius r(P) of a convex body P is the
radius of the largest Euclidean ball inscribed in P .

As shown in Lemma 2, the right hand side of (8) is
bounded below by r(Pi−j), where Pi−j := conv

(
± X i−j

)
is the symmetrized convex hull of the points in the ith sub-
space other than xj , i.e., X i−j . Therefore, (8) suggests that
the minimum inradius ri := minj r(Pi−j) should be large,
which means the points in Si should be well-distributed.

Lemma 2. Let xj ∈ Si. Then, for all w ∈ Wi
j , we have:

max
x∈

⋃
k 6=iXk

|w>x| ≤max
k:k 6=i

µ(Wi,X k) ≤max
k:k 6=i

µ(X i,X k)/ri;

max
x∈X i\{xj}

|w>x| ≥ r(Pi−j) ≥ ri. (9)

Proof. The proof can be found in [37].

Lemma 2 allows us to make the condition of Lemma 1
more interpretable, as stated in the following theorem.

Theorem 2. The output of OMP is subspace preserving if

∀i = 1, . . . , n, max
k:k 6=i

µ(Wi,X k) < ri. (10)

Corollary 1. The output of OMP is subspace preserving if

∀i = 1, . . . , n, max
k:k 6=i

µ(X i,X k) < r2i . (11)

Note that points in Wi are all in subspace Si, as step 4
of OMP(A := Xi

−j , b := xj) has b and PTk+1
b both in Si.

The conditions (10) and (11) thus show that for each sub-
space Si, a set of points (i.e., X i orWi) in Si should have
low coherence with all points from other subspaces, and that
points in X i should be uniformly located in Si to have a
large inradius. This is in agreement with the intuition that
points from different subspaces should be well separated,
and points within a subspace should be well distributed.

For a comparison of Corollary 1 and Theorem 2, note
that due to Lemma 2 condition (10) is tighter than condition
(11), making Theorem 2 preferable. Yet Corollary 1 has the
advantage that both sides of condition (11) depend directly
on the data points inX , while condition (10) depends on the
residual points inWi, making it algorithm specific.

Another important thing to notice is that conditions (10)
and (11) can be satisfied even if the subspaces are neither
independent nor disjoint. For example, consider the case
where Si

⋂
Sk 6= 0. Then, the coherence µ(Wi,X k) could



still be small as long as no points inWi and X k are near the
intersection of Si and Sk. Actually, even this is too strong
of an assumption since the intersection is a subspace. Thus,
x ∈ X k, y ∈ Wi could both be very close to the inter-
section yet have low coherence. The same argument also
works for condition (11). Admittedly, under specific dis-
tributions of points, it is possible that there exists x ∈ X k
and y ∈ Wi that are arbitrarily close to each other when
they are near the intersection. However, this worst case sce-
nario is unlikely to happen if we consider a random model,
as discussed next.

3.3. Arbitrary Random Subspace Model

This section considers the fully random union of sub-
spaces model in [26], where the basis elements of each sub-
space are chosen uniformly at random from the unit sphere
of the ambient space and the data points from each sub-
space are uniformly distributed on the unit sphere of that
subspace. Theorem 3 shows that the sufficient condition
in (10) holds true with high probability (i.e. the probability
goes to 1 as the density of points grows to infinity) given
some conditions on the subspace dimension d, the ambi-
ent space dimension D, the number of subspaces n and the
number of data points per subspace.

Theorem 3. Assume a random union of subspaces model
where all subspaces are of equal dimension d and the num-
ber of data points in each subspace is ρd+ 1, where ρ > 1
is the “density”, so that the total number data points in all
subspaces is N(n, ρ, d) = n(ρd + 1). The output of OMP
is subspace preserving with probability p > 1− 2d

N(n,ρ,d) −
N(n, ρ, d)e−

√
ρd if

d <
c2(ρ) log ρ

12

D

logN(n, ρ, d)
, (12)

where c(ρ) > 0 is a constant that depends only on ρ.

One interpretation of the condition in (12) is that the di-
mension d of the subspaces should be small relative to the
ambient dimension D. It also shows that as the number
of subspaces n increases, the factor logN(n, ρ, d) also in-
creases, making the condition more difficult to be satisfied.
In terms of the density ρ, it is shown in [26] that there ex-
ists a ρ0 such that c(ρ) = 1/

√
8 when ρ > ρ0. Then, it

is easy to see that when ρ > ρ0, the term that depends
on ρ is log ρ

logN(n,ρ,d) = log ρ
log(n(ρd+1)) , which is a monoton-

ically increasing function of ρ. This makes the condition
easier to be satisfied as the density of points in the sub-
spaces increases. Moreover, the probability of success is
1 − 2d

N(n,ρ,d) − N(n, ρ, d)e−
√
ρd, which is also an increas-

ing function of ρ when ρ is greater than a threshold value.
As a consequence, as the density of the points increases, the
condition in Theorem 3 becomes easier to satisfy and the
probability of success also increases.

4. Relationships with Other Methods
In this section we compare our results for SSC-OMP

with those for other methods of the general form in (2).
These methods include SSC-BP [11, 12, 26], which uses the
`1 norm as a regularizer, LRR [19] and LRSC [30], which
use the nuclear norm, and LSR [22] which uses the `2 norm.
We also compare our results to those of [9] for SSC-OMP.
The comparison is in terms of whether the solutions given
by these alternative algorithms are subspace-preserving.
Independent Subspaces. Independence is a strong as-
sumption on the union of subspaces. Under this assump-
tion, a subspace has a trivial intersection with not only ev-
ery other subspace, but also the union of all other subspaces.
This case turns out to be especially easy for a large category
of self-expressive subspace clustering methods [22], and
SSC-BP, LRR, LRSC and LSR are all able to give subspace-
preserving representations. Thus, in this easy case, the pro-
posed method is as good as state-of-the-art methods.
Arbitrary Subspaces. To the best of our knowledge, when
the subspaces are not independent, there is no guaran-
tee of correctness for LRR, LRSC and LSR. For SSC-BP, as
shown in [26], the representation is subspace-preserving if

∀i = 1, . . . , n, max
k:k 6=i

µ(Vi,X k) < ri, (13)

where Vi is a set of Ni dual directions associated with Xi.
When comparing (13) with our result in condition (10), we
can see that the right hand sides are the same. However, the
left hand sides are not directly comparable, as no general re-
lationship is known between the sets Vi andWi. Nonethe-
less, notice that the number of points in these two sets are
not the same since card(Vi) = Ni and card(Wi) = Nidi.
Therefore, if we assume that the points in Vi and Wi are
distributed uniformly at random on the unit sphere, then
µ(Wi,X k) is expected to be larger than µ(Vi,X k), mak-
ing the condition for SSC-OMP less likely to be satisfied
than that for SSC-BP. Now, when comparing (13) with our
condition in (11), we see that the left hand sides are compa-
rable under a random model where both Vi and X i contain
Ni points. However, the right hand side is r2i , which is less
than or equal to ri since the data are normalized and ri ≤ 1.
This again makes the condition for SSC-OMP more difficult
to hold than that for SSC-BP. However, this difference is ex-
pected to vanish for large scale problems, and SSC-OMP is
computationally more efficient, as we will see in Section 5.
Random Subspaces. For the random model, [26] shows
that SSC-BP gives a subspace-preserving representation
with probability p > 1− 2

N(n,ρ,d) −N(n, ρ, d)e−
√
ρd if

d <
c2(ρ) log ρ

12

D

logN(n, ρ, d)
. (14)

If we compare this result with that of Theorem 3, we can
see that the condition under which both methods succeed



with high probability is exactly the same. The difference
between them is that SSC-BP has a higher probability of
success than SSC-OMP when d > 1. However, it is easy
to see that the difference in probability goes to zero as the
density ρ goes to infinity. This means that the performance
difference vanishes as the scale of the problem increases.
Other Results for SSC-OMP. Finally, we compare our re-
sults with those in [9] for SSC-OMP. Define the principal
angle between two subspaces Si and Sk as:

θ∗i,k = min
x∈Si

‖x‖2=1

min
y∈Sk

‖y‖2=1

arccos〈x,y〉. (15)

It is shown in [9] that the output of SSC-OMP is subspace-
preserving if for all i = 1, . . . , n,

max
k:k 6=i

µ(X i,X k) < ri−
2
√
1− (ri)2

4
√
12

max
k:k 6=i

cos θ∗i,k. (16)

The merit of this result is that it introduces the subspace an-
gles in the condition, and satisfies the intuition that the al-
gorithm is more likely to work if the subspaces are far apart
from each other. However, the RHS of the condition shows
an intricate relationship between the intra-class property ri
and the inter-class property θ∗i,k, which greatly complicates
the interpretation of the condition. More importantly, as is
shown in [37], the condition is more restrictive than (10),
which makes Theorem 2 a stronger result.

5. Experiments
In this section, we first verify our theoretical results for

SSC-OMP and compare them with those for SSC-BP by do-
ing experiments on synthetic data using the random model.
Specifically, we show that even if the subspaces are not
independent, the solution of OMP is subspace-preserving
with a probability that grows with the density of data points.
Second, we test the performance of the proposed method on
clustering images of handwritten digits and human faces,
and conclude that SSC-OMP achieves the best trade off be-
tween accuracy and efficiency.
Methods. We compare the performance of state-of-the-art
spectral subspace clustering methods, including LRSC [30],
SSC-BP [12], LSR [22], and spectral curvature clustering
(SCC) [5]. In real experiments, we use the code provided
by the respective authors for computing the representation
matrix C∗, where the parameters are tuned to give the best
clustering accuracy. We then apply the normalized spectral
clustering in [32] to the affinity |C∗| + |C∗>|, except for
SCC which has its own spectral clustering step.
Metrics. We use two metrics to evaluate the degree to
which the subspace-preserving property is satisfied. The
first one is a direct measure of whether the solution is sub-
space preserving or not. However, for comparing with state

of the art methods whose output is generally not subspace
preserving, the second one measures how close the coeffi-
cients are from being subspace preserving.
– Percentage of subspace-preserving representations (p%):
this is the percentage of points whose representations are
subspace-preserving. Due to inexactness in the solvers, co-
efficients with absolute value less than 10−3 are considered
zero. A subspace-preserving solution gives p = 100.
– Subspace-preserving representation error (e%) [12]: for
each cj in (1), we compute the fraction of its `1 norm that
comes from other subspaces and then average over all j, i.e.,
e = 100

N

∑
j(1−

∑
i(ωij ·|cij |)/‖cj‖1), where ωij ∈ {0, 1}

is the true affinity. A subspace-preserving C gives e = 0.
Now, the performance of subspace clustering depends not

only on the subspace-preserving property, but also the con-
nectivity of the similarity graph, i.e., whether the data points
in each cluster form a connected component of the graph.
– Connectivity (c): For an undirected graph with weights
W ∈ RN×N and degree matrix D = diag(W · 1), where
1 is the vector of all ones, we use the second small-
est eigenvalue λ2 of the normalized Laplacian L = I −
D−1/2WD−1/2 to measure the connectivity of the graph;
λ2 is in the range [0, n−1n ] and is zero if and only if the
graph is not connected [14, 6]. In our case, we compute
the algebraic connectivity for each cluster, λi2, and take the
quantity c = mini λ

i
2 as the measure of connectivity.

Finally, we use the following two metrics to evaluate the
performance of subspace clustering methods.
– Clustering accuracy (a%): this is the percentage of cor-
rectly labeled data points. It is computed by matching the
estimated and true labels as a = max

π

100
N

∑
ij Q

est
π(i)jQ

true
ij ,

where π is a permutation of the n groups, Qest and Qtrue

are the estimated and ground-truth labeling of data, respec-
tively, with their (i, j)th entry being equal to one if point j
belongs to cluster i and zero otherwise.
– Running time (t): for each clustering task using R©Matlab.

The reported numbers in all the experiments of this sec-
tion are averages over 20 trials.

5.1. Synthetic Experiments

We randomly generate n = 5 subspaces each of dimen-
sion d = 6 in an ambient space of dimension D = 9. Each
subspace contains Ni = ρd sample points randomly gener-
ated on the unit sphere, where ρ is varied from 5 to 3,333,
so that the number of points varies from 150 to 99,990. For
SSC-OMP, we set ε in Algorithm 1 to be 10−3 and kmax to
be d = 6. For SSC-BP we use the `1-Magic solver. Due to
the computational complexity, SSC-BP is run for ρ ≤ 200.

The subspace-preserving representation percentage and
error are plotted in Figure 1(a) and 1(b). Observe that the
probability that SSC-OMP gives a subspace-preserving so-
lution grows as the density of data point increases. When
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Figure 1. Performance of SSC-OMP and SSC-BP on synthetic data. The data are drawn from 5 subspaces of dimension 6 in ambient
dimension 9. Each subspace contains the same number of points and the overall number of points is varied from 150 to 105 and is shown
in log scale. For SSC-BP, however, the maximum number of points tested is 6,000 due to time limit. Notice that the bottom right figure
also uses log scale in the y-axis.

comparing with SSC-BP, we can see that SSC-OMP is out-
performed. This matches our analysis that the condition for
SSC-OMP to give a subspace-preserving representation is
stronger (i.e., is more difficult to be satisfied).

From a subspace clustering perspective, we are more in-
terested in how well the method performs in terms of clus-
tering accuracy, as well as how efficient the method is in
terms of running time. These results are plotted in Figure
1(d) and 1(e), together with the connectivity 1(c). We first
observe that SSC-OMP does not have as good a connec-
tivity as SSC-BP. This could be partly due to the fact that
it has fewer correct connections in the first place as shown
by the subspace-preserving percentage. For clustering ac-
curacy, SSC-OMP is also outperformed by SSC-BP. This
comes at no surprise as the sparse representations produced
by SSC-OMP are not as subspace-preserving or as well con-
nected as those of SSC-BP. However, we observe that as the
density of data points increases, the difference in clustering
accuracy also decreases, and SSC-OMP seems to achieve
arbitrarily good clustering accuracy for large N . Also, it
is evident from Figure 1(e) that SSC-OMP is significantly
faster: it is 3 to 4 orders of magnitude faster than SSC-BP
when clustering 6,000 points. We conclude that as N in-
creases, the difference in clustering accuracy between SSC-
OMP and SSC-BP reduces, yet SSC-OMP is significantly
faster, which makes it preferable for large-scale problems.

5.2. Clustering Images of Handwritten Digits

In this experiment, we evaluate the performance of dif-
ferent subspace clustering methods on clustering images of
handwritten digits. We use the MNIST dataset [17], which
contains grey scale images of handwritten digits 0− 9.

In each experiment, Ni ∈ {50, 100, 200, 400, 600} ran-
domly chosen images for each of the 10 digits are chosen.
For each image, we compute a set of feature vectors us-
ing a scattering convolution network [3]. The feature vector
is a concatenation of coefficients in each layer of the net-
work, and is translation invariant and deformation stable.
Each feature vector is of size 3,472. The feature vectors for
all images are then projected to dimension 500 using PCA.
The subspace clustering techniques are then applied to the
projected features. The results are reported in Table 1.

The numbers show that both SSC-OMP and SSC-BP
give a much smaller subspace-preserving representation er-
ror than all other methods, with SSC-BP being better than
SSC-OMP. This is consistent with our theoretical analysis
as there is no guarantee that LSR or LRSC give a subspace-
preserving representation for non-independent subspaces,
and SSC-BP has a higher probability of giving a subspace-
preserving representation than SSC-OMP.

In terms of clustering accuracy, SSC-OMP is better than
SSC-BP, which in turn outperforms LSR and LRSC, while



Table 1. Performance of subspace clustering methods on the
MNIST dataset. The data consists of a randomly chosen num-
ber Ni ∈ {50, 100, 200, 400, 600} of images for each of the 10
digits (i.e., 0-9), with features extracted from a scattering network
and projected to dimension 500 using PCA.

No. points 500 1000 2000 4000 6000
e%: subspace-preserving representation error
SSC-OMP 42.13 38.73 36.20 34.22 33.22
SSC-BP 29.56 24.88 21.07 17.80 16.08

LSR 78.24 79.68 80.83 81.75 82.18
LRSC 81.33 81.99 82.67 83.15 83.27
SCC 89.89 89.87 89.85 89.81 89.81

a%: average clustering accuracy
SSC-OMP 83.64 86.67 90.60 91.22 91.25
SSC-BP 83.01 84.06 85.58 86.00 85.60

LSR 75.84 78.42 78.09 79.06 79.91
LRSC 75.02 79.76 79.44 78.46 79.88
SCC 53.45 61.47 66.43 71.46 70.60

t(sec.): running time
SSC-OMP 2.7 11.4 93.8 410.4 760.9
SSC-BP 20.1 97.9 635.2 4533 13605

LSR 1.7 5.9 42.4 136.1 327.6
LRSC 1.9 6.4 43.0 145.6 312.9
SCC 31.2 48.5 101.3 235.2 366.8

SCC performs the worst among the algorithms tested.
Considering the running time of the methods, SSC-BP

requires much more computation, especially when the num-
ber of points is large. Though SSC-OMP is an iterative
method, its computation time is about twice that of LSR
and LRSC, which have closed form solutions. This again
qualifies the proposed method for large scale problems.

5.3. Clustering Face Images with Varying Lighting

In this experiment, we evaluate the performance of dif-
ferent subspace clustering methods on the Extended Yale B
dataset [15], which contains frontal face images of 38 indi-
viduals under 64 different illumination conditions, each of
size 192× 168. In this case, the data points are the original
face images downsampled to 48×42 pixels. In each experi-
ment, we randomly pick n ∈ {2, 10, 20, 30, 38} individuals
and take all the images (under different illuminations) of
them as the data to be clustered.

The clustering performance of different methods is re-
ported in Table 2. In terms of subspace-preserving recov-
ery, we can observe a slightly better performance of SSC-
BP over SSC-OMP in all cases. The other three methods
have very large subspace-preserving representation errors
especially when the number of subjects is n ≥ 10. In terms
of clustering accuracy, all methods do fairly well when the
number of clusters is 2 except for SCC, which is far worse
than the others. As the number of subjects increases from
10 to 38, LSR and LRSC can only maintain an accuracy of
about 60% and SCC is even worse, but SSC-OMP and SSC-

Table 2. Performance of subspace clustering methods on EYaleB
dataset. A ’NA’ denotes that a running error was returned by the
solver. The data consists of face images under 64 different illu-
mination conditions of a randomly picked n = {2, 10, 20, 30, 38}
individuals. Images are downsampled from size 192× 168 to size
48× 42 and used as the feature vectors (data points).

No. subjects 2 10 20 30 38
e%: subspace-preserving representation error
SSC-OMP 4.14 13.62 16.80 18.66 20.13
SSC-BP 2.70 10.33 12.67 13.74 14.64

LSR 22.77 67.07 79.52 84.94 87.57
LRSC 26.87 69.76 80.58 85.56 88.02
SCC 48.70 NA NA 96.57 97.25

a%: average clustering accuracy
SSC-OMP 99.18 86.09 81.55 78.27 77.59
SSC-BP 99.45 91.85 79.80 76.10 68.97

LSR 96.77 62.89 67.17 67.79 63.96
LRSC 94.32 66.98 66.34 67.49 66.78
SCC 78.91 NA NA 14.15 12.80

t(sec.): running time
SSC-OMP 0.6 8.3 31.1 63.7 108.6
SSC-BP 49.1 228.2 554.6 1240 1851

LSR 0.1 0.8 3.1 8.3 15.9
LRSC 1.1 1.9 6.3 14.8 26.5
SCC 50.0 NA NA 520.3 750.7

BP maintain a reasonably good performance, although the
accuracy also degrades gradually. We can see that SSC-BP
performs slightly better when the number of subjects is 2 or
10, but SSC-OMP performs better when n > 10.

6. Conclusion and Future Work
We studied the sparse subspace clustering algorithm

based on OMP. We derived theoretical conditions un-
der which SSC-OMP is guaranteed to give a subspace-
preserving representation. Our conditions are broader than
those of state-of-the-art methods based on `2 or nuclear
norm regularization, and slightly weaker than those of
SSC-BP. Experiments on synthetic and real world datasets
showed that SSC-OMP is much more accurate than state-of-
the-art methods based on `2 or nuclear norm regularization
and about twice as slow. On the other hand, SSC-OMP is
slightly less accurate than SSC-BP but orders of magnitude
faster. Moreover, we demonstrated for the first time sub-
space clustering experiments on 100,000 points, whereas
state-of-the-art methods had previously only been tested on
at most 10,000 data points. Overall, SSC-OMP provided the
best accuracy versus computation trade-off for large scale
subspace clustering problems. We note that while the op-
timization algorithm for SSC-BP in [12] is inefficient for
large scale problems, our most recent work [35] presents a
scalable algorithm for elastic net based subspace clustering.
A comparison with this work is left for future research.
Acknowledgments. Work supported by NSF grant 1447822.
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