Is an Affine Constraint Needed for Affine Subspace Clustering?

Chong You
Electrical Engineering and Computer Sciences, University of California, Berkeley

Chun-Guang Li
Information and Communication Engineering, Beijing University of Posts and Telecommunications

Daniel P. Robinson
Applied Mathematics and Statistics, Johns Hopkins University, Baltimore

René Vidal
Mathematical Institute for Data Science, Johns Hopkins University, Baltimore

Introduction

- Vision datasets often contain multiple classes, each lying in a low-dimensional subspace.
- In many cases, the subspaces do not pass through the origin, i.e., they are affine.
- Affine subspace clustering (ASC): discover affine subspaces in an unsupervised manner.
- The collection of two lines (i.e., 1D affine subspaces) in \(\mathbb{R}^3 \) is affinely independent if they are skew lines.

Prior Work

- Data from multiple affine subspaces is self-expressive, i.e., \(x_j = X c_j, X = [x_1, \ldots, x_N] \)
 - find the self-expression \(c_j \) via solving
 \[
 \min_{c_j} \quad \text{s.t.} \quad x_j = X c_j, \quad c_j = 0, \quad c_j \in C
 \]
 - apply spectral clustering to affinity \(|c_{ij}| + |c_{ji}| \)
- \(\text{ASC without an affine constraint: } C = \mathbb{R}^N \)
 - No explicit modeling of the affine structure
 - More often applied, many scalable algorithms
- \(\text{ASC with an affine constraint: } C = \{1 \cdot c_1 = 1\} \)
 - With explicit modeling of the affine structure
 - Rarely applied, no scalable algorithms (noisy case)

Contributions

- When the ambient dimension is high enough, the affine constraint is not needed.
- Randomly generated subspaces: both ASC with/without an affine constraint are guaranteed to produce correct affinity.
- Computer vision datasets: difference in performance between ASC with/without an affine constraint is small or negligible.

Empirical Evaluation for Affine Subspace Clustering

- We study the following methods:
 - Affine constraint: \(f() = \| \cdot \|_1 \)
 - With: A-SSC \quad A-LSR
- We test on the following real datasets:
 - Hopkins 155, MNIST, Coil-100

Conclusion:

For real applications, difference between ASC with/without an affine constraint is small for high-dimensional data.

Theoretical Analysis for Affine Subspace Clustering

Preliminaries

- **Definition:** A function \(f : \mathbb{R}^{N \times D} \rightarrow \mathbb{R} \) is said to satisfy the Enforced Block Diagonal (EBD) conditions if \(f(C) = f(P^T C P) \) for any permutation \(P \) and \(f(C) \geq f(C_0) \) for any \(C_0 \) that contains only the diagonal blocks of \(C \).
 - The EBD conditions are satisfied for \(f(\cdot) = \| \cdot \|_1, \| \cdot \|_2, \| \cdot \|_\infty \), and so on.
- **Definition:** A collection of affine subspaces \(\{A_1\}_{j=1}^N \) is said to be affinely independent if \(\dim(\text{aff}(\cup_{j=1}^N A_j)) = 1 + \sum_{j=1}^N \dim(A_j) + n \)
- **Definition:** A collection of affine subspaces \(\{A_1 \subseteq \mathbb{R}^D\}_{j=1}^N \) is said to be drawn from the random affine subspace model if they are drawn independently and uniformly from the set of affine \((d_j) \)-dimensional subspaces of \(\mathbb{R}^D \).

Geometric Conditions

Given data \(x_i \in \mathbb{R}^D \) drawn from \(\{A_1\}_{j=1}^N \), assume that \(f \) satisfies the EBD conditions.

- **Theorem:** (ASC without affine constraint)
 - The solution to (1) gives a correct affinity if
 \(C_1: \{A_j\}_{j=1}^N \) is affinely independent
 - **C1:** \(\{A_j\}_{j=1}^N \) is affinely independent
- **Theorem:** (ASC with affine constraint)
 - The solution to (1) gives a correct affinity if
 \(C_2: 0 \not\in \text{aff}(\cup_{j=1}^N A_j) \)
 - **C2:** \(0 \not\in \text{aff}(\cup_{j=1}^N A_j) \)

Conditions Under Random Affine Subspace Model

- **Theorem:** Let \(\{A_1 \subseteq \mathbb{R}^D\}_{j=1}^N \) be drawn from the random affine subspace model.

 \[
 \begin{align*}
 \Pr(C_1 \text{ is satisfied}) & \geq D \\\text{ and } \Pr(C_2 \text{ is satisfied}) \geq D \\
 \text{(For n = 4 and } D \text{ for n = 5 and } D_j = 4) \\
 \end{align*}
 \]

Conclusion:

For affine subspaces drawn from the random model, both ASC with/without an affine constraint produce correct affinities with probability 1 if \(D \geq n + \sum_{j=1}^N d_j \).

This work was supported by NSF under grant #1618637 and #1704458, Northrop Grumman Corporation’s REALM Program, NSFC under grant #61876022 and MOE at Peking University’s Open Project Fund.