

Motivations

• **Sparse recovery**: Find the unique sparsest representation \mathbf{x} of a vector \mathbf{b} with respect to a dictionary \mathcal{A} :

$$\min_{\mathbf{x}} \|\mathbf{x}\|_0 \quad \text{s.t.} \quad \mathbf{b} = \sum_j \mathbf{a}_j x_j. \quad (1)$$

• Subspace sparse recovery: Find a subspace sparse representation \mathbf{x} of \mathbf{b} whose support gives its membership to one or more low-dimensional subspaces. • **Applications**: in machine learning, computer vision and signal processing.

	Classification	Clustering
b	Test data point	Data point
\mathbf{a}_{j}	All labeled data points	All other data points
X	Gives membership	Gives pairwise affinity
Application	Face recognition	Face clustering

Problem Statement

- Subspace: $\mathcal{S}_0 \subset \mathbb{R}^D$.
- Subspace structured dictionary:

 $\mathcal{A} = \{\mathbf{a}_j \in \mathbb{R}^D, j \in J\} = \mathcal{A}_0 \cup \mathcal{A}_c,$

where $\begin{cases} \mathcal{A}_0 \subseteq \mathcal{S}_0 : & \text{inliers to } \mathcal{S}_0 \\ \mathcal{A}_c \cap \mathcal{S}_0 = \emptyset : \text{outliers to } \mathcal{S}_0 \end{cases}$

• Subspace sparse representation:

- Let $\mathbf{b} \in \mathcal{S}_0$. Then $\mathbf{x}_j \neq 0 \implies \mathbf{a}_j \in \mathcal{A}_0 \subseteq \mathcal{S}_0$.
- **Problem**: Find conditions under which orthogonal matching pursuit (OMP) or basis pursuit (BP) give a subspace sparse representation for all $\mathbf{b} \in \mathcal{S}_0$.

Challenges

- **Sparse recovery**: dictionary needs to have low mutual coherence or satisfy the restricted isometry property so that the sparsest solution be unique.
- Subspace sparse recovery:

-Points in a subspace can be arbitrarily close, hence \mathcal{A} may not be incoherent.

-Subspace sparse representations may not and need not be unique.

This work was supported by the grants NSF-IIS 1447822.

Geometric Conditions for Subspace Sparse Recovery René Vidal Chong You and

Center for Imaging Science, Johns Hopkins University, Baltimore, MD, 21218, USA

Main Result: Geometric Conditions

• **Theorem**: The solutions of OMP and BP are subspace sparse for all $\mathbf{b} \in \mathcal{S}_0$ if the dictionary $\mathcal{A} = \mathcal{A}_0 \cup \mathcal{A}_c$ satisfies either of the following conditions:

• Notation:

 $-s(\mathcal{A}_{c}, \mathcal{S}_{0})$: minimum angle between the outliers \mathcal{A}_{c} and the subspace \mathcal{S}_{0} , i.e.,

$$s(\mathbf{v}, \mathbf{w}) := \cos^{-1} \langle \frac{\mathbf{v}}{\|\mathbf{v}\|_2}, \frac{\mathbf{v}}{\|\mathbf{v}\|_2} \rangle$$

Note that s is larger if points from two sets are not close.

with points $\pm A_0$.

• Geometric interpretation:

 $-\mathbf{PRC}$ holds if and only if all points in \mathcal{A}_c lie outside the green region. $-\mathbf{DRC}$ holds if and only if all points in \mathcal{A}_c lie outside the yellow region.

Implications for Sparse and Subspace Sparse Recovery

Implications for subspace sparse recovery

- To achieve subspace sparse recovery, the inliers \mathcal{A}_0 should be dense and well distributed in subspace \mathcal{S}_0 so that γ_0 is small, and the outliers \mathcal{A}_c should be sufficiently far from the subspace \mathcal{S}_0 (by PRC) or the set \mathcal{D}_0 (by DRC).
- DRC is a weaker condition than PRC since it only requires a finite subset of \mathcal{S}_0 to be far from the outliers.
- PRC and DRC justify why subspace sparsity works better for low-dimensional subspaces, since the area of the PRC/DRC region relative to the area of the entire unit sphere is smaller.

[1] C. You and R. Vidal., Subspace Sparse Representation, In Arxiv, 2015. [2] M. Soltanolkotabi and E.J. Candes., A geometric analysis of subspace clustering with outlier, In Annals of Statistics, 2013.

Principal Recovery Condition (PRC): $\gamma_0 < s(\mathcal{A}_c, \mathcal{S}_0)$, Dual Recovery Condition (DRC): $\gamma_0 < s(\mathcal{A}_c, \mathcal{D}_0).$

 $-s(\mathcal{A}_c, \mathcal{D}_0)$: minimum angle between \mathcal{A}_c and \mathcal{D}_0 , where \mathcal{D}_0 = the set of extreme points of $\{\mathbf{v} \in \mathcal{S}_0 : \langle \mathbf{v}, \mathbf{w} \rangle \leq 1, \forall \mathbf{w} \in \operatorname{conv}\{\pm \mathcal{A}_0\}\}$ is a finite subset of \mathcal{S}_0 . $-\gamma_0 = \max\{s(\pm \mathcal{A}_0, \mathbf{w}) : \mathbf{w} \in \mathcal{S}_0\}$: covering radius of points $\pm \mathcal{A}_0$ in \mathcal{S}_0 . Note that γ_0 is smaller if the unit sphere of the subspace \mathcal{S}_0 is densely populated

Implications for sparse recovery

- and either PRC or DRC hold.
- **Properties**:

References

• **Theorem**: Both OMP and BP recover any *s*-sparse signal with dictionary \mathcal{A} if $\forall \mathcal{A}_0 \subseteq \mathcal{A}$ s.t. $\operatorname{card}(\mathcal{A}_0) = s$ we have $\operatorname{rank}(\mathcal{A}_0) = s$

-Geometrically interpretable: requires points to be "incoherent". -Can be verified: explicit formula for computing \mathcal{D}_0 and γ_0 . -Less restrictive: the condition in theorem is implied by the mutual coherent condition $\mu(\mathcal{A}) < \frac{1}{2s-1}$, where $\mu(\mathcal{A}) = \max_{j \neq k} |\langle \mathbf{a}_j, \mathbf{a}_k \rangle|$.