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Motivations
•Sparse recovery: Find the unique

sparsest representation x of a vector b

with respect to a dictionary A:

min
x
‖x‖0 s.t. b =

∑
j

ajxj. (1)
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•Subspace sparse recovery: Find a subspace sparse representation x of b

whose support gives its membership to one or more low-dimensional subspaces.

•Applications: in machine learning, computer vision and signal processing.

Classification Clustering

b Test data point Data point

aj All labeled data points All other data points

x Gives membership Gives pairwise affinity

Application Face recognition Face clustering

Problem Statement
•Subspace: S0 ⊂ RD.

•Subspace structured dictionary:

A = {aj ∈ RD, j ∈ J} = A0 ∪ Ac,

where

{
A0 ⊆ S0 : inliers to S0

Ac ∩ S0 = ∅ : outliers to S0

•Subspace sparse representation:

Let b ∈ S0. Then xj 6= 0 =⇒ aj ∈ A0 ⊆ S0.

•Problem: Find conditions under which orthogonal matching pursuit (OMP)

or basis pursuit (BP) give a subspace sparse representation for all b ∈ S0.
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A = [A0,
inliers outliers

Ac]

Challenges

•Sparse recovery: dictionary needs to have low mutual coherence or satisfy

the restricted isometry property so that the sparsest solution be unique.

•Subspace sparse recovery:

– Points in a subspace can be arbitrarily close, hence A may not be incoherent.

–Subspace sparse representations may not and need not be unique.

Main Result: Geometric Conditions
•Theorem: The solutions of OMP and BP are subspace sparse for all b ∈ S0

if the dictionary A = A0 ∪ Ac satisfies either of the following conditions:

Principal Recovery Condition (PRC): γ0 < s(Ac,S0),

Dual Recovery Condition (DRC): γ0 < s(Ac,D0).

•Notation:

– s(Ac,S0): minimum angle between the outliers Ac and the subspace S0, i.e.,

s(v,w) := cos−1〈 v

‖v‖2
,

w

‖w‖2
〉, s(V ,W) := inf

v∈V\{0}
inf

w∈W\{0}
s(v,w).

Note that s is larger if points from two sets are not close.

– s(Ac,D0): minimum angle betweenAc and D0, where D0 = the set of extreme

points of {v ∈ S0 : 〈v,w〉 ≤ 1,∀w ∈ conv{±A0}} is a finite subset of S0.

–γ0 = max{s(±A0,w) : w ∈ S0}: covering radius of points ±A0 in S0. Note

that γ0 is smaller if the unit sphere of the subspace S0 is densely populated

with points ±A0.

•Geometric interpretation:

–PRC holds if and only if all points in Ac lie outside the green region.

–DRC holds if and only if all points in Ac lie outside the yellow region.
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Implications for Sparse and Subspace Sparse Recovery
Implications for subspace sparse recovery
•To achieve subspace sparse recovery, the inliers A0 should

be dense and well distributed in subspace S0 so that γ0 is

small, and the outliers Ac should be sufficiently far from the

subspace S0 (by PRC) or the set D0 (by DRC).

•DRC is a weaker condition than PRC since it only requires

a finite subset of S0 to be far from the outliers.

•PRC and DRC justify why subspace sparsity works better for

low-dimensional subspaces, since the area of the PRC/DRC

region relative to the area of the entire unit sphere is smaller.

Implications for sparse recovery
•Theorem: Both OMP and BP recover any s-sparse signal with

dictionary A if ∀A0 ⊆ A s.t. card(A0) = s we have rank(A0) = s

and either PRC or DRC hold.

•Properties:

–Geometrically interpretable: requires points to be “incoherent”.

–Can be verified: explicit formula for computing D0 and γ0.

– Less restrictive: the condition in theorem is implied by the mutual

coherent condition µ(A) < 1
2s−1, where µ(A) = maxj 6=k |〈aj, ak〉|.

References
[1] C. You and R. Vidal., Subspace Sparse Representation, In Arxiv, 2015.

[2] M. Soltanolkotabi and E.J. Candes., A geometric analysis of subspace clustering with outlier, In Annals of Statistics, 2013.

This work was supported by the grants NSF-IIS 1447822.


