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Abstract—Given a dictionary Π and a signal ξ = Πx generated by a
few linearly independent columns of Π, classical sparse recovery theory
deals with the problem of uniquely recovering the sparse representation
x. In this work, we consider the more general case where ξ lies in a
low-dimensional subspace spanned by a few possibly linearly dependent
columns of Π. In this case, x may not unique, and the goal is to recover
any subset of the columns of Π that spans the subspace containing ξ.
We call such a representation x subspace-sparse. We study conditions
under which existing pursuit methods recover a subspace-sparse repre-
sentation. Such conditions reveal important geometric insights and have
implications for classical sparse recovery as well as subspace clustering.

I. SUBSPACE-SPARSE RECOVERY PROBLEM

Given a dictionary Π and a signal ξ := Πx spanned by M columns
of Π, the task of sparse recovery is to find the M -sparse vector x.
Let Φ be the matrix containing the M columns that generate ξ. For
this problem to be well posed, Φ needs to have full column rank, i.e.,
s = M , where s := rank(Φ). If s < M , the columns of Φ lie in a
low-dimensional subspace and there could be multiple representations
of ξ. This issue is faced in the subspace classification [1] and subspace
clustering [2] problems, where it is sufficient to identify any matrix
Φ that spans the subspace (class or group) containing the signal ξ.
We call the corresponding representation x, whose nonzero entries
correspond to a subset of the columns of Φ, as subspace-sparse.

II. SUBSPACE-SPARSE RECOVERY CONDITIONS

This paper studies conditions under which a subspace-sparse
representation can be found using existing sparse recovery methods,
such as Orthogonal Matching Pursuit (OMP) or Basis Pursuit (BP).
Prior work [2], [3] has derived such conditions in the context of
subspace clustering, where ξ is one of the columns of Φ. Here, we
study the more general case where ξ is any point in the span of Φ.

Before proceeding further, we will need some definitions to char-
acterize Φ. Let K(±Φ) = conv{±φ1, · · · ,±φs} be the convex hull
of the symmetrized columns of Φ, which we call inlier points, and
let Ko(±Φ) = {η ∈ R(Φ) : ‖Φ>η‖∞ ≤ 1} be its polar set, where
R(·) is the range of a matrix. To characterize the “distribution” of
the inliers, we define the inradius of K(±Φ), denoted by r(K(±Φ)),
as the radius of the largest Euclidean ball in R(Φ) that is inscribed
in K(±Φ). Notice that the inradius is relatively large if the inliers are
distributed across the entire subspace R(Φ) and not skewed towards
a certain direction. We will also use the following definition of the
“dual” of the inlier points.

Definition 1. The set of dual points of the matrix Φ, denoted by
D(Φ), is defined as the set of extreme points of the set Ko(±Φ).

An important fact about D(Φ) is that it is a finite subset of R(Φ).
See Figure 1 for an illustration of the definition.

We are now ready to state the first condition for subspace-sparse
recovery. Our results assume that the columns of the dictionary Π
are of unit norm.

Theorem 1. Assume that the dictionary Π = [Φ,Ψ] satisfies the
following Principal Recovery Condition (PRC):

r(K(±Φ)) > max
η∈R(Φ)\{0}

‖Ψ>η‖∞/‖η‖2. (1)
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Fig. 1. Illustration of inlier characterizations. Assume Φ = [φ1, φ2, φ3]
spans a two-dimensional subspace. K(±Φ), Ko(±Φ) and D(Φ) are denoted
by the green polygon, the blue polygon, and the six blue dots, respectively.

Then BP and OMP give subspace-sparse solutions for any ξ ∈ R(Φ).

Notice that the LHS of the PRC requires that the inliers be evenly
distributed acrossR(Φ) so that r(K(±Φ)) is large. The RHS requires
that any column of Ψ and any points inR(Φ) should not be too close.

Our second result improves over PRC by showing that it is enough
to have a finite subset of R(Φ) be not too close to columns of Ψ.

Theorem 2. Assume that the dictionary Π = [Φ,Ψ] satisfies the
following Dual Recovery Condition (DRC):

r(K(±Φ)) > max
η∈D(Φ)\{0}

‖Ψ>η‖∞/‖η‖2. (2)

Then BP and OMP give subspace-sparse solutions for any ξ ∈ R(Φ).

Thus, by using DRC, Theorem 2 gives a stronger result.
We can apply PRC/DRC also to sparse recovery and the following

result can be established. If, for any division of Π into Φ ∈ Rn×s
and Ψ, it has rank(Φ) = s and PRC/DRC holds, then sparse recovery
of any s-sparse vector can be achieved by OMP and BP. Another
well known sufficient condition for this purpose is µ(Π) < 1

2s−1

[4], where µ(Π), the coherence, is the largest absolute inner product
between columns of Π. They compare as follows.

Theorem 3. Given a dictionary Π. If it has µ(Π) < 1
2s−1

, then PRC
holds for Π with any partition Π = [Φ,Ψ] where Φ ∈ Rn×s.

This shows that the condition of PRC is a better characterization
of sparse recovery than using the coherence parameter.

Acknowledgments: The authors thank the support of NSF BIGDA-
TA grant 1447822.

REFERENCES

[1] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma, “Robust face
recognition via sparse representation,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 31, no. 2, pp. 210–227, 2009.

[2] E. Elhamifar and R. Vidal, “Sparse subspace clustering: Algorithm,
theory, and applications,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 35, no. 11, pp. 2765–2781, 2013.

[3] M. Soltanolkotabi and E. J. Candès, “A geometric analysis of subspace
clustering with outliers,” Annals of Statistics, vol. 40, no. 4, pp. 2195–
2238, 2012.

[4] J. Tropp, “Greed is good: Algorithmic results for sparse approximation,”
IEEE Transactions on Information Theory, vol. 50, no. 10, pp. 2231–
2242, Oct. 2004.


