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Much of the existing work on automatic classification of gestures and skill in robotic surgery is based on
dynamic cues (e.g., time to completion, speed, forces, torque) or kinematic data (e.g., robot trajectories
and velocities). While videos could be equally or more discriminative (e.g., videos contain semantic infor-
mation not present in kinematic data), they are typically not used because of the difficulties associated
with automatic video interpretation. In this paper, we propose several methods for automatic surgical
gesture classification from video data. We assume that the video of a surgical task (e.g., suturing) has
been segmented into video clips corresponding to a single gesture (e.g., grabbing the needle, passing
the needle) and propose three methods to classify the gesture of each video clip. In the first one, we
model each video clip as the output of a linear dynamical system (LDS) and use metrics in the space of
LDSs to classify new video clips. In the second one, we use spatio-temporal features extracted from each
video clip to learn a dictionary of spatio-temporal words, and use a bag-of-features (BoF) approach to
classify new video clips. In the third one, we use multiple kernel learning (MKL) to combine the LDS
and BoF approaches. Since the LDS approach is also applicable to kinematic data, we also use MKL to com-
bine both types of data in order to exploit their complementarity. Our experiments on a typical surgical
training setup show that methods based on video data perform equally well, if not better, than state-of-
the-art approaches based on kinematic data. In turn, the combination of both kinematic and video data
outperforms any other algorithm based on one type of data alone.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Over 100 years ago, Dr. William Halsted created the first surgi-
cal residency training program in the United States. His training
paradigm was extremely simple: ‘‘see one, do one, teach one’’.
However, recent technological advances have changed the way in
which some surgeries are performed. This has opened the opportu-
nity for revisiting Halsted’s paradigm in search for improved ways
of training surgeons.

One of such technological advances is Robotic Minimally Inva-
sive Surgery (RMIS), which has several advantages over traditional
surgery, as shown in Menon and Tewari (2003), Abbou et al.
(2001), and Lowrance et al. (2010). For example, Lowrance et al.
(2010) compared the post-surgery recovery of patients who under-
went RMIS to that of patients who underwent traditional surgery.
One of the findings was that the former group experienced a short-
er length of stay, and was less likely to receive blood transfusions
or develop postoperative respiratory and miscellaneous surgical
complications.
ll rights reserved.

.

However, after a first wave of optimism about RMIS, drawbacks
started to arise. In the same study, Lowrance et al. (2010) observed
that RMIS was associated with an almost 2-fold increase in the
odds of postoperative genitourinary complications. One of the
hypotheses for this increment is the steep learning curve for sur-
geons who want to add RMIS to their armamentarium. In fact, even
for expert surgeons, training for RMIS is often considered challeng-
ing, as reported in Lenihan et al. (2008). This is exacerbated by the
fact that there is a lack of fair, objective, and effective criteria for
judging the skills acquired by a trainee with an RMIS system,
which could ultimately reduce the benefits of such technology.

These issues have motivated a number of approaches for auto-
matic RMIS skill assessment and gesture classification. One of the
most natural approaches is to decompose a surgical task into a ser-
ies of pre-defined ‘‘atomic’’ gestures or surgemes, such as ‘‘insert
needle’’, ‘‘grab needle’’, and ‘‘position needle’’. Fig. 1 shows sample
frames from three different surgemes taken from the dataset pre-
sented in Reiley et al. (2008). The problem then becomes how to
segment the task in time, recognize each surgeme, and finally as-
sess the skill level.

Even if RMIS systems are typically equipped with cameras that
record the entire procedure, to the best of our knowledge, most of
the studies focused mainly on the analysis of kinematic data stored
by the robot. This kind of information typically involves the posi-
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Fig. 1. Examples of different surgemes for the suturing, needle passing, and knot tying tasks.
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tion of the robot tools, angles between robot joints, velocity mea-
surements and force/torque signatures. In the medical literature,
action recognition techniques from video have been applied to
the analysis of the behavior of surgeons and nurses in an operating
room (Miyawaki et al., 2005; Padoy et al., 2007; Blum et al., 2008).
However, as far as video recognition of surgical gestures, little has
been done. For example, Lin (2010) investigated some basic ges-
ture recognition strategies from video and concluded that kine-
matic-based approaches were generally more accurate. In
contrast, recent approaches (Lalys et al., 2011; Béjar et al., 2012;
Padoy et al., 2012) show that video data can provide very high per-
formances in automatic recognition of different surgical phases,
suggesting that the above conclusion should be revisited.

In fact we argue that both video and kinematic data carry rele-
vant and complementary information. On the one hand, kinematic
data is superior to video in measuring actual 3D trajectories and 3D
velocities, which is not directly measured in video. On the other
hand, video data is superior to kinematic data in providing contex-
tual semantic information such as the presence or absence of a sur-
gical tool. The fundamental challenge is to develop efficient, robust
and reliable methods for extracting such semantic information
from raw pixel intensities. Indeed, it is very easy for video-based
techniques to perform poorly when simple video features are used.
For this reason, until recently, researchers focused mainly on kine-
matic data. Moreover, Automatic extraction of information from vi-
deo is very challenging due to noise, occlusions and clutter, as well
as the variability of tool pose and motions across tasks and surgeon
expertise. Therefore, while pure video recognition could be more
generally applicable to any surgery that is video recorded, when
both video and kinematic data are present their complementarity
should be exploited.

The aim of this paper is twofold: we propose a step towards
automatic recognition of surgical gestures in video, and we present
a framework for the fusion of kinematic and video data, and show
that such a combination leads to higher recognition accuracy than
when using only one type of data. Rather than aiming to a com-
plete semantic interpretation of a surgical video, which is elusive
at this point, we propose to use the statistical properties of features
extracted from the video to build models for each gesture and use
these models to classify surgical gestures in new videos. More
specifically, given a video of a surgical task (e.g., suturing, needle
passing, knot tying), we assume that the video has been segmented
into video clips corresponding to a single gesture (e.g., position
needle, drive needle through tissue, pull suture, etc.) and tackle
the problem of recognizing the gesture associated with each video
clip. Admittedly, this is a step backwards from existing work on
kinematic data, which is able to simultaneously segment and
classify gestures. However, given the limited amount of prior
work on surgical gesture recognition from video, we believe that
assuming known segmentation is a natural first step towards
building good models for each gesture from a more complex data
source.

We propose and evaluate three approaches to surgical gesture
classification from video. The first approach uses linear dynamical
systems (LDSs) to model the time series of features extracted from
each video clip. Metrics between the parameters of the LDSs are
then used to train classifiers for each gesture. Different features,
such as raw pixel intensities or optical flow, and different metrics
in the space of LDSs are evaluated. The second approach is a bag-
of-features (BoF) approach in which a dictionary of spatio-tempo-
ral words is learned from spatio-temporal features extracted from
all video clips. Each video clip is then represented with a histogram
of such words and metrics between histograms are used to train
classifiers for each gesture. A thorough analysis of all the compo-
nents of the BoF framework, and their variations, is presented
and the best performing combination of components is highlighted
and discussed. The third approach combines the LDS and BoF ap-
proaches using multiple kernel learning (MKL). Since the method
based on LDS is also applicable to kinematic data, we also use
MKL to train classifiers that operate jointly in the kinematic and vi-
deo data.

Our experiments on kinematic data show that methods based
on LDSs already outperform state-of-the-art approaches based on
Sparse Hidden Markov Models (SHMMs) (Tao et al., 2012). For vi-
deo data, the BoF approach performs better than the LDS approach,
while the MKL approach improves upon each of the individual
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methods. Overall, our main conclusion is that methods based on vi-
deo data perform equally well, if not better, than methods based on
kinematic data for a typical surgical training setup. This result
should encourage further investigation of video based techniques
for surgical gesture classification as videos potentially carry more
unexploited information than kinematic data. Moreover, we show
that the combination of both kinematic and video data outper-
forms the accuracy of any algorithm that uses only one type of
data.

2. State of the art

Previous work on skill evaluation in RMIS mainly exploited
kinematic data recorded by the robot. Many works used global
measurements of the task, such as time to completion (Datta
et al., 2001; Judkins et al., 2008), speed and number of hand move-
ments (Datta et al., 2001), distance travelled Judkins et al. (2008),
and force and torque signatures (Richards et al., 2000; Yamauchi
et al., 2002; Judkins et al., 2008). These methods are generally easy
to implement. However, they perform a global assessment neglect-
ing the fact that a surgical task is composed of many different ges-
tures. Such global approaches have two main drawbacks. First,
they use a single model for a complex task as a whole, while the
decomposition of a task into atomic gestures allows for the use
of a simpler model for each gesture. Second, they assume that a
trainee is either skilled or unskilled at all gestures. In practice, dif-
ferent gestures have different levels of complexity, and one would
expect a trainee to learn quickly how to perform simple gestures,
and to require more training to perform complex ones.

To address these drawbacks, several works (see e.g., Rosen et al.,
2002; McKenzie et al., 2001; Lin et al., 2006; Reiley et al., 2008)
have considered the problem of decomposing a surgical task into
atomic gestures, usually called surgemes. Such a decomposition
not only addresses the drawbacks of global approaches, but also
has the advantage of exploiting the set of rules that govern how
different surgemes are related to each other. In other words, it al-
lows one to describe a surgical task using a grammar that, for each
task, describes which transitions between gestures are allowed.
One can leverage this grammar to help the recognition of a
surgeme, e.g., by exploiting the fact that the set of surgemes that
follows an already labeled surgeme is smaller. One can also use
such a grammar as an additional measure of assessment. For in-
stance, each gesture in isolation could be executed perfectly, but
the sequence of gestures may not make sense for the given task
(e.g., inserting the needle before grabbing the needle). Given the
many similarities with the structure of natural languages, this ap-
proach to surgical skill assessment is also known as the language of
surgery. This approach proceeds in three steps: task segmentation,
gesture recognition, and assessment of the quality of the execution
and the feasibility of the sequence of gestures. Since this paper
deals with the recognition phase, we will limit the discussion of
previous work to those related to surgical gesture recognition.

Most of the prior work on surgical gesture recognition (see, e.g.,
Dosis et al., 2005; Reiley and Hager, 2009; Varadarajan, 2011) uses
HMMs to analyze kinematic data stored by the robot. All these ap-
proaches model each surgeme as one or more states of an HMM.
The main difference is in how these approaches model the observa-
tions within each surgeme. For example, Reiley and Hager (2009)
vector-quantize the observations into discrete symbols, Varadara-
jan et al. (2009) use a Gaussian model combined with linear
discriminant analysis (LDA), Varadarajan (2011) assumes that the
observations are generated from a lower-dimensional latent space
using Factor Analyzed HMMs (FA-HMMs) and Switched Linear
Dynamical Systems (SLDSs), Leong et al. (2006) use a Gaussian
mixture model (GMM), and Tao et al. (2012) model the observa-
tions as a linear combination of atomic motions with sparse
coefficients. All of these models have significantly improved surgi-
cal gesture classification over a standard HMM.

Early work on video data analysis, such as Miyawaki et al.
(2005), focus on recognizing the (coarse) phases of a surgery by
also observing surgeons and nurses in the operating room. In Klank
et al. (2008) an automatic feature extraction mechanism from vi-
deo is proposed based on genetic programming. They use the ex-
tracted features to classify the (coarse) phases of a surgery but
the average recognition accuracy is around 50%. The work in Blum
et al. (2010) and Padoy et al. (2012) propose to recognize the dif-
ferent coarse phases of a surgery (e.g. CO2 inflation, abdominal
suturing, etc.) using laparoscopic videos. For example, the work
in Padoy et al. (2012) uses binary signals that indicate the presence
or not of a set of tools in the operating room. Using those signa-
tures they use Dynamic Time Warping (DTW) and HMMs in order
to classify new sequences. Also in Lalys et al. (2011) an application-
dependent framework for the recognition of high-level surgical
phases is proposed. The method applies DTW and HMMs on top
of a set of SVM classifiers. In a recent contribution, (Lalys et al.,
2013), the same authors extend their approach in order to provide
additional granularity by further decomposing each of the surgical
phases into basic actions. The authors combine the approach in
Lalys et al. (2011) together with the detection of tools and organs
in order to determine the surgical action being performed. A recog-
nition accuracy around 64% on a frame by frame basis can be
achieved with the proposed technique when applied to cataract
surgeries. A limitation of the methodology is that it is application
dependent and needs to be tuned to target a specific type of inter-
vention. It would be desirable to have a general methodology that
can be abstracted from the surgery at hand and that is based on the
recognition of elementary actions that can be used to describe
almost any surgery.

An attempt to automatic classification of skill and surgical ges-
tures (rather than coarse phases) from video is that of Lin (2010).
Lin (2010) uses different types of HMMs where the observation
is the histogram of optical flow concatenated with the mean flow
computed in spatially separated regions of the image. The conclu-
sion of this study is that kinematic-based approaches are generally
more accurate that vision-based methods. We argue that such a
conclusion can be revised if other visual features are extracted
(for example histogram of gradients) and, more importantly, if vi-
sual features are extracted around salient points rather than from
the overall image.
3. Classification using linear dynamical systems

In this section, we describe our first approach to surgical ges-
ture classification from video data. We assume we are given a col-
lection of videos from different surgical tasks executed by different
subjects with different skill levels. We assume that each video cor-
responds to a single surgical task and that each video is segmented
into video surgemes. The label of each video surgeme is assumed to
be known during training. In Section 3.1 we show how to model
the observations from each video surgeme as the output of a linear
dynamical system (LDS). In Section 3.2 we describe metrics in the
space of LDSs which can be used to compare how similar two video
surgemes are. In Section 3.3 we show how these metrics can be
used to classify new video surgemes.

3.1. Linear dynamical systems

We denote the observed signal at time instant t as zt 2 Rp, e.g.,
the image intensities of a video frame with p pixels at time t, or the
kinematic data (position and velocities of the robot joints) at time
t. We assume that zt is the output of the LDS:
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stþ1 ¼ Ast þ But ð1Þ

zt ¼ Cst þwt ð2Þ

where st 2 Rn represents an unobserved (hidden) state variable at
time instant t of dimension n� p, and B 2 Rn�m is a noise-coloring
matrix that captures the correlation of the driving noise process
ut �

iid
Nð0; IÞ (Gaussian with zero mean and identity covariance).

The state-transition matrix A 2 Rn�n describes the dynamics of the
hidden state while the observation matrix C 2 Rp�n maps the hid-
den state to the observations. The measurement noise sequence
wt is also Gaussian with zero mean and covariance R, i.e.,
wt �iid Nð0;RÞ.

An LDS model M is then represented by the tuple
M ¼ ðA;B;C;RÞ. Notice, however, that this representation is not
unique. This is because an equivalent representation can be found
by a change of coordinates of the state variable. More specifically, if
we define st ¼ Trt , where T 2 Rn�n is non-singular, then the two
representations M ¼ ðA;B;C;RÞ and ~M ¼ ðT�1AT;T�1B;CT;RÞ are
equivalent (i.e., both represent the same process zt). This consider-
ation will be important when comparing two video surgemes, be-
cause we cannot directly compare the parameters.

Nonetheless, given a sequence of observations fztg correspond-
ing to a single video surgeme, we can identify a representation
M ¼ ðA;B;C;RÞ. Since the number of pixels p can be large, we
use a sub-optimal, but computationally efficient, method based
on Principal Component Analysis proposed in Doretto et al.
(2003). Our set of N training examples is hence represented by a
set of N LDS parameters fMigN

i¼1.
3.2. Metrics for comparing LDSs

Once we have represented each video surgeme with an LDS
model, we need a dissimilarity metric or distance to assess how
close two given models are. Several metrics can be found in the
literature, such as distances based on the Binet-Cauchy kernels
(Vishwanathan et al., 2007), probabilistic metrics based on the
KL-divergence (Chan and Vasconcelos, 2005), or metrics such as
the Martin distance (e.g., see Cock and Moor, 2002; Martin, 2000)
based on the subspace angles between the observability subspaces
of the dynamical models. Recently, Afsari et al. (2012) defined a
pseudo-distance between LDSs based on the equivalence of repre-
sentations between models. In what follows, we describe some of
these metrics in more detail.
3.2.1. Metrics based on the subspace angles
Martin (2000) proposed a distance between Single-Input Single-

Output (SISO) Auto-Regressive Moving Average (ARMA) processes
based on comparing their cepstrum. Cock and Moor (2002) ex-
tended this distance to the case of Multiple-Input Multiple-Output
(MIMO) ARMA models by using the principal angles between the
observability subspaces of the models, which depend only on the
parameters A and C of the LDSs.

More specifically, let Mi ¼ ðAi;CiÞ for i = 1, 2 be the parameters
of two LDS models of order n. Let h1; . . . ; h2n be the subspace angles
between the range spaces of their infinite observability matrices O1

and O2, which are defined as

Oi ¼ ½C>i ; ðCiAiÞ>; ðCiA
2
i Þ
>
; . . .�; i ¼ 1;2: ð3Þ

If the systems are stable, i.e., kAik2 < 1, the subspace angles hi can
be computed as the roots of hi ¼ cos�1ð

ffiffiffiffi
ki
p
Þ, where ki is the i-th

eigenvalue of P�1
11 P12P�1

22 P21 and Pij is the solution to the Sylvester’s
equation

Pij ¼ A>i PijAj þ C>i Cj i; j ¼ 1;2: ð4Þ
One can show that the subspace angles are invariant with respect to
a change of basis in the state space. Thus, as described in Cock and
Moor (2002), one can define many distances based on the subspace
angles. For example, the (squared) Martin and Frobenius distances
between the models M1 and M2 are, respectively, given by:

d2
MðM1;M2Þ ¼ � log

Y2n

i¼1

cos2ðhiÞ; ð5Þ

d2
F ðM1;M2Þ ¼ 2

X2n

i¼1

sin2ðhiÞ: ð6Þ
3.2.2. Determinant kernel
Some classification algorithms, such as support vector machines

(Vapnik, 1998), rely not only on distances but also on kernels. For
this purpose, Vishwanathan et al. (2007) introduced a family of
kernels for LDSs called the Binet-Cauchy (BC) kernels. Such kernels
depend on not only on the parameters ðA;CÞ, but also the initial
condition s0. Since in our particular application the initial state
should not affect the classification of the different surgemes, we
will use one special case of BC kernel, called the (normalized)
determinant kernel, which was proposed by Chaudhry and Vidal
(2009). This kernel is independent of the initial conditions and also
invariant with respect to basis transformations. The normalized
determinant kernel is given by

jDðM1;M2Þ ¼
ðdetðP12ÞÞ2

detðP11ÞdetðP22Þ
; ð7Þ

where Pij is the solution to the Sylvester’s equation

Pij ¼ qAiPijAj þ CT
i Cj ð8Þ

with 0 < q < 1 being a parameter. A distance can now be computed
as

d2
DðM1;M2Þ ¼ jDðM1;M1Þ þ jDðM2;M2Þ � 2jDðM1;M2Þ: ð9Þ
3.2.3. Action-induced distances
Afsari et al. (2012) proposed an alternative approach to compar-

ing LDSs based on finding the ‘‘closest’’ representation between
two models through a basis transformation. Instead of allowing
for any arbitrary non-singular matrix transformation T, the authors
in Afsari et al. (2012) restrict themselves to the orthogonal group
OðnÞ (i.e., the set of matrices T 2 Rn�n such that TT ¼ T�1). This al-
lows a more tractable computation of the metric due to the com-
pactness of OðnÞ. The distance between two models is quantified
using the Frobenius norm between the model’s parameters. In par-
ticular, let Q 2 OðnÞ be an orthogonal matrix, then the (squared)
Align metric between two models Mi and Mj is defined as

d2
AðM1;M2Þ ¼min

Q2OðnÞ
kAkQ TA1Q � A2k2
n

þkCkC1Q � C2k2 þ kBkQ TB1 � B2k2
o
; ð10Þ

where kA P 0; kB P 0, and kC P 0 are parameters that weight the
contribution of each of the terms in (10).

3.3. Classification of LDSs

Once a metric is selected, a common approach to classify novel
sequences is to use a k-Nearest Neighbors (k-NNs) classifier or a
kernel Support Vector Machine (SVM) (Schölkopf and Smola,
2002). In this work, we will use a Radial Basis Function (RBF) kernel
between dynamical models. That is

jRBFðMi;MjÞ ¼ e�cd2
X ðMi ;MjÞ; ð11Þ



736 L. Zappella et al. / Medical Image Analysis 17 (2013) 732–745
where dX is a particular metric (e.g., Martin, Frobenius, Align or
Determinant) and c > 0 is a parameter.
4. Classification using bag of spatio-temporal features

Our second approach to surgical gesture classification is based
on the Bag of Features (BoF) approach to object recognition
(Csurka et al., 2004; Sivic and Zisserman, 2003). This approach
is composed of several steps: (i) extracting some salient features
from images of different objects, e.g., SIFT features (Lowe, 1999);
(ii) clustering these features to form a bag of visual words (also
known as dictionary or codebook); (iii) encoding the set of fea-
tures extracted from an image (typically a histogram of quantized
features); and (iv) training a classifier to recognize different ob-
jects based on their encoded description. The BoF approach can
also be applied to action recognition in videos. The most direct
way to do so is to build a histogram (encoding step) for each
video, where features are extracted from groups of frames rather
than from a single image (see, e.g., Laptev, 2005; Willems et al.,
2008; Chaudhry et al., 2009).

Each of the four steps of the BoF framework can be imple-
mented using a variety of techniques. However, a priori it is
not possible to identify which is the best combination of tech-
niques: for different problems the best combination might
change. In Chatfield et al. (2011) a detailed explanation of the
most popular choices used to build a BoF framework for the task
of object recognition was presented. In the following we present
a similar analysis for the task of surgical action recognition in
which each of the four steps of the BoF approach is analyzed
in detail.
4.1. Features

In the case of surgical gesture recognition, we extract features
from multiple cuboids inside each video surgeme, where each cu-
boid is centered at a Space–Time Interest Point (STIP) (Laptev,
2005). A STIP is a point ðx; y; tÞwhere the video has significant vari-
ations (i.e., large gradients) both in space and in time (as opposed
to uniform regions). Such salient points can be detected for a fixed
set of multiple spatio-temporal scales. Moreover, STIP are always
detected in correspondence of motion, as shown in Fig. 2, thus
most of the information contained in the static background is auto-
matically discarded.

A 3D cuboid is then centered around each of the detected
points at the space–time scale where the point was found. The lo-
cal information contained in the cuboid is used to build a 72-bin
histogram of oriented gradients (HOG) and a 90-bin histogram of
optical flow (HOF), as described in Wang et al. (2009). In the
experimental section we will test the HOG and HOF features
separately, and we will show the benefit of combining them
either by concatenation, producing thereby a unique feature vec-
tor of size 162, or by a multi-channel approach, similar to the one
used in Zhang et al. (2007).
Fig. 2. Examples of detected ST
4.2. Clustering

Once the features have been extracted a codebook needs to be
built. The codebook is built such that similar features will be iden-
tified as the same visual word. This clustering stage has two pur-
poses. On the one hand, it reduces the dimensionality of the
problem, since a video can now be described as a set of words
(which is typically smaller than the set of features). On the other
hand, some robustness is achieved with respect to small variations
of the features. This step is usually performed by k-means. How-
ever, recently a method based on sparse dictionary learning
(SDL) optimization has been proposed by Yang et al. (2009).

4.2.1. k-Means
Let F ¼ ½f1; . . . ; fG�> 2 RG�D be a matrix whose rows are G feature

descriptors of dimension D. The k-means clustering consists of
finding a set of centroids (also called words) V ¼ ½v1; . . . ;vK �> such
that:

argmin
V

XG

g¼1

min
k¼1;...;K

kfg � vkk2
2; ð12Þ

where k � k2 is the ‘2 norm. Once the codebook is built, the distance
between a feature and each word can be easily computed. Such a
distance will be used in the encoding step.

4.2.2. Sparse dictionary learning
A different approach was proposed in Yang et al. (2009), where

the codebook is learnt so that each feature can be reconstructed as
a sparse linear combination of the words in the codebook. Hence,
the problem is re-formulated as:

arg min
V;Y

XG

g¼1

kfg � ygVk2
2 þ kkygk1 ð13Þ

subject to kvkk 6 1; 8 k ¼ 1;2; . . . ;K ð14Þ

where k 2 Rþ weights the sparseness term, k � k1 is the ‘1 norm, and
Y ¼ ½y1; . . . ; yG�

T is a matrix, where each yg contains the cluster
membership of feature fg with respect to all the words of the code-
book V. This problem can be solved by alternating between two
steps: first fix the dictionary V and solve a LASSO problem, as de-
fined in Tibshirani (1994), to find Y, then fix Y and solve the dictio-
nary update problem. When the dictionary V is finally built, and a
new feature f has to be encoded, the problem of Eq. (13) reduces
to the LASSO problem.

4.3. Encoding

Once the codebook is obtained, each video clip (containing a
specific action) can be represented in terms of such a codebook.
Typically a histogram representation is used, where each bin of
the histogram corresponds to a word of the codebook. At this stage
two choices can be made regarding thresholding and pooling.
IPs during a suturing task.
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4.3.1. Hard, soft, and hybrid thresholding
The thresholding decision can be seen as the way in which each

feature ‘‘votes’’ for the words of the codebook. If hard-thresholding
is used the vote is binary (i.e., 1 or 0) and each feature is associated
only with one word. Hence, each feature will cast its vote for the
closest word (in the case of k-means classification) or for the word
with highest membership coefficient (in the case of sparse dictio-
nary learning):

Vðfg ;vkÞ ¼

1 if k ¼ arg minjjjvj � fg jj22
ðK �meansÞ or
if k ¼ arg maxjjygðjÞj
ðSDLÞ

0 otherwise

8>>>>>>>><
>>>>>>>>:

8j ¼ 1; . . . ;K ð15Þ

In the case of soft-thresholding the vote of each feature is
spread among all K words. The distance between a feature fg and
a word vk can be converted to a score/vote as follows:

Vðfg ;vkÞ ¼
expð�bjjfg � vkjj22ÞPK
j¼1 expð�bjjfg � vjjj22Þ

ð16Þ

where b 2 Rþ weights how hard the thresholding will be (larger b
corresponds to harder thresholding). If the codebook is computed
by SDL then the membership coefficients (normalized to sum to
one for a given feature) can be directly used as a soft vote:
Vðfg ;vkÞ ¼ jygðkÞj=jjyg jj1.

We also propose a third thresholding strategy that can be seen
as a hybrid between hard and soft thresholding: as in hard thres-
holding, each feature casts a vote for the ‘‘closest’’ word only. How-
ever, such a vote corresponds to its soft score:

Vðfg ;vkÞ ¼

expð�bjjfg�vk jj22ÞPK

j¼1
expð�bjjfg�vj jj22Þ

if k ¼ arg minjjjvj � fg jj22
ðK �meansÞ

jygðkÞj=jjyg jj1
if k ¼ arg maxjjygðjÞj

ðSDLÞ;

0 otherwise;

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

8j ¼ 1; . . . ;K ð17Þ
4.3.2. Sum vs Max pooling
At this point each feature has casted its vote and one histogram

h 2 RK can be built to represent the entire video surgeme. There
are two ways to build the histogram: by sum-pooling or by max-
pooling. In the case of sum-pooling:

hðkÞ ¼
XG

g¼1

Vðfg ;vkÞ 8k ¼ 1; . . . ;K: ð18Þ

In the case of max-pooling:

hðkÞ ¼maxfVðx1; kÞ;Vðx2; kÞ; . . . ;VðxM; kÞg; ð19Þ

for all k ¼ 1; . . . ;K .
Once the histogram has been built the last step consists of nor-

malization of the histograms so that
PK

k¼1hðkÞ ¼ 1. Although this
last step is not a requirement it is a commonly accepted practice
and it usually leads to slightly better results in terms of classifica-
tion rate.

4.4. Classifier

Each video clip i is now represented by its histogram hi. These
histograms can be used to train a one-vs-one multi-class SVM
classifier. For additional details about SVM refer to Section 5.
SVM can be used by feeding directly the histograms obtained in
the previous step (linear SVM) or by adopting non-linear kernels.
Linear kernels have a faster training phase, however, non-linear
kernels tend to lead to better results. In the BoF framework the ker-
nels typically used are the intersection and the v2 kernel. Given
two videos i and j the intersection kernel is defined as
jIðhi;hjÞ ¼minðhi;hjÞ, where the min operator is applied for each
bin of the histograms. While the v2 kernel is defined as

jvðhi;hjÞ ¼
P

k2 hiðkÞhjðkÞ
hiðkÞþhjðkÞ

.

When Q different kind of features are extracted (in our case we
have HOG and HOF descriptors, hence Q ¼ 2) one can concatenate
them, and therefore have one histogram for each video clip, or keep
them separately and build a different dictionary for each kind of
descriptor. In this last case each video clip i has Q histogram repre-
sentations hq

i (with q ¼ 1; . . . ;Q). Each representation can be seen
as a channel, and the histograms can be combined in order to pro-
duce a unique kernel by using a multi-channel approach similar to
the one used in Zhang et al. (2007):

jRBFðhi;hjÞ ¼ exp �c
XQ

q¼1

1
lq

dðhq
i ;h

q
j Þ

 !
; ð20Þ

where c 2 Rþ is a parameter, dðhq
i ;h

q
j Þ is the v2 distance between

the histograms hq
i and hq

j , and lq is the mean distance between
all pairs of training histograms for channel q.

5. Support vector machine and multiple kernel learning

In this section the principles behind SVM, kernel SVM and MKL
will be revised. Recall that in a binary (two-class) SVM classifica-
tion problem, we want to find an hyperplane that maximally sep-
arates the two classes (Schölkopf and Smola, 2002). Therefore,
given N training samples xi; i ¼ 1; . . . ;N, with associated labels
yi 2 f�1;þ1g, the goal is to find a linear classification function of
the form f ðxÞ ¼ wTxþ b, where w is the separating hyperplane
and b is some offset. The label assigned to sample xi is then com-
puted as ŷi ¼ sign f ðxiÞð Þ. However, for some problems it is not pos-
sible to linearly separate the two classes. In that case, one can use a
kernel SVM in order to find a separating hyperplane in a different
(of higher dimension) subspace. The idea behind a kernel SVM is to
map the data points into a high-dimensional subspace where the
data is (hopefully) linearly separable. If we denote such mapping
as /kð�Þ, then the kernel SVM classifier can be found by solving
the following optimization problem:

minimize
w;fnig;b

1
2 wTwþ C

XN

i¼1

ni

subject to yiðwT/kðxiÞ þ bÞP 1� ni

ni P 0; i ¼ 1; . . . ;N

ð21Þ

where ni are slack variables that penalize the misclassification of
sample i, and the parameter C weights the penalization. Note that
now, the decision function is of the form f ðxÞ ¼ wT/kðxÞ þ b. It
can be shown (Schölkopf and Smola, 2002) that in order to compute
the optimal decision function f ð�Þ, it is not necessary to explicitly
know the mapping /kð�Þ as long as we know its associated kernel
function. That is, a function of the form

jkðx; yÞ ¼ /kðxÞ
T/kðyÞ ð22Þ

for all possible combination of points x and y in the original space.
There are different choices of kernels that can be used and some

of them have already been introduced (e.g., RBF or v2). Different ker-
nels may perform differently depending on their parameter values
and the application at hand. An appropriate selection of the kernel
and its parameters is not a trivial task and may drastically affect
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the final classification performance. Imagine that we have a number
of kernels jkð�; �Þ; k ¼ 1; . . . ;Nk. Since a nonnegative weighted com-
bination of kernel functions is also a valid kernel (Schölkopf and
Smola, 2002), a reasonable approach would be to build a new kernel
that is a linear combination of the given kernels as

jð�; �Þ ¼
XNk

k¼1

dkjkð�; �Þ ð23Þ

where dk P 0. This is precisely the principle behind MKL where the
goal is to simultaneously find the most discriminative classifier and
the kernel weights. Thanks to this model we can avoid tedious
parameter tuning, instead we can use many kernels with many dif-
ferent parameter values and let the algorithm choose the weights of
each kernel that are most discriminative for the given application.

Note, that now we also have a machinery to combine kernels
built with different metrics (for example different LDS distances)
and possibly with different data sources (for example features from
kinematic and features from video data). In fact, while LDS based
approaches (either computed from kinematic or video data) cap-
ture the dynamics of the scene, the BoF approach is based on
sparse (due to feature detection) local structures of the frame (cap-
tured by HOG) and very small and sparse motion (captured by
HOF). Since both techniques use kernels, we can now use MKL to
combine them and exploit their complementarity.

More formally, if we define

/ðxÞ ¼
ffiffiffiffiffi
d1

p
/1ðxÞ

T
; . . . ;

ffiffiffiffiffiffiffi
dNk

q
/Nk
ðxÞ

h iT

ð24Þ

then the MKL problem can be written as

minimize
w;fnig;b;fdkg

1
2 wTwþ C

XN

i¼1

ni

subject to yiðwT/ðxiÞ þ bÞP 1� ni

ni P 0; i ¼ 1; . . . ;n
dk P 0; k ¼ 1; . . . ;NkX

k

dk ¼ 1;

ð25Þ

where the last constraint is needed in order to avoid trivial
solutions. It is easy to see that jðxi; xjÞ ¼ /ðxiÞT/ðxjÞ ¼P

kdk/kðxiÞT/kðxjÞ. There exist several formulations and variants of
the MKL problem, see Gönen and Alpaydin (2011) for a complete
review. One of such alternative approaches is the one presented
in Varma and Babu (2009) where a regularization term is added
in order to penalize large weights. In this paper we follow this
approach, hence, the MKL objective can be written as

minimize
w;fnig;b;fdkg

1
2 wTwþ C

XN

i¼1

ni þ rðdÞ

subject to yiðwT/ðxiÞ þ bÞP 1� ni

ni P 0; i ¼ 1; . . . ;n

dk P 0; k ¼ 1; . . . ;Nk

ð26Þ

where d ¼ ½d1; . . . ; dNk
�T and rð�Þ is a regularizer (‘1 or ‘2 norm) on

the kernel weights. Note that if we fix the kernel weights dk, then
the problem reduces to a standard (kernel) SVM problem as in
(21). Therefore, in order to solve for problem (26), the authors in
Varma and Babu (2009) alternatively solve the SVM problem with
fixed weights, and the optimization of the weights given the current
classifier w. This iterative procedure is repeated until convergence
or until a maximum number of iterations has been reached, see
Varma and Babu (2009) for further details.

Until now we assumed a binary classification problem. Since our
problem is a multi-class classification one, we adopt the one-versus-
one strategy with majority voting for classifying the surgemes. In
the experimental part we will use MKL to combine kernels coming
from video data only, kinematic data only, as well as hybrid combi-
nations of kernels coming from both video and kinematic.
6. Experiments

6.1. Surgical data

For our tests we used the dataset presented in Reiley et al.
(2008). The data was collected under IRB at Intuitive Surgical and
consists of three different tasks: suturing (SU, 39 trials), needle
passing (NP, 26 trials) and knot tying (KT, 36 trials). Each task is
performed by eight subjects with different skill levels (expert,
intermediate and novice). Typically each user performed around
3–5 trials for each task. Each trial lasts, on average, 2 min and both
kinematic and video data are recorded at a rate of 30 frames per
second. Kinematic data consists of 78 motion variables (positions,
rotation angles, and velocities of the master/patient side manipula-
tors), whereas video data consists of JPEG images of size 320� 240.

The data was manually segmented based on the surgeme’s def-
inition of Reiley et al. (2008). Specifically, the vocabulary of possi-
ble atomic actions consisted of 15 surgemes: (1) reaching for
needle with right hand, (2) positioning needle, (3) pushing needle
through tissue, (4) transferring needle from left to right, (5) moving
to center with needle in grip, (6) pulling suture with left hand, (7)
pulling suture with right hand, (8) orienting needle, (9) using right
hand to help tighten suture, (10) loosening more suture, (11) drop-
ping suture at end and moving to end points, (12) reaching for nee-
dle with left hand, (13) making ‘C’ loop around right hand, (14)
right hand reaches for suture and (15) both hands pull. Note that,
although there are a total of 15 surgemes, not all of them appear in
a given task. For example, suturing typically involves 10 of these 15
surgemes, needle passing involves nine surgemes, and knot tying
involves six surgemes. A typical suturing trial is a collection of
about 20 video clips, while a needle passing has an average of 13
video clips, and knot tying is composed of about nine video clips.

In order to compare the accuracy of the surgeme recognition
task, we created two different test setups. The first setup is the
leave-one-super-trial-out (LOSO), where we leave one trial for each
one of the users out for testing. The second setup is the leave-one-
user-out (LOUO), where we leave all the trials from one user out for
testing. For each task we performed a training and a test phase
using only the surgemes that appeared in that task.
6.2. Results of the linear dynamical systems approach

In this section we present the results for surgeme classification
when using LDSs for modeling the different gestures. We use the
manually segmented surgemes to fit an LDS model to the data
and use the metrics described in Section 3 to classify novel se-
quences using either 1-NN or SVMs with RBF kernels (one-ver-
sus-one multi-class classification). For system identification, we
employ the PCA-based approach of Doretto et al. (2003). We apply
this technique to both video and kinematic data. In the case of vi-
deo data, we use the raw pixel intensities as well as optical-flow
extracted from the videos with a downsampling factor of 2.

From the identified dynamical models, we compute all the pair-
wise distances between the models and scale them using a sigmoi-
dal function. Since different metrics may have different scales and
ranges, the scaling procedure serves as a normalization step so that
all the distances lie within the interval ½0 1�.

It is important to mention that in our dataset different surge-
mes have a different number of occurrences. In order to avoid
over-fitting in favor of the most represented surgemes in the
surgical trials, we randomly sample a small subset of them so that
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the training phase is more balanced. In particular, we randomly
sample no more than 40 surgemes per class and average the results
over five repetitions. The SVM penalty parameter C as well as the c
parameter of the RBF kernel are chosen using 3-fold cross-valida-
tion over the training set. That is, for each random sample of the
training set we randomly split it into three disjoint subsets and
use two of them for training and the remaining one for testing.

The performance is measured as the percentage of correctly
identified surgemes averaged over all tests and repetitions for each
setup.
6.2.1. Effect of the order of the dynamical model
In order to see the effect of the order of the dynamical models

on classification performance, we have varied it from n ¼ 5 up to
n ¼ 21 with an increase-step of two in our simulations. Since we
have observed the same trend in all tasks, we only report here
the results for the suturing task, but the general conclusions also
apply to the other tasks. In Fig. 3 we have depicted the average
classification rate obtained for the considered metrics when vary-
ing the order of the dynamical models. The plots on each column
correspond to a different type of data, starting with optical-flow
(left), followed by pixel intensities (middle), and kinematic data
(right). The first two rows of plots correspond to the LOSO setup
while the last two represent the LOUO setup. The first and third
row correspond to SVM classification while the remaining two cor-
respond to the average classification rate when using a 1-NN
classifier.

It can be observed from Fig. 3 that the Determinant metric gen-
erally degrades when increasing the order of the system for the
case of SVM classification. When using 1-NN classifier it does well
over the considered range of orders and for all the data types with
the exception of pixel intensities with order above 17. The rest of
the metrics appear to be more or less constant for orders above
nine or slightly increasing in some cases. This last observation is
particularly true for the Align metric over the pixel intensities
where a small increase in performance follows with an increase
of the order. For kinematic data, however the Align metric exhibits
a negative slope with the increasing order of the LDS. Different
metrics exhibit a different behavior with different input data. We
cannot extract a single best order from the plots in Fig. 3. Neverthe-
less, if we were to choose one order, it seems to be reasonable to
select one that lies between, say 10 and 17, where almost all met-
rics perform well in all scenarios.
6.2.2. Effect of the LDS metrics and feature types
From the experiments we can also see that different metrics

work differently over different input data (see Fig. 3). We have dis-
played in Table 1 the best average classification results for different
data types (optical-flow, pixel intensities or kinematics) and classi-
fication strategies (SVM and 1-NN). We can observe that, in gen-
eral, metrics based on subspace angles (i.e., Frobenius and
Martin) provide the best performance either using 1-NN or SVM
for classification. However, all metrics perform similarly, with
the only exception being the Determinant distance in the SVM
case, which showed a significantly lower performance that the
other metrics.

We can also observe from Table 1 that when using pixel inten-
sities to fit the LDSs, the Align metric seems to work really well. It
provides the best performance in the LOSO setting with 1-NN clas-
sifier and it is also close to the best one in the LOUO setup. In the
SVM case, it does consistently better than all the previous metrics
providing in some cases, an improvement of around 8% in accuracy.

In contrast, when dealing with kinematic data, the best per-
forming metric is the Frobenius distance, which provides the high-
est accuracy over all setups and classification methods, and in
some cases it provides an increase of around 7% in classification
accuracy.

Given the results presented in Table 1 there is no metric that is a
clear winner over the other metrics for all kind of input data. How-
ever, the Frobenius metric worked quite well in all the setups and
for all data types. In contrast, the Determinant distance provided
good results using 1-NN classifier while its performance was sig-
nificantly lower than that of the other metrics in the SVM case.
We also observe that the Align distance works pretty well on
images while the Frobenius distance also does so on kinematic
data. Overall, SVM classification provides an improvement over
1-NN.

Regarding the evaluation of which data type is most discrimina-
tive, it can be seen from Table 1 that optical-flow data does worse
than pixel intensities or kinematic data, with the only exception
being the suturing task with a 1-NN classifier and the LOSO setup,
where it does better than the other data types by a fraction of a
percentage. In all other situations that use the 1-NN classifier, kine-
matic data gives the best performance, with the improvement
being particularly significant for the needle passing task. When
using SVM classifiers, we get very close performance when using
either kinematic or pixel intensities data with the exception of
the needle passing task, where LDSs based on kinematic data
clearly outperform the use of video data. In the knot tying task, pix-
el intensities do better while in the suturing task there is no clear
winner.
6.3. Results of the bag of features approach

In Section 4 we presented the most common variations of the
BoF framework. For a complete evaluation one should provide re-
sults of every possible combination and for each task and test set-
up. Such an approach, however, would require a particularly long
list of figures with the risk of hiding important conclusions among
complicated discussions. Instead, we prefer to present the results
where at each step we evaluate some aspects of the framework
while fixing the others. Hence, we adopt the most promising con-
figurations found in the previous step and we test other aspects.
Initially we will focus on one task and one test setup, once we have
identified the two most promising configurations, we will present
results for all tasks and all setups.

In all experiments we use the SVM classifier. As in the experi-
ments with the LDS approach, the penalty parameter C and the c
parameter for the RBF kernel were estimated using 3-fold cross
validation over the training set. In order to avoid over-fitting in fa-
vor of the most frequent surgemes, we use no more than 1000 ran-
domly sampled features per each class, during the construction of
the dictionary, and no more than 40 randomly sampled surgemes
per class for the training of the SVM. We repeat the sampling five
times.
6.3.1. Effect of the feature type and dictionary size
We start by evaluating the features used and the dictionary size.

Specifically, we focus on the suturing task using a LOSO setup, and
we build a BoF framework using k-means for clustering, hard
thresholding and sum-pooling for building the histograms (that
are then normalized), and we use the v2 kernel for the SVM classi-
fier. We compare four different descriptors. First we use only the
HOG feature, and only the HOF feature. Then we build a hybrid dis-
tance where the distances computed in the previous two cases are
mixed by a multi-channel approach (20). Finally, we create a new
feature where the HOG and HOF descriptors are concatenated. For
each of these four cases we test different dictionary sizes: 300, 500,
1000, 2000, and 4000 words. The results of this first step are pre-
sented in Table 2.
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Fig. 3. Effect of the order of the LDS on the average classification rate for the suturing task and for the two setups (LOSO and LOUO). Both SVM and 1-NN performances are
shown in the plots for the considered metrics. The first column corresponds to optical-flow data while the second and third correspond, respectively to pixel intensities and
kinematic data.
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It is interesting to notice that the HOG descriptors tend to be
more discriminative than HOF. Note that this ability of HOG to dis-
criminate among different actions is largely due to the fact that
HOG are extracted around spatio-temporal interest points, as
shown in Fig. 2. In fact, if a HOG descriptor is extracted from the
whole frame, then the resulting histogram would be very similar
in every action since the background is fairly constant. Instead,
STIP points tend to fire around the moving arms and hands of
the robot. Hence, the gradient information captures the different
poses of the robot while performing different actions, which turns
out to be highly discriminative. Qualitatively, this comparison is
shown in Fig. 4 where the HOG descriptors extracted around STIP



Table 1
Best average classification rates for the LDS approach using different data types and
classification strategies. Corresponding metrics to the displayed results are indicated
in brackets and refer to one of the considered metrics, i.e. Align, Frobenius, Martin or
Determinant. The best performance for a particular task and setup is highlighted in
bold.

SVM 1-NN

Task OF Img Kin OF Img Kin

LOSO
Suturing 85.15 87.28 87.45 83.61 83.31 83.33

(4.45) (5.15) (4.30) (8.07) (7.51) (7.43)
[Fro] [Ali] [Fro] [Fro] [Ali] [Fro]

Needle
passing

65.22 69.39 78.77 64.00 60.92 74.00
(4.41) (2.70) (5.90) (6.64) (7.15) (6.67)
[Mar] [Ali] [Fro] [Fro] [Ali] [Fro]

Knot tying 82.35 87.66 85.50 80.00 77.72 85.37
(3.54) (3.52) (3.72) (8.17) (7.43) (6.76)
[Fro] [Ali] [Fro] [Fro] [Ali] [Fro]

LOUO
Suturing 70.33 74.81 75.65 62.60 62.39 69.54

(9.68) (9.93) (11.32) (12.64) (10.12) (9.87)
[Fro] [Ali] [Fro] [Mar] [Det] [Fro]

Needle
passing

56.97 59.20 69.90 50.00 45.89 64.40
(10.59) (8.97) (7.83) (15.91) (9.38) (10.17)
[Mar] [Ali] [Fro] [Mar] [Mar] [Fro]

Knot tying 73.32 79.36 78.89 63.78 65.68 69.00
(8.18) (10.12) (8.07) (11.09) (9.87) (9.51)
[Fro] [Ali] [Fro] [Det] [Det] [Fro]

Table 2
Suturing test, LOSO setup, dictionaries learned by k-means, hard thresholding with
sum-pooling, v2 kernel. Percentages of correctly identified surgemes for different
feature descriptors and dictionary size. Results are averaged across five different
random samples for each of the five LOSO test sets. Standard deviation are in
parenthesis. The configuration that achieves the highest classification accuracy is
highlighted in bold.

BoF with k-means

# Words HOG HOF HOG + HOF HOGHOF

300 82.44 76.79 87.62 87.75a

(5.35) (4.81) (5.73) (5.01)

500 84.41 78.74 88.46 88.89
(5.40) (5.26) (5.33) (5.33)

1000 86.34 81.07 89.23 89.68
(5.24) (5.57) (5.32) (4.83)

2000 87.49 82.06 89.68 90.68
(5.11) (5.77) (5.43) (5.01)

4000 88.36 82.76 89.86 90.70
(5.29) (6.48) (5.02) (5.08)

a This result corresponds to the one reported in Béjar et al. (2012).

2 Code available at http://spams-devel.gforge.inria.fr/.
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points, Fig. 4a, and from the whole frame, Fig. 4b are shown. Spe-
cifically, all the HOG descriptors of each video clip have been accu-
mulated and normalized; the surgemes shown are an example of
surgemes 2, 3 and 6 (columns 1, 2 and 3, respectively) of one sutur-
ing task trial. It is possible to note a considerable difference among
the three histograms in Fig. 4a, while the histograms in Fig. 4b look
much more alike. Although, this is just a qualitative example it
should help to comprehend the importance of extracting features
from meaningful patches.

The difference between multi-channel and concatenation is
very small. The combination of the HOG and HOF descriptors, in
both cases, always improves over the use of any of the descriptors
alone. These results are not surprising since it is expected that gra-
dients and motion capture different kind of information. For the
next experiments we use the concatenation since it requires com-
putation of a single dictionary rather than one for each channel.

As far as the dictionary size is concerned, with any kind of fea-
ture it is possible to observe an improvement of the classification
rates when the size is increased. Even if we did not find a point,
where performance started to degrade, we stopped at the size of
4000 words due to efficiency reasons. We found that a dictionary
size of 2000 words yields a good trade-off between accuracy and
computational time requirement (note that by doubling the size
to 4000 words very minor improvement is achieved).

6.3.2. Encoding
We now evaluate the encoding step of the BoF framework. We

use the concatenated HOGHOF feature, k-means for clustering and
a dictionary size of 2000 words. Meanwhile, we try different com-
binations of thresholding (hard, soft, and hybrid, as shown in (15)–
(17) respectively, and pooling (sum and max, as described in (18)
and (19). Mean and standard deviation for these tests are shown
in Table 3. Overall, hard thresholding with sum-pooling provides
the best classification rate (90.68%). Soft thresholding seems to
perform better when associated with max rather than sum-pool-
ing. Hybrid thresholding is comparable to hard thresholding both
in terms of performance and pooling (i.e., sum-pooling tends to
be better than max-pooling). Note that when using the soft or hy-
brid thresholding an appropriate tuning of the b parameter is cru-
cial. In our experiments we have only tried three different values
and the results seem to indicate a preference for higher b values
especially when max-pooling is used. Finally, it not surprising that
the results of soft thresholding and hybrid thresholding with max-
pooling coincide since these two specific combinations lead to the
exact same histogram. The performance of the three different
encoding techniques is very similar. The only clear conclusion that
one may draw is that hybrid is more robust than soft-thresholding
with respect to the choice of b. The difference between hybrid and
hard-thresholding are minor, hence, it is not possible to state that
one encoding is better than the other. We choose to continue our
experiments with hard-thresholding since it is faster to compute
and it does not require any parameter tuning.

6.3.3. Effect of the sparsity weight for dictionary learning method
Another choice in the BoF framework is the method for con-

structing the dictionary of visual words. So far we have been using
k-means. However, as explained in Section 4.2, one can also use the
SDL approach. In our specific implementation we have used the
functions mexTrainDL and mexLasso of the SPAMS toolbox2 for
the dictionary learning and coefficient computation phases respec-
tively. As shown in (13), the problem involves the choice of the
parameter k, which weights the sparsity term. Hence, we performed
a set of experiments with different k values, from 0.1 to 0.5, while
keeping all the other choices frozen as follows: HOGHOF feature,
2000 words, hard thresholding, sum-pooling, SVM with v2 kernel.
The dictionary learning algorithm proved to be quite stable with re-
spect to the choice of k. The percentage of correctly classified surge-
mes remains very stable, going from 89.93% with k ¼ 0:1 to 90.92%
with k ¼ 0:5 (with a standard deviation always around 5%). For the
remaining set of experiments that involved SDL we report results
with k ¼ 0:5.

6.3.4. Effect of the kernels
The last option left to evaluate is which type of kernel should be

used for the SVM classifier. Up until this point we have always used
the v2 kernel. However, there is a long list of possible kernels. We
compare the results of the v2 kernel with a linear kernel, and with

http://spams-devel.gforge.inria.fr/


Fig. 4. Comparison between HOG descriptors extracted from patches around STIP and from the whole frame of the same video clips. The surgemes shown are an example of
surgemes 2, 3 and 6 (columns 1, 2 and 3, respectively) of one suturing task trial.

Table 3
Suturing test, LOSO setup, HOGHOF features, 2000 words learned by k-means, v2

kernel. Percentages of correctly identified surgemes for different thresholding (hard,
soft, and hybrid) and pooling (sum and max) techniques. Results are averaged across
five different random samples for each of the five LOSO test sets. Standard deviations
are in parenthesis. Bold numbers indicate the best performance over task and setup.

BoF with k-means

Hard Soft Hybrid

b ¼ 0:9 b ¼ 0:5 b ¼ 0:1 b ¼ 0:9 b ¼ 0:5 b ¼ 0:1

Sum
90.68 86.61 79.96 39.04 89.33 89.03 89.94
(5.01) (4.98) (4.82) (4.81) (5.22) (5.12) (5.12)

Max
87.97 88.49 85.81 64.73 88.49 85.81 64.73
(5.62) (4.12) (4.71) (4.11) (4.12) (4.71) (4.11)

Table 4
Percentages of correctly identified surgemes for different tasks (suturing, needle
passing, and knot tying) and different test setup (LOSO and LOUO). Results are
averaged across five different random samples for each of the five (LOSO) and eight
(LOUO) test sets. Standard deviation are in parenthesis. Bold numbers indicate the
best performance for each task and setup.

BOF

k-Means Suturing Needle passing Knot tying

LOSO 90.68 74.14 88.39
(5.01) (4.15) (2.38)

LOUO 79.95 65.53 84.92
(10.69) (10.25) (6.40)

SDL Suturing Needle passing Knot tying

LOSO 91.13 75.37 90.66
(4.79) (5.30) (2.33)

LOUO 79.32 66.98 85.06
(8.89) (9.48) (6.05)
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another popular choice when dealing with histograms: the inter-
section kernel.

As expected the linear kernel does not provide very good classi-
fication results yielding correct classification rates around 52% for
both k-means and SDL. On the other hand, both the intersection
and the v2 kernels lead to rates of about 91% of correctly classified
surgemes independently from the dictionary learning algorithm. In
terms of kernels both v2 and intersection are reasonable choices,
we decide to use the v2 although it is possible to expect very sim-
ilar results when using the intersection kernel.
6.3.5. Effect of different tasks and setups
We now discuss the complete results for different tasks (sutur-

ing, needle passing, and knot tying) and different test setups (LOSO,
and LOUO). Table 4 compares the results of the BoF framework
with k-means and SDL, hard thresholding, sum-pooling and v2 ker-
nel, with the results of the BoF framework with SDL, hybrid thres-
holding, sum-pooling and v2 kernel. In practice, both BoF
frameworks perform equally well, with the one based on sparsity
being marginally better.
Particularly interesting is the LOUO test, which provides an in-
sight into the ability of the algorithms to generalize and recognize
gestures performed by users that were unseen during the training
phase. Overall, when switching from the LOSO to the LOUO setup,
we observe a decrease in performance of around 10% points for the
first two tasks, while the results for knot tying task degrade only of
about 4% points. Such a difference among tasks suggests that knot
tying is possibly performed in a more similar way across users,
while for suturing and needle passing the difference in the style
might be more accentuated.

Since the clustering and the encoding step when using SDL is
computationally more costly than when k-means is used, for the
MKL tests we will use the setup with k-means, hard thresholding,
sum-pooling and v2 kernel.

6.4. Results of combining LDS with BoF using MKL

In this section we provide the experimental results of combin-
ing the two considered approaches for surgeme classification,
namely LDS and BoF. For the BoF approach we use the v2 kernel



Table 5
Average classification rates for different approaches and for the combination of BoF and LDS with MKL. The configuration with the best classification performance is highlighted in
bold.

Kinematic Video Hybrid

Task SHMM LDS BoF LDS BoF + LDS BoF + LDS (kin) BoF + LDS (all)

LOSO
Suturing 79.37 87.25 90.68 87.15 91.79 93.52 93.95
Needle passing 76.43 78.77 74.14 68.91 77.84 85.32 86.04
Knot tying 86.78 85.07 88.39 87.25 90.76 93.75 92.76

LOUO
Suturing 60.85 74.63 79.95 74.22 81.17 86.28 86.56
Needle passing 45.26 67.28 65.53 58.77 66.88 80.08 80.16
Knot tying 71.94 78.89 84.92 77.36 86.70 90.08 90.38
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with a dictionary size of 2000 words (built with k-means) and
hard thresholding with sum-pooling, while for the LDS we use
an RBF kernel. In this case, we did not perform cross-validation
over the c parameter of the RBF kernels. Instead, we feed the
MKL algorithm of (Varma and Babu, 2009) with many kernels
by using different values of c and let the algorithm find the
weight on each kernel. Effectively, we are letting MKL choose
the kernels that give the best performance. For the LDS approach
over video data we only consider raw pixel intensities here since,
in the case of SVM, they always perform better than optical-flow
data. We also leave the Determinant metric out here for the same
reasons and consider only the Frobenius, Martin and Align dis-
tances. The order of the dynamical models was set to an average
value of n ¼ 15 since the classification results when using LDSs
did not vary much around that order. We tried several experi-
ments varying the value of the SVM penalty parameter C and
the regularizer on the kernel weights (‘1- or ‘2-norm). It turned
out that, in our experiments, the ‘1-norm regularizer on the
kernel weights always performed better than the ‘2-norm regu-
larizer. One possible explanation for this behavior is that when
using many kernels, the ‘1-norm regularization promotes the
use of a sparse set of kernels, which ultimately, leads to the use
of only the best kernels. Instead, in the ‘2-norm case, even bad
kernels might end up with a significant weight, thus resulting
in an overall decrease of the kernel quality.

The results for the MKL approach for different combinations of
the BoF and the LDS techniques are given in Table 5 where we have
also included the (kinematic-based) sparse-HMM approach of Tao
et al. (2012) assuming known boundaries. From Table 5 it can be
seen that the BoF approach over the video data outperforms the
state-of-the-art methods based on kinematic data. Furthermore,
the combination of BoF with LDS always produces an improvement
over BoF only. In fact, the combination of BoF with LDS over kine-
matic data always outperforms that of BoF and LDS over images.
When merging BoF with LDS over both video and kinematic data
(BoF + LDS (all) in Table 5) we still observe an improvement but
it is usually small compared to the BoF with LDS (kin). The only
exception is Knot Tying in the LOSO setup where there is a small
decrease when adding the LDS over the images. The results for
LDS with kinematic and pixel intensities alone have also been in-
cluded to better illustrate the gain achieved when combining them
with BoF using multiple kernel learning. It is worth to remark that,
even the LDS approach alone can outperform the sparse-HMM
method.

From these results we can conclude that, contrary to prior be-
lief, video-based methods can be equally, if not more, discrimina-
tive than kinematic-based techniques. It is also important to
mention that the combination of heterogeneous data and
approaches using MKL generally outperforms the individual ap-
proaches alone. This suggests that, as we previously argued, kine-
matic and video data can be seen as complementary, that is why
their combination outperforms any of the other techniques that
uses only one type of data.

Even if the presented algorithms are meant to be executed off-
line in a batch fashion, and therefore were not written with real-
time applications in mind, we would like to give a sense of the
computational power required.

For the LDS part, we first need to perform system identification
for each surgical gesture. For kinematic data, system identification
for each surgeme only takes a fraction of a second since the signals
are of low-dimension (78 variables) and of a duration of a few hun-
dreds of frames, while for videos it can take a few seconds for each
system identification due to the high dimensionality of the video
signal (320� 240 ¼ 76;800 pixels). The computation of the dis-
tances between each surgeme in the test and all training samples,
and of the SVM classification only takes a fraction of a second.
Therefore, training requires some hours due to the many system
identification required and to the computation of all pairwise dis-
tances. However, classifying a task composed of around 20 surge-
mes takes a total of a few seconds for kinematic data and a few
minutes with video data.

As far as the BoF algorithm is concerned, once the model is
trained (training requires around 1 h), testing on a video of about
2 min length (at 30 frame per seconds) requires only few seconds.
However, this is not accounting for the time required for features
extraction. Features extraction is actually the most costly opera-
tion since it would take for a 2 min video around 10 min of compu-
tation. This being said, this operation could easily be implemented
in hardware. Hence, we believe that time for testing is not a barrier
to on-line applications, in such respect it is the model that should
be re-thought with the specific aim of real-time applications in
mind.

7. Discussion and conclusion

We have proposed three methods for surgical gesture classifica-
tion from video data: linear dynamical systems, bag of features and
a combination of these frameworks by multiple kernel learning.
Results showed that, if the visual features are selected from mean-
ingful locations, video data can be as, or even more, discriminative,
than kinematic data. It is fair to say that at this stage our ap-
proaches could not be applied directly to real surgeries, where is-
sues such as smoke and blood, could appear. Nevertheless, our
aim is to provide a system to assess trainees, who develop their
skills from bench setups like the ones we have used in our
experiments.

This paper also represents a step toward the recognition of
surgical gestures in video. This is because we have used fairly
low-level visual features, such as image intensities, image gradi-
ents and optical flow. Future work includes using more advanced
visual features, such as detection and tracking of surgical tools,
and interactions among surgical tools. Another road for future
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advances will involve the joint estimation of gestures as well as
their temporal segmentation.

Finally, we also proposed a framework to integrate kinematic
and video data, and the gain observed in the performance showed
that the information carried by these two kinds of data can be con-
sidered, at least in part, complementary.

We would also like to stress the benefit of the proposed meth-
odology and its potential applications. There are a number of ways
in which gesture recognition can be used. As we have discussed in
the article the ability to detect skill deficits at gesture level, and to
provide appropriate feedback, is likely to have far greater impact
than simple global measures such as time to completion or total
motion. In addition, being able to compare gestures will allow us
to better diagnose the type of deficit, and to present feedback spe-
cific to that deficit.

Furthermore, the ability to recognize gestures sets the stage for
intelligent contextual assistance. Padoy and Hager (2011) demon-
strated the idea of using gesture recognition as a way of accom-
plishing shared or cooperative control that is triggered based on
what the user was doing. More broadly, this type of gesture recog-
nition could be used to trigger contextually appropriate informa-
tion displays. For example, if one gesture is recognized the
system can predict what the surgeon is going to do after and what
he may need, therefore, by using information displays a nurse
could be warned to prepare the tools for the following step in an
automatic fashion.

A future technical challenge will be to build generalizable mod-
els that transfer well across users, and across tasks, so that we
really achieve a reasonably universal ‘‘language of surgery’’ that
has broad applicability.
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