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Abstract— Over the past few years, a number of distributed
algorithms have been developed for integrating the measure-
ments acquired by a wireless sensor network. Among them,
average consensus algorithms have drawn significant attention
due to a number of practical advantages, such as robustness
to noise in the measurements, robustness to changes in the
network topology and guaranteed convergence to the central-
ized solution. However, one of the main drawbacks of existing
consensus algorithms is their inability to handle outliers in the
measurements. This is because they are based on minimizing a
Euclidean (L2) loss function, which is known to be sensitive to
outliers. In this paper, we propose a distributed optimization
framework that can handle outliers in the measurements. The
proposed framework generalizes consensus algorithms to robust
loss functions that are strictly convex or convex, such as the Hu-
ber loss or the L1-loss. This generalization is achieved by posing
the robust consensus problem as a constrained optimization
problem, which is solved using distributed versions of classical
primal-dual and augmented Lagrangian optimization methods.
The resulting algorithms include the classical average consensus
as a particular case. Synthetic experiments evaluate our robust
consensus framework for several robust cost functions and show
their advantages over the classical average consensus algorithm.

I. INTRODUCTION
We have reached a technology inflection point where the

availability of miniature, network-enabled sensors provides a
tremendous opportunity for using large-scale wireless sensor
networks to monitor an environment and carry out automatic
analysis. Such networks can include a variety of sensors
(heat, magnetic field, cameras) and have found widespread
applications in several domains, including environmental
monitoring, health monitoring, multi-robot navigation, etc.

These applications have motivated the development of
a number of distributed algorithms for integrating the ac-
quired information across the network [1], [2]. Among them,
average consensus algorithms [3] have gained significant
attention [4]. In the classical average consensus algorithm,
each node measures a scalar quantity, say temperature, and
the average temperature over the entire network is obtained
by iteratively updating the temperature reading at each node
with the average temperature of its neighbors. Under mild
network connectivity requirements, this iterative procedure
is provably convergent to the global average. Moreover,
this procedure can be easily extended to multivariate data
ui ∈ RD by applying the scalar algorithm to each coordinate
of ui.
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A number of works have extended the applicability of
consensus algorithms to more general cost functions. [5]
proposes distributed consensus algorithms to solve a least-
squares estimation problem. [6] extends consensus algo-
rithms to computing the harmonic mean, the geometric mean,
the minimum and the maximum under the assumptions that
the graph is balanced, the gradient of the cost function is
distributed and the entries of the gradient are of the same
sign. [7] extends consensus to Riemannian manifolds by us-
ing a chord distance to compute a projected arithmetic mean.
[8] extends consensus to the space of rigid-body motions
by using the geodesic distance to compute a Karcher mean.
[9] uses an approach similar to ours, but for a completely
different application area (classification and clustering).

Significant research has also been undertaken to enhance
the robustness of the standard consensus algorithms to mea-
surement noise [10], [11], [5], [12]. However, most of the
existing results on the robustness of consensus to errors in
the measurements assume independent random noise with
stationary statistical properties and do not address the issue
of outliers that results from unmodeled perturbations.

Among the few existing works addressing the issue of
outliers are [13] and [14], which use a primal-dual formu-
lation to extend consensus to strictly convex functions and
to a class of maximum likelihood problems, respectively.
However, the derivation in [13] is not correct, as we will
point out in Section III. The work of [15] also addresses
robust loss functions, but it is not based on consensus and
requires the nodes to form a communication cycle.

The augmented Lagrangian method presented in this paper
also represents an alternative to the recent results in [16] and
[17] for distributed convex optimization based on subgradient
methods. Our approach leads to a more straightforward
convergence analysis with no increase in communications
and no projection and averaging involved in the iterations.
The dual decomposition method used in [18] is applicable
to more generalized functions, but it is not completely
decentralized and requires redundant variables when applied
to the consensus problem that we address here.

Paper contributions. We propose a distributed optimization
framework for dealing with outliers in consensus algorithms.
More specifically, we pose the robust consensus problem as
a constrained optimization problem in which we minimize
a strictly convex or a convex loss function. In the case of a
strictly convex loss, the Lagrangian function is naturally dis-
tributed, hence the robust consensus problem can be solved
using a distributed primal-dual approach. We show that this
approach reduces to a local optimization at each node plus



a consensus-like update of the Lagrange multipliers. In the
case of a convex loss, we use an augmented Lagrangian ap-
proach that adds the square of the constraints to the loss func-
tion in order to make the problem strictly convex. However,
the resulting augmented Lagrangian function is not naturally
distributed. By introducing auxiliary variables and using a
modified augmented Lagrangian approach, we still find a
distributed solution, which involves solving a modified local
optimization problem with an additional quadratic form plus
the same consensus-like update of the Lagrange multipliers.
We also show how to reduce the computational complexity of
our approach by simply solving a local optimization problem
plus a consensus-like update in an auxiliary state.
Paper outline. The paper is organized as follows. In Section
II we briefly review the classical average consensus algo-
rithm together with some basic results from duality theory. In
Section III, we propose a generalized distributed consensus
algorithm for strictly convex and convex loss functions. In
Section IV we apply the proposed framework to the robust
consensus problem using several robust loss functions, such
as the Huber loss and the L1-loss.

II. PRELIMINARIES

In this section, we review the classical average consensus
algorithm and the basics of duality theory, which will be
used for deriving the results to be presented in Section III.

A. Classical Average Consensus

In the basic setup of average consensus, the sensor network
is represented using a directed graph G = (V,E), where
the vertices i ∈ V = {1, . . . , n} represent the nodes of the
network, and the edges (i, j) ∈ E ⊆ V × V represent the
communication links such that if (i, j) ∈ E then there is a
link from node j to i. The graph is assumed to be symmetric,
i.e., if an edge (i, j) belongs to E, then (j, i) also belongs
to E. The set of neighbors of node i is denoted as Ni =
{j ∈ V | (i, j) ∈ E}. The number of neighbors or degree of
node i is denoted as di = |Ni| and the maximum degree of
the graph G is denoted as ∆G = maxi{|Ni|}.

Each node measures a scalar quantity ui ∈ R, i ∈ V and
the goal is to compute the average of these measurements,
ū = 1

n

∑n
i=1 ui, in a distributed fashion. Classical average

consensus does so by iterating the difference equation

zi(t+1)=zi(t)+ ε
∑
j∈Ni

(zj(t)−zi(t)), zi(0)=ui, i ∈ V, (1)

where zi(t) is the state of node i at iteration t and ε ≤ 1
∆G

is the step-size. One can verify that the mean of the states
is preserved at each iteration, i.e.,

ū =
1
n

n∑
i=1

zi(t) =
1
n

n∑
i=1

zi(t+ 1). (2)

One can also verify that (1) is in fact a gradient descent
algorithm for minimizing the function

ϕ(z1, z2, . . . , zn) =
n∑
i=1

∑
j∈Ni

(zi − zj)2. (3)

The minimum of (3) is achieved when the nodes reach a
consensus at ū, i.e., when zi = ū, i ∈ V . It can be shown that
limt→∞ zi(t) = ū, i ∈ V , when the graph G is connected
(see e.g., [19]). The rate of convergence is given by the
second smallest eigenvalue of the graph’s Laplacian matrix.1

B. Review of Basic Duality Theory

In this section, we review some basic results from duality
theory. We refer the readers to [20] and [21] for details.

Consider the (primal) optimization problem

min
z

f(z)

s.t. gi(z) = 0, i ∈ {1, · · · , l},
z ∈ S,

(4)

where f : RD → R is the objective function, gi : RD → R
are l equality constrains, and S ⊆ RD is a nonempty convex
set. The Lagrange function for this problem is defined as

L(z, λ) = f(z) +
l∑
i=1

λigi(z) = f(z) + λ>g(z), (5)

where λ = (λ1, · · · , λl)> is the vector of Lagrange mul-
tipliers and g(z) = (g1(z), · · · , gl(z))> is the vector of
constraints. The Lagrange dual function is then defined as

q(λ) = inf
z∈S
L(z, λ), (6)

where the infimum is taken over all z ∈ S ⊆ RD.
The dual function q(λ) provides a lower bound on the

optimal value of the primal problem f(z∗), i.e., q(λ) ≤
f(z∗) ≤ f(z). This result, known as weak duality, allows us
to find the tightest lower bound by solving the dual problem

max
λ

q(λ). (7)

This problem is always convex, regardless of whether the
primal problem is convex or not. Moreover, when f(z) is
strictly convex and under certain conditions on g, the dual
function q(λ) is differentiable and the gradient is given by

∂q(λ)
λi

= gi(z∗(λ)). (8)

When the primal problem is convex and some constraint
qualification such as the Slater’s condition holds, the op-
timal values of the primal and dual problems coincide, i.e.,
q(λ∗) = f(z∗). This result is known as strong duality, allows
us to first minimize the Lagrangian function over z and then
maximize the dual function over the Lagrange multipliers. In
some cases, this may be computationally simpler, because
the maximization of the dual function is an unconstrained
optimization problem. In particular, the iterative procedure

z(t+ 1) = arg min
z∈S
{f(z) + λ(t)>g(z)}, λ(0) = 0,

λ(t+ 1) = λ(t) + εg(z(t+ 1))
(9)

can be shown to converge to the optimal solution (z∗, λ∗)
for a suitable choice of the step-size ε > 0.

1Recall that the smallest eigenvalue is always zero and the second smallest
eigenvalue is strictly positive if the graph is connected.



III. GENERALIZED CONSENSUS FOR ROBUST CONVEX
COST FUNCTIONS

Given n measurements {ui ∈ RD}ni=1, the goal of average
consensus is to minimize the cost function

f(z) =
n∑
i=1

‖z − ui‖22 (10)

in a distributed fashion. To that end, the average consensus
algorithm described in Section II-A uses multiple copies of
the variable z, {zi}ni=1, to define the cost function in (3). This
cost function has several minima, namely zi = α, i ∈ V , for
any choice of α. Nonetheless, the algorithm in (1) converges
to only one such minima, α = ū, because it is initialized
at zi = ui, i ∈ V , and the average of the states {zi} is
preserved at each iteration, as per (2).

In order to make the average consensus algorithm robust
to outliers, we could try to minimize a robust version of (3),

ϕ(z1, z2, . . . , zn) =
n∑
i=1

∑
j∈Ni

ρ
(
zi − zj). (11)

Here ρ : RD → R is a penalty function on the error vector
e = (e1, . . . , eD)> of the form ρ(e) =

∑D
k=1 φ(ek), where

φ : R→ R is a robust loss function, such as the “fair loss”
[13]

φ(ek) = σ2

(
|ek|
σ
− log

(
1 +
|ek|
σ

))
, (12)

which is strictly convex, or the Lp loss

φ(ek) = |ek|p, (13)

which is strictly convex for p > 1 and convex for p = 1.
Another important robust cost function is the Huber loss [22]

φ(ek) =

{
e2
k if |ek| ≤ δ

2δ|ek| − δ2 if |ek| > δ
, (14)

which is a combination of the L1 and L2 losses. δ > 0
is a parameter that represents the threshold of outliers and
determines the trade-off between robustness and efficiency.
The Huber loss is also convex, but not strictly convex.

As before, the cost function in (11) has several minima,
namely zi = zj for all i, j ∈ V . However, in this case it is
not clear that the minimization of (11) using gradient descent
(or a similar method) will converge to the minimizer of

f(z) =
n∑
i=1

ρ(z − ui), (15)

as in the case of the L2 loss.
In this section, we propose an algorithm analogous to that

in (1) for computing the minimizer of (15) in a distributed
fashion. We pose this problem as a constrained optimization
problem, whose solution can be found using a distributed
primal-dual approach. We first derive the solution for strictly
convex cost functions and show that the classical average
consensus algorithm becomes a particular case of our for-
mulation. We then extend the algorithm to convex functions

by using an augmented Lagrangian approach. Although our
derivation is based on general functions, the result can be
directly applied to robust cost functions as particular cases.

A. Robust Consensus as a Constrained Optimization Problem

Let fi : RD → R be an arbitrary function defined at each
node i ∈ V . For example, we can choose fi(z) = ρ(z − ui)
for the robust average consensus problem. Suppose that we
want to estimate a common quantity z ∈ RD by solving the
following optimization problem

min
z

(
f(z) =

n∑
i=1

fi(z)

)
. (16)

As suggested in [13], under the assumption that the graph
G is strongly connected, the above optimization problem is
equivalent to the following constrained optimization problem

min
z1,z2,...,zn

n∑
i=1

fi(zi) s.t. zj = zi ∀i ∈ V, j ∈ Ni. (17)

The variables {zi ∈ RD}ni=1 can be interpreted as the states
of each one of the nodes in the sensor network and the local
constraints zj = zi, i ∈ V, j ∈ Ni, ensure that the optimal
solution of (17) coincides with that of (16), i.e.,

z∗1 = z∗2 = · · · = z∗n = z∗. (18)

The reformulation of the optimization problem in (16) as the
constrained optimization problem in (17) allows us to derive
distributed algorithms for solving (16) in the case of both
strictly convex and convex functions, as we show next.

B. Consensus for Strictly Convex Cost Functions

Assume first that the functions {fi}ni=1 are strictly convex.
As noted in [21], in this case the Lagrangian function
is separable and can be minimized using a primal-dual
approach. More specifically, let λi,j ∈ RD be the Lagrange
multiplier associated with the constraint zi − zj = 0, for all
i ∈ V, j ∈ Ni. Therefore, the Lagrangian function for the
problem in (17) is given by

L({zi}, {λi,j}) =
n∑
i=1

fi(zi) +
n∑
i=1

∑
j∈Ni

λ>i,j(zi − zj) (19)

=
n∑
i=1

[fi(zi) +
∑
j∈Ni

(λi,j − λj,i)>zi], (20)

which can be decomposed as the sum of n sub-Lagrangians

Li(zi, {λi,j}) = fi(zi) +
∑
j∈Ni

(λi,j − λj,i)>zi, (21)

each one depending on only the state at node i ∈ V , zi, and
the Lagrange multipliers at edges from and to node i ∈ V .

According to the duality results from Section II-B, the
problem in (17) is equivalent to:

min
{zi}

max
{λi,j}

n∑
i=1

Li= max
{λi,j}

min
{zi}

n∑
i=1

Li= max
{λi,j}

n∑
i=1

min
zi

Li. (22)



It follows from the right hand side of (22) that, when {λi,j}
are fixed, we can minimize L over {zi} in a distributed
fashion by minimizing separately each Li over zi, i.e.,

min
zi

[fi(zi) +
∑
j∈Ni

(λi,j − λj,i)>zi]. (23)

Moreover, since the functions fi are strictly convex and the
constraints on the states are linear and finitely many, the dual
function q({λi,j}) is differentiable and the gradient is given
by (see page 669 in [21] for further details)

∂q

∂λi,j
= z∗i ({λi,j})− z∗j ({λi,j}), (24)

where z∗i ({λi,j}) is the optimal solution to (23). As a
consequence, we can maximize q over {λi,j} in a distributed
fashion by using the iterative algorithm in (9). Therefore, we
have shown the following result.

Proposition 1: If the functions {fi}ni=1 are strictly con-
vex, the generalized consensus problem in (17) can be solved
in a distributed fashion by alternating the following two
updates for all i ∈ V, j ∈ Ni:

zi(t+1)=arg min
zi

[fi(zi)+
∑
j∈Ni

(λi,j(t)−λj,i(t))>zi] (25)

λi,j(t+1)=λi,j(t) + ε(zi(t+ 1)− zj(t+ 1)), (26)

where ε > 0 is a learning rate and λi,j(0) = 0.

The above generalized consensus algorithm is very simple.
It only involves local optimization over the state of each
node, zi, and a simple consensus-like update on the Lagrange
multipliers, λi,j . However, its ability to handle an arbitrary
strictly convex cost function comes at the price of increasing
the communication requirements. Specifically, each node i ∈
V needs to know not only the neighboring states {zj}j∈Ni

(as in classical average consensus), but also the Lagrange
multipliers of outgoing and incoming neighbors {λi,j}j∈Ni

and {λj,i}j∈Ni , respectively.
Fortunately, we can exploit the structure of the update

equations to reduce the communication requirements. Specif-
ically, notice that if we define a new variable at each node as
βi =

∑
j∈Ni

(λi,j − λj,i), we obtain a new, simpler algorithm.

Proposition 2: If the functions {fi}ni=1 are strictly con-
vex, the generalized consensus problem in (17) can be solved
in a distributed fashion by alternating the following two
updates for all i ∈ V :

zi(t+ 1) = arg min
zi

[fi(zi) + βi(t)>zi] (27)

βi(t+ 1) = βi(t) + 2ε
∑
j∈Ni

(zi(t+ 1)−zj(t+ 1)), (28)

where ε > 0 is a learning rate and βi(0) = 0.

This new algorithm has the same communication require-
ment as the classical average consensus. The only additional
cost is that each node needs to store and update one addi-
tional variable βi, i ∈ V , which can be seen as an auxiliary
state. Notice that the auxiliary states satisfy the constraint

∑n
i=1 βi = 0. Notice also that this constraint is automatically

enforced, because each βi is initialized as βi(0) = 0 and the

update in (28) is such that
n∑
i=1

βi(t+ 1) =
n∑
i=1

βi(t) = 0.

Remark 1 (Differences with [13]): The consensus algo-
rithm proposed in [13] also tries to address the optimization
problem in (17) under the assumption that each loss function
fi is strictly convex. However, their derivation decomposes
the Lagrangian in (19) as the sum of the n sub-Lagrangians

fi(zi) +
∑
j∈Ni

λ>i,j(zi − zj), ∀i ∈ V (29)

Notice that these sub-Lagrangians depend not only on the
state zi, but also on the states zj , j ∈ Ni. As a consequence,
the duality theorem in (22) is not directly applicable.

Remark 2 (Average consensus as a particular case):
As stated at the beginning of this section, the classical
average consensus can be formulated as

min
z1,z2,...,zn

n∑
i=1

||zi − ui||22 s.t. zi=zj ,∀i ∈ V, j ∈ Ni, (30)

where {ui}ni=1 are the measurements at the n nodes. If
we apply our algorithm in (27)–(28) to this problem by
substituting fi(z) = ||zi − ui||22 in (27), we obtain the
following update for the state at each node

zi(t+ 1) = ui − βi(t)/2. (31)

Substituting this expression for βi(t) into (28) yields the
classical average consensus algorithm in (1).

C. Consensus for Convex Cost Functions

The algorithm described in the previous subsection is an
extremely simple extension of classical consensus to strictly
convex loss functions. However, many robust loss functions
are not strictly convex, e.g., the L1 loss ρ(e) = ‖e‖1.

In this subsection, we show how to extend consensus
to convex functions. In principle, one may think that the
approach for strictly convex functions applies directly to the
case of convex functions. However, as we alluded to earlier,
the assumption of strict convexity is needed in order to ensure
the differentiability of the dual cost function. Therefore, for
functions that are not strictly convex, the update of the
Lagrange multipliers in (26) may not be applicable.

In order to address this issue, we could use the Augmented
Lagrangian approach [23]. In this approach, a quadratic
term is added to the cost function in order to make it
strictly convex. The quadratic term is chosen as the sum
of the squares of the constraints, which gives the following
augmented Lagrangian
n∑
i=1

fi(zi) +
n∑
i=1

∑
j∈Ni

λ>i,j(zi − zj) +
c

2

n∑
i=1

∑
j∈Ni

‖zi − zj‖2,

(32)
where c > 0 is a parameter. Since the additional term
is zero for any feasible solution, the optimal solution of
the original problem does not change. However, although



the resulting augmented Lagrangian resolves the problem of
differentiability of the dual function, it is not a separable
function. That is, we cannot directly write it as the sum of
n functions {Li}ni=1, where each Li depends only on zi.

To address this problem, we use a modified augmented
Lagrangian approach.2 The main idea is to introduce a set of
auxiliary variables into the optimization problem in (17) and
build a separable augmented Lagrangian function using more
constraints. This leads to the iterative optimization algorithm
given in the following proposition.

Proposition 3: If the functions {fi}ni=1 are convex, but
not necessarily strictly convex, the generalized consensus
problem in (17) can be solved in a distributed fashion by
alternating the following two updates for all i ∈ V, j ∈ Ni:

zi(t+ 1) = arg min
zi

{fi(zi) +
∑
j∈Ni

(λi,j(t)− λj,i(t))>zi

+
∑
j∈Ni

c(t)[zi −
1
2

(zi(t) + zj(t))]2} (33)

λi,j(t+ 1) = λi,j(t) +
c(t)
2

(zi(t+ 1)− zj(t+ 1)), (34)

where {c(t) > 0} is nondecreasing and λi,j(0) = 0.
Proof: If we introduce a set of auxiliary variables {wij}

and two new sets of constraints {zi = wij} and {zj = wij},
the optimization problem in (17) transforms to:

min
{zi},{wij}

n∑
i=1

fi(zi)

s.t. zi = wij , zj = wij ∀i ∈ V, j ∈ Ni.
(35)

Since the above set of constraints implies that zi − zj = 0,
∀i ∈ V, j ∈ Ni, the optimal solution for {zi} in this problem
is identical to that of (17).

In order to solve this new optimization problem, let {γ1
ij}

and {γ2
ij} be the Lagrange multipliers for the constraints

{zi = wij} and {zj = wij}, respectively. The modified
augmented Lagrangian can be defined as

Lc({zi},{wij}, {γ1
ij}, {γ2

ij}) =
n∑
i=1

fi(zi)

+
n∑
i=1

∑
j∈Ni

[γ1
ij
>

(zi − wij) + γ2
ij
>

(zj − wij)]

+
c

2

n∑
i=1

∑
j∈Ni

[(zi − wij)2 + (zj − wij)2]. (36)

Applying the method of augmented Lagrange multipliers
to the above augmented Lagrangian leads to the following
alternate minimizations with respect to {zi} and {wij}:
{zi(t+1)}=argmin

{zi}
Lc(t)({zi}, {wij(t)}, {γ1

ij(t)}, {γ2
ij(t)})

{wij(t+1)}
= argmin

{wij}
Lc(t)({zi(t+ 1)}, {wij}, {γ1

ij(t)}, {γ2
ij(t)}),

(37)

2A similar approach is used in pages 243-253 of [21] for solving a related
problem.

and the following updates for γ1
ij and γ2

ij :

γ1
ij(t+ 1) = γ1

ij(t) + c(t)(zi(t+ 1)− wij(t+ 1)) (38)

γ2
ij(t+ 1) = γ2

ij(t) + c(t)(zj(t+ 1)− wij(t+ 1)), (39)

for all i ∈ V, j ∈ Ni, where {c(t) > 0} is nondecreasing.
In order to solve the minimization problem in (37) with

respect to zi in a distributed fashion, we can use the same
techniques as in (20) to make the augmented Lagrangian
separable. The resulting update for zi,∀i ∈ V , is given by:

zi(t+ 1) = arg min
zi

{fi(zi) +
∑
j∈Ni

(γ1
ij(t) + γ2

ji(t))
>zi

+
c(t)
2

∑
j∈Ni

[(zi − wij(t))2 + (zi − wji(t)2)]}. (40)

As per wij , a closed form update can be obtained by
taking the partial derivative of the augmented Lagrangian
and setting it to zero, which gives

wij(t+1) =
1
2

[zi(t+1)+zj(t+1)+
γ1
ij(t) + γ2

ij(t)
c(t)

]. (41)

The rest of the proof is simply to combine the two sets
of constraints and to effectively eliminate the update for the
auxiliary variable wij . Adding (38) and (39) gives rise to

γ1
ij(t+ 1) + γ2

ij(t+ 1) = γ1
ij(t) + γ2

ij(t)
+ c(t)[zi(t+ 1) + zi(t+ 1)− 2wij(t+ 1)],

(42)

from which we obtain update for wij as

wij(t+ 1) =
1
2

[zi(t+ 1) + zj(t+ 1)

+
γ1
ij(t) + γ2

ij(t)
c(t)

−
γ1
ij(t+ 1) + γ2

ij(t+ 1)
c(t)

].
(43)

Comparing (41) and (43) gives the following important
relation, which reduces the sets of Lagrangian multipliers
to only one (denoted as {λi,j}):

γ1
ij(t+ 1) = −γ2

ij(t+ 1) .= λi,j(t+ 1). (44)

Then the update equation for the multipliers can be com-
puted by subtracting (39) from (38) and then changing the
multipliers according to the above equation to obtain

λi,j(t+ 1) = λi,j(t) +
c(t)
2

(zi(t+ 1)− zj(t+ 1)). (45)

Finally, since the equation for wij at iteration t reduces to

wij(t) =
1
2

[zi(t) + zj(t)], (46)

the update for zi in (40) reduces to

zi(t+ 1) = arg min
zi

{fi(zi) +
∑
j∈Ni

(λi,j(t)− λj,i(t))>zi

+
∑
j∈Ni

c(t)[zi −
1
2

(zi(t) + zj(t))]2}. (47)

At last, we point out that the convergence of our iterative al-
gorithm can be proved as a special case of that of Augmented
Lagrangian Methods in page 245 of [21].



Remark 3: As in Proposition 2, we can eliminate the
Lagrange multipliers and replace them by an auxiliary state
βi(t) =

∑
j∈Ni

(λi,j(t)− λj,i(t)) to obtain the updates

zi(t+ 1) = arg min
zi

{fi(zi) + βi(t)>zi

+
∑
j∈Ni

c(t)[zi −
1
2

(zi(t) + zj(t))]2} (48)

βi(t+ 1) = βi(t) + c(t)
∑
j∈Ni

(zi(t+ 1)− zj(t+ 1)), (49)

where βi(0) = 0, for all i ∈ V .

IV. EXPERIMENTS

In this section, we evaluate the performance of the pro-
posed robust consensus algorithms on synthetic data. We
consider a network with n = 100 nodes with the commu-
nication graph being a connected 6-regular lattice, i.e., each
node is connected to 6 nearest neighbors in the network.
The nodes’ measurements, {ui}, are generated from the
zero-mean Gaussian distribution with unit standard deviation.
For P% of the nodes, where P ∈ [0, 30], we corrupt
the measurements by large outliers drawn from a uniform
distribution on the interval [30, 100].

We solve the optimization problem in (16) using the
proposed distributed optimization algorithms with five loss
functions: the fair loss in (12), the Lp loss (13) with p = 2,
1.5, and 1, and the Huber loss in (14). We emphasize that
the fair, L2 and L1.5 losses are strictly convex, while the L1

and Huber losses are convex, but not strictly convex. A step
size of ε = 0.056 is used for the L2 and L1.5 losses. For the
fair loss, a parameter σ = 3.5 and a step size ε = 0.00056
are used. For the other cases, we use a constant step size
c = 0.056. The threshold for Huber loss is set to δ = 5.

Figures 1a-1e plot the states zi(t) of all the nodes for
each one of the five loss functions, respectively, when P =
15%. Notice that all five algorithms converge to a consensus
configuration, which coincides with the centralized solution
for the corresponding loss function shown by the dash line.
However, the consensus configuration does not coincide with
the mean of the outlier-free data, which is zero in this case.
This issue is further illustrated in Figure 1f, which shows the
centralized solutions of the five loss functions as a function of
the percentage of outliers. As expected, the classical average
consensus algorithm, which uses the L2 loss, is very sensitive
to outliers. The performance of the L1.5 loss is better than
that of the L2 loss, but the fair and Huber losses are even
more robust. Overall, the most robust loss is the L1 loss.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we considered the problem of distributed
optimization in sensor networks with robustness to outliers
in the measurements. To address this problem, we proposed
a generalized consensus algorithm in which each node min-
imizes a local robust cost function, while neighboring nodes
perform a consensus like-update on Lagrange multipliers
defined for each edge of the network. We showed that

the proposed distributed algorithm converges to the optimal
solution of the equivalent centralized optimization problem.
We also studied the performance of the iterative approach for
convex and strictly convex cost functions through simulation
experiments. Future work includes extending the results to
the class of quasi-convex functions as well as deriving
more efficient updates on the dual variables which reduce
the amount of Lagrange multipliers used at each node.
Extensions to asymmetrically directed graph or time-varying
graph topologies are also of interests to study.
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Fig. 1: Evaluation of the proposed robust consensus algorithms on synthetic data contaminated with outliers. Figures (a)-(e)
show the states of n = 100 nodes as a function of the number of iterations for the fair, L2, L1.5, L1, and Huber loss
functions, respectively, when the percentage of outliers is P = 15%. All the states converge to a consensus configuration
given by the corresponding centralized algorithm. Figure (f) plots the centralized solution to which the algorithms converge
as a function of the percentage of outliers for the different loss functions.
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