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Abstract— Consensus algorithms are a popular choice for

computing averages and other similar quantities in ad-hoc

wireless networks. However, existing algorithms mostly address

the case where the measurements live in a Euclidean space.

In this paper, we propose distributed algorithms for averag-

ing measurements lying in a Riemannian manifold. We first

propose a direct extension of the classical average consensus

algorithm and derive sufficient conditions for its convergence

to a consensus configuration. Such conditions depend on the

network connectivity, the geometric configuration of the mea-

surements and the curvature of the manifold. However, the

consensus configuration to which the algorithm converges may

not coincide with the Fréchet mean of the measurements. We

thus propose a second algorithm that performs consensus in the

tangent space. This algorithm is guaranteed to converge to the

Fréchet mean of the measurements, but needs to be initialized

at a consensus configuration. By combining these two methods,

we obtain a distributed algorithm that converges to the Fréchet

mean of the measurements. We test the proposed algorithms

on synthetic data sampled from manifolds such as the space of

rotations, the sphere and the Grassmann manifold.

I. INTRODUCTION
Consider a set of low-power sensors that can communicate

with each other through a wireless network. Assume that each
sensor measures some common quantity, e.g., the temperature
in a field or the pose of an object, and that the goal is to
compute the average of all these measurements. However,
due to power constraints, each node in the network has a
limited communication range. We are, therefore, interested
in distributed estimation algorithms in which each node
performs some local computation via communication with a
few neighboring nodes and all the nodes collaborate to reach
an agreement on the global quantity of interest (e.g., the
average of the measurements). Natural candidates for this
scenario are iterative consensus algorithms, where each node
maintains a local estimate of the global average, which is
updated with a weighted average of the estimates from the
local neighbors. The main advantage of consensus algorithms
is that they converge exponentially to the centralized solution
under very mild communication assumptions, even in the
case of a time-varying network topology. However, traditional
consensus algorithms have been mainly studied for averaging
quantities that live in Euclidean spaces.
Prior work. In the last few years, there has been an increasing
interest in extending consensus algorithms to data lying on
manifolds. This problem arises in a number of applications,
including distributed pose estimation [1], camera sensor
network localization [2] and satellite attitude synchronization
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[3]. Early works consider specific manifolds such as the
sphere [4] or the N -torus [5]. However, these approaches are
not easily generalizable to other manifolds. The work of [6]
considers the problems of consensus and balancing on the
more general class of compact homogeneous manifolds. The
approach is extrinsic, i.e., it is based on specific embeddings of
the manifolds in Euclidean space (where classical consensus
can be employed) and requires the ability to project the
Euclidean consensus configuration onto the manifold. Since
the approach is extrinsic, convergence properties for both
fixed and time-varying network topologies follow directly
from existing results in the Euclidean case. A similar approach
is taken in [7], where the extrinsic approach is extended to
the case where the mean is time-varying.

To the best of our knowledge, the work of [1] is the first
one to propose an intrinsic approach, which does not depend
on specific embeddings of the manifold and does not require
the definition of a projection operation. Instead, it relies only
on the intrinsic properties of the manifold, such as geodesic
distances and exponential and logarithm maps. However, the
work of [1] focuses only on a specific manifold (SO(3))
and does not provide a thorough convergence analysis. Other
works on distributed algorithms for data lying in manifolds
include [3], [8], which address the problem of coordination on
Lie groups, and [2], which addresses the problem of localizing
a camera sensor network. However, these works cannot be
applied to the problem of computing distributed averages in
general manifolds, which we consider in this paper.

Paper contributions. In this paper, we propose distributed
algorithms for averaging measurements lying in a Riemannian
manifold. We assume a fixed network topology and aim to
compute the Fréchet mean of the measurements (the point
in the manifold that minimizes the sum of squared geodesic
distances to the measurements) in a distributed way. For this
purpose, we define two energy functions on the manifold
and minimize them using Riemannian gradient descent. This
requires computing the exponential and logarithm maps for
the manifold of interest. We also derive sufficient conditions
for the convergence of the proposed algorithms to a consensus
configuration (i.e., where all the nodes converge to the same
estimate). Moreover, we show that some existing results for
Euclidean consensus (such as the choice of the step-size) are
valid also for spaces of constant, non-negative curvature.

Our work has several important contributions with respect
to the state of the art. First, our formulation is completely
intrinsic, in the sense that it is not tied to a specific embedding
of the manifold. Second, we consider more general (complete
and not necessarily compact) Riemannian manifolds. Third,



we provide sufficient conditions for the convergence of the
algorithm to a consensus configuration, which depend on
the network connectivity, the geometric configuration of the
measurements and the sectional curvature of the manifold.
Paper outline. In §II we review classical consensus and some
relevant notions from Riemannian geometry. In §III and §IV
we describe two extensions of consensus algorithms to data
in manifolds, each one with its advantages and disadvantages,
and we show how they can be combined to overcome the
limitations of both. In §VI we test the proposed algorithms
on manifolds such as the special orthogonal group, the circle
and the Grassmann manifold.

II. MATHEMATICAL BACKGROUND
In this section, we review some basic concepts related to

Euclidean consensus algorithms and differential geometry
that are relevant to our development in the rest of the paper.

A. Review of Euclidean consensus algorithms
Consider a sensor network with N nodes. In the basic

setup of average consensus the network is represented using
an undirected graph G = (V,E). The vertices i ∈ V =

{1, . . . , N} represent the nodes of the network while the
edges (i, j) ∈ E ⊆ V × V represent the communication
links between nodes i and j. The set of neighbors of node
i is denoted as Ni = {j ∈ V | (i, j) ∈ E}. The number of
neighbors or degree of node i is denoted as di = |Ni| and the
maximum degree of the graph G as Deg(G) = maxi{di}.

Each node measures a scalar quantity ui ∈ R, i ∈ V .
The goal is to obtain a distributed algorithm to compute the
average of these measurements ū =

1
N

�N
i=1 ui, which is a

global quantity (in the sense that involves information from
all the nodes). The well-known average consensus algorithm
computes the average ū by iterating the difference equation

xi(k+1) = xi(k)+ε

�

j∈Ni

(xj(k)−xi(k)), xi(0) = ui, (1)

where xi(k) is the state of node i at iteration l and ε ≤ 1
Deg(G)

is the step-size. It is easy to verify that the mean of the states
is preserved at each iteration, i.e.,

1

N

N�

i=1

xi(k) =
1

N

N�

i=1

xi(k + 1) = ū. (2)

It is also easy to see that (1) is in fact a gradient descent
algorithm that minimizes the function

ϕ(x) =
1

2

�

(i,j)∈E

(xi − xj)
2
. (3)

where x = (x1, . . . , xN ) denotes the vectors of all states
in the network. From now on, we will use bold letters to
denote vectors (in which each element belongs to R or another
manifold M). The cost (3) is convex and the global minimum
is achieved when the nodes reach a consensus configuration,
i.e., when xi = y for all i ∈ V and for some y ∈ R. It can
be shown that with the initial conditions stated in (1) and
when the graph G is connected, we have limk→∞ xi(k) = ū,

for all i ∈ V (see, e.g., [9]). Notice also that the average
consensus algorithm can be easily extended to multivariate
data ui ∈ RD by applying the scalar algorithm to each
coordinate of ui. It can also be extended to situations where
the network topology changes over time (see [10] for the
convergence analysis).

B. Riemannian geometry notation

In this section we present our notation for the Riemannian
geometry concepts used throughout the paper. We refer the
reader to [11], [12] and [13] for further details.

Let (M, �, �) be a Riemannian manifold with metric �, �.
The tangent space of M at a point x ∈ M is denoted as
TxM. Using the metric it is possible to define geodesic
curves, which are the generalization of straight lines in M.
For the remainder of the paper, we will always assume that
M is geodesically complete, i.e., there always exists a length-
minimizing geodesic between any two points in M. Most of
the manifolds of practical interest are geodesically complete.
We define the distance d(x, y) between two points x, y ∈ M
as the length of the shortest geodesic curve between them.

Let v be a unit-length tangent vector in TxM, i.e., �v� =

�v, v� 1
2 = 1. We can then define the exponential map expx :

TxM → M, which maps each tangent vector tv ∈ TxM to
the point in γ(t) ∈ M obtained by following the geodesic
γ(t) passing through x with direction v for a distance t.
We denote as Ĩx ⊂ TxM the maximal open set for which
expx is a diffeomorphism and we define the interior set [11,
p.216] as Ix = expx Ĩx. The exponential map is therefore
invertible for all the points in Ix and we can define the
logarithm map logx : Ix → TxM as logx = exp

−1
x . We

also denote as injx M, x ∈ M the radius of the maximal
geodesic ball centered at x entirely contained in Ix and as
injM the infimum of injx M over all the points x ∈ M.

Given a smooth function f : M → R, and a tangent vector
v ∈ TxM, one can define the directional derivative of f in
the direction v at x as d

dtf(γ(t))
��
t=0

, where γ(t) is any
curve such that γ(0) = x and γ̇(0) = v. The gradient of
f on (M, �, �) at x ∈ M is defined as the unique tangent
vector gradx f(x) ∈ TxM such that, for all v ∈ TxM,

�gradx f(x), v�x =
d

dt
f(γ(t))

����
t=0

. (4)

Intuitively, as in the Euclidean case, the gradient indicates the
direction along which f increases the most. A point x ∈ M
is called a critical point of f if either gradx f(x) = 0, i.e., it
is a stationary point, or the gradient does not exist [14]. In
this paper, we will mainly need the gradient of the squared
distance function, which is given by:

1

2
gradx d

2
(x, y) = − logx(y). (5)

Given a point x ∈ M, we denote the sectional curvature
of σ, a two-dimensional subspace in TxM, as Kσ(x). From
now on we will assume that the sectional curvature of the
manifold M is bounded above by ∆ and below by δ. In
other words, δ ≤ Kσ(x) ≤ ∆ for any point x ∈ M and



any two-dimensional subspace σ ⊂ TxM. If δ = ∆ = κ,
then M is said to be of constant curvature κ. Related to the
curvature, we define the radius r∗ > 0 as

r
∗
=

1

2
min

�
injM,

π√
∆

�
, (6)

where we use the convention that, if ∆ ≤ 0, 1√
∆

= +∞.
Note that any ball with radius r ≤ r∗ is guaranteed to be
convex. In addition, for the sake of brevity, we define the
functions

Sκ(t)=






sin(
√
κt)√
κ

κ > 0

t κ = 0

sinh(
√

|κ|t)√
|κ|

κ < 0

, Cκ(t)=






cos(
√
κt) κ > 0

1 κ = 0

cosh(

�
|κ|t) κ < 0

.

(7)

In the following, we will make also use of the product
manifold MN

= M × . . . × M, which is the N -fold
cartesian product of M with itself. We will use the notation
x = (x1, . . . , xN ) to indicate a point in MN and v =

(v1, . . . , vN ) ∈ TxM to indicate a tangent vector. We will use
the natural metric �v,w� =

�N
i=1�vi, wi�. As a consequence,

geodesics, exponential maps, and gradients can be easily
obtained by using the respective definitions on each copy of
M in MN . This notation will be useful when stating results
that involve the states of all the nodes at the same time.

C. Examples of manifolds
We will use the following manifolds as examples through-

out the paper.
Euclidean space. The usual Euclidean space Rn can be
interpreted as the simplest Riemannian manifold, where the
tangent space of a point is a copy of Rn, the metric is the
usual inner product, and geodesics are straight lines. It has
constant curvature κ = 0 and injectivity radius +∞.
The orthogonal and special orthogonal groups. The n-
dimensional orthogonal group is defined as O(n) = {R ∈
Rn×n

: RTR = I}. This is the group of orthogonal n × n

matrices. This group has two connected components. One of
them is the special orthogonal group SO(n), which has the
additional property det(R) = 1, and essentially describes all
possible rotations in the n-dimensional Euclidean space. The
Lie algebra for the group is so(n), the space of n× n skew-
symmetric matrices. The Riemannian metric at the identity
is given by �v1, v2� =

1
2 tr(v

T
1 v2), v1, v2 ∈ so(n). In this

metric, the curvature bounds are ∆ =
1
2 , and δ = 0, except

when n = 3, for which δ = ∆. Also, the injectivity radius is
π and r∗ =

π
2 .

The Grassmann manifold. The (n, p) Grassmann manifold
Grass(n, p) is the space of p-dimensional subspaces in Rn. It
can also be viewed as a quotient space O(n)/

�
O(p)×O(n−

p)
�
, which provides a Riemannian structure for it through

immersion in O(n) [16]. The curvature bounds are ∆ = 2,
and δ = 0. The injectivity radius is π

2 and r∗ =
π
4 .

The sphere. The n-dimensional sphere is defined as Sn =

{Y ∈ Rn+1
: Y TY = 1}. The tangent space at a point Y is

defined as TY Sn = {Z ∈ Rn+1
: ZTY = 0}. As metric, we

use the standard inner product between vectors in Rn+1. The
geodesics follow great circles and the curvature is constant
δ = ∆ = 1.

More details about these manifolds and about the compu-
tation of the exp and log maps can be found in [15], [16].

D. Fréchet mean
Let {ui}Ni=1 be a set of points in a smooth Riemannian

manifold M. The Fréchet mean ū of this set is defined as the
global minimizer of the sum of squared geodesic distances,
i.e.,

ū = argmin
u∈M

N�

i=1

d
2
(ui, u). (8)

The minimizer is unique if the points lie in a ball of radius
smaller than r∗[18]. It can be shown that a necessary condition
for ū to be the Fréchet mean is that

N�

i=1

logū(ui) = 0. (9)

The condition (9) leads to the following iterative algorithm
for computing the Fréchet mean

1) Set the initial mean in M as ū = u1.
2) Compute the mean in TūM as w =

1
N

�N
i=1 logū(ui).

3) While �w� < δ, update ū to ū = expū(εw), for ε ≤ 1

and go to step 2.
The most general conditions for convergence of this algorithm
are only partially known, see [17] for instance.

III. CONSENSUS IN THE MANIFOLD
Our first algorithm, which we refer to as consensus in

the manifold, can be considered as a direct extension of the
classical consensus algorithm to the non-Euclidean case.

Following the notation introduced in Section II-A, let us
denote the measurement and the state at node i as ui ∈ M
and xi ∈ M, respectively. By a straightforward generalization
of the Euclidean case in (3), we define the potential function
ϕ

ϕ(x) =
1

2

�

(i,j)∈E

d
2
(xi, xj). (10)

Notice that the gradient of ϕ with respect to the i-th element
can be explicitly calculated as

gradxi
ϕ=

1

2
gradxi

�

j∈Ni

d
2
(xi, xj)=−

�

j∈Ni

logxi
(xj).

(11)

While simplifying the above equation, we used the facts that
the graph is undirected and that d(·, ·) is symmetric.

Our proposed consensus protocol on M corresponds to
using a Riemannian gradient descent search for minimizing
the cost function ϕ. Essentially, xi(k) is initialized with the
measurements ui and then it is updated along the geodesic
corresponding to the gradient − gradxi

ϕ with a step size ε,
yielding the protocol

xi(k + 1) = expxi(k)(−ε gradxi(k) ϕ), xi(0) = ui. (12)



Note that this protocol is an extension of the Euclidean case,
because when M = R with the standard metric, the iterations
in (12) reduce to those in (1).

In the remainder of this section, we analyze the convergence
properties of the consensus in the manifold algorithm.
Specifically, we want to give conditions for convergence to a
consensus configuration xi = xj , ∀i, j ∈ V . We divide our
treatment in three parts. First, we notice that the function
(10) can have multiple local minima and we characterize a
subset of MN that contains only global minima. Second, we
give conditions on the choice of the step-size ε for which
the algorithm is guaranteed to reduce the cost (10) at each
iteration. Finally, we give sufficient conditions under which
the algorithm is guaranteed to converge to the set of global
minima, which correspond to consensus configurations.
Global minima of the cost function ϕ. We first show
that a global minimizer of ϕ corresponds to a consensus
configuration. Define the diagonal space of MN as

D =
�
(y, . . . , y) ∈ MN

: y ∈ M
�
. (13)

This space represents all the possible consensus configurations
of the network, where all the nodes agree on a state. We have
the following propositions.

Proposition 1: If G is connected, then y ∈ D if and only
if y is a global minimizer of ϕ.

Proof: Note that each term of ϕ in (10) is non-negative,
hence ϕ ≥ 0. In addition, note that ϕ = 0 implies that for
each pair {i, j} ∈ E, we have d2(xi, xj) = 0. By definition,
d(xi, xj) = 0 if and only if the points in the manifold are
equal, i.e., xi = xj . Since G is connected, we can conclude
that ϕ achieves its global minimum, i.e., ϕ = 0, if and only
if xi = xj = y for all i and j and some y ∈ M.

We define the set S ⊂ MN as

S = {(x1, . . . , xN ) ∈ MN
:

∃y ∈ M for which max
i∈V

d(xi, y) < r
∗}. (14)

Intuitively, S is a tube in MN centered around the diagonal
space D and having a “square” section (see Fig. 1). It is
known that a sufficient condition for the uniqueness of the
Fréchet mean is that u = (u1, . . . , un) ∈ S [18].

The following result represents our first contribution.
Theorem 1: A point x0 ∈ S is a critical point for ϕ if and

only if x0 ∈ D. In other words, the set S contains all the
global minima and no other critical points of ϕ.

To prove this theorem we need the following Lemma [15].
Lemma 1: Let x1, x2, y be three points in M such that

d(xi, y) < r∗, i = 1, 2. Define the unique minimal geodesics
γi(t) such that γi(0) = y and γi(1) = xi, i = 1, 2. Define
also φ12(t) = d(γ1(t), γ2(t)). Then d

dtφ
2
12 ≥ 0 for t ∈ (0, 1],

with equality if and only if x1 = x2.
Proof: [of Thm. 1] If x0 ∈ D, then x0 is obviously a

global minimizer of ϕ, and hence a critical point. On the
other hand, x0 /∈ D cannot be a critical point of ϕ because,
as we will show now, there exists a geodesic γ : [0, 1] →
MN such that γ(1) = x0 and along which the derivative of

ϕ(γ(t)) at t = 1 is not zero. Notice that since x0 ∈ S , there
exists a y ∈ M such that maxi∈V d(x0i, y) < r∗. Define
the unique minimal geodesics γi(t) such that γi(0) = y and
γi(1) = x0i. Then the curve γ(t) = (γ1(t), . . . , γN (t)) is a
minimal geodesic in MN (see also Fig. 1). It follows that

d

dt
ϕ(γ(t))

����
t=1

=
1

2

�

(i,j)∈E

d

dt
d
2
�
γi(t), γj(t)

�����
t=1

. (15)

Since d(x0i, y) < r∗, from Lemma 1 we deduce that all
the terms on the right hand side of (15) are not negative
and at least one is strictly positive (otherwise, since G is
connected, we would have x0 ∈ D). From the definition
of gradient, gradx ϕ(x0) = 0 if and only if the directional
derivative d

dtϕ(γ(t))
��
t=1

= 0 for any curve γ(t) passing
through x0, i.e., γ(1) = x0. Since d

dtϕ(γ(t))
��
t=1

> 0, x0

is not a critical point.
We remark that the bound given by r∗ in the proof above

might be quite conservative for some specific geodesics γ.
In practice, there might be a set containing D and no other
critical points which is larger than S . In fact, if the graph G

is a tree, we can show the following stronger result.
Theorem 2: If G is a tree, any stationary point x0 of ϕ

on MN is a global minimizer, i.e., x0 ∈ D.
Proof: [Sketch] From (11), we can deduce that

gradx ϕ = 0 implies xi = xj whenever node i is a leaf
of the tree and node j is its parent. Using induction from the
leafs to the root of the tree, the claim follows.

Choice of the stepsize ε. In this section we provide bounds on
the value of ε that guarantee the convergence of the consensus
protocol (12) to a critical point of ϕ. As it will turn out, these
bounds on ε depend on bounds on the Hessian of the cost
function Hessϕ(x) [13, p. 142]. We will use the following
definition.

Definition 1: Given a twice differentiable function defined
on an open subset X of a manifold N , we say that the Hessian
Hessϕ(x) is uniformly upper bounded on X if there exists
a finite, strictly positive constant µmax such that, for any
x0 ∈ X and any v ∈ Tx0N , the second derivative of ϕ along

M

y

x1

x2
x3

γ
1

γ2
γ
3

MN

y

D

S

x

γ

Fig. 1: Construction of the geodesic for testing if ϕ has a
local minimum at (xi, xj).



x̃(t) = expx0
tv can be bounded as:

d
2

dt2
ϕ(x̃(t))

����
t=0

= �v,Hessϕ(x0)v� ≤ µmax�v�2. (16)

These bounds on the Hessian play an important role because
of the following theorem [15].

Theorem 3: Let µmax be a uniform bound on the Hessian
of ϕ. If x̃0(ε) = expx0

ε gradx ϕ(x0) ∈ X for all ε ∈
(0, 2µ−1

max), then ϕ(x̃0(ε)) ≤ ϕ(x̃0(0)) for ε ∈ (0, 2µ−1
max),

with equality if and only if x0 ∈ X is a stationary point of
ϕ.

In our case, N = MN and the set X = E is defined as

E = {x ∈ MN
: d(xi, xj) < 2r

∗ ∀(i, j) ∈ E}. (17)

and we also use the specific notation EM2 for the case N = 2.
Given the special structure of our cost function ϕ in (10),
the bound µmax can be obtained from the bound on the
Hessian of each pairwise distance in (10), which is given by
the following:

Theorem 4: The Hessian of the function (xi, xj) �→
1
2d

2
(xi, xj) can be bounded on EM2 by

µ
d
max(t) = max

�
2, t

�
Cδ(t)

Sδ(t)
+

1

S∆(t)

��
, (18)

where t = d(xi, xj), Cκ(t) and Sκ(t) are defined in (7), and
δ and ∆ are, respectively, lower and upper bounds on the
sectional curvature of M.

The proof can be found in [15]. We remark that the
bound µd

max is sharp, in the sense that it becomes exact
for manifolds with constant curvature (i.e., δ = ∆, see [15]).
In fact, for the Euclidean space and for spaces of non-negative
constant curvature, e.g., the sphere or SO(3), this bound is
2, independent of the distance between the points. In general,
while the bound depends on the distance between the points,
we might be able to find a uniform upper bound on µd

max(t).
For instance, if we take dmax = 2r∗, then µd

max � 3.792 for
both SO(n) with n ≥ 4 and the Grassmann manifold.

Given µd
max, the following proposition gives a relation

with the bound µmax on the Hessian of the entire cost ϕ.
Proposition 2: Assume that there exists dmax < 2r∗ such

that d(xi, xj) < dmax for all (i, j) ∈ E. The Hessian of the
function ϕ can be uniformly bounded on E by the constant
µmax(dmax) = Deg(G)µd

max(dmax), where, again, Deg(G)

is the maximum graph degree.
This proposition is just a particular case of the more general

Thm. 13 in [15].
We are now ready to state our second main contribution,

whose proof follows easily from Thm. 3 and Prop. 2.
Theorem 5: Assume that the curvature of M is bounded

below by δ and above by ∆. Assume also that, for a given k,
dmax < 2r∗, d(xi(k), xj(k)) < dmax for all (i, j) ∈ E.
In addition, assume expx(k)

�
−ε gradx ϕ(x(k))

�
∈ E for

all ε ∈
�
0, 2µ−1

max(dmax)
�
. If x(k + 1) is given by the

consensus protocol in (12) with ε ∈
�
0, 2µ−1

max(dmax)
�
, then

ϕ(x(k+1)) ≤ ϕ(x(k)), with equality if and only if x(k) is
a stationary point of ϕ.

Notice that S ⊆ E . However, in general, E might be much
larger than S , especially when each node has a small number
of neighbors.

From Thm. 5, we can deduce a simple corollary.
Corollary 1: For spaces of constant, non-negative curva-

ture δ = ∆ ≥ 0, we have µd
max ≡ 2 and ε ∈ (0,Deg(G)

−1
).

This tells us that the bound for the Euclidean case can be
applied also for the case of manifolds with positive constant
curvature. In other cases (e.g., for manifolds of negative
curvature) we need to reduce ε according to the maximum
distance between the states of two neighboring nodes.

To compute the same ε at each node, one needs distributed
algorithms to compute Deg(G) and dmax. The maximum
degree Deg(G) can be computed using a consensus-like
algorithm where each node initializes its state with its own
degree and repeately updates its estimate by taking the
maximum of the estimates in the local neighborhood. If
the manifold M is compact, the bounds on the maximum
distance dmax between the states of two neighboring nodes
can be precomputed. If M is not compact, dmax can be
bounded by first using consensus to compute the value of the
cost function evaluated at the measurements, ϕ(u), and then
using ideas similar to the ones we will see in the proof of
Thm. 7.

Using the results above, we can establish our first theorem
on the convergence of our consensus protocol.

Theorem 6: If the assumptions of Thm. 5 hold for any
iteration k, then any cluster point of the sequence of iterates
x(k) ∈ E generated by (12) is a critical point of ϕ in E .
The proof, which can be found in [15], uses a fairly standard
argument to show that limk→∞ gradx ϕ(x(k)) = 0.
Convergence to the set of global minimizers. In this section
we show that there exists a set Sconv ⊂ S ⊂ MN such that
the algorithm will converge to the set of global minimizers
of ϕ for any initialization in Sconv .

Theorem 7: Let D = diam(G) denote the diameter of
the network graph G and define Sconv = {x ∈ MN

:

ϕ(x) <
(r∗)2

2D }. Then, Sconv ⊆ S and if the consensus
protocol (12) is initialized with measurements u ∈ Sconv,
then x(k) converges to D.

Proof: Consider any p, q ∈ V and consider a shortest
path in the graph {ik}Kk=0 from i0 = p to iK = q. We will
use this path to bound the real distance between states xp

and xq with the cost function ϕ as follows:

d
2
(xp, xq) ≤

�
K−1�

k=0

d(xik , xik+1)

�2

≤ K

K−1�

k=0

d
2
(xik , xik+1)

≤ K

�

(i,j)∈E

d
2
(xi, xj) ≤ 2Dϕ(x), ∀p, q ∈ V. (19)

In the equation above we used the triangular and Jensen’s
inequalities, and the fact that, by definition of diameter, K ≤
D. This shows that if x ∈ Sconv, then ϕ(x) <

r∗

2D and
d(xp, xq) < r∗, for any p, q ∈ V . This means that x ∈ S .

Next, we show that if x(k) ∈ Sconv, then x̃(ε) =

expx(k)

�
−ε gradx ϕ(x(k))

�
∈ Sconv for all ε ∈



�
0, 2µ−1

max(dmax)
�
. The idea is to show that x̃ does not

cross the boundary of Sconv if ε ∈
�
0, 2µ−1

max(dmax)
�
.

By way of contradiction, assume that there exist values of
ε ∈

�
0, 2µ−1

max(dmax)
�

such that ϕ(x̃(ε)) = (r∗)2

2D and denote
as ε0 the minimum of such values. From the continuity of
ϕ(x̃(ε)), it follows that there must exist η, ν > 0 arbitrarily
small such that ϕ(x̃(ε0 − ν)) ≥ (r∗)2

2D − η ≥ ϕ(x̃(0)).
However, this is in contradiction with the result of Thm. 5,
which implies that ϕ(x̃(ε)) < ϕ(x̃(0))∀ε ∈ (0, ε0), since
x̃(ε) ∈ Sconv∀ε ∈ (0, ε0) and ε0 is minimal.

Finally, we show that the algorithm converges to a global
minimum. Since x(0) ∈ Sconv and ϕ(x(k)) decreases at
each iteration, then the sequence of x(k) generated by the
algorithm will be guaranteed to be in Sconv ⊂ S . From this
and Thm. 6, any cluster point of the sequence x(k) will be
a critical point in S, which must be a global minimizer of
ϕ.

Note that we have shown convergence to a set and not
to a single point. In practice, the experiments in §VI show
convergence to a single global minimizer under much more
relaxed conditions. Nevertheless, as many other gradient-based
algorithms, a rigorous proof of these properties would require
a more delicate argument. In fact, we conjecture that, given
the initial measurements u, there exists a compact set S∗ that
the iterates x(k) never leave. If this conjecture was valid, then
it would be possible to prove convergence to a single point
instead of to a set. Moreover, if S∗ ⊂ S , then the convergence
to a single global minimizer would be automatically ensured.
In our future research we plan to investigate the possibility
of obtaining these improved results.
Special cases with global convergence. In general, the
conditions of Thm. 7 can be restrictive, because they depend
on the diameter of the network, which might be large. Never-
theless, we can provide stronger results if we make additional
assumptions on the manifold and network topologies. For
instance, when r∗ = ∞ (e.g., in Rd or other manifolds with
non-positive curvature), Thm. 7 implies global convergence
on any graph G. On the other hand, if G has linear topology
(i.e., it is a tree with a single branch), the following is true
independently from the manifold topology.

Theorem 8: If G has linear topology, and the consensus
protocol (12) is initialized with measurements u such that
d(ui, uj) < injM, then x(k) converges to D.

The proof [15] relies on the fact that, for this particular
choice of G, if d

�
xi(k), xj(k)

�
< injM for all (i, j) ∈ E,

then the same is true for k + 1, the gradient in (12) always
exists and Thm. 2 holds. For some manifolds (e.g., the sphere),
this result provides almost global convergence to D (which
is the best one can hope for in compact manifolds).

IV. CONSENSUS IN THE TANGENT SPACE

As we mentioned in §II-A, when we minimize ϕ in classical
consensus, the states converge to a global minimizer which
corresponds to the average of the initial measurements.

In the Riemannian case one would expect a similar
behavior, where all the states converge to the Fréchet mean

of the measurements. However, in general this is not the case,
as we will see in the experiments in §VI. Intuitively, this
is due to the fact that the Fréchet mean of the states is not
preserved after each iteration [1] and, even if the algorithm
converges to a global minimizer (e.g., under the conditions
of Thm. 7), this need not correspond to the desired Fréchet
mean.

In this section, we propose an alternative method called
consensus in the tangent space for computing the exact
Fréchet mean in a distributed fashion. The algorithm follows
the same iterations as the centralized Fréchet mean algorithm
described in Section II-D, except that we perform consensus
on tangent vectors (which are Euclidean quantities) in order
to compute the updates.

More specifically, the consensus in the tangent space
algorithm proceeds as follows. First, all the nodes are
initialized with a common element of M, say xi(0) = y. The
main requirement is that all the measurements ui should not
lie in the cut locus of y, i.e., ui ∈ Iy for all i ∈ V . This step
corresponds to Step 1 of the centralized algorithm in Section
II-D. Here, however, each node maintains xi as a local copy
of the centralized estimate of the mean ū.

Then, at each iteration k, all the nodes compute wi, the
negative gradient of the distance between xi and ui

wi(k) = − gradxi

1

2
d
2
(xi(k), ui) = logxi(k) ui. (20)

The nodes can employ Euclidean average consensus to
obtain w(k) =

1
N

�N
i=1 wi(k) with arbitrary precision.

This corresponds to Step 2 in the centralized Fréchet mean
algorithm, which is now computed in a distributed fashion.

Each node finally updates its local estimate xi using the
tangent vector w as xi(k + 1) = expxi(k)

�
w(k)

�
and then

repeats from the computation of the wi (this corresponds to
the final step of the centralized Fréchet mean algorithm).

At a high level, the idea is to linearize the problem around
the current estimates xi(k) for each iteration, and then use
the standard consensus for linear spaces.
Remarks about convergence. Notice that all the states xi are
initialized with the same value and updated with the same
sequence of vectors w(k). Each state xi will then follow the
same sequence of updates as in the centralized Fréchet mean
algorithm. Therefore, the same convergence properties hold.

It is important to notice that there are problems also with
the consensus in the tangent space algorithm. First, it is
relatively slow when compared to consensus in the manifold.
In fact, it is necessary to run a full Euclidean consensus at
each iteration of the Fréchet mean algorithm. This requires
several communication rounds for computing w̄ with sufficient
precision. Second, the nodes must be initialized with the same
y, which may need to be chosen depending on the particular
values of ui.

V. COMBINED ALGORITHM

We have presented two Riemannian consensus algo-
rithms with complementary properties. The consensus in
the manifold algorithm is automatically initialized with the



measurements ui at each node, as in the classical Euclidean
consensus algorithm. Then, the states at each node are updated
and the estimates of the different nodes converge to a common
value. Unfortunately, due to the curvature of the manifold,
this common value need not coincide with the true global
Fréchet mean.

On the other hand, the consensus in the tangent space
algorithm converges to the true Fréchet mean. However, it
requires a common initialization y, which might need to be
chosen depending on the data ui.

To overcome this issue, one could initialize the method
using y = ui for some i ∈ V . Alternatively, one can merge
the two consensus algorithms as follows. First, we run the
consensus in the manifold until it converges, thereby obtaining
a common estimate for all the nodes which in practice, as we
will see in the Experiment section, is close to the true Fréchet
mean. This result is then used to initialize the consensus in
the tangent space, which then converges to the Fréchet mean
typically in a small number of iterations.

VI. EXPERIMENTS
In this section we evaluate the proposed algorithms on

synthetic data drawn from the special orthogonal group, the
sphere and the Grassmann manifold.

The experiments are performed using a synthetic network
of N = 15 nodes with a 4-regular connectivity graph. To
generate the measurements, we choose an arbitrary element
x0 ∈ M and compute N random tangent vectors v0i in
Tx0M drawn from an isotropic Gaussian distribution with
standard deviation σ = 0.2. The measurement at each node i

is then defined as ui = expx0
(v0i), i = 1, . . . , N .

We then run our consensus in the manifold algorithm for
150 iterations followed by consensus in the tangent space for
10 iterations (each one of which includes 200 iterations of
standard Euclidean consensus). We use stepsizes compatible
with the bounds found in §III. For each iteration of each
algorithm we compute the distance between each state and
the Fréchet mean ū of the initial measurements {ui}. For
the first algorithm we record also the distance between the
Fréchet mean of the states at each iteration and ū.

As particular examples of manifolds we consider SO(7),
S6 and Grass(7, 3). The collected results for each one of
these manifolds are plotted in Fig. 2. As an implementation
detail, notice that for Grass(7, 3) the matrix representation
in R7×3 is not unique. In order to compute the average of
the tangent vectors in the consensus in the tangent space
algorithm, all the nodes must choose the same representative
of the equivalence class. This can be done, for instance, by
computing the QR factorization of the transposed matrix and
then using the transpose of the R part as the representative.

A number of points can be made on the experiments. First,
the consensus in the manifold clearly converges to a consensus
configuration (because the measurements generated are not
too far one from each other). Second, the same algorithm
modifies the Fréchet mean of the states, especially in the
first iterations. When this algorithm terminates, the estimated
Fréchet mean is at a distance in the order of 10−4 from the
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Fig. 3: An example where consensus in the manifold con-
verges (a) or fails to converge (b) to a consensus configuration
depending on the topology. These plots correspond to the
initial configurations portrayed on the right.

true Fréchet mean. This error might be negligible in practical
applications, but it is many order of magnitude greater than the
achievable machine precision. The consensus in the tangent
space reduces the errors in both cases down to an order of
10

−15.
We include also two experiments (Fig. 3) for which the

measurements are taken around the circle and are far apart,
i.e., u /∈ S (see Thm. 1). With a linear network, the algorithm
converges to a consensus configuration, as expected from
Thm. 8. On the other hand, with a ring network, the algorithm
gets trapped in a local minima and fails. These experiment
suggests that the convergence of the algorithm depends on
both the manifold and the network topologies. However, a
complete investigation of this fact is out of the scope of this
paper.

VII. CONCLUSION

In this paper, we proposed a framework that extends
consensus algorithms for computing the Fréchet mean of data
lying in Riemannian manifolds. We examined two algorithms:
consensus in the manifold and consensus in the tangent
space. The first one can be initialized with the measurements
and converges to an approximate Fréchet mean, while the
second one is slower and requires a careful initialization, but
converges to the global Fréchet mean. Our main contribution
is finding sufficient conditions that guarantee convergence of
the algorithms to a consensus configuration. Experiments on
various manifolds illustrated the applicability of our methods.
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