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Data segmentation and clustering

« Given a set of points, separate them into multiple groups

« Discriminative methods: learn boundary

« Generative methods: learn mixture model, using, e.g.
Expectation Maximization
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Dimensionality reduction and clustering

In many problems data is high-dimensional: can reduce
dimensionality using, e.g. Principal Component Analysis

Image compression & &
Recognition s
— Faces (Eigenfaces)
Image segmentation

— Intensity (black-white)
— Texture




Segmentation problems in dynamic vision
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Segmentation problems in dynamic vision

« Segmentation of rigid-body motions from dynamic textures
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Clustering data on non Euclidean spaces

« Clustering data on non Euclidean spaces
— Mixtures of linear spaces
— Mixtures of algebraic varieties
— Mixtures of Lie groups

« “Chicken-and-egg” problems
— Given segmentation, estimate models
— Given models, segment the data
— Initialization?

* Need to combine
— Algebra/geometry, dynamics and statistics
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Outline of the tutorial

« Partl: Theory (8.30-10.00)

— Introduction to GPCA (8.30-8.40)
— Basic GPCA theory and algorithms (8.40-9.20)
— Advanced statistical and algebraic methods for GPCA (9.30-10.20)

* Break (10.00-10.30)
« Part lI: Applications (10.30-12.10)

— Applications to motion and video segmentation (10.30-11.20)

— Applications to image representation & segmentation (11.20-12.10)

. Questions (12.10-12.30)
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Part I. Theory

 Introduction to GPCA (8.30-8.40)

« Basic GPCA theory and algorithms (8.40-9.20)
— Review of PCA and extensions
— Introductory cases: line, plane and hyperplane segmentation
— Segmentation of a known number of subspaces
— Segmentation of an unknown number of subspaces

« Advanced statistical and algebraic methods for GPCA
(9.20-10.00)
— Model selection for subspace arrangements
— Robust sampling techniques for subspace segmentation
— Voting techniques for subspace segmentation
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Part |lI: Applications in computer vision

« Applications to motion & video segmentation (10.30-11.20)
— 2-D and 3-D motion segmentation
— Temporal video segmentation
— Dynamic texture segmentation

* Applications to image representation and segmentatlon
(11.20-12.10) —

— Multi-scale hybrid linear models for sparse
Image representation

— Hybrid linear models for image segmentation




References: Springer-Verlag 1998
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Slides, MATLAB code, papers

http://perception.csl.uiuc.edu/gpca

Home Page of the GPCA Algorithm =
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About GPCA

In many scientific and engineering problems, the data of interest can be viewed as drawn from a mixture of geometric or
statistical models instead of a single one. Such data are often referred to in different contexts as "mixed," or “"multi-modal,”
or “"multi-model," or heterogeneous,” or “hybrid." For instances, a natural image normally consists of multiple regions of
different texture, a video sequence may contains multiple independently moving objects, and a hybrid dynamical system may
arbitrarily switch among different subsystems.

Generalized Principal Component Analysis (GPCA) is a general method for modeling and segmenting such mixed data
using a collection of subspaces, also known in mathematics as a subspace arrangement. By introducing certain new algebraic
models and techniques into data clustering, traditionally a statistical problem, GPCA offers a new spectrum of algorithms for
data modeling and clustering that are in many aspects more efficient and effective than (or complementary to) traditional
methods (e.g. Expectation Maximization and K-Means).

The goal of this site is to promote the use of the GPCA algorithm to improve segmentation performance in many application
domains. Tutorials and sample code are provided to help researchers and practitioners decide if the algorithm can be applied
to their application domain, and to help get their implementation set up quickly and correctly.

Browsing through the links on the lefi, vou will find a brief overview of the fundamental concepts behind GPCA in the
Introduction section; numerical implementations of several variations of the GPCA algorithm in the Sample Code section;
examples of real applications in the areas of computer vision, image processing; and system identification in the Applications
section; and {inally all the related literature in the Publications section.
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Principal Component Analysis (PCA)

* Given a set of points x, x,, ..., Xy
— Geometric PCA: find a subspace S passing through them
— Statistical PCA: find projection directions that maximize the variance

.wN

e Solution (Beltrami’1873, Jordan’1874, Hotelling’33, Eckart-Householder-Young'36)

@ > v = [x1,x>,...2¢N] € REXN
(Basisfors | [dim(S) = rank(D)

» Applications: data compression, regression, computer
vision (eigenfaces), pattern recognition, genomics
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Extensions of PCA

« Probabilistic PCA (Tipping-Bishop '99)

— ldentify subspace from noisy data _
— Gaussian noise: standard PCA / cr /

— Noise in exponential family (Collins et al.’01)

* Nonlinear dimensionality reduction
— Multidimensional scaling (Torgerson’58)
— Locally linear embedding (Roweis-Saul '00) ° .
) .
— Isomap (Tenenbaum ’00) —> ® oo

* Nonlinear PCA (Scholkopf-Smola-Muller '98)
— Identify a nonlinear manifold from
sample points
— Apply PCA to data embedded into higher o ©
dimensional space = o0 o

— What embedding should be used?




Generalized Principal Component Analysis

« Given a set of points lying in multiple subspaces, identify
— The number of subspaces and their dimensions
— A basis for each subspace
— The segmentation of the data points

« “Chicken-and-egg” problem
— Given segmentation, estimate subspaces
— Given subspaces, segment the data




Prior work on subspace clustering

* lterative algorithms:
— K-subspace (Ho et al. '03),
— RANSAC, subspace selection and growing (Leonardis et al. '02)

* Probabilistic approaches: learn the parameters of a mixture
model using e.g. EM
— Mixtures of PPCA: (Tipping-Bishop ‘99):
— Multi-Stage Learning (Kanatani’'04)

 [|nitialization
— Geometric approaches: 2 planes in R3 (Shizawa-Maze '91)

— Factorization approaches: independent subspaces of equal
dimension (Boult-Brown ‘91, Costeira-Kanade ‘98, Kanatani '01)

— Spectral clustering based approaches: (Yan-Pollefeys'06)



Basic ideas behind GPCA

« Towards an analytic solution to subspace clustering
— Can we estimate ALL models simultaneously using ALL data?
— When can we do so analytically? In closed form?
— |s there a formula for the number of models?

« Will consider the most general case
— Subspaces of unknown and possibly different dimensions
— Subspaces may intersect arbitrarily (not only at the origin)

« GPCA is an algebraic geometric approach to data segmentation
— Number of subspaces = degree of a polynomial
— Subspace basis = derivatives of a polynomial

— Subspace clustering is algebraically equivalent to
* Polynomial fitting
» Polynomial differentiation



Geometry
— Vanishing points

Image compression

Segmentation

— Intensity (black-white)
— Texture

— Motion (2-D, 3-D)

— Video (host-guest)

Recognition

— Faces (Eigenfaces) n
« Man - Woman . - - - .j-}

— Human Gaits = 1 1 & =

— Dynamic Textures
+  Water-bird

m.'.L HILM LIERARY
yr = —2sin(t)

Biomedical imaging
Hybrid systems identification




Introductory example:

algebraic clustering in 1D

22 — (by + b2)z + b1by = 0

x = by OFr x = by

(x —b1)(x —b2) =0

.2

Ly

2
L5

2

TN

9[321

ZUN].

-

1

—(b1 + bo)
b1bo

4

C

* Number of groups?

rank(P) = 1: one group only

rank(P) = 2: two groups
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Introductory example: algebraic clustering in 1D

 How to compute n, ¢, b’s?
— Number of clusters

&

|
>
N
&

|
>
3

xr =201 OF x
n = min{i: rank(P;) = i}

pn(z) = (x—b1) - (x—bp) =0 — Cluster centers
Roots of pn(x)

(@) =2"+ciz" 14+ cp =0

P (a:) — | " T 1] c=0 — Solution is unique if
- - Npoints 2 Ngroups
x,'f o o e xl 1 | | |
xB zo 1 — Solution is closed form if
Pne = :2 5 . c=20 Ngroups <4
_x?\] . o e 'CBN 1_
PnER‘R;X (n+1




Introductory example: algebraic clustering in 2D

 What about dimension 27

ZO:OO ZZ z1 1
0 e z=x+ 1y €C Z2 Z:Q 1c=O
:... 2N N 1]
P,eCN x(n+1)

« What about higher dimensions?
— Complex numbers in higher dimensions?
— How to find roots of a polynomial of quaternions?

* Instead
— Project data onto one or two dimensional space
— Apply same algorithm to projected data



Representing one subspace

* One plane T
bT$=b1$1+b2£U2+b3CU3=O e ©¢ o0 o

e One line b1

*  One subspace can be represented with

— Set of linear equations o
— Set of polynomials of degree 1 S={x:B'x =0}
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Representing n subspaces

 Two planes
(b{w = 0)|or (bga: =0)

p2(z) = (biz)(bsx) =0

* One plane and one line

— Plane: S1={x: bz = O} .W t

— Line: So = {x : bjx = blx = 0}
S1USy = {x: (blx =0)[or (b{m = bgaz = 0}

De Morgan’s rule L
$1US> = {a :|("@) (b} x) = 0| and| (') (b}) = O}

* A union of n subspaces can be represented with a set of
homogeneous polynomials of degree n
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Fitting polynomials to data points

« Polynomials can be written linearly in terms of the vector of coefficients
by using polynomial embedding

(b{a})(bgaj) = 01:13% + cox110 + 03:13% =clvp(x) =0

~ R Veronese map ¢= Sym(bi®b®b3)
' . > . .5 |:: : T M
ba | . - [S3e [ T N 'e o o QIRQ n
- e . K M ® 2
T L B Un « RY — R /. e ©° o
o e 2 vn(x)
S C L L . 'CU].
R B %y ( > = | 129 [ n+ K-1
 Coefficients of the polynomials can be computed from nullspace of
embedded data vn(x)?
— Solve using least squares Lpc = ; c=20
— N = #data points un(zn)! |
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Finding a basis for each subspace

b1

Case of hyperplanes:
— Only one polynomial

— Number of subspaces

c'vn(x) = (bix) - - (byx)
n =min{i: rank(L;)=M;—1}

— Computing roots may be sensitive to noise
— The estimated polynomial may not perfectly factor with noisy

— Cannot be applied to subspaces of different dimensions

» Polynomials are estimated up to change of basis, hence they may not factor,
even with perfect data

aaaaaaaaa

— Basis are normal vectors bl, bQ, .- by
M § )
C & R n Polynomial Factorization (GPCA-PFA) [CVPR 2003]
/\ * Find roots of polynomial of degree 77 in one variable
« Solve K — 2 linear systems in 77 variables
b ... bn »  Solution obtained in closed form fornn < 4
- J
Problems



Finding a basis for each subspace

C RMn Polynomial Differentiation (GPCA-PDA) [CVPR’04]
— % _

bo ~ Dpn(?lQ)

b1 ~ Dpn(yl)

« To learn a mixture of subspaces we just need one positive
example per class

lllllllll
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Choosing one point per subspace

« With noise and outliers
— Polynomials may not be a perfect union of subspaces

bo ~ Dpn (y2)

b1 ~ Dpn(yl)

pn(x) =0

bgw =0
— Normals can estimated correctly by choosing points optimally

» Distance to closest subspace without knowing
segmentation?

~ 1 [pn(x)] . =2
"""f“"—\||ppn<m>|| FO(|le — &2
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GPCA for hyperplane segmentation

» Coefficients of the polynomial can be computed from null

space of embedded data matrix ()T
— Solve using least squares Lyc = ; c=20
— N = #data points vn(zy)l

 Number of subspaces can be computed from the rank of
embedded data matrix

n =min{i: rank(L;)=M;—1}

- Normal to the subspaces b1,b2,---bn can be computed
from the derivatives of the polynomial

c € RMn

by bo ... by
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GPCA for subspaces of different dimensions

* There are multiple polynomials
fitting the data

 The derivative of each
polynomial gives a different
normal vector

e« (Can obtain a basis for the
subspace by applying PCA to
normal vectors

p1(z) = (b' ) (bix) =0
p2(x) = (b' ) (bjx) =0

b= Dp1(y1) = Dp2(y1)

g VL

S1 ¥ bo = Dpa(y»)
Yo b1 = Dp1(y>)

{Bi = PCA(DPn(y;))}i=1
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GPCA for subspaces of different dimensions

Apply polynomial embedding to projected data
N)]T c RNXM”

Ly = [vn(xD), ..., vn(x

Obtain multiple subspace model by polynomial fitting
Pn(w) = [pn]_(w), . ,pn,mn(w)] c R].an

— Solve Lpc = O to obtain {cng}zn:il e null(Ly),
— Need to know number of subspaces

Obtain bases & dimensions by polynomial differentiation
B; = PCA(DPu(y;)) 1=1,...,n
ki =K — rank(DPn(yi)) i=1,...,n

Optimally choose one point per subspace using distance

ol =/ Pa(@) (D Pa(@)" DPu()) Pa(2) "+0( a2
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An example

« Given data lying in the union
of the two subspaces

Sl — {m ' L1 = Tg = 0} yQ. g ....:o .o
So = {x: z3 =0} So by = Dp2(Y1)
Y1 b1 = Dp1(Yyq)

* We can write the union as
SlLJSz ={:1: . (2121 =$2=0)V($3=0)}
={x:(z21=0Va3=0)A(z2=0Vz3=0)}
— {33 . (517151,'3 — 0) AN (372(173 = 0)}

* Therefore, the union can be represented with the two
polynomials

p1(x) = T173 p2(x) = To3
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An example

« Can compute polynomials from
2?2 1Ty (T1T3 T3 (Tox3 3| |4 0

0 0 [ 0 0| 0| x|]: :
>I<>I<0>I<OOC6 0

RN e e

pi(x) =z123  p2(x) = z223 S1={x:2y =25 =0}
« Can compute normals from Sz = {x : 23 = 0}
I3 0 Sl
[Vpi(z) Vpo ()] = | 0 23| = t
1 I2 °°, 50 000
1 0 0 0 AR IR
Bi=10 1| and B,=1{0 0 S2 b2 = Dp2(y1)
0 0 1 1 Y1 b1 = Dp1(Yyq)
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Dealing with high-dimensional data

* Minimum number of points
— K= dimension of ambient space
— n = number of subspaces

* In practice the dimension of
each subspace ki is much
smaller than K

k; << K
— Number and dimension of the
subspaces is preserved by a kmax—+1
linear projection onto a R
subspace of dimension

max{k;} +1 << K « Open problem: how to choose

— Can remove outliers by robustly projection?
fitting the subspace — PCA?




GPCA with spectral clustering

« Spectral clustering
— Build a similarity matrix between pairs of points
— Use eigenvectors to cluster data

 How to define a similarity for subspaces?
— Want points in the same subspace to be close
— Want points in different subspace to be far

« Use GPCA to get basis
B; = PCA(DPn(y;))
B; = PCA(DPn(y;))

- Distance: subspace angles D;; = (B;, B;)
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Comparison of PFA, PDA, K-sub, EM

— PFA
—e— K-sub
16 —u— PDA
—+— EM
| —— PDA+K-sub
—&— PDA+EM
| —¢— PDA+K-sub+EM

—_
D

—_
N

Error in the normals [degrees]
o

0 1 2 3 4 3)
Noise level [%] ...
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« GPCA: algorithm for clustering subspaces
— Deals with unknown and possibly different dimensions
— Deals with arbitrary intersections among the subspaces

e QOur approach is based on
— Projecting data onto a low-dimensional subspace
— Fitting polynomials to projected subspaces
— Differentiating polynomials to obtain a basis

« Applications in image processing and computer vision
— Image segmentation: intensity and texture
— Image compression
— Face recognition under varying illumination



For more information,

Vision, Dynamics and Learning Lab

@

Johns Hopkins University

Thank You!
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