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Introduction — Image Representation via Linear Transformations
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Introduction

Fixed Orthogonal Bases (representation, approximation, compression)
- Discrete Fourier transform (DFT) or discrete cosine transform (DCT)

(Ahmed '74): JPEG.
- Wavelets (multi-resolution) (Daubechies’88, Mallat'92): JPEG-2000.
- Curvelets and contourlets (Candes & Donoho’99, Do & Veterlli'00)

Discrete Fourier transform (DFT)
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Wavelet transform

~ 6.25% coefficients.

Unorthogonal Bases (for redundant representations)
- Extended lapped transforms, frames, sparse representations (LP geometry)...
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Introduction

Adaptive Bases (optimal if imagery data are uni-modal)
- Karhunen-Loeve transform (KLT), also known as PCA (Pearson’1901,
Hotelling’33, Jolliffe’86)
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Introduction — Principal Component Analysis (PCA)

Dimensionality Reduction
Find a low-dimensional representation (model) for high-dimensional data.

Principal Component Analysis (Pearson’1901, Hotelling’1933, Eckart &
Young'1936) or Karhunen-Loeve transform (KLT).
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Variations of PCA
— Nonlinear Kernel PCA (Scholkopf-Smola-Muller'98)
— Probabilistic PCA (Tipping-Bishop’99, Collins et.al’01)
— Higher-Order SVD (HOSVD) (Tucker'66, Davis’02)
— Independent Component Analysis (Hyvarinen-Karhunen-Oja’01)




INTRODUCTION

HYBRID LINEAR MODELS

MULTI-SCALE IMPLEMENTATION

- IMAGE SPACE DOMAIN

-  WAVELET DOMAIN

OTHER APPLICATIONS

CONCLUSIONS AND FUTURE DIRECTIONS




Hybrid Linear Models — Multi-Modal Characteristics

Distribution of the first three principal components of the
Baboon image: A clear distribution




Hybrid Linear Models — Multi-Modal Characteristics

Vector Quantization (VQ)
- multiple 0O-dimensional affine subspaces (i.e. cluster means)

- existing clustering algorithms are iterative (EM, K-means)
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Hybrid Linear Models — Versus Linear Models
A single linear model

y=Ax, Ac R™"" m<n
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Hybrid Linear Models — Characteristics of Natural Images

Multivariate Hybrid Hierarchical High-dimension
1D 2D (multi-modal) | (multi-scale) (vector-valued)

Fourier
(DCT) X | X

Wavelets X
Curvelets

Random fields

PCA/KLT

\4e X X X

Hybrid linear | x X X X

We need a new & simple paradigm to effectively account for all
these characteristics simultaneously.




Hybrid Linear Models — Subspace Estimation and Segmentation

Hybrid Linear Models (or Subspace
Arrangements)

— the number of subspaces is
unknown

— the dimensions of the subspaces
are unknown

— the basis of the subspaces are
unknown

— the segmentation of the data points
is unknown

“Chicken-and-Egg” Coupling
— Given segmentation, estimate subspaces

— Given subspaces, segment the data




Hybrid Linear Models — Some Related Literature

® Heuristic Approaches (Boult et.al, Costeira et.al, Kanatani,...)
— Segment data using similarity matrices + clustering
— Eigenvector (spectral) segmentation (..., Vempala-Wang'02)

® lterative Approaches
— Generative model: data membership + mixture model
— Identify subspaces using Expectation Maximization
e [-step: estimate membership given model parameters
e |VI-step: estimate model parameters given membership

— Probabilistic PCA (Tipping-Bishop’99), K-subspaces (Ho et. al'03),
subspace growing and selection (Leonardis et. al’'02)

Is there a non-iterative solution to the subspace estimation &
segmentation problem?




Hybrid Linear Models — Generalized Principal Component Analysis

® Generalized PCA (Vidal-Ma-Sastry’03,04) — Sketch:
— Fit all data points with a set of polynomials of the lowest degree
— Select one representative point on each subspace

— Derivatives of the polynomials at the point are normal vectors to the
subspace

— Segment the data points into different subspaces

In the absence of noise,
- the solution is closed-form (no initialization), and
- the algorithm uses only linear algebraic techniques.




Hybrid Linear Models — Recursive Version (an Example)
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Hybrid Linear Models — Effective Dimension

Model Selection (for Noisy Data)
® Model complexity;
® Data fidelity;

Number of
subspaces

Dimension of Number of
number of each points in each
points subspace subspace

Model selection criterion: minimizing effective dimension
subject to a given error tolerance (or PSNR)




Hybrid Linear Models — Simulation Results (5% Noise
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Hybrid Linear Models — Subspaces of the Barbara Image
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Hybrld Linear Models - Lossy Image Representatlon (Baboon)
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Multi-Scale Implementation — Algorithm Diagram

Diagram for a level-3 implementation of hybrid linear models
for image representation
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Multi-Scale Implementation — The Baboon Image

The Baboon image

segmentation of
2 by 2 blocks




Multi-Scale Implementation — Comparison with Other Methods

The Baboon image
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Multi-Scale Implementation — Image Approximation

Comparison with level-3 wavelet (7.5% coefficients)
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Multi-Scale Implementation — More Comparison

The Hill image
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Multi-Scale Implementation — Other Test Images

T R

Outperform wavelets
except for the two:

Reexamine later in
wavelet domain




Multi-Scale Implementation — Block Size Effect

The Baboon image
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with the multi-scale hybrid linear model:

1. has minor block effect;
2. is computationally more costly (than Fourier, wavelets, PCA);

3. does not fully exploit spatial smoothness as wavelets.
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Multi-Scale Implementation — The Wavelet Domain
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The Baboon image

segmentation
at each scale
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Multi-Scale Implementation — Wavelets v.s. Hybrid Linear Wavelets

The Baboon image
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Advantages of the hybrid linear model in wavelet domain:

1. eliminates block effect;
2. is computationally less costly (than in the spatial domain);

3. achieves higher PSNR.




Multi-Scale Implementation — Visual Comparison

Comparison among several models (7.5% coefficients)
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Multi-Scale Implementation — Wavelets v.s. Hybrid Linear Wavelets

The Lena image
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Other Applications — Image Segmentation




Other Applications — Sparse Representation of Image Ensemble
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Conclusions

® Most imagery data are high-dimensional, statistically or
geometrically heterogeneous, and have multi-scale structures.

® |magery data require hybrid models that can adaptively represent
different subsets of the data with different (sparse) linear models.

® Mathematically, it is possible to estimate and segment hybrid

(linear) models non-iteratively. GPCA offers one such method.

® Hybrid models lead to new paradigms, new principles, and new
applications for image representation, approximation, and
compression.




Future Directions

® Mathematical Theory
— Subspace arrangements (algebraic properties).

— Extension of GPCA to more complex algebraic varieties (e.g.,
hybrid multilinear, high-order tensors).

— Representation & approximation of vector-valued functions.

® Computation & Algorithm Development
— Efficiency, noise sensitivity, outlier elimination.

— Other ways to combine with wavelets and curvelets.

® Applications to Other Data
— Medical imaging (ultra-sonic, MRI, diffusion tensor...)
Satellite hyper-spectral imaging.
Audio and video.
Sensor networks (location, temperature, pressure, RFID...)
Bioinformatics (gene expression data...)
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