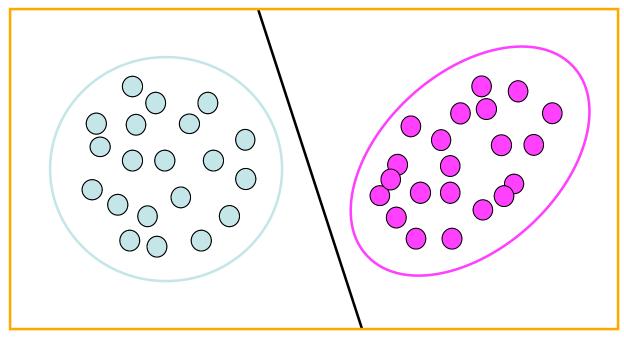


Identification of Hybrid Models Via Generalized Principal Component Analysis

Workshop @ CDC 2007

René Vidal
Center for Imaging Science
Johns Hopkins University

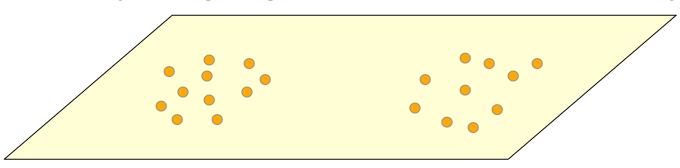
Allen Yang
Electrical Engineering
University of California Berkeley


THE DEPARTMENT OF BIOMEDICAL ENGINEERING

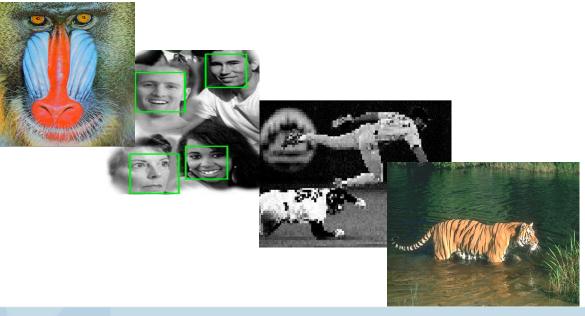
The Whitaker Institute at Johns Hopkins

Data segmentation and clustering

Given a set of points, separate them into multiple groups



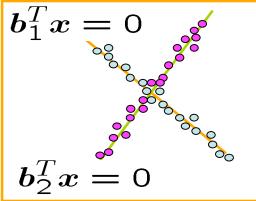
- Discriminative methods: learn boundary
- Generative methods: learn mixture model, using, e.g. Expectation Maximization



Dimensionality reduction and clustering

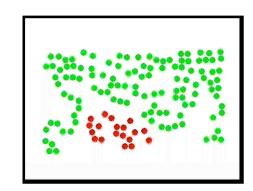
 In many problems data is high-dimensional: can reduce dimensionality using, e.g. Principal Component Analysis

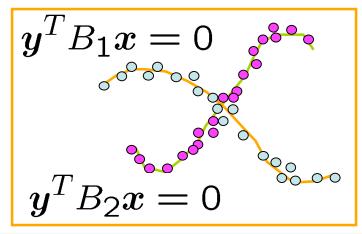
- Image compression
- Recognition
 - Faces (Eigenfaces)
- Image segmentation
 - Intensity (black-white)
 - Texture



Segmentation problems in dynamic vision

Segmentation of video and dynamic textures





Segmentation of rigid-body motions

Segmentation problems in dynamic vision

Segmentation of rigid-body motions from dynamic textures


Clustering data on non Euclidean spaces

Clustering data on non Euclidean spaces

- Mixtures of linear spaces
- Mixtures of algebraic varieties
- Mixtures of Lie groups

- Given segmentation, estimate models
- Given models, segment the data
- Initialization?
- Need to combine
 - Algebra/geometry, dynamics and statistics

Outline of the tutorial

- Part I: Theory (8.30-11.00)
 - Introduction to GPCA (8.30-8.40)
 - Basic GPCA theory and algorithms (8.40-9.30)
 - Coffee Break (09.30-10.00)
 - Advanced statistical and algebraic methods for GPCA (10.00-11.00)
- Part II: Applications (11.00-3.00)
 - Applications to hybrid system identification (11.00-12.00)
 - Lunch Break (12.00-1.30)
 - Applications to motion and video segmentation (1.30-2.30)
 - Applications to image representation & segmentation (2.30-3.30)

Part I: Theory

- Introduction to GPCA (8.30-8.40)
- Basic GPCA theory and algorithms (8.40-9.30)
 - Review of PCA and extensions
 - Introductory cases: line, plane and hyperplane segmentation
 - Segmentation of a known number of subspaces
 - Segmentation of an unknown number of subspaces
- Advanced statistical and algebraic methods for GPCA (10.00-11.00)
 - Model selection for subspace arrangements
 - Robust sampling techniques for subspace segmentation
 - Voting techniques for subspace segmentation

Part II: Applications

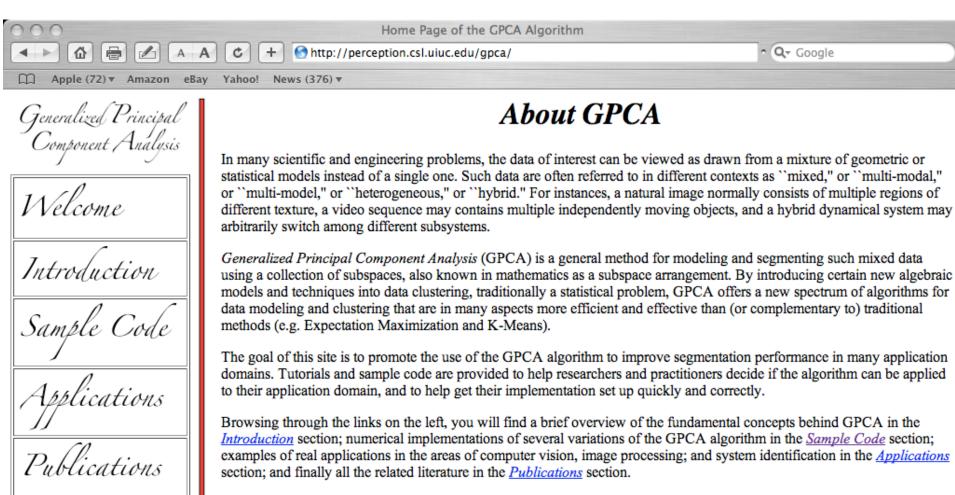
- Applications to hybrid system identification (11.00-12.00)
 - Identification of switched ARX models in input-output form
 - Identification of switched linear systems
- Applications to motion & video segmentation (1.30-2.30)
 - 2-D and 3-D motion segmentation
 - Temporal video segmentation
 - Dynamic texture segmentation
- Applications to image representation and segmentation (2.30-3.30)
 - Multi-scale hybrid linear models for sparse image representation
 - Hybrid linear models for image segmentation

References: Springer-Verlag 2008

Generalized Principal Component Analysis

Estimation & Segmentation of Geometric Models

René Vidal (BIOMEDICAL ENGINEERING, JOHNS HOPKINS UNIVERSITY)


Yi Ma (ECE, University of Illinois at Urbana-Champaign)

S. Shankar Sastry (EECS, University of California at Berkeley)

Slides, MATLAB code, papers

http://perception.csl.uiuc.edu/gpca

