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Part |lI: Applications in computer vision

« Applications to motion & video segmentation (10.30-11.20)
— 2-D and 3-D motion segmentation
— Temporal video segmentation
— Dynamic texture segmentation

* Applications to image representation and segmentatlon
(11.20-12.10) —

— Multi-scale hybrid linear models for sparse
Image representation

— Hybrid linear models for image segmentation
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3-D motion segmentation problem

« Given a set of point correspondences in multiple views, determine
— Number of motion models
— Motion model: affine, homography, fundamental matrix, trifocal tensor
— Segmentation: model to which each pixel belongs
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 Mathematics of the problem depends on
— Number of frames (2, 3, multiple)
— Projection model (affine, perspective)
— Motion model (affine, translational, homography, fundamental matrix, etc.)
— 3-D structure (planar or not)
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Taxonomy of problems

2-D Layered representation

Probabilistic approaches: Jepson-Black’93, Ayer-Sawhney’95, Darrel-Pentland’95, Weiss-
Adelson’96, Weiss’97, Torr-Szeliski-Anandan’99

Variational approaches: Cremers-Soatto ICCV’'03
Initialization: Wang-Adelson’94, Irani-Peleg’92, Shi-Malik‘98, Vidal-Singaraju’05-'06

Multiple rigid motions in two perspective views

Probabilistic approaches: Feng-Perona’98, Torr'98

Particular cases: |lzawa-Mase’92, Shashua-Levin'01, Sturm’02,

Multibody fundamental matrix: Wolf-Shashua CVPR’01, Vidal et al. ECCV’02, CVPR’03, [JCV’06
Motions of different types: Vidal-Ma-ECCV’04, Rao-Ma-ICCV’'05

Multiple rigid motions in three perspective views

Multibody trifocal tensor: Hartley-Vidal-CVPR’04

Multiple rigid motions in multiple affine views

Factorization-based: Costeira-Kanade’98, Gear'98, Wu et al.’01, Kanatani’ et al.’01-02-04
Algebraic: Yan-Pollefeys-ECCV’06, Vidal-Hartley-CVPR’04

Multiple rigid motions in multiple perspective views

Schindler et al. ECCV’06, Li et al. CVPR’07



A unified approach to motion segmentation

« Estimation of multiple motion models equivalent to
estimation of one multibody motion model

My Jxo|  f(x1,22, M1) =0
wl\/’ or » chicken-and-egg
}2‘@ f(e1, 22, M2) =0

— Eliminate feature clustering: multiplication
f(xy, 22, M1) f(z1, 2, M2) =0
— Estimate a single multibody motion model: polynomial fitting
f(xy, @2, M1) f(x1, 22, M2) = g(x1, 22, M) =0
— Segment multibody motion model: polynomial differentiation

M — {MZ}’?I,%Zl MZ — D9|:131,a:2
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A unified approach to motion segmentation

* Applies to most motion models in computer vision

Motion models

Model equations

Equivalent to clustering

2-D translational

Ty =x1 +T;

Hyperplanes in C2

2-D similarity x> = \;R;x1 +T; | Hyperplanes in C3

2-D affine Ty = A; !30’11} Hyperplanes in C#

3-D translational 0 = ziTx Hyperplanes in R3 <
3-D fundamental matrix | 0=zl Fx; Bilinear forms in R3%3

3-D homography x> ~ H;xq Bilinear forms in C2%3

3-D trifocal tensor 0 = x14243T; Trilinear forms in R3%3%3

3-D multiframe affine xrp = Ap,Xp Subspaces in R <

« All motion models can be segmented algebraically by
— Fitting multibody model: real or complex polynomial to all data
— Fitting individual model: differentiate polynomial at a data point
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Segmentation of 3-D translational motions

Multiple epipoles (translation)
{67; E RB ?:1

Epipolar constraint: plane in R3
— Plane normal = epipoles

\
— Data = epipolar lines 2 [€e
o P v

T —
e; (xyxzp) =0

E:epipglar line

Multibody epipolar constraint . Epipoles are derivatives of
pn(£) at epipolar lines

i=1 v
L=,
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Segmentation of 3-D translational motions
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Fig. 3. Segmenting 3-D translational motions by clustering planes in R, Left: segmenting a real
sequence with 2 moving objects. Center: comparing our algorithm with PFA and EM as a function
of noise in the image features. Right: performance of PFA as a function of the number of motions.
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Single-body factorization

Structure = 3D surface

« Affine camera model
{pr — [Rf Tf} Xp

— p = point
— f =frame (R, T) € SE(3)

V
Motion = camera positiomtat%

* Motion of one rigid-body lives in a 4-D subspace

(Boult and Brown '91, . T
Tomasi and Kanade ‘92) W = M S

T11 - T1p Aq
— P =#points 5 5 — | [Xl“‘XP}
— F = #frames Tp1 - TEpp Ap| ™ M g
L -— J, L] 4x P
2F X P 2F x4
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Multi-body factorization

« Given n rigid motions W= |

W, = MiS,LT M; € R2E>4

i=1,...n §; € Rx4

« Motion segmentation is obtained from

— Leading singular vector of | (Boult and Brown '91)
— Shape interaction matrix () (Costeira & Kanade ‘95, Gear '94)

Q=wW" q,;=0ifiandj

W="USVl pelong to different motions -.

Object1 |

— Number of motions (if fully-dimensional)

« Motion subspaces need to be independent (Kanatani '01)

rank([w; W;]) = rank(W;)

rank(W;)




Multi-body factorization

Object1 |

« Sensitive to noise
QZ]:O it ¢ andj
belong to different motions
— Kanatani (ICCV ’01): use model selection to scale Q
Wu et al. (CVPR’01): project data onto subspaces and iterate ~_..*%-.

Object 2

* Fails with partially dependent motions

Zelnik-Manor and Irani (CVPR’03)

 Build similarity matrix from normalized Q

* Apply spectral clustering to similarity matrix
Yan and Pollefeys (ECCV’06)

» Local subspace estimation + spectral clustering

— Kanatani (ECCV’04)
« Assume degeneracy is known: pure translation in the image
« Segment data by multi-stage optimization (multiple EM problems)

« Cannot handle missing data

Gruber and Weiss (CVPR’04)
* Expectation Maximization

[AGING
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PowerFactorization+GPCA

* A motion segmentation algorithm that
— |s provably correct with perfect data
— Handles both independent and degenerate motions
— Handles both complete and incomplete data

* Project trajectories onto a 5-D subspace of R24

— Complete data: PCA or SVD
— Incomplete data: PowerFactorization

» Cluster projected subspaces using GPCA
— Handles both independent and degenerate motions
— Non-iterative: can be used to initialize EM



Projection onto a 5-D subspace

* Motion of one rigid- body lives in
4-D subspace of R2"

* By projecting onto a 5-D
subspace of R2

Number and dimensions of
subspaces are preserved

Motion segmentation is
equivalent to clustering
subspaces of dimension
2,3 0r4in R®

Minimum #frames = 3
(CK needs a minimum of 2n
frames for n motions)

Can remove outliers by robustly
fitting the 5-D subspace using
Robust SVD (DeLaTorre-Black)

R5

What projection to use?

— PCA: 5 principal components

— RPCA: with outliers
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Projection onto a 5-D subspace

PowerFactorization algorithm: Given W, factoritas W = ABZ
« Complete data * Incomplete data
T 2 T 2
mm Z (WZ] (AB )zg) mln Z (w’LJ (AB )’LJ)
(7’7]) (ZJ)EI
— Given A solve for B = (4,7) : wij IS Known

{ Bk — WTAk_l } |

— Orthonormalize B

— Given B solve for A
[ A, = WB; ] |

— lterate it di _
. iverges in some cases
« Converges to rank-r 9

approximation with rate *  Works well with up to 30% of
(s —|—1/37°)k missing data
-

1
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Motion segmentation using GPCA

* Apply polynomial embedding to 5-D points

.| R3 Veronese map
. . S ::> c = Sym(b1Rb>R®b3z)
b2 |G e LT, RE — RMn f
T > . (517% e © oo o
SR PN - gl 1 122 "o o °7 o
S L %) E = . V’n(w)
ML I I ‘(b/ 5 :2 RMn
b3 1 \ Ly

_ (n+1)(n+2)(n+3)(n+4)

M
" 24

Minimum #points | 1 2 3 4 n
4 14 34 69 O(n%)
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Experimental results: Kanatani sequences

* Sequence A

« Percentage of correct classification

Method A B C
Costeira-Kanade 60.3% | 71.3% | 58.8%
Ichimura 92.6% | 80.1% | 68.3%
Kanatani: subspace separation | 59.3% | 99.5% | 98.9%
Kanatani: affine subspace sep. | 81.8% | 99.7% | 67.5%
Kanatani: multi-stage optimiz. | 100% | 100% | 100%
PowerFactorization + GPCA | 100% | 100% | 100%

---------
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* Collected 155 sequences
— 120 with 2 motions
— 35 with 3 motions

« Types of sequences

— Checkerboard sequences: mostly full
dimensional and independent motions

— Traffic sequences: mostly degenerate (linear,
planar) and partially dependent motions

— Articulated sequences: mostly full dimensional
and partially dependent motions

« Point correspondences
— In few cases provided by Kanatani & Pollefeys

— In most cases, extracted semi-automatically
with OpenCV

ccccccccc



Experimental results: Hopkins 155 database

« 2 motions, 120 sequences, * 3 motions, 408 points, 27 frames
266 points, 30 frames

Algorithm error | time Algorithm error | time
GPCA 4.59% | 0.03s Kanatani 7.67% | 1d 4 h
LSA-5 6.73% | 6.75s GPCA 23.8% | 0.05s
LSA-8 3.45% | 7.98's Spectral GPCA | 26.6% | 0.63 s
MSL 414% | 11.7 h

RANSAC 5.56% | 0.02s




Experimental results: Hopkins 155 database

« 2 motions, 120 sequences, 266 points, 30 frames

Cccurences [%]

10

N & o @

REF | GPCA|LSA 5/ LSA 4n| MSL |RANSAC
Checkerboard|2.76%| 6.09%| 8.84%| 2.57%| 4.46%| 6.52%
Traffic 0.30%| 1.41%| 2.15%| 5.43% 2.23%!| 2.55%
Articulated |1.71%| 2.88%| 4.66%| 4.10%| 7.23%| 7.25%

REF | GPCA|LSA 5/ LSA 4n| MSL |RANSAC
Average 2.03%| 4.59%| 6.73%| 3.45%| 4.14%| 5.56%
Time 0.32s| 6.75s| 7.58 s|11h4 m| 0.18 s
0 T T T T T o Referonce
0 I CPCA -

B LSA S
0 ‘ P LSA 4n -
0 L IMSL i
__IRANSAC
. |
0 hjlw L — e B — |
0 5 10 15 20 25 30 35 40 45 50

Misclassification error (%)
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Experimental results: Hopkins 155 database

Occurences [%)]

* 3 motions, 35 sequences, 398 points, 29 frames
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REF | GPCA| LSA 5| LSA 4n| MSL |RANSAC
Checkerboard|6.28%31.95%(30.37%| 5.80%| 10.38%| 25.78%
Traffic 1.30%119.83%1(27.02%| 25.07%| 1.80%| 12.83%
Articulated 12.66%|16.85%123.11%| 7.25%| 2.71%| 21.38%

REF | GPCA| LSA 5| LSA 4n| MSL |RANSAC
Average 5.08%128.66%1(29.28%| 9.73%| 8.23%| 22.94%
Time 0.74 s[15.01 s| 15.95s(1d 23 h| 0.25s

| | | | | —F’—Réferenm
- I GPCA :
I LSA S
B B LSA 4n B
- ToomsL |
__JRANSAC

20
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40

Misclassification error (%]
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Experimental results: missing data sequences

Sequence P F n missing data| PF+GPCA
oclR2RC 686 40 3 8.98% 4.81%
oclR2RC gl2 | 316 40 2 12.56% 0.00%
oclR2RC gl13 | 520 40 2 11.46% 0.77%
oclR2RC.g23 | 536 40 2 4.48% 2.94%
oclR2RCT g12 | 231 30 2 10.13% 3.46%
oclR2RCT g13 | 444 30 2 9.04% 11.49%
oclR2RCT g23 | 461 30 2 4.83% 7.81%
Average 456 35 2.1 8.78% 4.37%

* There is no clear correlation between amount of missing data and
percentage of misclassification

* This could be because convergence of PF depends more on “where”
missing data is located than on “how much” missing data there is
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Experimental results: outliers

Misclassification [2]

For each sequence in the Hopkins 155 database, outlying points were
drawn uniformly in [1,w]x[1,h] and used to generate outlying trajectories

Robust SVD (De laTorre and Black’01) was used for projection,
followed by GPCA or LSA for segmentation

3 5 8 8 8 & 8

Sequences with twe groups Sequences with three groups
—=—— RPCA + GPCA Spectral —=—— RPCA + GPCA Spectral
RPCA + LSA i 60 = RPCA +LSA .
RPCA + GPCA Spectral (robustnull) - RPCA + GPCA Spectral (robustnull)
LSA + Outl. detection | - LSA + Outl. detection
50 |
£
41
2
= 30f
2
=
20 L
10}
3 L 1 1 0 3 L 1 1
0 5 10 15 20 25 0 5 10 15 20
Synthetic Outliers [%e) Synthetic Outliers [%e)



Conclusions

For two motions

— Algebraic methods (GPCA and LSA) are more accurate than
statistical methods (RANSAC and MSL)

— LSA performs better on full and independent sequences, while
GPCA performs better on degenerate and partially dependent

— LSA is sensitive to dimension of projection: d=4n better than d=5
— MSL is very slow, RANSAC and GPCA are fast

For three motions

— GPCA is not very accurate, but is very fast
— MSL is the most accurate, but it is very slow
— LSA is almost as accurate as MSL and almost as fast as GPCA

For data with outliers
— Robust SVD combined with GPCA perform well
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. Examples of dynamic textures:

« Model temporal evolution as the output of a linear
dynamical system (LDS) Soatto et al. ‘01

Copyright (c) UCLa oretto
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Modeling moving dynamic textures

« Can we recover the rigid motion of a camera
looking at a moving dynamic texture?

| DTCC: Dynamic Texture Constancy Constraint |

« Can we segment a scene containing multiple
dynamic textures?

| GPCA: Generalized Principal Component Analysis |

« Can we segment a scene containing multiple
moving dynamic textures?

| GPCA + DTCC |




Modeling moving dynamic textures

* A time invariant model cannot capture camera motion
1 Az, + v,

y =Cz, +w

— Arrigid scene is a 1st order LDS Zt
- A=1,z=1,y,= C = constant

t

« Camera motion can be modeled with a time varying LDS
— A models nonrigid motion and C models rigid motion

dynamics
“t41 Az, + o,
[images} Y — C(t)zt Tw,
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Optical flow of a moving dynamic texture

Static textures: optical flow from
brightness constancy constraint (BCC)

I u+1v+1, =0
x Y t

Dynamic textures: optical flow from
dynamic texture constancy constraint

(BTCC) T Cpu + Cyv + C; = 0
J

Iou + Iyv + Cyzg = 0O

N I NN NI I VA e e e Ve Wy
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One dynamic texture lives in the observability subspace

z . =Az 4w Y1 Y2 ¢

t+1 t 't

i _C y2 yz | = | CA| |21 2
Y= 5T W | | |cA?

Multiple textures live in multiple subspaces

Cluster the data using GPCA




Optical Flow
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Segmenting moving dyp;api(} Wg{esl e &

Original video sequence Segmentation with Dynamic GPCA Polynomial Coefficient #8

v

(c) JHU Vision Lab 2005
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Variational segmentation of dynamic textures

 How can we incorporate spatial coherence?
— Model the dynamics with a mixture of AR models of order p

: p :
I(z,y, f) =al+ > al(z,y, f—1i)+w(z,vy, f)
=1
— Segment the scene by minimizing a spatial-temporal extension of
the Chan-Vese energy functional

F
E = u|C] 4 Ay /mt(c) f_z+1<1<a:, y, ) — e1(x, y, ) dudy
= 2
o[ o X UG D oty Y dedy
where D

ci(z,y, f) =ab+ > al(z,y, f—1i) j=1,2
=1
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Variational segmentation of dynamic textures

« Given the ARX parameters, we can solve for the implicit
function ¢ by solving the PDE

Z—qb—m( (o

F

)40 [ ey X UG ) = eatom )2dsdy

HE) p=pi1
F

Do Y Uy ) - c2<x,y,f>>2d:cdy)

w©) p=pi1

« Given the implicit function ¢, we can solve for the ARX
parameters of the jth region by solving the linear system

1 I(a),yl, f —

_1 I(:U]]gjayi;ja f T

1)

1) ...

I(w?[ay?laf _p) _

I(xija y}ij-? f o p)

_ao_

al

4 1ap|

IR

I v f)
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Variational segmentation of dynamic textures

* Fixed boundary segmentation results and comparison

Oolto
=G

Ocean-smoke Ocean-dynamics Ocean-appearance

oooooooo
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Variational segmentation of dynamic textures

* Moving boundary segmentation results and comparison

Copyright {c) 2003, UCLAVision Lab

Ocean-fire
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Variational segmentation of dynamic textures

* Results on a real sequence

Raccoon on River
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Temporal video segmentation

« Segmenting N=30 frames of a
sequence containing n=3
scenes

— Host
— Guest
— Both

Hnnedr sysielrl
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Temporal video segmentation

« Segmenting N=60 frames of a
sequence containing n=3
scenes

— Burning wheel
— Burnt car with people
— Burning car

Hnnedr sysielri

11 = SO

tfita@’xt + wy
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Conclusions

 Many problems in computer vision can be posed as subspace
clustering problems

— Temporal video segmentation
— 2-D and 3-D motion segmentation
— Dynamic texture segmentation
— Nonrigid motion segmentation

« These problems can be solved using GPCA: an algorithm for clustering
subspaces

— Deals with unknown and possibly different dimensions
— Deals with arbitrary intersections among the subspaces

e GPCA is based on

— Projecting data onto a low-dimensional subspace

— Recursively fitting polynomials to projected subspaces
— Differentiating polynomials to obtain a basis



For more information,

Vision, Dynamics and Learning Lab

@

Johns Hopkins University

Thank You!
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