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Part II: Applications in computer vision
• Applications to motion & video segmentation (10.30-11.20)

– 2-D and 3-D motion segmentation
– Temporal video segmentation
– Dynamic texture segmentation

• Applications to image representation and segmentation
(11.20-12.10)
– Multi-scale hybrid linear models for sparse

image representation
– Hybrid linear models for image segmentation
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3-D motion segmentation problem
• Given a set of point correspondences in multiple views, determine

– Number of motion models
– Motion model: affine, homography, fundamental matrix, trifocal tensor
– Segmentation: model to which each pixel belongs

• Mathematics of the problem depends on
– Number of frames (2, 3, multiple)
– Projection model (affine, perspective)
– Motion model (affine, translational, homography, fundamental matrix, etc.)
– 3-D structure (planar or not)



Taxonomy of problems
• 2-D Layered representation

– Probabilistic approaches: Jepson-Black’93, Ayer-Sawhney’95, Darrel-Pentland’95, Weiss-
Adelson’96, Weiss’97, Torr-Szeliski-Anandan’99

– Variational approaches: Cremers-Soatto ICCV’03
– Initialization: Wang-Adelson’94, Irani-Peleg’92, Shi-Malik‘98, Vidal-Singaraju’05-’06

• Multiple rigid motions in two perspective views
– Probabilistic approaches: Feng-Perona’98, Torr’98
– Particular cases: Izawa-Mase’92, Shashua-Levin’01, Sturm’02,
– Multibody fundamental matrix: Wolf-Shashua CVPR’01, Vidal et al. ECCV’02, CVPR’03, IJCV’06
– Motions of different types: Vidal-Ma-ECCV’04, Rao-Ma-ICCV’05

• Multiple rigid motions in three perspective views
– Multibody trifocal tensor: Hartley-Vidal-CVPR’04

• Multiple rigid motions in multiple affine views
– Factorization-based: Costeira-Kanade’98, Gear’98, Wu et al.’01, Kanatani’ et al.’01-02-04
– Algebraic: Yan-Pollefeys-ECCV’06, Vidal-Hartley-CVPR’04

• Multiple rigid motions in multiple perspective views
– Schindler et al. ECCV’06, Li et al. CVPR’07



A unified approach to motion segmentation
• Estimation of multiple motion models equivalent to

estimation of one multibody motion model

– Eliminate feature clustering: multiplication

– Estimate a single multibody motion model: polynomial fitting

– Segment multibody motion model: polynomial differentiation

chicken-and-egg



A unified approach to motion segmentation
• Applies to most motion models in computer vision

• All motion models can be segmented algebraically by
– Fitting multibody model: real or complex polynomial to all data
– Fitting individual model: differentiate polynomial at a data point



Segmentation of 3-D translational motions
• Multiple epipoles (translation)

• Epipolar constraint: plane in
– Plane normal = epipoles
– Data = epipolar lines

• Multibody epipolar constraint • Epipoles are derivatives of
    at epipolar lines



Segmentation of 3-D translational motions



Single-body factorization
• Affine camera model

– p = point
– f  = frame

• Motion of one rigid-body lives in a 4-D subspace
(Boult and Brown ’91,
Tomasi and Kanade ‘92)

– P = #points
– F = #frames

Structure = 3D surface

Motion = camera position and orientation



Multi-body factorization
• Given n rigid motions

• Motion segmentation is obtained from
– Leading singular vector of      (Boult and Brown ’91)
– Shape interaction matrix        (Costeira & Kanade ’95, Gear ’94)

– Number of motions (if fully-dimensional)

• Motion subspaces need to be independent (Kanatani ’01)



Multi-body factorization
• Sensitive to noise

– Kanatani (ICCV ’01): use model selection to scale Q
– Wu et al. (CVPR’01): project data onto subspaces and iterate

• Fails with partially dependent motions
– Zelnik-Manor and Irani (CVPR’03)

• Build similarity matrix from normalized Q
• Apply spectral clustering to similarity matrix

– Yan and Pollefeys (ECCV’06)
• Local subspace estimation + spectral clustering

– Kanatani (ECCV’04)
• Assume degeneracy is known: pure translation in the image
• Segment data by multi-stage optimization (multiple EM problems)

• Cannot handle missing data
– Gruber and Weiss (CVPR’04)

• Expectation Maximization



PowerFactorization+GPCA
• A motion segmentation algorithm that

– Is provably correct with perfect data
– Handles both independent and degenerate motions
– Handles both complete and incomplete data

• Project trajectories onto a 5-D subspace of
– Complete data: PCA or SVD
– Incomplete data: PowerFactorization

• Cluster projected subspaces using GPCA
– Handles both independent and degenerate motions
– Non-iterative: can be used to initialize EM



Projection onto a 5-D subspace
• Motion of one rigid-body lives in

4-D subspace of

• By projecting onto a 5-D
subspace of
– Number and dimensions of

subspaces are preserved
– Motion segmentation is

equivalent to clustering
subspaces of dimension
2, 3 or 4 in

– Minimum #frames = 3
(CK needs a minimum of 2n
frames for n motions)

– Can remove outliers by robustly
fitting the 5-D subspace using
Robust SVD (DeLaTorre-Black)

• What projection to use?
– PCA: 5 principal components
– RPCA: with outliers

Motion 1

Motion 2



Projection onto a 5-D subspace
PowerFactorization algorithm:

• Complete data

– Given A solve for B

– Orthonormalize B

– Given B solve for A

– Iterate
• Converges to rank-r

approximation with rate

Given    , factor it as

• Incomplete data

• It diverges in some cases
• Works well with up to 30% of

missing data

Linear problem



Motion segmentation using GPCA
• Apply polynomial embedding to 5-D points

Veronese map



Experimental results: Kanatani sequences
• Sequence A Sequence B Sequence C

• Percentage of correct classification



Experimental results: Hopkins 155 database
• Collected 155 sequences

– 120 with 2 motions
– 35 with 3 motions

• Types of sequences
– Checkerboard sequences: mostly full

dimensional and independent motions

– Traffic sequences: mostly degenerate (linear,
planar) and partially dependent motions

– Articulated sequences: mostly full dimensional
and partially dependent motions

• Point correspondences
– In few cases provided by Kanatani & Pollefeys
– In most cases, extracted semi-automatically

with OpenCV



Experimental results: Hopkins 155 database
• 2 motions, 120 sequences,

266 points, 30 frames
• 3 motions, 408 points, 27 frames
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Experimental results: Hopkins 155 database
• 2 motions, 120 sequences, 266 points, 30 frames



Experimental results: Hopkins 155 database
• 3 motions, 35 sequences, 398 points, 29 frames



Experimental results: missing data sequences

• There is no clear correlation between amount of missing data and
percentage of misclassification

• This could be because convergence of PF depends more on “where”
missing data is located than on “how much” missing data there is



Experimental results: outliers
• For each sequence in the Hopkins 155 database, outlying points were

drawn uniformly in [1,w]x[1,h] and used to generate outlying trajectories
• Robust SVD (De laTorre and Black’01) was used for projection,

followed by GPCA or LSA for segmentation



Conclusions
• For two motions

– Algebraic methods (GPCA and LSA) are more accurate than
statistical methods (RANSAC and MSL)

– LSA performs better on full and independent sequences, while
GPCA performs better on degenerate and partially dependent

– LSA is sensitive to dimension of projection: d=4n better than d=5
– MSL is very slow, RANSAC and GPCA are fast

• For three motions
– GPCA is not very accurate, but is very fast
– MSL is the most accurate, but it is very slow
– LSA is almost as accurate as MSL and almost as fast as GPCA

• For data with outliers
– Robust SVD combined with GPCA perform well
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Modeling a dynamic texture: fixed boundary
• Examples of dynamic textures:

• Model temporal evolution as the output of a linear
dynamical system (LDS): Soatto et al. ‘01
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Modeling moving dynamic textures
• Can we recover the rigid motion of a camera

looking at a moving dynamic texture?

• Can we segment a scene containing multiple
dynamic textures?

• Can we segment a scene containing multiple
moving dynamic textures?

DTCC: Dynamic Texture Constancy Constraint

GPCA: Generalized Principal Component Analysis

GPCA + DTCC



Modeling moving dynamic textures
• A time invariant model cannot capture camera motion

– A rigid scene is a 1st order LDS
– A = 1, zt = 1, yt = C = constant

• Camera motion can be modeled with a time varying LDS
– A models nonrigid motion and C models rigid motion

dynamics
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Optical flow of a moving dynamic texture
• Static textures: optical flow from

brightness constancy constraint (BCC)

• Dynamic textures: optical flow from
dynamic texture constancy constraint
(DTCC)
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Segmenting non-moving dynamic textures
• One dynamic texture lives in the observability subspace

• Multiple textures live in multiple subspaces

• Cluster the data using GPCA
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Segmenting moving dynamic textures



Segmenting moving dynamic textures

Ocean-bird



Variational segmentation of dynamic textures

• How can we incorporate spatial coherence?
– Model the dynamics with a mixture of AR models of order p

– Segment the scene by minimizing a spatial-temporal extension of
the Chan-Vese energy functional

where



Variational segmentation of dynamic textures

• Given the ARX parameters, we can solve for the implicit
function φ by solving the PDE

• Given the implicit function φ, we can solve for the ARX
parameters of the jth region by solving the linear system



Variational segmentation of dynamic textures

• Fixed boundary segmentation results and comparison

Ocean-smoke Ocean-dynamics Ocean-appearance



Variational segmentation of dynamic textures

• Moving boundary segmentation results and comparison

Ocean-fire



Variational segmentation of dynamic textures

• Results on a real sequence

Raccoon on River



Temporal video segmentation
• Segmenting N=30 frames of a

sequence containing n=3
scenes
– Host
– Guest
– Both

• Image intensities are output of
linear system

• Apply GPCA to fit n=3
observability subspaces

dynamics

appearance
images
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Temporal video segmentation
• Segmenting N=60 frames of a

sequence containing n=3
scenes
– Burning wheel
– Burnt car with people
– Burning car

• Image intensities are output of
linear system

• Apply GPCA to fit n=3
observability subspaces

dynamics

appearance
images

xt+1=Axt+vt
yt=Cxt+wt



Conclusions
• Many problems in computer vision can be posed as subspace

clustering problems
– Temporal video segmentation
– 2-D and 3-D motion segmentation
– Dynamic texture segmentation
– Nonrigid motion segmentation

• These problems can be solved using GPCA: an algorithm for clustering
subspaces
– Deals with unknown and possibly different dimensions
– Deals with arbitrary intersections among the subspaces

• GPCA is based on
– Projecting data onto a low-dimensional subspace
– Recursively fitting polynomials to projected subspaces
– Differentiating polynomials to obtain a basis



For more information,

Vision, Dynamics and Learning Lab
@

Johns Hopkins University
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