

Applications to Hybrid System Identification

René Vidal Center for Imaging Science Institute for Computational Medicine Johns Hopkins University

What are hybrid systems?

- Hybrid systems
 - Dynamical models with interacting discrete and continuous behavior
- Previous work
 - Modeling, analysis, stability, observability
 - Verification and control: reachability analysis, safety
- In applications one also needs to worry about identification
 Video segmentation
 Dynamic textures
 Gait recognition

 b_2

 \boldsymbol{b}_1

Identification of hybrid systems

- Given input/output data, identify
 - Number of discrete states
 - Model parameters of linear systems
 - Hybrid state (continuous & discrete)
 - Switching parameters (partition of state space)



Main challenges

- Challenging "chicken-and-egg" problem
 - Given switching times, estimate model parameters
 - Given the model parameters, estimate hybrid state
 - Given all above, estimate switching parameters
- Possible solution: iterate
 - Very sensitive to initialization
 - Needs a minimum dwell time
 - Does not use all data

Prior work on hybrid system identification

- Mixed-integer programming: (Bemporad et al. '01)
- Clustering approach: k-means clustering + regression + classification + iterative refinement: (Ferrari-Trecate et al. '03)
- Greedy/iterative approach: (Bemporad et al. '03)
- Bayesian approach: maximum likelihood via expectation maximization algorithm (Juloski et al. '05)
- Algebraic approach: (Vidal et al. '03 '04 '05)

Algebraic approach to hybrid system ID

- Key idea
 - Number of models = degree of a polynomial
 - Model parameters = roots (factors) of a polynomial
- Batch methods
 - CDC'03: known #models of equal and known orders
 - HSCC'05: unknown #models of unknown and possibly different orders
- Recursive methods
 - CDC'04: known #models of equal and known orders
 - CDC'05: unknown #models of unknown and possibly different orders

Problem formulation

Switch ARX system (SARX)

$$y_t = \sum_{j=1}^{n_a(\lambda_t)} a_j(\lambda_t) y_{t-j} + \sum_{j=1}^{n_c(\lambda_t)} c_j(\lambda_t) u_{t-j} \quad (+w_t)$$

Given input y_t and output u_t over an interval

$$t=0,1,2,\ldots,T-1,$$

determine:

- 1. the number n of the systems;
- 2. the order $\{n_a(i), n_c(i)\}_{i=1}^n$ of each system;
- 3. the system parameters $\{a_j(i), c_j(i)\}_{i=1}^n$;
- 4. the switching λ_t between systems.

A single ARX system: known orders

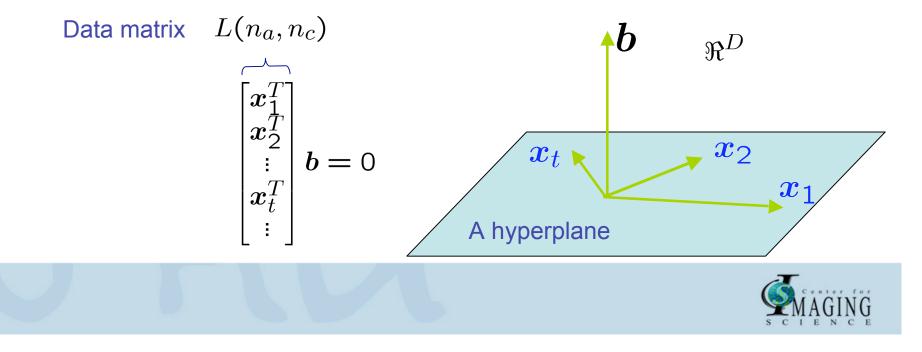
Knowing Systems Orders $D = n_a + n_c + 1$

Regressors

$$\boldsymbol{x}_{t} \doteq \begin{bmatrix} y_{t}, y_{t-1}, \dots, y_{t-n_{a}}, u_{t-1}, u_{t-2}, \dots, u_{t-n_{c}} \end{bmatrix}^{T} \in \Re^{D}.$$

Parameter vector

$$\boldsymbol{b} \doteq \begin{bmatrix} 1, -a_1, -a_2, \dots, -a_{n_a}, -c_1, -c_2, \dots, -c_{n_c} \end{bmatrix}^T \in \Re^D.$$

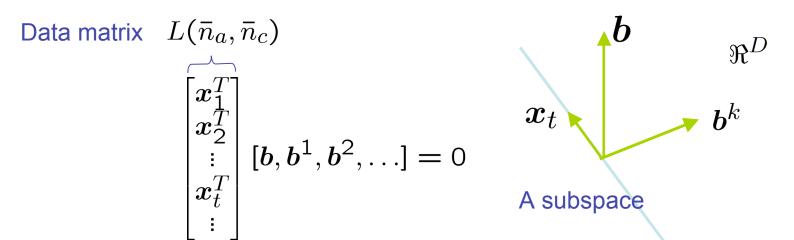


A single ARX system: unknown orders

Not Knowing Systems Orders $\bar{n}_a \ge n_a, \bar{n}_c \ge n_c, D = \bar{n}_a + \bar{n}_c + 1$ Regressors $x_t \doteq \begin{bmatrix} y_t, y_{t-1}, \dots, y_{t-\bar{n}_a}, u_{t-1}, u_{t-2}, \dots, u_{t-\bar{n}_c} \end{bmatrix}^T$.

Parameter vectors

$$b = \begin{bmatrix} 1, -a_1, \dots, -a_{n_a}, \mathbf{0}_{1 \times (\bar{n}_a - n_a)}, -c_1, \dots, -c_{n_c}, \mathbf{0}_{1 \times (\bar{n}_c - n_c)} \end{bmatrix}^T, \\
b^1 = \begin{bmatrix} \mathbf{0}_1, 1, -a_1, \dots, -a_{n_a}, \mathbf{0}_{\bar{n}_a - n_a - 1}, \mathbf{0}_1, -c_1, \dots, -c_{n_c}, \mathbf{0}_{\bar{n}_c - n_c - 1} \end{bmatrix}^T, \\
b^2 = \begin{bmatrix} \mathbf{0}_2, 1, -a_1, \dots, -a_{n_a}, \mathbf{0}_{\bar{n}_a - n_a - 2}, \mathbf{0}_2, -c_1, \dots, -c_{n_c}, \mathbf{0}_{\bar{n}_c - n_c - 2} \end{bmatrix}^T, \\
\vdots \qquad \vdots \qquad \vdots$$

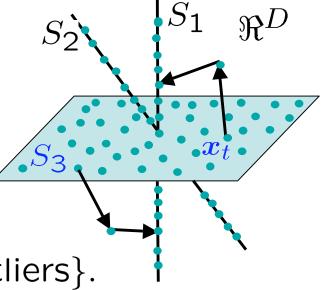


A Switched ARX system

Embedding in \Re^{D} $\bar{n}_a \ge \max_i n_a(i), \bar{n}_c \ge \max_i n_c(i), D = \bar{n}_a + \bar{n}_c + 1$

Configuration Space of Regressors:

- 1. Regressors of each system lie on a subspace in \Re^{D}
- 2. Order of each system is related to the subspace dimension
- 3. Switching among systems corresponds to switching among the subspaces

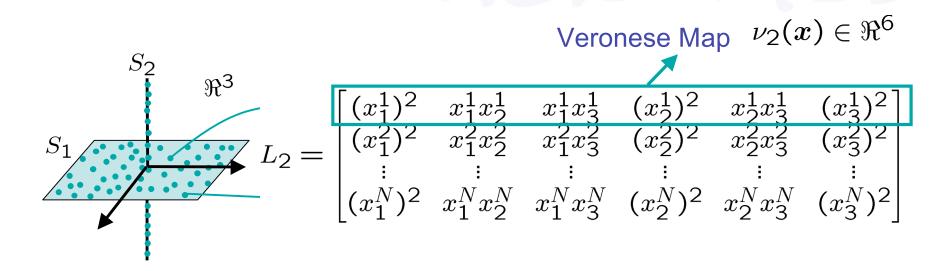


 $Z' \doteq S_1 \cup S_2 \cup \cdots \cup S_n \cup \{\text{outliers}\}.$ $Z'' \doteq H_1 \cup H_2 \cup \cdots \cup H_n.$

Representing *n* subspaces

- b_2 Two planes $(b_1^T x = 0)$ or $(b_2^T x = 0)$ °S₁ $p_2(x) = (b_1^T x)(b_2^T x) = 0$ One plane and one line - Plane: $S_1 = \{x : b^T x = 0\}$ - Line: $S_2 = \{x : b_1^T x = b_2^T x = 0\}$ $S_1 \cup S_2 = \{x : (b^T x = 0) \text{ or } (b_1^T x = b_2^T x = 0) \}$ De Morgan's rule $S_1 \cup S_2 = \{x : (b^T x)(b_1^T x) = 0 \text{ and } (b^T x)(b_2^T x) = 0\}$ A union of n subspaces can be represented with a set of
- A union of n subspaces can be represented with a set of homogeneous polynomials of degree n

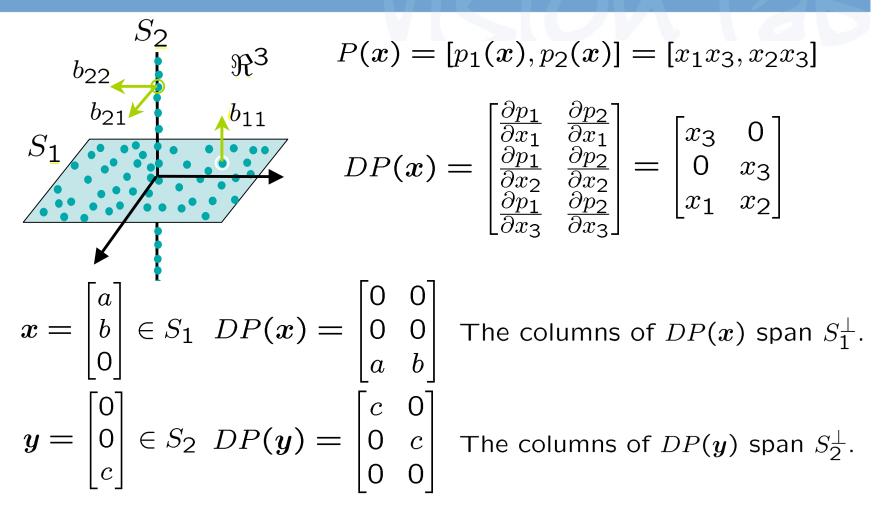
Polynomial fitting



The null space of
$$L_2$$
 is:
 $c_1 = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \end{bmatrix}^T$ \longrightarrow $p_1(x) = (\nu_2(x))^T c_1 = x_1 x_3$
 $c_2 = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}^T$ \longrightarrow $p_2(x) = (\nu_2(x))^T c_2 = x_2 x_3$

Null space of L_n contains information about all the polynomials.

Polynomial differentiation



The information of the mixture of subspaces can be obtained via polynomial differentiation.

Hybrid decoupling polynomial

$$\boldsymbol{x}_{t} \doteq \begin{bmatrix} y_{t}, y_{t-1}, \dots, y_{t-\bar{n}_{a}}, u_{t-1}, u_{t-2}, \dots, u_{t-\bar{n}_{c}} \end{bmatrix}^{T}.$$
$$\boldsymbol{b}_{i} = \begin{bmatrix} 1, -a_{1}(i), \dots, -a_{n_{a}(i)}(i), \mathbf{0}_{1 \times (\bar{n}_{a} - n_{a}(i))}, -c_{1}(i), \dots, -c_{n_{c}(i)}(i), \mathbf{0}_{1 \times (\bar{n}_{c} - n_{c}(i))} \end{bmatrix}^{T}.$$

For all regressors $x \in Z' \subseteq Z''$:

$$p_n(\boldsymbol{x}) \doteq \prod_{i=1}^n \left(\boldsymbol{b}_i^T \boldsymbol{x} \right) = \sum c_{n_1,\dots,n_D} x_1^{n_1} \cdots x_D^{n_D} = \boldsymbol{c}_n^T \nu_n(\boldsymbol{x}) = 0.$$

Lemma 1 (Hybrid Decoupling Polynomial) The monomial associated with the last non-zero entry of the coefficient vector c_n of the hybrid decoupling polynomial $p_n(x) = c_n^T \nu_n(x)$ has the lowest degree-lexicographic order in all the polynomials of degree n in the vanishing ideal $\mathfrak{a}(Z)$ or $\mathfrak{a}(Z')$.

Identifying the hybrid decoupling polynomial

$$p_n(\boldsymbol{x}) \doteq \prod_{i=1}^n \left(\boldsymbol{b}_i^T \boldsymbol{x} \right) = \sum c_{n_1,\dots,n_D} x_1^{n_1} \cdots x_D^{n_D} = \boldsymbol{c}_n^T \nu_n(\boldsymbol{x}) = 0.$$

Theorem 1 (Identifying Hybrid Decoupling Polynomial) Let $L_n^j \in \Re^{T \times j}$ be the first j columns of $L_n(\bar{n}_a, \bar{n}_c)$, and let

$$m \doteq \min\left\{j : \operatorname{rank}\left(L_n^j\right) = j - \mathbf{1}\right\}.$$

The coefficient vector c_n of the hybrid decoupling polynomial is

$$\boldsymbol{c}_n = \left[\left(\boldsymbol{c}_n^m \right)^T, \; \boldsymbol{0}_{1 \times (M_n(D) - m)} \right]^T \in \Re^{M_n(D)},$$

where $c_n^m \in \Re^m$ is the unique vector that satisfies

$$L_n^m c_n^m = 0$$
 and $c_n^m(1) = 1$.

Lemma 1 (Identifying the Number of ARX Systems) The polynomial found by Theorem 1 is

$$p_{\overline{n}}(\boldsymbol{x}) = \boldsymbol{c}_{\overline{n}}^T \nu_{\overline{n}}(\boldsymbol{x}) = (\boldsymbol{b}_1^T \boldsymbol{x}) (\boldsymbol{b}_2^T \boldsymbol{x}) \cdots (\boldsymbol{b}_n^T \boldsymbol{x}) x_1^{\overline{n}-n}.$$

Batch algorithm summary

Algorithm 1 (Identification of an SISO SARX System).

Given the input/output data $\{y_t, u_t\}$ from a sufficiently excited hybrid ARX system, and the upper bound on the number \bar{n} and maximum orders (\bar{n}_a, \bar{n}_c) of its constituent ARX systems:

- 1. Veronese Embedding. Construct the data matrix $L_{\bar{n}}(\bar{n}_a, \bar{n}_c)$ via the Veronese map based on the given number \bar{n} of systems and the maximum orders (\bar{n}_a, \bar{n}_c) .
- 2. Hybrid Decoupling Polynomial. Compute the coefficients of the polynomial $p_{\bar{n}}(x) \doteq c_{\bar{n}}^T \nu_{\bar{n}}(x) = \prod_{i=1}^n (b_i^T x) x_1^{\bar{n}-n} = 0$ from the data matrix $L_{\bar{n}}$ according to the previous Theorem and Corollary.
- 3. Constituent System Parameters. Retrieve the parameters $\{b_i\}_{i=1}^n$ of each constituent ARX system from $p_{\overline{n}}(x)$ according to the GPCA algorithm.
- 4. Key System Parameters. The correct number of system n is the number of $b_i \neq e_1$; The correct orders $n_a(i), n_c(i)$ are determined from such b_i according to their definition; The discrete state is $\lambda_t = \operatorname{argmin}_{i=1,...,n} (b_i^T x_t)^2$.

Stochastic versus deterministic case

$$y_{t} = \sum_{j=1}^{n_{a}(\lambda_{t})} a_{j}(\lambda_{t})y_{t-j} + \sum_{j=1}^{n_{c}(\lambda_{t})} c_{j}(\lambda_{t})u_{t-j} \quad (+w_{t})$$

ML-Estimate: minimizing the sum of squares of errors (SSE):

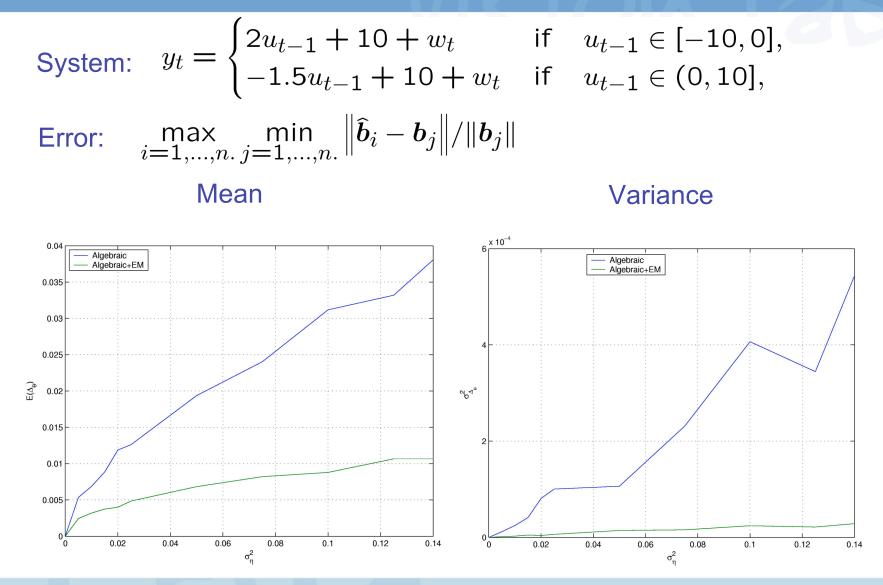
$$\min_{\boldsymbol{b}_i,\lambda} \sum_t w_t^2 = \sum_t (\boldsymbol{b}_{\lambda_t}^T \boldsymbol{x}_t)^2.$$

GPCA: minimizing a weighted SSE:

$$\min_{\boldsymbol{b}_i,\lambda} \sum_t \alpha_t (\boldsymbol{b}_{\lambda_t}^T \boldsymbol{x}_t)^2 \doteq \sum_t \prod_{i \neq \lambda_t} (\boldsymbol{b}_i^T \boldsymbol{x}_t)^2 (\boldsymbol{b}_{\lambda_t}^T \boldsymbol{x}_t)^2.$$

GPCA is a "relaxed" version of expectation maximization (EM) that permits a non-iterative solution.

Simulation results



Pick-and-place machine experiment

Four datasets of T = 60,000 measurements from a component placement process in a pick-and-place machine [Juloski:CEP05]

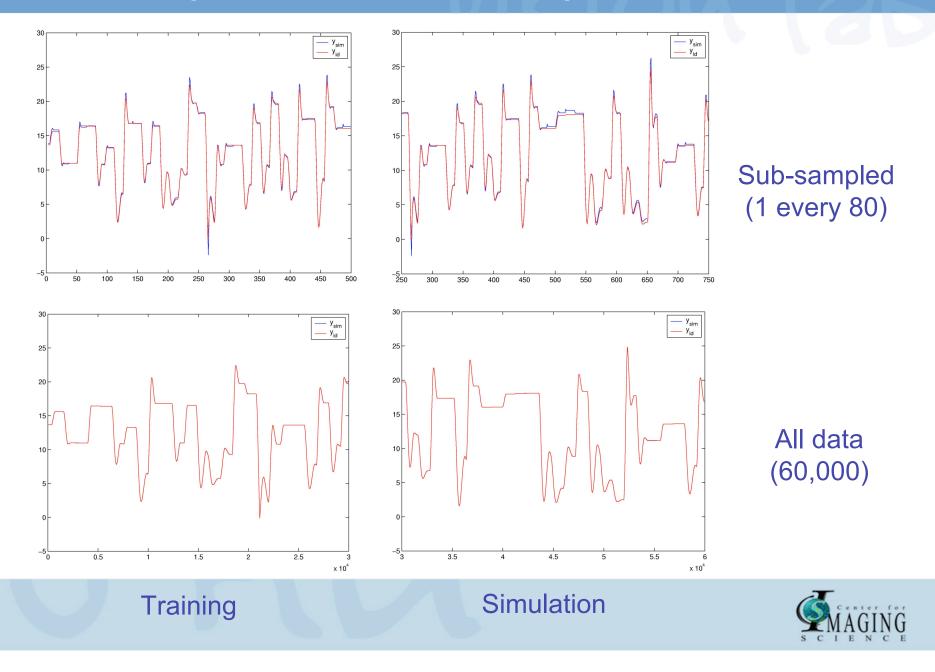
• Training and simulation errors for down-sampled datasets (1/80):

Dataset	n	n_a	n_c	SSR	SSE
1	2	2	2	0.0803	0.1195
2	2	2	2	0.4765	0.4678
3	2	2	2	0.6692	0.7368
4	2	2	2	3.1004	3.8430

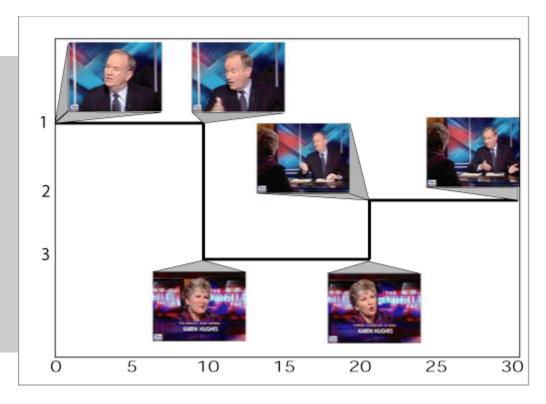
• Training and simulation errors for complete datasets:

Dataset	$\mid n$	$n n_a n_c$ SSR		SSR	SSE
1 with all points	2	2	2	$4.9696 \cdot 10^{-6}$	$5.3426 \cdot 10^{-6}$
2 with all points	2	2	2	$9.2464 \cdot 10^{-6}$	$7.9081 \cdot 10^{-6}$
3 with all points	2	2	2	$2.3010 \cdot 10^{-5}$	$2.5290 \cdot 10^{-5}$
4 with all points	2	2	2	$7.5906 \cdot 10^{-6}$	$9.6362 \cdot 10^{-6}$

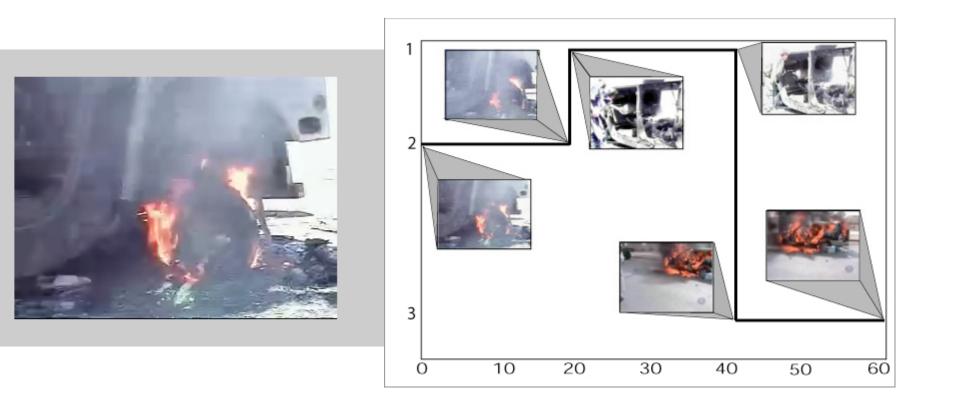
Pick-and-place machine experiment



Application in video segmentation



Application in video segmentation



Conclusions for batch method

- Identification of SARX of unknown and possibly different dimensions
 - Decouple identification and filtering
 - Algebraic solution that can be used for initialization
 - Polynomial fitting + rank constraint
 - Polynomial differentiation
 - Does not need minimum dwell time
- Ongoing work
 - MIMO ARX models: multiple polynomials (HSCC'08)

Recursive identification algorithms

- Most existing methods are batch
 - Collect all input/output data
 - Identify model parameters using all data
- Not suitable for online/real time operation
- Contributions
 - Recursive identification algorithm for Switched ARX
 - No restriction on switching mechanism
 - Does not depend on value of the discrete state
 - Based on algebraic geometry and linear system ID
 - Key idea: identification of multiple ARX models is equivalent to identification of a single ARX model in a lifted space
 - Persistence of excitation conditions that guarantee exponential convergence of the identified parameters

Recall the notation

The dynamics of each mode are in ARX form

$$y_t = \sum_{j=1}^{n_a} a_j(\lambda_t) y_{t-j} + \sum_{j=1}^{n_c} c_j(\lambda_t) u_{t-j}$$

 $- u_t, y_t$ $-\lambda_t \in \{1, 2, \dots, n\}$ discrete state $-K = n_a + n_c + 1$ order of the ARX models $-a_i(\lambda_t), c_i(\lambda_t)$

input/output

- model parameters
- Input/output data lives in a hyperplane

$$\boldsymbol{b}_i^T \boldsymbol{x}_t = \boldsymbol{0}$$

- I/O data
- Model parameters

$$\mathbf{x}_{1} \quad \mathbf{x}_{2} \quad \mathbf{x}_{t} = [u_{t-n_{c}}, \dots, u_{t-1}, y_{t-n_{a}}, \dots, y_{t-1}, -y_{t}]^{T}$$

$$\mathbf{x}_{t} = [u_{t-n_{c}}, \dots, u_{t-1}, y_{t-n_{a}}, \dots, y_{t-1}, -y_{t}]^{T}$$

$$\mathbf{b}_{i} = [c_{n_{c}}(i), \dots, c_{1}(i), a_{n_{a}}(i), \dots, a_{1}(i), 1]^{T}$$

 \boldsymbol{b}_i

Recursive identification of ARX models

- True model parameters $\boldsymbol{b} = [c_{n_c}, \dots, c_1, a_{n_a}, \dots, a_1, 1]^T$
- Equation error identifier

$$\hat{b}_{t+1} = \hat{b}_t - \mu \begin{bmatrix} \Pi_1 x_t (\hat{y}_t - y_t) \\ 1 + \mu \left(\sum_{j=1}^{n_a} y_{t-j}^2 + \sum_{j=1}^{n_c} u_{t-j}^2 \right) \\ 0 \end{bmatrix}$$

- Persistence of excitation: $\widehat{m{b}}_t
ightarrow m{b}$ exponentially if

$$\rho_1 I_{K-1} \prec \sum_{t=j}^{j+S} \Pi_1 x_t x_t^T \Pi_1^T \prec \rho_2 I_{K-1}$$

$$\rho_{3}I_{K-1} \prec \sum_{t=j}^{j+S-n_a+1} \boldsymbol{u}_t \boldsymbol{u}_t^T \prec \rho_{4}I_{K-1}$$

Overestimating the system order: single mode

$$\bar{n}_c, \bar{n}_a \text{ order upper bounds, } \bar{n}_c > n_c, \bar{n}_a > n_a$$

$$y_t = a_1 y_{t-1} + 0 y_{t-2} + c_1 u_{t-1} + 0 c_2 u_{t-2}$$

$$b = \begin{bmatrix} 0 & c_1 & 0 & a_1 & 1 \end{bmatrix}$$

$$y_{t-1} = a_1 y_{t-2} + c_1 u_{t-2}$$

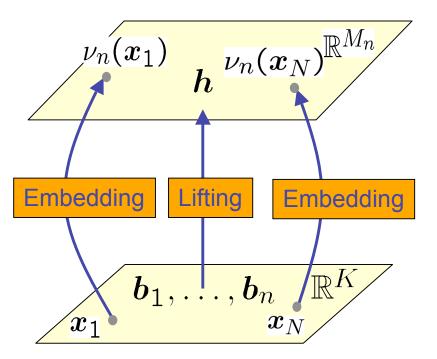
$$b^1 = \begin{bmatrix} c_1 & 0 & a_1 & 1 & 0 \end{bmatrix}$$

$$b = b^*$$

$$b^* = b + P^{\perp}(b_0 - b)$$

Recursive identification of SARX models

 Identification of a SARX model is equivalent to identification of a single lifted ARX model



Can apply equation error identifier and derive persistence of excitation condition in lifted space

Recursive identification of hybrid model

Recall equation error identifier for ARX models

$$\hat{b}_{t+1} = \hat{b}_t - \mu \begin{bmatrix} \Pi_1 x_t (\hat{y}_t - y_t) \\ 1 + \mu \left(\sum_{j=1}^{n_a} y_{t-j}^2 + \sum_{j=1}^{n_c} u_{t-j}^2 \right) \\ 0 \end{bmatrix}$$

Equation error identifier for SARX models

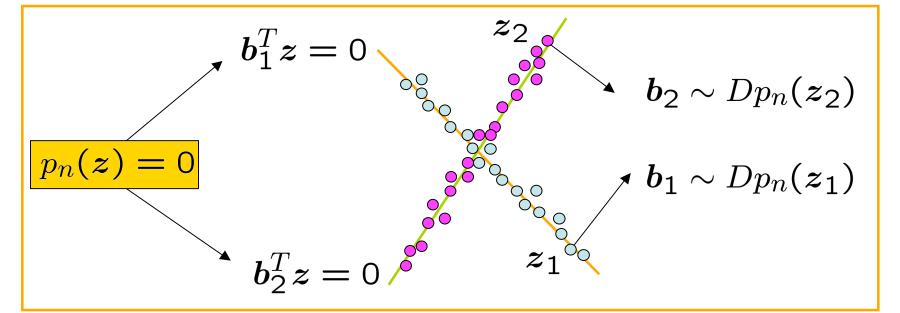
$$\hat{h}_{t+1} = \hat{h}_t - \mu \begin{bmatrix} \frac{\Pi_n \nu_n(x_t)(\hat{h}_t^T \nu_n(x_t))}{1 + \mu \|\Pi_n \nu_n(x_t)\|^2} \\ 0 \end{bmatrix}$$

$$\rho_1 I_{M_n(K)-1} \prec \sum_{t=j}^{j+S} \prod_n \nu_n(\boldsymbol{x}_t) \nu_n^T(\boldsymbol{x}_t) \prod_n^T \prec \rho_2 I_{M_n(K)-1}$$

implies that $oldsymbol{h} - \widehat{oldsymbol{h}}_t
ightarrow$ 0 exponentially

Recursive identification of ARX models

$$p_n(\boldsymbol{z}) = \nu_n(\boldsymbol{z})^T \boldsymbol{h} = (\boldsymbol{b}_1^T \boldsymbol{z}) \cdots (\boldsymbol{b}_n^T \boldsymbol{z}) \qquad \begin{array}{c} \boldsymbol{h} \in \mathbb{R}^{M_n} \\ \boldsymbol{b}_1 & \boldsymbol{b}_2 & \dots & \boldsymbol{b}_n \end{array}$$

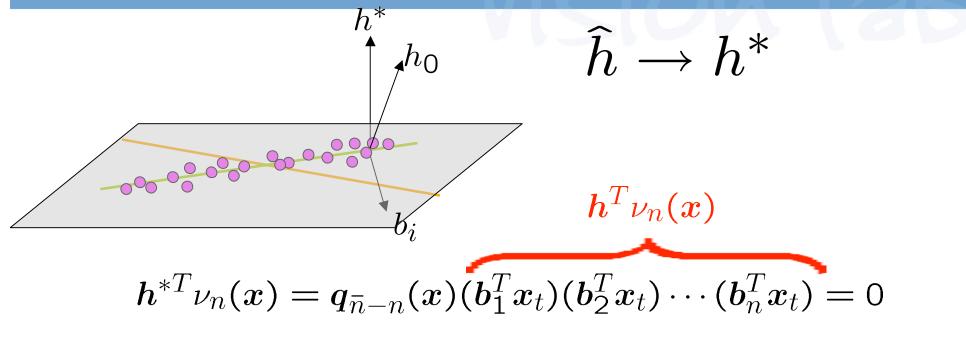


$$\boldsymbol{b}_{i} = \frac{Dp_{n}(\boldsymbol{z})}{e_{K}^{T}Dp_{n}(\boldsymbol{z})}\Big|_{\boldsymbol{z}=\boldsymbol{z}_{i}} \Longrightarrow \boldsymbol{\hat{b}}_{\lambda_{t}} = \frac{D\nu_{n}^{T}(\boldsymbol{x}_{t})\boldsymbol{\hat{h}}_{t}}{e_{K}^{T}D\nu_{n}^{T}(\boldsymbol{x}_{t})\boldsymbol{\hat{h}}_{t}}$$

 $\rightarrow oldsymbol{b}_i$

 $\widehat{m{b}}_{\lambda_t}$ —

Overestimating the number of modes



 \widehat{h} converges exponentially to a multiple of h

$$egin{aligned} m{b}_{\lambda_t} &= rac{D
u_n(m{x})^T m{h}}{e_K^T D
u_n(m{x})^T m{h}} igg|_{m{x}=m{x}_i} & \widehat{m{b}}_{\lambda_t} &= rac{D
u_n(m{x})^T m{h}^*}{e_K^T D
u_n(m{x})^T m{h}^*} igg|_{m{x}=m{x}_i} & \widehat{m{b}}_{\lambda_t} & o m{b}_i \end{aligned}$$

Overestimating system order: multiple modes

Given: 2 models estimated to be of the following form:

$$z_i = a_{1,i}y + a_{2,i}x$$

Hybrid decoupling polynomial: $\begin{bmatrix} h_1 & h_2 & h_3 & h_4 & h_5 & h_6 \end{bmatrix} \begin{bmatrix} x^2 \\ xy \end{bmatrix}$

If models are actually of the form

2
$$z_1 = a_{1,1}y + a_{2,1}x, z_2 = a_{1,2}y$$

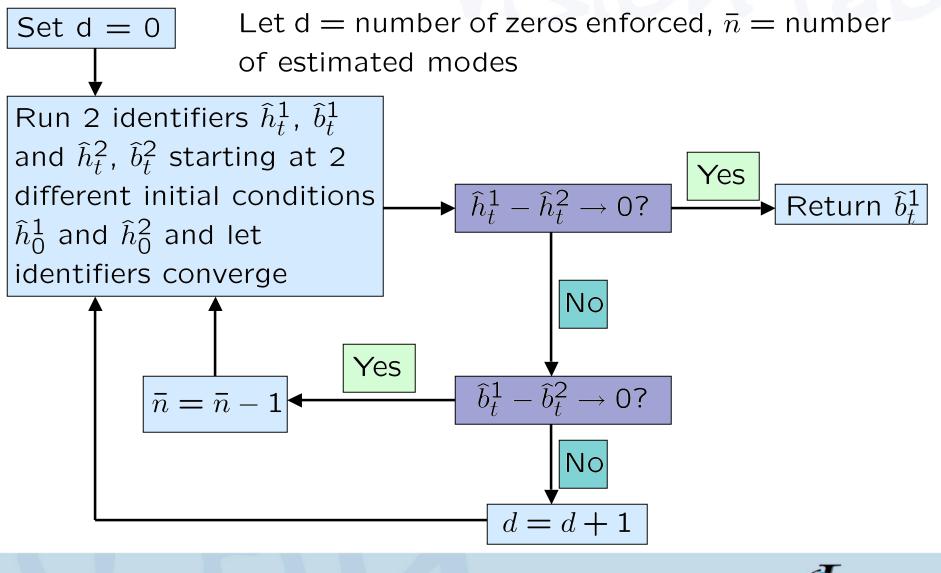
then
$$h_1 = h_2 = h_3 = 0$$

 $\hat{h} \rightarrow h^*, h^*$ is a function of the true parameter vector h and h_0

Using the above idea, enforce zeros in the estimated hybrid parameter vector \hat{h} to obtain h^* , whose derivatives give the desired parameter vectors b_i

 $\begin{vmatrix} xz \\ xz \\ y^2 \\ yz \\ z^2 \end{vmatrix}$

Final recursive identification algorithm



Experimental results

$$y_t = a(\lambda_t)y_{t-1} + c(\lambda_t)u_{t-1} + w_{t-1}$$

 $\begin{array}{ll} \text{mode } \lambda_t \in \{1,2\} \text{ with period 20 sec. Parameters:} \\ \text{input } u_t \sim \mathcal{N}(0,1), \\ \text{noise } w_t \sim \mathcal{N}(0,\sigma^2) \end{array} \begin{array}{l} \text{Parameters:} \\ a(1) = -0.9, \\ c(1) = 0.8, c \\ h = [-0.8, 1.4] \end{array}$

Experiment	\overline{n}	\bar{n}_a	\overline{n}_c	n	n_a	n_c
1	2	1	1	2	1	1
2	2	1	1	4	1	1
3	2	1	1	2	2	2
4	2	1	1	3	2	2

a(1) = -0.9, a(2) = 0.7 c(1) = 0.8, c(2) = -1 $h = [-0.8, 1.46, -0.2, -0.63, -0.2, 1]^T \in \mathbb{R}^6$

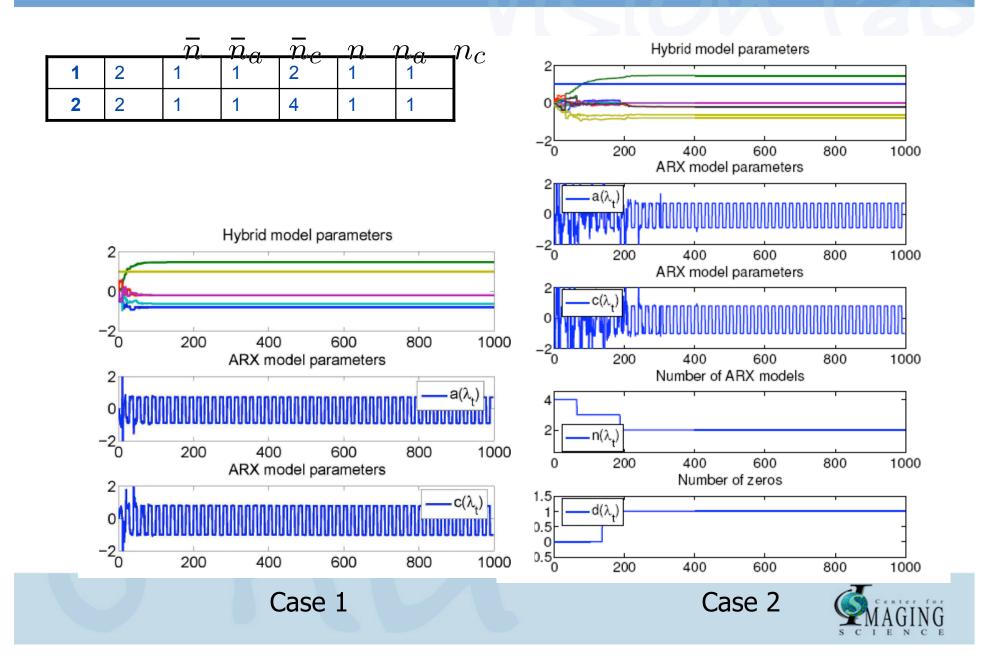
correct number of modes and orders

correct number of orders, overestimated number of modes

correct number of modes, overestimated number of orders

overestimated number of modes and orders

Cases 1 & 2 (noiseless)

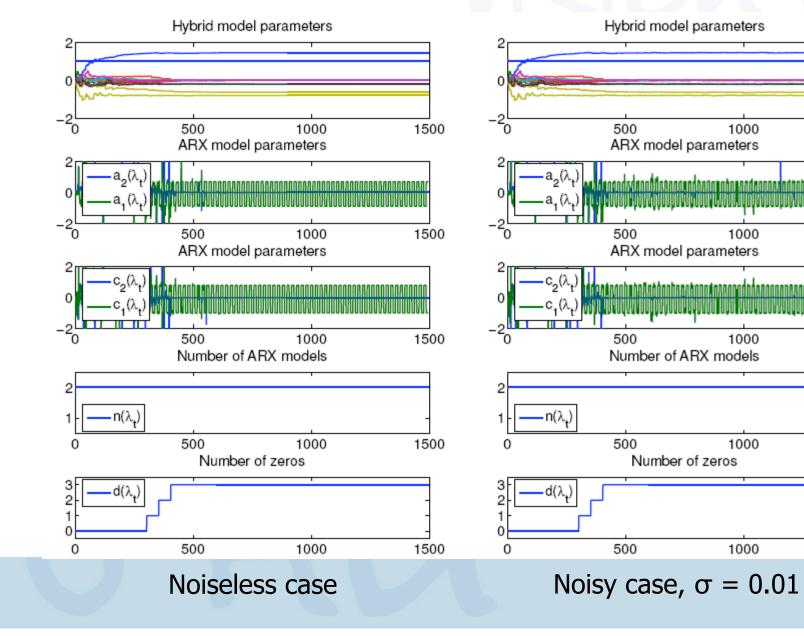


Case 3

3 2	1	1	2	2	2	

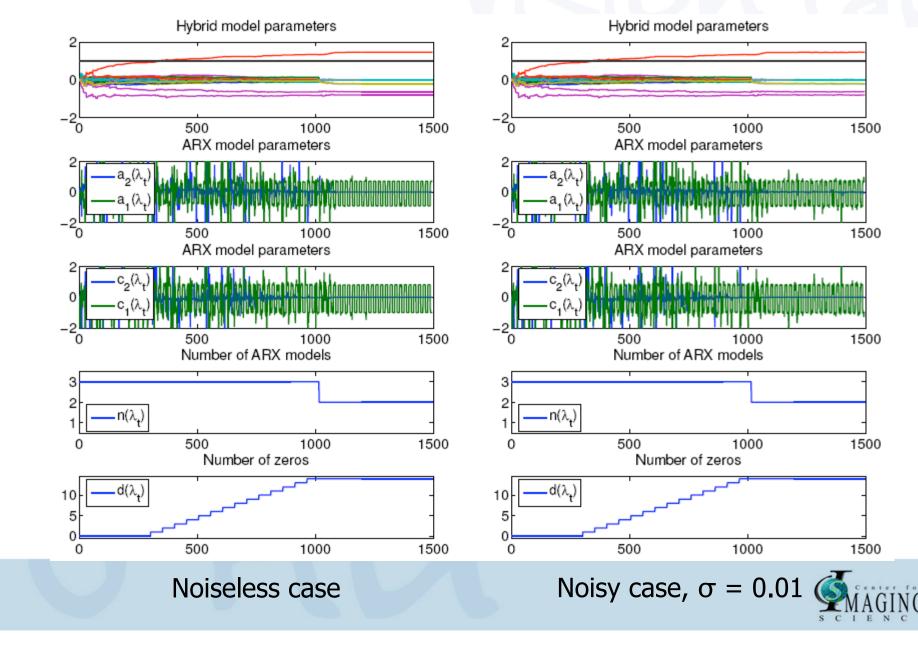
ส่งสิ่งสุดของอุณิกสุดที่มห

C



Case 4

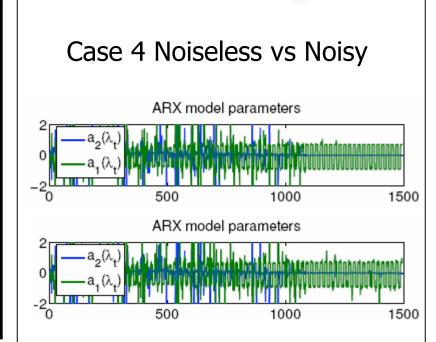
_	ö	\bar{n}	\bar{n}_a	\overline{n}_c	n	n_a	n_c
	_4	2	1	1	3	2	2



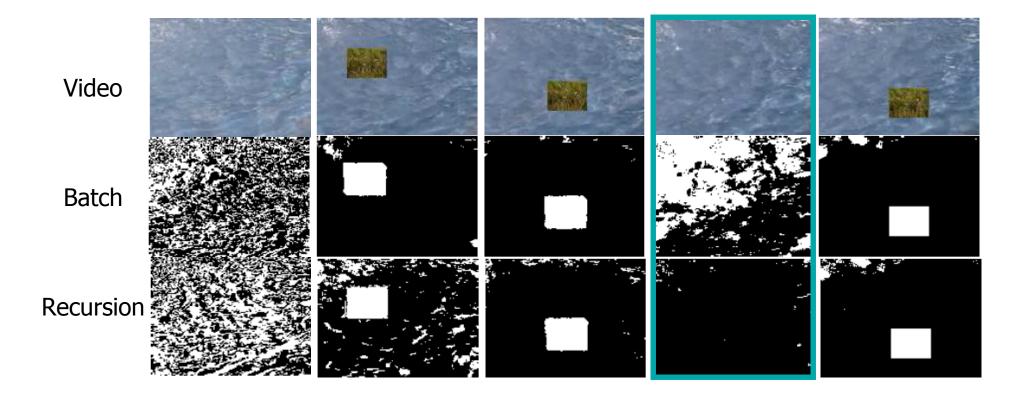
Experimental results - summary

Experiment	h and b convergence	Spiking
1	40 ms	None
2	200 ms	Minimal
3 (noiseless)	400 ms	Minimal
3 (noisy)	400 ms	More than noiseless
4 (noiseless)	1100 ms	Minimal
4 (noisy)	1100 ms	Significant

Experiment	\bar{n}	\bar{n}_a	\bar{n}_c	n	n_a	n_c
1	2	1	1	2	1	1
2	2	1	1	4	1	1
3	2	1	1	2	2	2
4	2	1	1	3	2	2



Temporal video segmentation



Conclusions and open issues

- Contributions
 - A recursive identification algorithm for hybrid ARX models of unknown number of modes and order
 - A persistence of excitation condition on the input/output data that guarantees exponential convergence
- Open issues
 - Persistence of excitation condition on the mode and input sequences only
 - Extend the model to multivariate SARX models
 - Extend the model to more general, possibly non-linear hybrid systems

