Layered Dynamic Textures

Antoni B. Chan and Nuno Vasconcelos
Department of Electrical and Computer Engineering
University of California, San Diego
abchan@icsd. edu,nuno@ce. ucsd. edu

Abstract been demonstrated in actually modeling such scenes.

Recently, there has been more success in modeling
A dynamic texture is a generative model for video that complex scenes agynamic texturer, more precisely,

treats the video as a sample from spatio-temporal stochas-samples from stochastic processes defined over space and
tic process. One problem associated with the dynamic tex-time [7—10]. This work has demonstrated that modeling
ture is that it cannot model video where there are regions both the dynamics and appearance of video as stochas-
of motion with different dynamics, e.g. a scene with smoketic quantities leads to a much more powerful generative
and fire. In this work, we introduce the layered dynamic tex- model for video than that of a “cardboard” figure subject
ture model, which addresses this problem by introducing a to parametric motion. In fact, the dynamic texture model
separate state process for each region of motion. We derivehas shown a surprising ability to abstract a wide variety
the EM algorithm for Iearning the parameters of the model, of Comp|ex patterns of motion and appearance ingona&
and demonstrate the efficacy of the proposed model for theple spatio-temporal model. One major current limitation

tasks of segmentation and synthesis of video. of the dynamic texture framework, however, is its inability
] to account for visual processes consistingrofitiple, co-
1. Introduction occurring, dynamic texturescor example, a flock of birds

Traditional motion representations, based on optic flow, 1¥ing in front of a water fountain, highway traffic moving
are inherently local and have significant difficulties when &t different speeds, video containing both trees in the back
faced with aperture problems and noise. The classical solu-9round and people in the foreground, and so forth. In such
tion to this problem is to regularize the optical flow field [1— C@S€S, the existing dynamic texture model is inherently in-
4], but this introduces undesirable smoothing across mo_cor_rect, since |t_must represent multiple motion fields with
tion edges or regions where the motion is, by definition, @ Singlé dynamic process.
not smooth (e.g. vegetation in outdoors scenes). More re- In this work, we address this limitation by introducing
cently, there have been various attempts to model video ast new generative model for video, which we denote by the
a superposition of layers subject to homogeneous motion./layered dynamic textur@DT). This consists of augment-
While layered representations exhibited significant peemi  ing the dynamic texture with a discrefteldenvariable, that
in terms of combining the advantages of regularization (use©nables the assignment of different dynamics to different
of global cues to determine local motion) with the flexilyilit ~ regions of the video. Conditioned on the state of this hid-
of local representations (little undue smoothing), thigpe ~ den variable, the video is then modeled as a simple dynamic
tial has so far not fully materialized. One of the main lim- texture. By introducing a shared dynamic representation fo
itations is their dependence on parametric motion models,all the pixels in the same region, the new model is a lay-
such as affine transforms, which assume a piece-wise p|aered representation. When Compared with traditional Iay-
nar world that rarely holds in practice [5, 6]. In fact, lager ered models, it replaces the process of layer formatiorthase
are usually formulated as “cardboard” models of the world on “warping of cardboard figures” with one based on sam-
that are warped by such transformations and then stitched?ling from the generative model (for both dynamics and ap-
to form the frames in a video stream [5]. This severely lim- Pearance) provided by the dynamic texture. This enables a
its the types of video that can be synthesized: while lay- much richer video representation. Since each layer is a dy-
ers showed most promise as models for scenes Composeﬂamic texture, the model can also be seen as a multi-state
of ensembles of objects subject to homogeneous motiondynamic texture, which is capable of assigning different dy
(e.g. leaves blowing in the wind, a flock of birds, a picket namics and appearance to differentimage regions.
fence, or highway traffic), very little progress has so far  Recently, some of the limitations of the dynamic tex-
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Figure 1. (a) The graphical model for the dynamic texture; is the hidden state at time andy; is the observed frame at time (b) The
graphical model for the layered dynamic textung. is an observed pixel process anf¥) is a hidden state procesg is the collection of layer
assignment variables; that assigns each pixels to one of the state processes, amdlaed as an MRF; (c) An example ofiax 4 MRF used for
layer assignment.

ture were also addressed in [11]. The layered formulationwhere A € R"*" is a transition matrixC € R™*" a

now proposed has various differences with respect to thistransformation matrixBv; ~,,, N(0,Q,) and/rw; ~.,
work. First, it enables probabilistic pixel assignments, a N (0, r1,,) the state and observation noise processes param-
opposed to the hard assignments of [11]. Second, the learneterized byB € R"*" andr € R, and the initial state

ing method of [11] is exact only when the noise term of the zq € R" is a constant. One interpretation of the dynamic
appearance component of the dynamic texture is zero. Astexture model is that the columns 6f are the principal
usual in computer vision, allowing this term to be different components of the video frames, and the state vectors are
than zero is important not only because it enables the pro-the PCA coefficients for each video frame. This is the case
cessing of video with noise, but also because it introduceswhen the model is learned with the method of [7].

flexibility with respect to model mismatches. Finally, the  an alternative interpretation considers a single pixel as
model of [11] does not enforce spatial consistency of the jt evolves over time. Each coordinate of the state vector
assignments of pixels to regions. We show that this can bey, defines a one-dimensional random trajectory in time. A
naturally done with the layered dynamic texture model, and pixel is then represented as a weighted sum of random tra-
can lead to significant improvements of segmentation accu-jectories, where the weighting coefficients are contained i
racy when the different regions have similar dynamics. the corresponding row af’. This is analogous to the dis-
The paper is organized as follows. In Section 2, we in- crete Fourier transform in signal processing, where a signa
troduce the layered dynamic texture model. In Section 3 s represented as a weighted sum of complex exponentials
we present the EM algorithm for learning the model from ajthough, for the dynamic texture, the trajectories are not
training data. Finally, in Section 4 we present an experi- necessarily orthogonal. This interpretation illustraties
mental evaluation in the context of segmentation and videoabi”ty of the dynamic texture to model the same motion

synthesis. under different intensity levels (e.g. cars moving from the
] shade into sunlight) by simply scaling the rowsf Re-
2. Layered dynamic textures gardless of interpretation, the simple dynamic textureahod

has only one state process, which restricts the efficacyeof th

We start with a brief review of dynamic textures, and . o
model to video where the motion is homogenous.

then introduce the layered dynamic texture model.

2.1. Dynamic texture 2.2. Layered dynamic textures

A dynamic texture [7] is a generative model for video, ] ]
which treats the video as a sample from a linear dynami- Ve now introduce théayered dynamic texturd.DT),
cal system. The model, shown in Figure 1 (a), separateg¥hich is shown in Figure 1 (b). The model addresses the
the visual component and the underlying dynamics into two limitations of the dynamic texture by relying on a set of
stochastic processes. The dynamics of the video are repreStaté processes = {I(J_)}fﬂ to model different video
sented as a time-evolving state processs R", and the dynamics. The layer as&gnmentvanabilas&gn;_p|xeyi
appearance of the framge € R™ is a linear function of the to one of the state processes (layers), and conditionedon th

current state vector with some observation noise. Formally layer assignments, the pixels in the same layer are modeled
the system is described by as a dynamic texture. In addition, the collection of layer

assignments = {z;}Y, is modeled as a Markov random
x4 = Azs_q + Buy field (MRF) to ensure spatial layer consistency (an example
yr = Cay + /1wy (1) is shown in Figure 1 (c)). The linear system equations for



the layered dynamic texture are N number of pixels in a frame
T length of the observed video sequence
xgj) — A(j)xg'i)l + B(j)vgj) je{l,- K} ) K number of state processes
Yis = Ci(zi)xgzi) + \/mwit ie{l,---,N} (2) 7 !ndex over the pixel sequences
' ’ j index over the state processes
WhereC’i(j) € R is the transformation from the hid-  © t'me_t',:]d?x of a sequence
den state to the observed pixel domain for each pjxahd yi  the i pixel sequence
each layerj, the noise parameters ai’) ¢ R™*" and yi(’t the qbservatlon attimeof y;
2 the j*h state sequence

r() € R, the iid noise processes aig; ~,,, N(0,1) and
vt(” ~iqa N(0,1,), and the initial states are drawn from
xgﬁ ~ N (D), @),

As a generative model, the layered dynamic texture as-—=
sumes that the state proces3gand the layer assignments
Z are independent, i.e. the layer motion is independent of
layer location, and vice versa. Given the layer assignments
the LDT is a collection of dynamic textures over different
regions of the video. As a result, learning the LDT reduces
to learning several dynamic textures, when given the seg-
mentation of the video into regions of distinct motion. For
the more general case, the segmentation and the dynamics
can be learned simultaneously using the EM algorithm.
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Table 1. Notation for EM for layered dynamic textures

variablesX and hidden layer assignmentsfrom the cur-

rent parameters, and updating the parameters given the cur-
rent hidden variable estimates. One iteration of the EM al-
gorithm contains the following two steps

o E-Step:Q(0;0) = Ey 4y (logp(X,Y, Z; 0))

2.3. Modeling layer assignments o M-Step:©* = argmaxe Q(6; O)

An MRF is used to model the layer assignments to en-
sure spatial consistency of the layer (see Figure 1 (c) for anin the remainder of this section, we derive the joint log-
example of the grid). The MRF has the following distribu- likelihood of the model, followed by the derivations of the

tion E-step and M-step of the learning algorithm. See Table 1
1 for notation.
p(Z) = > [Tei) I i) ©)
i (i.)€€ 3.1. Log-likelihood

wheref is the set of edges in the MRF grid,a normaliza-
tion constant (partition function), ang;, and; ; potential
functions of the form

The state processé§and layer assignmenfare inde-
pendent, and hence the joint log-likelihood factors as

aq ,Zizl Z(XaYaZ):logp(XaYaZ) (6)
Vi(zi) = Lo (4) = logp(Y|X, Z) + logp(X) + logp(Z) (7)
ok zu=K = Y 2 logp(yilet?, 2 = j) (8)
_ 5% =% b
.5\ Ziy 24 = 5 .
Vuj (2 7) { V2 s EF 7 2 —i—Zlogp(:v(J))—i—logp(Z)

The potential function); defines a prior likelihood for each ! -
layer, whilev; ; attributes higher probability to configura- _ L) lo 1) 9
tions where neighboring pixels are in the same layer. Rather ; ! ; Bp(ilee J) ®)

than learn the parameters of the potential functions fon eac

model, we will treat the MRF as a prior ot that regular- + - lo (4),.(9) (9)
: E E gp(x, |z, ) + logp(x
izes the smoothness of the layers. T~ \ims (o) ()

3. Parameter estimation using EM +logp(2)

The parameters of the layered dynamic texture arewherez\” is the indicator variable that = j. Substituting

learned using the Expectation-Maximization (EM) algo- for the probability distributions and dropping the constan
rithm [12], which iterates between estimating hidden state terms yields the log-likelihood given in (20).



3.2. E-Step

Taking the conditional expectation of (20), the E-step re-
quires the computation of the following terms:

(4)

Ty = EXIY(xt ) (10)
jfz(Jt) = EZ,X\Y(Zi(j)Ii(Ej))

B = Exy e @)

P, = Bxy (el @)

A = Bxy () @)7)

5§'j) = EZIY(Zi(j)) =p(z; =jlY)

These expectations are intractable to compute in closed
form since it is not known to which state process each of the

pixelsy; is assigned, and hence it is necessary to marginal-

ize over all configurations of. This problem also appears
for the computation of the posterior layer assignment prob-
ability p(z; = j|Y). While other inference approximation
methods, e.g. variational methods or belief propagation,
could be used, the current method that we adopt for approx
imating these expectations is to simply average over draw
from the posteriop(X, Z|Y) using a Gibbs sampler (see
Appendix for details).

3.3. M-Step

The optimization in the M-Step is obtained by taking the
partial derivative of theQ function with respect to each of
the parameters. For convenience, we first define the follow-
ing quantities,

¢§j) = 2;11 Pt(Jt) gj) = ZtT:2 Pt(Jt)

oU) = Yt Pt(.i) ‘I)z(‘j) =i P’L(‘-I]f)t (11)
7/’(j) = ZZ:Q Pt(,jt.i)fl Fz(‘j) = ZZ:l Ultigjt)

Nj =2 éi(j) Agj) =i 2ij)yi2,t

Taking the partial derivative with respect to each paramete
and setting to zero yields the parameter updates:

A(j)* _ 1/J(j) (¢§j))—1 (12)
. 1 . N
QU = Tl(cﬁé]) _ AW (¢(J))T)
p* = 0
F(E) L p1<31> — gD (DT
Cz(j)* — (FEJ))T((I)EJ))—I
| X

P = LSS0 - o)
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J i=1
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4. Experiments

In this section, we show the efficacy of the proposed
model for segmentation and synthesis of several videos with
multiple regions of distinct motion. Figure 2 (a) shows the
three video sequences used in testing. The first (top) is a
composite of three distinct video textures of water, smoke,
and fire. The second (middle) is of laundry spinning in a
dryer. The laundry in the bottom left of the video is spin-
ning in place in a circular motion, and the laundry around
the outside is spinning faster. The final video (bottom) is of
a highway [15] where the traffic in each lane is traveling at
a different speed. The first, second and fourth lanes (from
left to right) move faster than the third and fifth. All three

videos have multiple regions of motion and are therefore
properly modeled by the models proposed in this paper, but
not by a regular dynamic texture.

A layered dynamic texture (LDT) was fit to each of the
three videos. For comparison, a layered dynamic texture
with the layer assignments distributed as iid multinomi-
als (LDT-iid) was also learned. In all the experiments, the

dimension of the state space was= 10. The MRF grid
was based on the eight-neighbor system (with cliques of
size 2), and the parameters of the potential functions were
v = 0.99,v2 = 0.01, ande; = 1/K. The expectations re-
quired by the EM algorithm were approximated using Gibbs
sampling. We first present segmentation results, to show
that the models can effectively separate layers with difier
dynamics, and then discuss results relative to video synthe
sis from the learned models.

4.1. Segmentation

The videos were segmented by assigning each of the pix-
els to the most probable layer conditioned on the observed
video, i.e.z; = argmax; p(z; = j|Y'). Another possibility
would be to assign the pixels by maximizing the posterior
of all the pixelsp(Z]Y"). While this maximizes the true pos-
terior, in practice we obtained similar results with the two
methods. The former method was chosen because the indi-
vidual posterior distributions are already computed dyrin
the E-step of EM.

Figures 2 (b) and (c) show the segmentation results ob-
tained using the LDT and LDT-iid models, respectively.
The segmented video is also available at [16]. From the
segmentations produced by LDT-iid, it can be concluded
that the laundry video can be reasonably well segmented
without the MRF prior. The segmentation of the composite
video using LDT-iid is slightly worse, and contains several
regions of noise. Nonetheless, this confirms the intuition

The M-step parameter updates are analogous to those re_t_hat the various video regions cpntain very distinct dynam-
quired to learn a regular linear dynamical system [13, 14], I°S that can only be modeled with separate state processes.

with minor modifications for transformation matrices and Otherwise, the pixels should be either randomly assigned
observation noise. among the various layers, or uniformly assigned to one of



them. The segmentations of the traffic video using LDT- the model is that the current implementation of the E-step
iid are poor. While the dynamics are different, the differ- in the learning algorithm requires sampling methods, which
ences are significantly more subtle, and segmentation re-are computationally intensive. Future work will be dirette
quires stronger enforcement of layer consistency. As ex-towards faster approximation methods, such as variational
pected, the introduction of the MRF prior improves the seg- approximation or belief propagation.

mentations for all three videos. For example, in the compos-

ite sequence all erroneous segments in the water region ardppendix

removed, and in the traffic sequence, most of the speckled
segmentation also disappears.

In terms of the overall segmentation quality, the LDT is
able to segment the composite video perfectly. The seg-
mentation of the laundry video is plausible, as the laundry
tumbling around the edge of the dryer moves faster than
that spinning in place. The model also produces a reason
able segmentation of the traffic video, with the segments
roughly corresponding to the different lanes of traffic. Muc
of the errors correspond to regions that either contaim-inte

A sample from the layered dynamic texture can be ob-
tained using the Gibbs sampler [17], which is a method for
sampling from complicated probability distributions. Not
ing that it is much easier to sample conditionally from
the collection of variablesX and Z than on any individ-
ual 2@ or 2, the Gibbs sampler is first initialized with
X ~ p(X), followed by alternating between sampling from
Z ~ p(Z|X,Y) and sampling fronX ~ p(X|Y, Z).

The layer assignment distributigiiZ| X, Y) is given by

mittent motion (e.g. the region between the lanes) or almost

no motion (e.g. truck in the upper-right corner and flat-bed p(Z1X,Y) = p(Y|X(’5|)§§X(|§))p(Z) (13)
truck in the third lane). Some of these errors could be elim- P P

inated by filtering the video before segmentation, but we o p(Y1X, Z)p(Z) (14)
have attempted no pre or post-processing. Finally, we note x

p(Z2) [ p(wil X, 20)) (15)
that the laundry and traffic videos are not trivial to segment i
with standard computer vision techniques, namely methodslf the =

b]‘f‘sﬁd onﬁqptu_:gl ﬂOWH Th|sh|s pgrtlcdularly tr:je in _thr? (I:_ase sampling z; involves sampling from the posterior of the
of the traffic video where the abundance of straight lines 1 iinomial (=i X 1) o p(yi| X, 2)p(z:). If Z is mod-

and flat regions makes computing the correct optical flow eled as an MRF, then théy;|.X,, =;) terms are absorbed into

difficult due to the aperture problem. the self potentialg); of the MRF, and sampling can be done
4.2. Synthesis using the MCMC algorithm [18].
The state processes are independent of each other when

The layered dynamic texture is a generative model, andconditioned on the video and the pixel assignments, i.e.
hence a video can be synthesized by drawing a sample from

the learned model. A synthesized composite video compar-  p(X|Y, Z) = [[ p(=|Y, 2) = [[ p(="]y;) ~ (16)
ing the LDT and the normal dynamic texture can be found i J

at [16]. When modeling a video with multiple motions,
the regular dynamic texture will average different dynam-
ics. This is noticeable in the synthesized video, where the
fire region does not flicker at the same speed as in the origi-
nal video. Furthermore, the motions in different regiores ar
coupled, e.g. when the fire begins to flicker faster, the wa- _ _ T o
ter region ceases to move smoothly. In contrast, the videop(xgj), e 2WY;) = p(x§7)|Yj) Hp(x,(ﬂ)lxgj_)l, Y;) (17)
synthesized from the layered dynamic texture is more real- t=2

istic, as the fire region flickers at the correct speed, and ther,, parameters of each conditional Gaussian is obtained
different regions follow their own motion patterns. with the conditional Gaussian theorem [19]

are modeled as independent multinomials, then

whereY; = {y;|z; = j} are all the pixels that are assigned
to layerj. Using the Markovian structure of the state pro-
cess, the joint probability factors into the conditionaistp
abilities,

5. Conclusions and Future Work E@Y 2, Y;) = (18)

In this paper we have introduced a new model, the lay- i 4+ ggjﬂ’g_l(ggi)l,t_l)*l(xgﬂjl — 1)
ered dynamic texture, that can model video that contains )1 G)

regions of motion with different dynamics. For this class of cov(z,” [y, Yj) = (19)
video, we showed that the layered dynamic texture is more ) —xl) (s w0
appropriate for synthesis than the regular dynamic texture ’ ’ ’ ’

In addition, the model provides a natural framework for seg- where the marginal mean, marginal covariance, and

menting video into regions of motion. One disadvantage of one-step covariance arﬁeij) = E(xﬁj)|Yj), Efﬂt) =
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Figure 2. Frames from the test video sequences (a): (top) composite@iefr, smoke, and fire video textures; (middle) spinningyday in a
dryer; and (bottom) highway traffic with lanes traveling &festent speeds. Segmentation results for each of the t#sbs using: (b) the layered
dynamic texture, and (c) the layered dynamic texture witfdRF.
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