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Abstract or parameters of a dynamic system, and the estimation task
is posed as a problem of state or parameter estimation. The

Three-dimensional structure information can be esti- resulting estimation algorithm typically performecursive
mated from two-dimensional images using recursive es-estimation, where the estimated variables are updated each
timation methods. This paper investigates possibilities to time a new image is processed.
improve structure filter performance for a certain class The use of dynamic systems theory for estimation of
of stochastic perspective systems by utilizing mutual in- motionis described e.g. in [19]. Estimation sfructure
formation, in particular when each observed point on a using dynamic systems is described e.g. in [18], which
rigid object is affected by the same process noise. Aftercontains results regarding observability, and also presents
presenting the dynamic system of interest, the method isalgorithms and experimental results.
applied, using an extended Kalman filter for the estimation,  The algorithms presented in [18] and [19] describe
to a simulated time-varying multiple point vision system. structure and motion estimation using a camera as the only
The performance of a connected filter is compared, usingmeasurement device. Algorithms can also be developed for
Monte Carlo methods, to that of a set of independent filters. situations where additional measurement devices are used,
The idea is then further illustrated and analyzed by meansor where additional knowledge of specific quantities are
of a simple linear system. Finally more formal stochas- available, e.g. situations where the linear and/or angular
tic differential equation aspects, especially the impact of velocity of an object is measured or estimated. This type
transformations in the & sense, are discussed and related of algorithms includes e.g. estimation of orientation, using
to physically realistic noise models in vision systems. a camera and an inertial measurement unit, as shown in

[17], or estimation of orientation and position, using a

camera moving with known angular and linear velocities,
1. Introduction as presented in [1].

Recursive estimation of the three-dimensional position

d of one or more feature points on a rigid object, assuming
measurements or estimated values of the angular and the
linear velocities, can be approached using an extended
Kalman filter [2], [12], or other types of more specialized
nonlinear observers [3]-[5], [10], [13].

The observers in [3]-[5], [10], [13] estimate the position
of a single feature point. This paper investigates perfor-
mance issues in the simultaneous position estimation of
multiple points. An extended Kalman filter is used for the
&stimation. It is exemplified how the estimation can be
improved using a connected filter, under the assumption
T This work was partially supported by the SRC project 621-2002-4831 Of a special process noise structure.

In many computer vision applications it is require
that three-dimensional information can be estimated from
two-dimensional images. It is possible to estimate three-
dimensional parameters related to structure and/or motion,
given a sequence of images, by employing an algorithm
that utilizes information from all images in the sequence
as input data. An overview of this type of algorithms can be
found in e.g. [7], [11]. Another class of algorithms uses a
dynamic systenfermulation for the purpose of estimation.
The quantities to be estimated are then expressed as stat



2. Perspective system axes are not perpendicular, amgi and mp are strictly
positive scaling factors, acting in the horizontal and vertical
The object motion is described using a dynamic per- direction of the image respectively.
spective system. The perspective system combines a set of
stochastic differential equations for the position of a num-
ber of feature points on an observed object, with noise cor-
rupted measurement equations in the form of perspective
projections defined using an appropriate camera model.
In this section the corresponding deterministic dynamic
system is presented under the assumptions of rigid body
motion and a simple frontal pinhole imaging model. A
coordinate transformation is employed to obtain a useful
alternative system formulation. The mathematical model is
then extended to include process and measurement noise,
and consequently re-formulated in stochastic differential
form.

2.1. Dynamic system

The three-dimensional position of an arbitrarily selected
feature point on a given object is described using coor-
dinatesx = (X1 X2 xi73)T, i = 1...n, wheren is the
number of points. Under the assumption of rigid body
motion, x; satisfies the differential equation

Fig. 1. Coordinate systems for the position of
a three-dimensional point  Xj, belonging to an
observed object, and its projection  Y; onto an

image plane.
% =A% +b, x(0) = xai, 6y i . :
_ _ . Combining (1) and (2), a dynamic system with state
whereA is the skew-symmetric matrix vectorsx;, i = 1...n and corresponding output vectofs=
0 —w (Vi1 ¥i2)' can be constructed as
A= w3 0 —w |,
- w0 % =Ax+Db, %(0)=Xoi

parameterized by the angular velocity vector = yi = ic)q. @)
(o w wz)', andbis the vector X3

b=(by b, bs) =d-Ad, Since the system (3) describes the motion of three-

dimensional feature points observed by images obtained
under perspective projection, it is usually denotefdes-
spective systerf6], or sometimes more specifically, since

whered denotes the vector from the origin of an inertial
coordinate system to the origin of a local coordinate
system, attached to the body, as illustrated in Fig. 1. For . . ) .
a detailed description of the characteristics of rigid body the st_ate equations are linear in the stateinear per-
motion, see e.g. [15]. spective system [9].

A camera model is defined as a transformation of N the case of rigid body motion, the parameter matrices
the three-dimensional coordinates of a feature pajpt A andbin (3) are usually time-varying. Also the internal
resulting in projected image coordinatgsfor the point. ~ camera parameters i@ could change with time, e.g. as
Considering an object point with three-dimensional coor- @ consequence of zooming. Equation (3) then constitutes
dinates expressed by the vectqr and using a frontal ~@n affine, time-varying, dynamic system for the three-
pinhole imaging model [11], where the optical axis is dimensional statg,combmed with at|me.—vary|ng nonIm.—
chosen to coincide with the direction ®fs, the following ear output equation. For the sake of clarity of presentation,

transformation rule can be derived, the time-dependency d&, b andC will in the following
1 ¢ 0 1 in general not be made explicit.
My S . .
= — i = —CXx 2 For the purpose of this paper the camera is assumed
i xi,s( 0 myf 0)>q Pt @ purp pap

to be calibrated and the motion parameters given, either
where the parametdris the focal lengths > 0 is the skew by construction or by measurements, i.e. the matigds
factor, describing the situation where the image coordinateandC are assumed known.



2.2. Coordinate transformation and stochasticgen- 3. Filter algorithm

eralizations
A structure from motion filter design problem can now
Introduce the coordinate transformation be formulated as the task of recursively estimatimg
Xi 1 Xi.2 1 unknown statess, each governed by the system model
41755 22T %s PP g (4)  (7), at the timet, given the corresponding perspective

measurementg up to that instant, in a way that is in some
sense optimal. Another possibility is to use the transformed
formulation (8) for the estimation, and then recover the

which is used also in e.g. [3]-[5], [10]. Also define the
new parameter matrices

0 —w b three-dimensional position by an inverse transformation.
A=|ws 0 Iy (5) In designing a filter for either of the systems (7) and
0 0 0 (8) it is possible to consider the motion of each point as
b— ( W —w O)T a separat@-state system: anql ap_ply to each an ipdividual
_ T filter. Thus the state estimation is performed usinde-
C=(wz —w -—bs). pendent filterdor the n points. In this approach obviously
The system (3) can then be transformed to a new systeni’0 improvement in the estimate for any individual point is
in the z-coordinates as made compared to the single point case. Another approach
.= = is to assemble tha feature point equations into a single
4=A2+b+(Ca)z, z(0)=2 (6) 3n-dimensional system, and constructcannectedfilter
yi =Cz. which can utilize any common information present. For

Note that due to the transformation, the output equation is€<@MPple, it is a reasonable conjecture that if there exists
now linear in the states, and that the nonlinearities haveSOMe kind of correlation or other dependency between the
been shifted to the state equations. noise input vectors, the connected filter approach rightly

An important issue in many computer vision-related Nandled will lead to a better estimation.
estimation applications is the presence of noise inputs, due )
to e.g. motion inaccuracies and measurement disturbances3-1. The extended Kalman filter
as well as uncertainties in the mathematical model itself.
To obtain more general models, it is therefore desirable State estimation in a system of equations can be per-
to include stochastic elements in the dynamic systemformed in various ways. A widely used technique for
equations. This can be done in various ways, and herenonlinear filtering is the extended Kalman filter (EKF)
we consider the following generalizations of (3) and (6), [14].
represented by stochastic integral equations written in Consider a nonlinear dynamic system in the rather
differential form as general form

dx = (A% +b)dt+ Gx(x;,t)dBwi, %(0) = Xoi dz= f(zt)dt+BdBy

— 9)
%i3 For simplicity of notation, introduce the diffusion strength
and matricesQ and R, such thatQ =BB" andR=DD". It is
dz = [A_Z +bh+ (ErZa)Za] dt+ Gy(z,t)dBui, 2 (0) = Zg as_sumeo_l in the f_oll_owmg th& anEiD are kn0\£vn, and that
d¥; = Czdt + DdBy R is positive definite. Also leF(Zt) and H(Zt) denote
yi=Gadt+ b ®) the partial derivative matrices dfandh, respectively, with
respect toz, evaluated az = 2. In the EKF, the estimate

for i = 1...n, where the integrated measurement represen-update equation is then given by
tations 5 5 — 5 5
2= f(2)+K({-hzt), 20)=2,  (10)

t
()= [ (e

0 with the gainK computed as
have been introduced. The noise influence is described g
using mutually independent vector-valued standard Wiener K=PH'(Zt)R™,
processesByi and By, two functionsGyx and G;, and @  and P determined by the continuous time matrix Riccati
matrix D. B,i and 3,; are referred to aprocess noisand differential equation
measurement noiseespectively. A detailed treatment of )
the formalism and interpretation of stochastic differential P =F(2t)P+PF"(2t)+Q—PH'(Zt)R 'H(2t)P (1)
equations on the form (6) can be found in [16]. P(0) =R.



Note that this formulation of the EKF assumes that where B and B,, are chosen as follows. Applying
measurements are continuously available, while in manyindependent filters to the system (13) is equivalent to
applications, especially in computer vision, it is more choosingB to be a block diagonal matrix with copies of
natural to consider the outputs as being given at discreteB as its diagonal elements and zeros elsewhere, i.e.
time points. Details on the EKF algorithm for the case of B
discrete time measurements can be found e.g. in [14]. B

It has been observed in the literature, see e.g. [8], B— _ ) (14)
that the standard filters, such as the EKF, in general .
performs poorly when applied directly to perspective-type B

systems. It has also been demonstrated by simulations anci.0 keep dimensions consistef, is then defined to be
W

experiments that by _apply_lng a coordinate transformat_mnthe vector obtained by stacking copies of By. On the

of the type (4), that linearizes the measurement equations ! ; L .
. . . ; other hand, a connected filter withpoints is obtained by

and shifts the nonlinearities to the state equations, these : :

R .~ SelectingB as the matrix

adverse effects can be significantly reduced [8]. It is

therefore motivated to perform the structure from motion B=(B" B ... BT)T, (15)

filtering in the system (8).

Now from (8) we obtain the following functions corre- Wheren copies ofB have been used, and definifig, to

; ; be equal toB,.
sponding to_tho_se present in (10) ang (11) The choice of structure foB determines the structure
f(2,t) =A+b+(C2)z, F(Zt)=A+(C2)I+2C, of Qin (11), and it can be seen by inspection that, given
h(z,t) =C3, H(2t) =C. a diagonal initial matrix®, a block diagonaB as in (14),
will yield a block diagonal solutiofP(t), whereas a choice
3.2. Observing multiple points with identical pro- ~ according to (15) will lead to a full solution matri(t).
cess noise

3.3. A perspective system example

Assume thatn points are being observed under per-
spective projection. Further make the assumption that the This section illustrates the improvement gained by
motion of each individual poink; is such that it can be utilizing the proposed connected filter design on a stochas-
described in the transformed coordinagedy a dynamic  tic perspective system with time-varying parameters. All
system of the type (8). As mentioned above, it is expectedsimulations were done using Matlab.
that the estimation performance improvement when using ~ Consider the transformed stochastic perspective system
a connected filter will be more significant when the process (12) governed by the parameter vectors and matrices
noise is correlated. As an extreme case, assume that the w=m(0.4 05 05)
process noise vectors influencing each coordirmtare .
identical i.e. Bwi = Bw for i = 1...n. The measurement b= (1 —0.5t+0.4 0~5t_0-4>
noise vectorsB,; on the other hand, are assumed to be B = l3x3, D =0.01-l2x2,
different for different points. The systems can then be

described in the transformed coordinates as and with the perspective projection parameters in (2)

_ given by f =m =mp =1 ands= 0. The system (12)
dz = [Az +b+(C'z)z] dt+BdBw, z(0) =2 (12)  Was simulated by employing an explicit fixed-step second
dy; = Czdt+ D;idpi, order differential equation solver on a grid of step size
0.001L The effect of the noise terms was approximated
by addition of pseudo-random normal distributed numbers
of zero mean and the proper variance, in each step of the
integration. To initiate the Riccati differential equation (11)
employed in the EKF filter, the initial covariance matrix
was set td? = 300 I3 3. The filter was implemented using
the Dormand-Prince algorithm.

In order to investigate the influence of a connected
filter on this system a hundred-run Monte Carlo simulation
was performed. It included estimation using both indepen-
_ - dent filters and a connected filter for up to five three-
dz= [Az+b+CZ dt+BdBw, 2(0)=2 (13  dimensional points for each noise realization. For each
dy = Czdt + DdBy, realization identical process noise was injected, as in (12),

for i =1...n, whereB is assumed to be a constant matrix.
Define z, y and By to be the vectors obtained by
stacking then vectorsz, y; and f3,; respectively, and
the vector obtained by stackingcopies ofb. Further let
A andC be the matrices obtained by tilingcopies ofA
andC into diagonal matrices. Similarlg is defined to be
the 3n x 3n block diagonal matrix with diagonal elements
C'zl3x3, and D the 2n x 2n-dimensional block diagonal
matrix with diagonal element®;. The system (12) can
then be written as



to each three-dimensional transformed state vegiorhe
results for one of these points are shown for comparison in 08l 1
Fig. 2 and Fig. 3. Let a normalized variandgbe defined ool |
as ' *
var(x, 3 — %5 5) , * * *
0= - Ap7 9
var(x; 3 — % 3) 02l - s - .
number of points
where superscripts and p denotes the estimates obtained
using the connected filter and the independent filters re-
spectively. For the difference estimation error plot, shown osf 8
in the lower plot in Fig. 3y was similarly constructed. < 0ol i
In both casesVy was computed based on the data from
the same time interval as that shown in Fig. 2. It can o4 * * * *
0'21 2‘ é z‘s 5
0.06f T T T T \»\H/\/\-\; number of points
; O-OEM o MMMAM ] Flg_. 3._ Normalized variance for the depth
LI AARY W ] estimation error X13 — X3 (top), and for
§ ool o 1 the depth difference estimation error (X3 —

006 ‘ ‘ 5 pnts, conn.ecied filter| B X273> —_ ()2173 — )223)

2 pnts, parallel filters
—-—- 5 pnts, connected filters

4.1. Analytical variance comparison for single state

% ovoim . SyStemS

§ ZZi 1 For the purpose of illustration, consider two one-

§ -ooof ‘ ‘ ‘ ‘ 1 dimensional linear systems, with corresponding linear out-
o ' o2 2 ’ put equations, affected by the same process noise, accord-

ing to

Fig. 2. Depth estimation error X33 — X1.3 _

(top), and depth difference estimation error dz = azdt+/odBy, d{l_zld“r\ﬁndﬁ"l (16)

(X1,3—X2,3) — (X1,3—X2,3), averaged over 100 dz = azdt++/0odBy, dyz=2zdt+./NdBe

different noise realizations. where as before8, and B, i = 1,2, are mutually in-

] o dependent vector-valued standard Wiener processes. The
be seen in the upper plot in Fig. 2 that the connected parametea is assumed to be a real constant, gndnd o

filter tends to center the estimation error around z€ro, 516 assumed to be strictly positive. Introducing the system
thus decreasing the drift seen in the independent filter 5trices

estimation. In Fig. 3 it is clearly seen that utilizing several
points and a connected filter in the estimation process leads F= (a O) , H= (1 0)7

to a significantly decreased variance for the estimation 0 a 01

error, compared to using independent filters. It can alsoand assuming stationarity, iR =0, the Riccati differential
be seen that the decrease in tiiferenceestimation error  equation becomes

variance is even more distinct when connecting two or

more filters. On the other hand the differences in error P?—2anP—noBB =0. 17)
variances when comparing a connected filter with two or

: Here the structure of the matri® determines the filter
more points are more modest.

design philosophy. Equation (17) is a second order matrix
polynomial equation, with solutions

P=anl 4+ +/a2n2l +noBB'. (18)

This section is intended to further study and exemplify The solution to (18) now splits into two cases, depending
the idea that if a connected filter is used, the state estima-on the method chosen to construct the Kalman filter.
tion results can be improved for a certain class of noise
models. Independent filters: The filters for the two states

4. Explicit analysis of a linear example



are run in parallel. This is accomplished by lettiBg= I,

and thus, by (18),
Po=anl++van?+naol.

Since P is a covariance matrix ang,o > 0, the minus
sign yields an infeasible solution. Hence one obtains an

results in

Vo 3+VIF
Veu 2+42V1+K

The inequalityVp > Ve is thus proven if it can be shown
that

g(K) =2V1+Kk—V14+2k > 1

expression for the covariance matrix for the independentsy, i ~ 0. But

filters as

Po=anl++van?+naol.

(19)

Connected filter: Here a connected filter is constructed to
utilize the common noise information. This impli@&=

(1 1)T, and hence
1 1
1 1/°

BB = (
Consequently, by (18),
PC:anIi\/( )ianli\/vm.
Using the decompositiolV = V1DV, with D diagonal
(which always exists sincé/ is symmetric) gives

(@n2+no)
f]O'

no
(@n%+no)

P.=anl +VW-1IDV =an+V~1V/DV.  (20)

For this simple system it is easy to find analytical expres-
sions for the decomposition matricBsandV as

o~ (4w v ()

a’n’+2no 1
The minus sign in (20) clearly gives an infeasible solution,
and the expression for the covariance matrix for the
connected filter becomes

1 ((2a+a)n+\/a2n2+2no —laln+v/a2n2+2no
1
1)‘ 21)

a2n>?
0

€72 —lajn++/a2n2+2n0c  (2a+|al)n++/a2n?+2nc

Thus fora > 0 (unstable systems),

1 3 -1 1
>3\ 1 3)T3

Similarly for a < O (stable systems),
1 1 11
_|= =./a2n2
Pes = [Zan+2 asn +2n0} (1 1).

Denote by, Veu andVes the estimation error variance for
one of the states, i.e. one of the diagonal elements in (19),
(21) and (22) respectively. By straightforward analysis it
can be shown that, >V, for a> 0 andn,o > 0, and
thatVp > Vs fora< 0 andn,o > 0.

For the casea > 0, introducing

(9

a2n’

1

PCU = 1

an2+2no (

(22)

g(0)=1
and

oK)~ (2-V2) vk >1, k>0

It thus suffices to show thai(k) is monotone. But this

follows directly from the inequality

9__1 1
dk ~ Itk vitek

Similarly it can be shown thaV, > Vs for a < 0 and
n,o > 0. Consequently the connected filter strategy results
in a decrease in the variance of the estimation error.

The above analysis can easily be extendecdh tone-
dimensional systems, yielding for example o 0

1 1
Ves = —an + —va?n?+ma,
n n
Vp=an++van?+no.

In Fig. 4 the variance rati®s/V, is plotted against the
number of points for the parameter values= —10, 0 =
102 andn = 10-*. By comparison with the upper plot in
Fig. 3 it can be seen that the behavior is similar.

and

number of points

Fig. 4. Normalized variance for the linear sys-
tem steady state estimation error 73 — 23 vs.
the number of points utilized in the connected
filter.

By comparing the lower and upper plots in Fig. 3
it can be seen that the improvement in the difference



estimation error variance is slightly better than that for the we obtain the following components related to (25)

depth estimation error variance. This type of improvement
can be seen also in the linear example. For example,
in the stable system case all elements of the estimation
error covariance matrix are equal, as can be seen in
(22). Therefore the stationary value of the variance of the
difference in estimation errors is identically zero in this
case.

5. More accurate noise modeling

In section 3.2 identical additive process noise was
introduced in thez-coordinates, as can be seen in (12).

The addition of identical process noise to each feature
point in a rigid body dynamic system can be interpreted
as the modeling of actuating forces or other influences
affecting all of the observed points in a way that preserves
the rigid structure. This implies however, that the process
noise should be added identically to each point in xhe
coordinates, i.e. as

dx = (AX +b) dt + BdB,

dy, = iC>th+ DdByi,
Xi3

(23)

. _ I
In this case, also the process noise should be transformetﬁ]

when applying the transformation (4).

oU;

ot v

=1,2,3

OUr=(z3 0 —z1z3)
OU;=(0 z3 —Zi,22i,3)T

OUs=(0 0 —Z)

0 0 —zﬁg
O0Uil=( 0 O 0
_253 0 22i,12|%3
0 O 0
O[0U]=|0 O —z,%g
0 —Z4 277,
00 O
O[dusj=(0 0o 0 |.
00 2;%3

Further, for simplicity assuming th& is diagonal with all
ements equal to, and using the & formula (25), yields
e transformed system

In integrating stochastic differential equations one needs 92z = [Az +b+(€2)z + 0°Z 5z ] dt+ 0S(z)dBw (26)

to make a choice on the interpretation of the integral of the
noise term, which in turn has implications e.g. for trans-

formations performed on the state variables. One possible

interpretation of the integral is thedltinterpretation [16].
For a stochastic differential

dx(t) = f(t)dt+ G(t,x(t))dBu, (24)

and a transformation of the type

zj(t) = Uj(t,x(1)),

whereU; are scalar functions that are twice continuously
differentiable inx and one time continuously differentiable
in t, this choice of interpretation then leads to thé It
formula
0UJ T 1 T T
WJr fT0U; +Etr (GG'U[OUj]) | dt+DU;GdBy.
(25)

Here OU; and O[0U;] denotes the gradient &f; and the
matrix of second partial derivatives bfj respectively, and
tr means the trace of a matrix.

For the transformation (4) applied to the system (23)

de =

dy; = Czdt+ Ddp.

zz 0 —Zazg3
Sz)=| 0 z3 —Zp2z3 (27)
0 0 —2‘-273

Clearly the transformation destroys the additive input noise
structure assumed for the rigid body model. The analysis
of filters for systems such as (26), especially in the context
of connected filters and improved structure estimation, is
a subject for future research.

6. Conclusions

Three-dimensional structure information can be esti-
mated from two-dimensional images. In this paper, we
have investigated the use of a nonlinear connected filter
for recursive structure estimation in a rigid body motion
perspective vision system, possibly affected by both mea-
surement noise and process hoise.

The filter is derived using the EKF algorithm for a
transformed perspective dynamic system. A comparison
between a connected filter andndependent filters, shown
in Fig. 2 and Fig. 3, indicates that the estimation error



performance is improved when more feature points are [4]
included in the connected filter. The comparison was done
using identical process noise for all feature points in the
transformed system.

A theoretical analysis of an idealized linear system with
identical process noise for all states is presented. Analytical (g
expressions for the estimation error variance are derived.

It can be seen how the estimation performance is affected
by the noise properties and the number of points used in 7
the connected filter.

An alternative model, which more accurately reflects
the properties of a rigid body system, can be obtained by
using identical process noise in the untransformed system. [9]
This requires however that the noise is included in the
transformation. This can be done, using e.@'slformula,
leading to a stochastic system with nonlinear noise terms,[10]
for which it is not straightforward to use e.g. an extended
Kalman filter.

Future work includes construction and investigation of
the effect of connected filters on systems with more com- [12]
plex noise models. Another interesting problem concerns
the influence of uncertainties in the motion parameters, andy, 5,
the relation to adaptive filtering techniques.

(5]

(8]

(11]

(14]
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