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Abstract

Three-dimensional structure information can be esti-
mated from two-dimensional images using recursive es-
timation methods. This paper investigates possibilities to
improve structure filter performance for a certain class
of stochastic perspective systems by utilizing mutual in-
formation, in particular when each observed point on a
rigid object is affected by the same process noise. After
presenting the dynamic system of interest, the method is
applied, using an extended Kalman filter for the estimation,
to a simulated time-varying multiple point vision system.
The performance of a connected filter is compared, using
Monte Carlo methods, to that of a set of independent filters.
The idea is then further illustrated and analyzed by means
of a simple linear system. Finally more formal stochas-
tic differential equation aspects, especially the impact of
transformations in the It̂o sense, are discussed and related
to physically realistic noise models in vision systems.

1. Introduction

In many computer vision applications it is required
that three-dimensional information can be estimated from
two-dimensional images. It is possible to estimate three-
dimensional parameters related to structure and/or motion,
given a sequence of images, by employing an algorithm
that utilizes information from all images in the sequence
as input data. An overview of this type of algorithms can be
found in e.g. [7], [11]. Another class of algorithms uses a
dynamic systemsformulation for the purpose of estimation.
The quantities to be estimated are then expressed as states
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or parameters of a dynamic system, and the estimation task
is posed as a problem of state or parameter estimation. The
resulting estimation algorithm typically performsrecursive
estimation, where the estimated variables are updated each
time a new image is processed.

The use of dynamic systems theory for estimation of
motion is described e.g. in [19]. Estimation ofstructure
using dynamic systems is described e.g. in [18], which
contains results regarding observability, and also presents
algorithms and experimental results.

The algorithms presented in [18] and [19] describe
structure and motion estimation using a camera as the only
measurement device. Algorithms can also be developed for
situations where additional measurement devices are used,
or where additional knowledge of specific quantities are
available, e.g. situations where the linear and/or angular
velocity of an object is measured or estimated. This type
of algorithms includes e.g. estimation of orientation, using
a camera and an inertial measurement unit, as shown in
[17], or estimation of orientation and position, using a
camera moving with known angular and linear velocities,
as presented in [1].

Recursive estimation of the three-dimensional position
of one or more feature points on a rigid object, assuming
measurements or estimated values of the angular and the
linear velocities, can be approached using an extended
Kalman filter [2], [12], or other types of more specialized
nonlinear observers [3]–[5], [10], [13].

The observers in [3]–[5], [10], [13] estimate the position
of a single feature point. This paper investigates perfor-
mance issues in the simultaneous position estimation of
multiple points. An extended Kalman filter is used for the
estimation. It is exemplified how the estimation can be
improved using a connected filter, under the assumption
of a special process noise structure.



2. Perspective system

The object motion is described using a dynamic per-
spective system. The perspective system combines a set of
stochastic differential equations for the position of a num-
ber of feature points on an observed object, with noise cor-
rupted measurement equations in the form of perspective
projections defined using an appropriate camera model.
In this section the corresponding deterministic dynamic
system is presented under the assumptions of rigid body
motion and a simple frontal pinhole imaging model. A
coordinate transformation is employed to obtain a useful
alternative system formulation. The mathematical model is
then extended to include process and measurement noise,
and consequently re-formulated in stochastic differential
form.

2.1. Dynamic system

The three-dimensional position of an arbitrarily selected
feature point on a given object is described using coor-
dinatesxi =

(
xi,1 xi,2 xi,3

)T
, i = 1...n, where n is the

number of points. Under the assumption of rigid body
motion, xi satisfies the differential equation

ẋi = Axi +b, xi(0) = x0i , (1)

whereA is the skew-symmetric matrix

A =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 ,

parameterized by the angular velocity vectorω =(
ω1 ω2 ω3

)T
, andb is the vector

b =
(
b1 b2 b3

)T = ḋ−Ad,

whered denotes the vector from the origin of an inertial
coordinate system to the origin of a local coordinate
system, attached to the body, as illustrated in Fig. 1. For
a detailed description of the characteristics of rigid body
motion, see e.g. [15].

A camera model is defined as a transformation of
the three-dimensional coordinates of a feature pointxi ,
resulting in projected image coordinatesyi for the point.
Considering an object point with three-dimensional coor-
dinates expressed by the vectorxi , and using a frontal
pinhole imaging model [11], where the optical axis is
chosen to coincide with the direction ofxi,3, the following
transformation rule can be derived,

yi =
1

xi,3

(
m1 f s 0

0 m2 f 0

)
xi =

1
xi,3

Cxi , (2)

where the parameterf is the focal length,s≥ 0 is the skew
factor, describing the situation where the image coordinate

axes are not perpendicular, andm1 and m2 are strictly
positive scaling factors, acting in the horizontal and vertical
direction of the image respectively.
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Fig. 1. Coordinate systems for the position of
a three-dimensional point xi , belonging to an
observed object, and its projection yi onto an
image plane.

Combining (1) and (2), a dynamic system with state
vectorsxi , i = 1...n and corresponding output vectorsyi =(
yi,1 yi,2

)T
can be constructed as

ẋi = Axi +b, xi(0) = x0i

yi =
1

xi,3
Cxi .

(3)

Since the system (3) describes the motion of three-
dimensional feature points observed by images obtained
under perspective projection, it is usually denoted aper-
spective system[6], or sometimes more specifically, since
the state equations are linear in the states, alinear per-
spective system [9].

In the case of rigid body motion, the parameter matrices
A andb in (3) are usually time-varying. Also the internal
camera parameters inC could change with time, e.g. as
a consequence of zooming. Equation (3) then constitutes
an affine, time-varying, dynamic system for the three-
dimensional statexi , combined with a time-varying nonlin-
ear output equation. For the sake of clarity of presentation,
the time-dependency ofA, b andC will in the following
in general not be made explicit.

For the purpose of this paper the camera is assumed
to be calibrated and the motion parameters given, either
by construction or by measurements, i.e. the matricesA, b
andC are assumed known.



2.2. Coordinate transformation and stochastic gen-
eralizations

Introduce the coordinate transformation

zi,1 =
xi,1

xi,3
, zi,2 =

xi,2

xi,3
, zi,3 =

1
xi,3

, (4)

which is used also in e.g. [3]–[5], [10]. Also define the
new parameter matrices

Ā =




0 −ω3 b1

ω3 0 b2

0 0 0


 (5)

b̄ =
(
ω2 −ω1 0

)T

c̄ =
(
ω2 −ω1 −b3

)T
.

The system (3) can then be transformed to a new system
in the z-coordinates as

żi = Āzi + b̄+(c̄Tzi)zi , zi(0) = z0i

yi = Czi .
(6)

Note that due to the transformation, the output equation is
now linear in the states, and that the nonlinearities have
been shifted to the state equations.

An important issue in many computer vision-related
estimation applications is the presence of noise inputs, due
to e.g. motion inaccuracies and measurement disturbances,
as well as uncertainties in the mathematical model itself.
To obtain more general models, it is therefore desirable
to include stochastic elements in the dynamic system
equations. This can be done in various ways, and here
we consider the following generalizations of (3) and (6),
represented by stochastic integral equations written in
differential form as

dxi = (Axi +b)dt+Gx(xi , t)dβwi, xi(0) = x0i

dȳi =
1

xi,3
Cxidt+Ddβvi,

(7)

and

dzi =
[
Āzi + b̄+(c̄Tzi)zi

]
dt+Gz(zi , t)dβwi, zi(0) = z0i

dȳi = Czidt+Ddβvi,
(8)

for i = 1...n, where the integrated measurement represen-
tations

ȳi(t) =
∫ t

0
yi(τ)dτ

have been introduced. The noise influence is described
using mutually independent vector-valued standard Wiener
processesβwi and βvi, two functionsGx and Gz, and a
matrix D. βwi andβvi are referred to asprocess noiseand
measurement noiserespectively. A detailed treatment of
the formalism and interpretation of stochastic differential
equations on the form (6) can be found in [16].

3. Filter algorithm

A structure from motion filter design problem can now
be formulated as the task of recursively estimatingn
unknown statesxi , each governed by the system model
(7), at the timet, given the corresponding perspective
measurementsyi up to that instant, in a way that is in some
sense optimal. Another possibility is to use the transformed
formulation (8) for the estimation, and then recover the
three-dimensional position by an inverse transformation.

In designing a filter for either of the systems (7) and
(8) it is possible to consider the motion of each point as
a separate3-state system, and apply to each an individual
filter. Thus the state estimation is performed usinginde-
pendent filtersfor the n points. In this approach obviously
no improvement in the estimate for any individual point is
made compared to the single point case. Another approach
is to assemble then feature point equations into a single
3n-dimensional system, and construct aconnectedfilter
which can utilize any common information present. For
example, it is a reasonable conjecture that if there exists
some kind of correlation or other dependency between the
noise input vectors, the connected filter approach rightly
handled will lead to a better estimation.

3.1. The extended Kalman filter

State estimation in a system of equations can be per-
formed in various ways. A widely used technique for
nonlinear filtering is the extended Kalman filter (EKF)
[14].

Consider a nonlinear dynamic system in the rather
general form

dz= f (z, t)dt+Bdβw

dȳ = h(z, t)dt+Ddβv.
(9)

For simplicity of notation, introduce the diffusion strength
matricesQ and R, such thatQ

.= BBT and R
.= DDT. It is

assumed in the following thatB andD are known, and that
R is positive definite. Also letF(ẑ, t) and H(ẑ, t) denote
the partial derivative matrices off andh, respectively, with
respect toz, evaluated atz= ẑ. In the EKF, the estimate
update equation is then given by

˙̂z= f (ẑ, t)+K(ȳ−h(z, t)), ẑ(0) = ẑ0, (10)

with the gainK computed as

K = PHT(ẑ, t)R−1,

and P determined by the continuous time matrix Riccati
differential equation

Ṗ = F(ẑ, t)P+PFT(ẑ, t)+Q−PHT(ẑ, t)R−1H(ẑ, t)P
P(0) = P0.

(11)



Note that this formulation of the EKF assumes that
measurements are continuously available, while in many
applications, especially in computer vision, it is more
natural to consider the outputs as being given at discrete
time points. Details on the EKF algorithm for the case of
discrete time measurements can be found e.g. in [14].

It has been observed in the literature, see e.g. [8],
that the standard filters, such as the EKF, in general
performs poorly when applied directly to perspective-type
systems. It has also been demonstrated by simulations and
experiments that by applying a coordinate transformation
of the type (4), that linearizes the measurement equations
and shifts the nonlinearities to the state equations, these
adverse effects can be significantly reduced [8]. It is
therefore motivated to perform the structure from motion
filtering in the system (8).

Now from (8) we obtain the following functions corre-
sponding to those present in (10) and (11)

f (ẑi , t) = Ā+ b̄+(c̄Tẑi)ẑi , F(ẑ, t) = Ā+(c̄Tẑ)I + ẑc̄T,

h(ẑi , t) = Cẑi , H(ẑ, t) = C.

3.2. Observing multiple points with identical pro-
cess noise

Assume thatn points are being observed under per-
spective projection. Further make the assumption that the
motion of each individual pointxi is such that it can be
described in the transformed coordinateszi by a dynamic
system of the type (8). As mentioned above, it is expected
that the estimation performance improvement when using
a connected filter will be more significant when the process
noise is correlated. As an extreme case, assume that the
process noise vectors influencing each coordinatezi are
identical, i.e. βwi = βw for i = 1...n. The measurement
noise vectorsβvi on the other hand, are assumed to be
different for different points. The systems can then be
described in the transformed coordinates as

dzi =
[
Āzi + b̄+(c̄Tzi)zi

]
dt+Bdβw, zi(0) = z0i

dȳi = Czidt+Didβvi,
(12)

for i = 1...n, whereB is assumed to be a constant matrix.
Define z, ȳ and βββ v to be the vectors obtained by

stacking then vectorszi , ȳi and βvi respectively, and̄b
the vector obtained by stackingn copies ofb̄. Further let
Ā andC be the matrices obtained by tilingn copies ofĀ
andC into diagonal matrices. Similarlȳc is defined to be
the 3n×3n block diagonal matrix with diagonal elements
c̄Tzi I3×3, and D the 2n× 2n-dimensional block diagonal
matrix with diagonal elementsDi . The system (12) can
then be written as

dz =
[
Āz+ b̄+ c̄z

]
dt+Bdβββ w, z(0) = z0

dȳ = Czdt+Ddβββ v,
(13)

where B and βββ w are chosen as follows. Applyingn
independent filters to the system (13) is equivalent to
choosingB to be a block diagonal matrix withn copies of
B as its diagonal elements and zeros elsewhere, i.e.

B =




B
B

. ..
B


 . (14)

To keep dimensions consistent,βββ w is then defined to be
the vector obtained by stackingn copies ofβw. On the
other hand, a connected filter withn points is obtained by
selectingB as the matrix

B =
(
BT BT . . . BT

)T
, (15)

wheren copies ofB have been used, and definingβββ w to
be equal toβw.

The choice of structure forB determines the structure
of Q in (11), and it can be seen by inspection that, given
a diagonal initial matrixP0, a block diagonalB as in (14),
will yield a block diagonal solutionP(t), whereas a choice
according to (15) will lead to a full solution matrixP(t).

3.3. A perspective system example

This section illustrates the improvement gained by
utilizing the proposed connected filter design on a stochas-
tic perspective system with time-varying parameters. All
simulations were done using Matlab.

Consider the transformed stochastic perspective system
(12) governed by the parameter vectors and matrices

ω = π
(
0.4 0.5 0.5

)

b =
(
1 −0.5t +0.4 0.5t−0.4

)T

B = I3×3, D = 0.01· I2×2,

and with the perspective projection parameters in (2)
given by f = m1 = m2 = 1 and s = 0. The system (12)
was simulated by employing an explicit fixed-step second
order differential equation solver on a grid of step size
0.001. The effect of the noise terms was approximated
by addition of pseudo-random normal distributed numbers
of zero mean and the proper variance, in each step of the
integration. To initiate the Riccati differential equation (11)
employed in the EKF filter, the initial covariance matrix
was set toP0 = 300· I3×3. The filter was implemented using
the Dormand-Prince algorithm.

In order to investigate the influence of a connected
filter on this system a hundred-run Monte Carlo simulation
was performed. It included estimation using both indepen-
dent filters and a connected filter for up to five three-
dimensional points for each noise realization. For each
realization identical process noise was injected, as in (12),



to each three-dimensional transformed state vectorzi . The
results for one of these points are shown for comparison in
Fig. 2 and Fig. 3. Let a normalized varianceV0 be defined
as

V0 =
var(x1,3− x̂c

1,3)

var(x1,3− x̂p
1,3)

,

where superscriptsc and p denotes the estimates obtained
using the connected filter and the independent filters re-
spectively. For the difference estimation error plot, shown
in the lower plot in Fig. 3,V0 was similarly constructed.
In both cases,V0 was computed based on the data from
the same time interval as that shown in Fig. 2. It can
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Fig. 2. Depth estimation error x1,3 − x̂1,3
(top), and depth difference estimation error
(x1,3−x2,3)−(x̂1,3− x̂2,3), averaged over 100
different noise realizations.

be seen in the upper plot in Fig. 2 that the connected
filter tends to center the estimation error around zero,
thus decreasing the drift seen in the independent filter
estimation. In Fig. 3 it is clearly seen that utilizing several
points and a connected filter in the estimation process leads
to a significantly decreased variance for the estimation
error, compared to using independent filters. It can also
be seen that the decrease in thedifferenceestimation error
variance is even more distinct when connecting two or
more filters. On the other hand the differences in error
variances when comparing a connected filter with two or
more points are more modest.

4. Explicit analysis of a linear example

This section is intended to further study and exemplify
the idea that if a connected filter is used, the state estima-
tion results can be improved for a certain class of noise
models.
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Fig. 3. Normalized variance for the depth
estimation error x1,3 − x̂1,3 (top), and for
the depth difference estimation error (x1,3−
x2,3)− (x̂1,3− x̂2,3).

4.1. Analytical variance comparison for single state
systems

For the purpose of illustration, consider two one-
dimensional linear systems, with corresponding linear out-
put equations, affected by the same process noise, accord-
ing to

dz1 = az1dt+
√

σdβw, dȳ1 = z1dt+
√

ηdβv1

dz2 = az2dt+
√

σdβw, dȳ2 = z2dt+
√

ηdβv2
(16)

where as beforeβw and βvi, i = 1,2, are mutually in-
dependent vector-valued standard Wiener processes. The
parametera is assumed to be a real constant, andη andσ
are assumed to be strictly positive. Introducing the system
matrices

F =
(

a 0
0 a

)
, H =

(
1 0
0 1

)
,

and assuming stationarity, i.e.Ṗ= 0, the Riccati differential
equation becomes

P2−2aηP−ησBBT = 0. (17)

Here the structure of the matrixB determines the filter
design philosophy. Equation (17) is a second order matrix
polynomial equation, with solutions

P = aη I ±
√

a2η2I +ησBBT. (18)

The solution to (18) now splits into two cases, depending
on the method chosen to construct the Kalman filter.

Independent filters: The filters for the two states



are run in parallel. This is accomplished by lettingB = I ,
and thus, by (18),

Pp = aη I ±
√

a2η2 +ησ I .

Since P is a covariance matrix andη ,σ > 0, the minus
sign yields an infeasible solution. Hence one obtains an
expression for the covariance matrix for the independent
filters as

Pp = aη I +
√

a2η2 +ησ I . (19)

Connected filter: Here a connected filter is constructed to
utilize the common noise information. This impliesB =(
1 1

)T
, and hence

BBT =
(

1 1
1 1

)
.

Consequently, by (18),

Pc = aη I ±
√(

(a2η2+ησ) ησ
ησ (a2η2+ησ)

)
.= aη I ±

√
W(a,η ,σ).

Using the decompositionW = V−1DV, with D diagonal
(which always exists sinceW is symmetric) gives

Pc = aη I ±
√

V−1DV = aη±V−1
√

DV. (20)

For this simple system it is easy to find analytical expres-
sions for the decomposition matricesD andV as

D =
(

a2η2 0
0 a2η2 +2ησ

)
, V =

(−1 1
1 1

)
.

The minus sign in (20) clearly gives an infeasible solution,
and the expression for the covariance matrix for the
connected filter becomes

Pc =
1
2

(
(2a+|a|)η+

√
a2η2+2ησ −|a|η+

√
a2η2+2ησ

−|a|η+
√

a2η2+2ησ (2a+|a|)η+
√

a2η2+2ησ

)
.

Thus fora≥ 0 (unstable systems),

Pcu=
1
2

aη
(

3 −1
−1 3

)
+

1
2

√
a2η2 +2ησ

(
1 1
1 1

)
. (21)

Similarly for a < 0 (stable systems),

Pcs =
[

1
2

aη +
1
2

√
a2η2 +2ησ

](
1 1
1 1

)
. (22)

Denote byVp, Vcu andVcs the estimation error variance for
one of the states, i.e. one of the diagonal elements in (19),
(21) and (22) respectively. By straightforward analysis it
can be shown thatVp ≥ Vcu for a≥ 0 and η ,σ > 0, and
thatVp ≥Vcs for a < 0 andη ,σ > 0.

For the casea > 0, introducing

κ =
σ

a2η
,

results in
Vp

Vcu
=

3+
√

1+2κ
2+2

√
1+κ

.

The inequalityVp ≥Vcu is thus proven if it can be shown
that

g(κ) .= 2
√

1+κ−√1+2κ ≥ 1,

for ∀κ > 0. But
g(0) = 1

and
g(κ)≈

(
2−

√
2
)√

κ > 1, κ À 0.

It thus suffices to show thatg(κ) is monotone. But this
follows directly from the inequality

dg
dκ

=
1√

1+κ
− 1√

1+2κ
> 0.

Similarly it can be shown thatVp ≥ Vcs for a < 0 and
η ,σ > 0. Consequently the connected filter strategy results
in a decrease in the variance of the estimation error.

The above analysis can easily be extended ton one-
dimensional systems, yielding for example fora < 0

Vcs =
1
n

aη +
1
n

√
a2η2 +nησ ,

and
Vp = aη +

√
a2η2 +ησ .

In Fig. 4 the variance ratioVcs/Vp is plotted against the
number of pointsn for the parameter valuesa=−10, σ =
10−2 andη = 10−4. By comparison with the upper plot in
Fig. 3 it can be seen that the behavior is similar.
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Fig. 4. Normalized variance for the linear sys-
tem steady state estimation error z1− ẑ1 vs.
the number of points utilized in the connected
filter.

By comparing the lower and upper plots in Fig. 3
it can be seen that the improvement in the difference



estimation error variance is slightly better than that for the
depth estimation error variance. This type of improvement
can be seen also in the linear example. For example,
in the stable system case all elements of the estimation
error covariance matrix are equal, as can be seen in
(22). Therefore the stationary value of the variance of the
difference in estimation errors is identically zero in this
case.

5. More accurate noise modeling

In section 3.2 identical additive process noise was
introduced in thez-coordinates, as can be seen in (12).

The addition of identical process noise to each feature
point in a rigid body dynamic system can be interpreted
as the modeling of actuating forces or other influences
affecting all of the observed points in a way that preserves
the rigid structure. This implies however, that the process
noise should be added identically to each point in thex-
coordinates, i.e. as

dxi = (Axi +b)dt+Bdβw

dȳi =
1

xi,3
Cxidt+Ddβvi,

(23)

In this case, also the process noise should be transformed
when applying the transformation (4).

In integrating stochastic differential equations one needs
to make a choice on the interpretation of the integral of the
noise term, which in turn has implications e.g. for trans-
formations performed on the state variables. One possible
interpretation of the integral is the Itô interpretation [16].
For a stochastic differential

dx(t) = f (t)dt+G(t,x(t))dβw, (24)

and a transformation of the type

zj(t) = U j(t,x(t)),

whereUi are scalar functions that are twice continuously
differentiable inx and one time continuously differentiable
in t, this choice of interpretation then leads to the Itô
formula

dzj =
[

∂U j

∂ t
+ f T∇U j +

1
2

tr (GGT∇ [∇U j ])
]

dt+∇U T
j Gdβw.

(25)
Here∇U j and∇ [∇U j ] denotes the gradient ofU j and the
matrix of second partial derivatives ofU j respectively, and
tr means the trace of a matrix.

For the transformation (4) applied to the system (23)

we obtain the following components related to (25)

∂U j

∂ t
= 0, j = 1,2,3

∇U1 =
(
zi,3 0 −zi,1zi,3

)T

∇U2 =
(
0 zi,3 −zi,2zi,3

)T

∇U3 =
(
0 0 −z2

i,3

)T

∇ [∇U1] =




0 0 −z2
i,3

0 0 0
−z2

i,3 0 2zi,1z2
i,3




∇ [∇U2] =




0 0 0
0 0 −z2

i,3
0 −z2

i,3 2zi,2z2
i,3




∇ [∇U3] =




0 0 0
0 0 0
0 0 2z3

i,3


 .

Further, for simplicity assuming thatB is diagonal with all
elements equal toσ , and using the It̂o formula (25), yields
the transformed system

dzi =
[
Āzi + b̄+(c̄Tzi)zi +σ2z2

i,3zi
]
dt+σS(zi)dβw

dȳi = Czidt+Ddβvi.
(26)

with

S(zi) =




zi,3 0 −zi,1zi,3

0 zi,3 −zi,2zi,3

0 0 −z2
i,3


 . (27)

Clearly the transformation destroys the additive input noise
structure assumed for the rigid body model. The analysis
of filters for systems such as (26), especially in the context
of connected filters and improved structure estimation, is
a subject for future research.

6. Conclusions

Three-dimensional structure information can be esti-
mated from two-dimensional images. In this paper, we
have investigated the use of a nonlinear connected filter
for recursive structure estimation in a rigid body motion
perspective vision system, possibly affected by both mea-
surement noise and process noise.

The filter is derived using the EKF algorithm for a
transformed perspective dynamic system. A comparison
between a connected filter andn independent filters, shown
in Fig. 2 and Fig. 3, indicates that the estimation error



performance is improved when more feature points are
included in the connected filter. The comparison was done
using identical process noise for all feature points in the
transformed system.

A theoretical analysis of an idealized linear system with
identical process noise for all states is presented. Analytical
expressions for the estimation error variance are derived.
It can be seen how the estimation performance is affected
by the noise properties and the number of points used in
the connected filter.

An alternative model, which more accurately reflects
the properties of a rigid body system, can be obtained by
using identical process noise in the untransformed system.
This requires however that the noise is included in the
transformation. This can be done, using e.g. Itô’s formula,
leading to a stochastic system with nonlinear noise terms,
for which it is not straightforward to use e.g. an extended
Kalman filter.

Future work includes construction and investigation of
the effect of connected filters on systems with more com-
plex noise models. Another interesting problem concerns
the influence of uncertainties in the motion parameters, and
the relation to adaptive filtering techniques.
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