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Abstract

Estimating the pose of an imaging sensor is a central re-
search problem. Many solutions have been proposed for
the case of a rigid environment. In contrast, we tackle the
case of a non-rigid environment observed by a 3D sensor,
which has been neglected in the literature. We represent
the environment as sets of time-varying 3D points explained
by a low-rank shape model, that we derive in its implicit
and explicit forms. The parameters of this model are learnt
from data gathered by the 3D sensor. We propose a learning
algorithm based on minimal 3D non-rigid tensors that we
introduce. This is followed by a Maximum Likelihood non-
linear refinement performed in a bundle adjustment manner.
Given the learnt environment model, we compute the pose
of the 3D sensor, as well as the deformations of the environ-
ment, that is, the non-rigid counterpart of pose, from new
sets of 3D points. We validate our environment learning
and pose estimation modules on simulated and real data.

1. Introduction
Aligning 3D views – sets of 3D points – gathered by a 3D
sensor, such as a calibrated stereo rig, is important for con-
structing comprehensive 3D models of the environment or
updating the position of a mobile imaging sensor. When the
environment is rigid, the 3D views are related by rigid Eu-
clidean transformations. Many approaches have been pro-
posed to compute these transformations, e.g. [8]. Align-
ing 3D views is one of the building blocks of hierarchical
approaches to Structure-From-Motion. However, the as-
sumption of rigidity is violated in many cases of interest,
for instance a garment deforming as a person moves. The
alignment problem is then particularly challenging because
a different shape is observed in each 3D view.

A large body of work has been done in the medical imag-
ing community, see [7] for a review, but with the aim of es-
timating dense deformation fields from dense, often voxel-
based, reconstructions. Dealing with non-rigid scenes com-
ing from single-camera footage has received an increasing
attention over the last few years. The problem is highly
challenging since both the cameras and the non-rigid shape
have to be recovered. A major step forwards for such cases
was made by Bregler et al. [4, 10] and Brand [3]. Build-

ing on the work of [2, 9], they developed and demonstrated
factorization of images of non-rigid scenes, where the non-
rigidity was represented as a linear combination of basis
shapes. It is shown in [5] how the constraints coming from
two synchronized cameras can be incorporated into non-
rigid factorization.

We tackle the problem of computing the pose of a 3D
sensor with respect to a non-rigid scene, that we represent
using the low-rank shape model used in non-rigid factoriza-
tion methods. Most previous work, e.g. [2, 3, 4, 5, 10, 13]
use the weak perspective camera model. In contrast, we do
not specify a camera model, since we directly consider 3D
views. We assume that spatial and temporal point corre-
spondences are established. Pose estimation in a non-rigid
environment raises two main problems. First, one has to de-
fine the meaning of non-rigid pose. This problem is tackled
in [14] in a different context, where the notions of ‘shape
average’ and ‘moving average’ are introduced. One benefit
of using the low-rank shape model is that the ‘true’ camera
pose is recovered. Second, contrarily to classical model-
based pose estimation in a rigid environment, a prior model
of the non-rigid environment is not available in many cases.
We propose to learn this model from a collection of unregis-
tered 3D views gathered by the 3D sensor. Once this learn-
ing stage has been passed, our non-rigid pose estimator can
be launched.

We bring the following contributions. First, §3, we state
the implicit and explicit low-rank shape models, and state
the notion of pose in this context. Second, §4, we propose
algorithms to learn the non-rigid environment. The implicit
model parameters are learnt using a factorization technique,
while for the explicit model, we use what we call minimal
3D non-rigid tensors. Third, §5, we show how the pose
of the 3D sensor can be computed with respect to the learnt
model while the environment is moving and deforming. Ex-
perimental results on simulated and real data are reported in
§6. We give our conclusions in §7.

2. Notation
Matrices are written in sans-serif fonts, e.g. R, and vectors
using bold fonts, e.g. x. The n 3D views are sets ofm points
denoted Qtj , where t is the time index and j the point index.
We do not use homogeneous coordinates, e.g. Qtj is a 3-



vector. The identity matrix of size (s × s) is written I(s),
the zero matrix 0 and the zero vector 0. We use I for the
(3 × 3) identity matrix. The Kronecker product is written
⊗, matrix Frobenius norm as ‖ · ‖ and the Moore-Penrose
pseudo-inverse as †.

3. Non-Rigid Shape and Pose
3.1. Non-Rigid Shape
We describe the low-rank non-rigid shape model. The
pose of the 3D sensor is modeled by 3D Euclidean trans-
formations {(Rt,yt)} with Rt an orthonormal matrix and
yt ∈ R3 such that Q̂tj = RtQ̃tj + yt. The {Q̃tj} form a
motionless version of the 3D views, i.e. that do not undergo
any ‘global motion’, but are deforming through time. The
low-rank shape model represents the {Q̃tj} as linear com-
binations of l basis shapes {Bkj}: Q̃tj =

∑l
k=1 ξtkBkj .

The time-varying {ξtk} are the configuration weights. In-
troducing the {(Rt,yt)}, we obtain the explicit model:

Q̂tj = Rt

(
l∑

k=1

ξtkBkj

)
+ yt (1)

= MtBj + yt with (2)
Mt = Rt

(
ξt1I · · · ξtlI

)
. (3)

We call Mt a (3 × r) explicit non-rigid motion matrix and
Bj =

(
BT

1j · · · BT
lj

)
a (r × 1) non-rigid basis shape

vector. Parameter r = 3l is the rank of the model. For
reasons that are made clearer below, we derive a bilinear
implicit model. Let A be a (3l × 3l) rank-3l matrix. It
is seen that Q̂tj = MtBj + yt = (MtA−1)(ABj) + yt,
yielding:

Q̂tj = NtSj + yt, (4)

with Nt = MtA−1 and Sj = ABj . We call Nt and Sj the
implicit non-rigid motion matrix and shape vector, and A a
corrective transformation matrix.

3.2. Non-Rigid Pose
Pose in a non-rigid environment has a rigid and a non-
rigid counterpart. The rigid part {(Rt,yt)} represents the
‘global’ motion of the environment relative to the sensor. It
gives the ‘true’ relative sensor displacement. In contrast,
the non-rigid part only concerns the environment, and not
the imaging sensor. In the above-described model, it is rep-
resented by the configuration weights {ξtk}, giving the in-
trinsic, i.e. motionless, deformations of the environment at
each time instant. The motionless and deformationless en-
vironment is modeled by the basis shapes {Bkj}.

The implicit model is useless for pose estimation: it
can be seen as an ‘uncalibrated’ model of the environment.
However, its ML (Maximum Likelihood) Estimate can be
computed very reliably, as will be seen in the next section.

4. Learning the Environment
Given a collection of 3D views, we learn the environment
by estimating the parameters of the low-rank shape model.
Note that only the basis shapes {Bkj} are subsequently
used for pose estimation, see §5. However, to get an ML
Estimate, all parameters of the model must be computed.

We state the ML residual error and show how to com-
pute the translations. We first tackle the case of the implicit
model and then the explicit one. We assume all points to be
visible in all 3D views.

4.1. Maximum Likelihood residual error
Assuming that the error on the 3D points is Gaussian, cen-
tred and i.i.d., the ML residual error is:

D2 =
1
nm

n∑
t=1

m∑
j=1

d2(Q̂tj ,Qtj), (5)

where d2(X,Y) = ‖X − Y‖2 is the Euclidean distance
measure and {Q̂tj} are corrected points, exactly explained
by the non-rigid shape model.

4.2. Computing the Translations
We show that the translations yt can be eliminated prior
to estimating the other parameters. By substituting equa-
tion (1) or equation (4) in the residual error (5) and nul-
lifying its partial derivatives with respect to yt, we ob-
tain yt = 1

m

(∑m
j=1 Qtj − Q̂tj

)
. The origin of the r-

dimensional space containing the non-rigid shape vectors
is arbitrary and is chosen such that

∑m
j=1 Sj = 0 in the im-

plicit case and
∑m

j=1 Bj = 0 in the explicit case, giving for
the translation yt the centroid yt = 1

m

∑m
j=1 Qtj = Q̄t of

the t-th 3D view. This means that one cancels the transla-
tions out by centring each set of 3D points on its centroid:
Qtj ← Qtj−Q̄t. Henceforth, we assume that this has been
done.

4.3. Shape Learning With the Implicit Model
We consider the implicit non-rigid shape model of equation
(4). We factorize the 3D views {Qtj} into implicit non-
rigid motion matrices {Nt} and shape vectors {Sj}. The
problem is to minimize the ML residual error (5) over the
{Q̂tj} such that Q̂tj = NtSj . Rewrite (5) as:

D2 ∝ ‖Q̂ − Q‖2,

where Q is the (3n×m) measurement matrix:

Q =

Q11 · · · Q1m

...
. . .

...
Qn1 · · · Qnm

 ,



and Q̂ is defined by the implicit (3n × 3l) ‘non-rigid joint
motion matrix’ N and the (3l ×m) ‘non-rigid joint struc-
ture matrix’ S as Q̂ = NS with NT =

(
NT

1 · · · NT
n

)
and S =

(
S1 · · · Sm

)
. Since N has 3l columns and

S has 3l rows, Q̂ has maximum rank 3l. The problem is to
find the closest rank-3l matrix Q̂ toQ. LetQ = UΣVT be a
Singular Value Decomposition (SVD) of matrix Q, see e.g.
[6], where U and V are orthonormal matrices and Σ is diag-
onal and contains the singular values of Q. Let Σ = ΣuΣv

be any decomposition of Σ, e.g. Σu = Σv =
√

Σ. The
non-rigid joint motion and structure matrices are obtained
by, loosely speaking, ‘truncating’ the decomposition by nul-
lifying all but the 3l largest singular values, which leads,
assuming the singular values in decreasing order in Σ, to
N = ψ3l(UΣu) and S = ψT

3l(VΣT
v ), where ψc(W) is

formed with the c leading columns of matrix W.

4.4. Shape Learning With the Explicit Model
The aim is to compute the ML Estimate of the configura-
tion weights, rotation matrices and non-rigid structure in
equation (1) by minimizing the residual error (5). This is
a nonlinear problem for which two approaches have been
followed in the non-rigid factorization litterature. On the
one hand Bregler et al. [4], Brand [3], Aanaes et al. [1], Del
Bue et al. [5] and Xiao et al. [13] compute a matrix A that
upgrades the implicit motion matrix N so that the metric
constraints of the explicit model are enforced. Xiao et al.
show that in order to get the correct solution, two types of
metric constraints must be taken into account: the rotation
constraints and the basis constraints, from which they de-
rive a closed-form solution for matrix A.

On the other hand, Torresani et al. [11] directly learn
the parameters of the explicit model. They propose a com-
prehensive system based on a generalized EM (Expecta-
tion Maximization) algorithm. An important, still unsolved
problem is to find a suitable initialization, since EM per-
forms local optimization only.

Our solution lies in the second category: a suboptimal
initialization is computed and subsequently refined in a bun-
dle adjustment manner. These two steps are presented be-
low, followed by an analysis of the ambiguities of the solu-
tion.

4.4.1. Initializing

The rotations. Brand proposes a solution based on up-
grading the implicit motion matrices [3], which requires
at least n ≥ l(9l+3)

4 3D views to compute a corrective
transformation and is thus not feasible for many practical
cases. For example, at least 39 views giving independent
constraints are necessary to use this method with the se-
quence presented in §6.2. In [5], the authors compute a
block-diagonal corrective transformation matrix. Another

solution used in [1] is to assume that the environment has a
sufficiently strong rigid component, and to estimate the ro-
tation using a standard procedure such as [8]. This approach
is not feasible for highly deforming environments.

In contrast, we propose an approach taking the non-rigid
nature of the environment into account. Our algorithm is
presented below in the occlusion-free case for simplicity,
but can be easily extended to the missing data case. Con-
sider the explicit non-rigid joint motion equationQ =MB
with:

M =

(
ξ11R1 ··· ξ1lR1

...
. . .

...
ξn1Rn ··· ξnlRn

)
and B =

(
B11 ··· B1m

...
. . .

...
Bl1 ··· Blm

)
.

Define two subsets A and B of na and nb 3D views respec-
tively, Qa = MaB and Qb = MbB. Our goal is to elimi-
nate the structure B from the equations. We assume without
loss of generality rank(Qb) ≥ 3l. This implies nb ≥ l. We
express B in terms ofQb andMb using the equation subset
B as B =M†

bQb. Plugging this into the equation subset A
yields Qa =MaB =MaM†

bQb that we rewrite:(
I(3na) −(MaM†

b)
)︸ ︷︷ ︸

Z

Qab = 0(3na×m) (6)

where nab = na + nb and QT
ab = (QT

a QT
b ). We call

matrix Z(3na×3nab) a 3D non-rigid tensor. Let us exam-
ine more closely the expression ofMaM†

b. The joint mo-
tion matrix can be rewritten as M = R(Ξ ⊗ I) where
R = diag(R1, . . . ,Rn) is an orthonormal matrix and Ξ is
an (n × l) matrix containing the {ξik}. Similarly, Ma =
Ra(Ξa ⊗ I) andMb = Rb(Ξb ⊗ I), yielding:

MaM†
b = Ra(Ξa ⊗ I)(Rb(Ξb ⊗ I))†

= Ra(Ξa ⊗ I)((Ξb ⊗ I))†RT
b ,

since Rb is an orthonormal matrix. We make use of the
following properties: (S⊗ I)† = S†⊗I and (S⊗I)(S′⊗I) =
(SS′)⊗ I to get:

MaM†
b = Ra

(
(ΞaΞ†

b)⊗ I
)
RT

b .

Substituting in equation (6) and multiplying on the left by
the orthonormalRT

a yields:(
RT

a −
(
(ΞaΞ†

b)⊗ I
)
RT

b

)
Qab = 0(3na×m). (7)

From this equation, knowing Ra and using the orthonor-
mality constraints on Rb to eliminate the weights ΞaΞ†

b

should allow to compute Rb. We use the fact that the coor-
dinate frame can be aligned on a reference view t, i.e. such
that Rt = I and choose one view in the initial set of 3D
views A to be the reference one.



The first idea that comes to mind to solve this problem
is to consider the left nullspace of Qab. Define a (3nab ×
(3nab−3l)) matrix U whose columns span the left nullspace
of Qab: UTQab = 0. Using equation (7), we obtain:(

RT
a −

(
(ΞaΞ†

b)⊗ I
)
RT

b

)
= HUT,

where H accounts for the fact that any linear combination
of the columns of U are in the left nullspace of Qab. While
this approach works fine in the absence of noise contaminat-
ing the data, it is however very unstable and useless when
even very slight noise is present in the data. Indeed, if one
employs e.g. SVD to compute matrix U, then the singular
vectors corresponding to the lowest singular values will be
selected, and will not in general allow to recover the sought-
after rotations, since the SVD mixes the singular vectors to
obtain the lowest residual error as possible.

The second idea that comes to mind is to estimate each
rotation in B and the corresponding weight at a time. Con-
sider a 3D view g ∈ A. Equation (7) induces the following
residual error:

m∑
j=1

‖RT
g Qgj −

∑
t∈B

ζtR
T
t Qtj‖2, (8)

where {ζt} are unknown weights. Initialize all rotations in
Rb to the identity: R0

t = I, t ∈ B. Let p← 0 be the iteration
counter. The idea is to iteratively compute the t-th rotation
for t ∈ B while holding the other nb− 1 rotations in B until
convergence, by minimizing the residual error (8) that we
rewrite:

m∑
j=1

‖Ep
j − ζ

p+1
t

(
Rp+1

t

)T

Qtj‖2 (9)

with:

Ep
j = RT

g Qgj −

(∑
t∈B

(Sp
t )

TQtj

)
, (10)

where Sp
t is the latest estimate, i.e. :

Sp
t =

{
ζp+1
t Rp+1

t if it is computed
ζp
t Rp

t otherwise.

We use a standard procedure for computing the 3D rotation
and scale from 3D point correspondences – here {Ep

j ↔
Qij} – due to [8] to solve this problem. Our algorithm is
summarized in table 1. Note that at most l rotations in Rb

can be computed at each iteration which implies that the
number of rotations in Rb must be l. This is why only the
smallest, i.e. minimal 3D non-rigid tensors can be used by
our algorithm. Also, the unknown Mb must be full-rank.
We use the corresponding implicit Nb to check that this is
the case, since there exists a full-rank corrective transforma-
tion matrixA such thatNaA =Ma. In the case of missing
data, the sum in equations (8) and (9) is simply replaced by
a sum over the points seen in subsets A and B.

OBJECTIVE

Given n 3D views {Qtj} of m corresponding points and the rank
3l of the non-rigid model, compute the relative pose {(Rt,yt)} of
the 3D sensor, the non-rigid pose of the environment, i.e. the con-
figuration weights {ξtk}, while learning the low-rank non-rigid
shape model {Bkj}.

ALGORITHM

1. Set initial equation sets. A is any 3D view t, B is any l
3D views at least one of them not in A and such that Nb is
full-rank, Rt ← I andRa ← I.

2. Compute the rotations:

(a) Set initial rotations R0
t ← I, t ∈ B and the iteration

counter p← 0.

(b) For t ∈ B: form the {Ep
j}, equation (10). Compute

Rp+1
t by minimizing (9), see Horn et al. [8].

(c) p← p + 1.

(d) If the decrease in the residual error is smaller than ε,
go to step 3 else go to step b.

3. Test convergence. If all rotations are computed, stop.

4. Update equation sets. A← A∪B and B is any l 3D views,
at least one of them not in A and such thatNb is full-rank.

5. Iterate. go to step 2.

Table 1: The proposed initialization algorithm for the ex-
plicit model parameters.

The configuration weights and non-rigid structure.
Consider the ML residual error (5) that we rewrite below
for convenience:

D2 =
1
nm

n∑
t=1

m∑
j=1

‖Qtj − Rt

(
l∑

k=1

ξtkBkj

)
‖2.

Let Q̃tj = RT
t Qtj be a motionless version of the 3D points,

the residual error transforms in:

D2 =
1
nm

n∑
t=1

m∑
j=1

‖Q̃tj −

(
l∑

k=1

ξtkBkj

)
‖2.

Introduce matrices L(n×3m) and T(l×3m) which are ob-
tained by reorganizing Q̃ and B, respectively:

L̃ =

 Q̃T
11 ··· Q̃T

1m

...
. . .

...
Q̃T

n1 ··· Q̃T
nm

 and T =

BT
11 ··· BT

1m

...
. . .

...
BT

l1 ··· BT
lm

 .

The residual error is rewritten D2 = 1
nm‖L̃ − ΞT ‖2. This

means that matrix L̃ has rank l at most. Similarly to §4.3, let
L̃ = UΣVT be an SVD of matrix L̃, we get Ξ = ψl(UΣu)
and T = ψT

l (VΣT
v ).



4.4.2. Bundle Adjustment

Starting from the above-derived initial solution, we mini-
mize the ML residual error (5) using nonlinear least-squares
in a bundle adjustment manner, see e.g. [12]. We use
the Levenberg-Marquardt algorithm, implemented to ex-
ploit the sparse block structure of the Jacobian and (Gauss-
Newton approximation of) the Hessian matrices. The for-
mer is illustrated for a simple case on figure 1. Bundle ad-

View 1

Configuration weights
Rotations Basis shapes

View 3

View 2

Figure 1: The Jacobian has a sparse block structure shown
here for l = 2 basis shapes, n = 3 views and m = 5 points.

justment in the non-rigid case is developed in [1, 5], where
the authors show that compared to the rigid case, addi-
tional ‘gauge freedoms’ in the recovered structure and mo-
tion must be handled. However, the Levenberg-Marquardt
optimization engine deals with those by damping the ap-
proximated Hessian matrix which makes it full rank. We
found that the regularization term employed in [5] does not
have a significant effect on the results we obtained. This is
mainly due to the fact that we directly use 3D data, while
[5] use image points.

4.4.3. Ambiguities of the Solution

The ambiguity of the solution demonstrated by Xiao et
al. [13] in the 2D case when only the rotation constraints
are used does not hold for our algorithm. The reason is
that it enforces the replicated block structure of the joint
motion matrixM, which provides stronger constraints than
the rotation constraints only. The ambiguity matrix E on the
learnt model is E = diagl(R)(Λ(l×l) ⊗ I), where diagl(R)
is a l block diagonal matrix for some 3D rotation matrix R,

representing the indeterminateness of the orientation for the
global coordinate frame. Matrix Λ(l×l) ⊗ I models linear
combinations of the basis shapes. This shows that it is not
possible to recover the ‘true’ basis shapes and configuration
weights, but that ‘true’ camera pose can still be computed.
The proof of this result is omitted due to lack of space.

5. Computing Pose
Given the non-rigid model of the environment – the basis
shapes {Bkj} – and a 3D view {Qj}, we want to estimate
the pose of the 3D sensor, namely the Euclidean transfor-
mation (R,y), jointly with the non-rigid counterpart of the
pose, i.e. the configuration weights {ξk}. Note that we drop
index t since only one 3D view is considered in this section.
It is not necessary to observe all points used in the learning
phase to compute pose. The ML residual error is:

C2 =
1
m

m∑
j=1

d2(MBj + y,Qj). (11)

It must be minimized over (R,y) and {ξk}. Matrix M is
defined by equation (3).

We propose to nonlinearly minimize the ML residual er-
ror (11) using the Levenberg-Marquardt algorithm. It is not
possible to use a direct estimator as [8] due to the configu-
ration weights. Note that, as shown below, the translation
y can be eliminated from the equation. The minimization
is thus performed over R and {ξk}. Such an algorithm as
Levenberg-Marquardt requires one to provide an initial so-
lution. Our algorithm for finding it is described below.

Eliminating the translation. The derivatives of the ML
residual error (11) with respect to y must vanish: ∂C2

∂y = 0,
which leads to y = 1

m

∑m
j=1 (Qj −MBj). This result

means that y is given by the difference between the cen-
troid of the points {Qj} and the centroid predicted by the
points from the shape model {MBj}, which vanishes if the
set of points used for computing the pose is exactly the same
as the one used in the learning phase. In any case, by cen-
tring the points on their centroid, the translation vanishes.
Henceforth, we assume this has been done and rewrite the
ML residual error (11) as:

C2 =
1
m

m∑
j=1

d2(MBj ,Qj). (12)

Initializing the rotation and configuration weights. We
linearly compute a motion matrix M̃ without enforcing the
correct replicated structure by minM̃

∑m
j=1 d

2(M̃Bj ,Qj),
which yield:

M̃ =
(
Q1 · · · Qm

) (
B1 · · · Bm

)†
.



We extract the {ξk} and R from M̃ by solving
minR,{ξk}

∑l
k=1 ‖M̃k − ξkR‖2, where the M̃k are (3 × 3)

blocks from M̃. By vectorizing and reorganizing the resid-
ual error, we obtain:

‖

vectT(M̃1)
...

vectT(M̃l)


︸ ︷︷ ︸

Λ

−

ξ1...
ξl


︸ ︷︷ ︸

ξ

vectT(R̃)︸ ︷︷ ︸
r̃

‖2,

which is a rank-1 approximation problem that we solve by
‘truncating’ the SVD Λ = UΣVT, as in §4.3: ξ = ψ1(UΣ)
and r̃ = ψT

1 (V). Note that ‖r̃‖ = ‖R̃‖ = 1. Matrix R̃
must be subsequently corrected to give R by enforcing the
orthonormality constraints. This is done by finding the clos-
est orthonormal matrix to R̃ using SVD, see [8]: R̃ = UΣVT

gives R = 1
3 tr(Σ) det(U) det(V)UVT, while compensating

the possible sign change by ξ ← det(U) det(V)ξ.

6. Experimental Evaluation
6.1. Simulated Data
We report experimental results on simulated data. The de-
fault simulation setup consists of n = 15 time-varying 3D
views, each containing m = 35 points. They are gener-
ated by randomly drawn linear combinations of l = 3 basis
shapes, all of them lying in a sphere with unit radius. An
additive, zero-mean Gaussian noise with variance σ = 0.01
(i.e. 1% of the scene scale) is added to the 3D points. We
vary each of these parameters in turn. We average the error
measures over 100 trials. The true number of basis shapes
is used by the algorithms.
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Figure 2: (a) ML residual error against the level of added
noise and (b) pose error against the number of basis shapes.

Environment learning. We observe on figure 2 (a) that
the ML residual error is very close to σ. The implicit learn-
ing IMP consistently gives a significantly lower residual er-
ror than the explicit learning algorithms EXP?. This means
that, despite the fact that the data were generated using the
explicit low-rank shape model, the extra degrees of freedom

of the implicit model represent quite well the added Gaus-
sian noise.

We observe that the difference between the three ex-
plicit learning methods is small compared to the differ-
ence with IMP. EXPLM (from §4.4.2, ‘LM’ stands for
Levenberg-Marquardt) always performs better than EX-
PINITITER (from table 1), which always performs better
than EXPINITMEAN (based on [8] to get the rotations).
This means that the residual error (8), which is minimized
by EXPINITITER while estimating the minimal 3D non-
rigid tensors, is well-adapted to our problem.

Figure 2 (b) compares the error raised by the rotation part
of the pose, in degrees, between our non-rigid algorithms
and rigid SFM and pose algorithms, respectively dubbed
RIGEXPLM and RIGPOSELM. We observe that the pro-
posed EXPLM gives errors independent of the number of
basis shapes, while, as could have been expected, RIGEX-
PLM rapidly degrades as the number of basis shapes grows.

Pose computation. Figure 2 (a) shows that all pose algo-
rithms POSE? consistently give a higher residual error than
the explicit learning algorithms. This is explained by the
fact that pose estimation suffers from the errors in the learnt
model and in the 3D view. POSEINIT gives quite high er-
rors, roughly 5σ, while POSELM converges to roughly 1.5σ
which is reasonable. The same remarks as for the learning
algorithms can be made in the case of pose, for figure 2 (b).

Another experiment was intended to assess to which ex-
tent, reliable pose estimate can be obtained when the envi-
ronment is deforming in a very different way compared to
the learning stage. Let ν be the mean value of the configura-
tion weights. We alter them by adding randomly drawn per-
turbations with increasing magnitude µ, and generate a 3D
view with these parameters, from which pose is estimated.
Obviously, the results depend on the simulation setup, the
number of points, views, basis shapes and the level of noise.
However, we observe that for µ ≤ 1.3ν, the residual er-
ror indicates that the pose estimate is reasonable for most
configurations. For µ > 1.3ν, the pose estimate rapidly
degrades.

6.2. Real Data
We tested our algorithms on sets of 3D points reconstructed
from a calibrated stereo rig. The sequence consists of n =
650 pairs of views. The m = 30 point tracks were obtained
semi-automatically and reconstruction was performed using
ML triangulation, i.e. by minimizing the reprojection error.
The reprojection error we obtained is 4.7276 pixels, which
is rather large and explained by the low quality of the man-
ually entered point tracks.

We used a subset of the full sequence, made of 1 3D view
over 25 from 1 to 551, that is 23 3D views, for learning
the environment. The remaining 3D views are registered by
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Figure 3: (a) The first (circles) and the second (crosses) basis shapes. (b) Zoom on one of the original images: the circles
are the tracks, the diamonds are the reprojections from pairwise Structure-From-Motion, the squares are the reprojections
from our non-rigid shape model, and the triangles are the reprojections from a rigid shape model. (c) The path representing
the translation part of the pose, together with the images corresponding to the 3D views used for learning the environment,
indicated by white dots at the corner of the images. The ‘interpolated’ positions are shown using a bold line.

Figure 4: One out of the 650 stereo pairs used in the exper-
iments, overlaid with the 30 point tracks.

computing pose. For views 1 < i < 551, this can be viewed
as ‘interpolation’ since the surrounding 3D views are used
for learning the environment, while for views 551 < i <
650 this can be viewed as an ‘extrapolation’ of the model
since new pose and deformations are seen in these views.

An important aspect is the choice of the number l of ba-
sis shapes. If l is too low, the model is not able to repre-
sent all the possible deformations, while if l is too high, the
noise is modeled, resulting in unreliable pose estimates in
both cases. We propose to manually choose l by examin-
ing the graphs shown on figure 5. It shows the ML residual
errors and the reprojection errors, i.e. the Sum of Squared
Differences between measured and predicted image points,
resulting of the learning algorithms for different numbers

of basis shapes. We observe that the 3D ML residual er-
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Figure 5: (a) ML residual error and (b) 2D reprojection error
versus the number of basis shapes.

ror and the 2D reprojection error decrease while l increases,
the former towards 0 and the latter towards the reconstruc-
tion error, shown by an horizontal line ‘SFM’ on the graph,
which was expected. Based on this graph, we choose l = 4,
for which the EXPLM ML residual error is 5.32 centimeters
and the 2D reprojection error is 4.7922 pixels. For compar-
ison, a rigid environment model gives a 23.58 centimeters
ML residual error and a 5.7605 pixels 2D reprojection error.
It is important to note that for l = 5 and l = 6 basis shapes,
very similar pose estimates are subsequently obtained.

Figure 3 (c) shows the learnt path, together with some



key images. This result appears visually satisfying, Note
that this is only intended to let the reader figure out the
experimental conditions since we observed that the path,
in other words the translation part of the pose {yt}, is
very similar between the rigid and the non-rigid models,
the mean difference being smaller than a centimeter. How-
ever, the mean difference in the rotations is 2.81 degrees,
which is significant, but difficult to illustrate visually. The
mean ML residual errors are 8.66 and 12.83 centimeters for
the ‘(a) The first (circles) and the second (crosses) basis
shapes. (b) Zoom on one of the original images: the cir-
cles are the tracks, the diamonds are the reprojections from
pairwise Structure-From-Motion, the squares are the repro-
jections from our non-rigid shape model, and the triangles
are the reprojections from a rigid shape model.interpolated’
and the ‘extrapolated’ poses respectively.

Figure 3 (a) shows the two first basis shapes that were
learnt. We observe that the deformation is significant.

Finally, figure 3 (b) shows a zoom on points reprojected
in an image from different models. We clearly see that the
non-rigid shape model fits the data much better than a rigid
shape model.

The computation time for the learning phase is of the
order of a minute while pose estimation is roughly a tenth
of a second.

7. Conclusions
We proposed methods for learning the parameters of a
deforming environment, represented by a low-rank shape
model, from data gathered by a 3D sensor. We introduced
3D non-rigid tensors, relating the positions of correspond-
ing points in several, time-deforming, 3D views, and de-
rived methods for estimating the parameters of the Max-
imum Likelihood implicit and explicit models. Based on
a learnt model, we showed that the rigid pose of the 3D
sensor can be computed while the environment undergoes
new deformations. Experimental results on simulated data
show that accurate pose estimates are obtained, even when
the environment deforms in ways not observed during the
learning phase. This is confirmed by results on real data,
showing that the pose estimates are accurate enough to be
used for tasks such as robot positioning and augmented re-
ality.

One weakness of the approach is to rely on 3D point cor-
respondences. We are currently working on using more ro-
bust types of inputs, such as contours or image patches, that
can be reliably tracked through sequences of stereo pairs
using e.g. particule filtering techniques. This is intended to
be part of an iterative deforming environment learning sys-
tem. Essential issues that will be dealt with are assessing
what kind of deformations can be represented by the low-
rank shape model and choosing the number of basis shapes,

which will be examined in the framework of model selec-
tion.
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