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Abstract

In this paper we propose a novel approach for the
spatial segmentation of video sequences containing mul-
tiple temporal textures. This work is based on the notion
that a single temporal texture can be represented by a low-
dimensional linear model. For scenes containing multiple
temporal textures, e.g. trees swaying adjacent a flowing
river, we extend the single linear model to a mixture of
linear models and segment the scene by identifying sub-
spaces within the data using robust generalized principal
component analysis (GPCA). Computation is reduced to
minutes in Matlab by first identifying models from a sam-
pling of the sequence and using the derived models to seg-
ment the remaining data. The effectiveness of our method
has been demonstrated in several examples including an
application in biomedical image analysis.

1 Introduction

Modeling motion is a fundamental issue in
video analysis and is critical in video representa-
tion/compression and motion segmentation problems. In
this paper we address a special class of scenes, those that
contain multiple instances of so-called temporal texture,
described in [11] as texture with motion.

Previous works on temporal texture usually focused
on synthesis with the aim of generating an artificial video
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sequence of arbitrary length with perceptual likeness to
the original. Prior schemes usually model the temporal
texture using either a single stochastic process or dynami-
cal model with stochastic perturbation [4, 3]. When a dy-
namical model is used, modern system identification tech-
niques are applied. The artificial sequence is then gener-
ated by extending the stochastic process or stimulating the
dynamical system. A critical issue with these approaches
is that they can only handle sequences with homogeneous
texture or only one type of motion in the scene. Scenes
with multiple motions or non-homogeneous regions are
usually beyond the scope of this approach as only a sin-
gle model (stochastic process or dynamical system) is
adopted for modeling purposes.

A similar problem occurs when segmenting textures
within a static image. While a single linear model (the
Karhunen-Loeve transformation or PCA) is optimal for
an image with homogeneous texture [12], it is not the best
for modeling images with multiple textures. Instead, a
scheme for modeling the image with mixture models is
needed with a distinct model for each texture. The diffi-
culty in this scheme is that the choice of models and the
segmentation of the image usually fall into a “chicken-
and-egg” situation, that is, a segmentation implies some
optimal models and the selection of models imply a seg-
mentation of the image. However, if neither models or
segmentation are known initially it is very difficult to
achieve both simultaneously without using iterative meth-
ods such as expectation maximization (EM) or neural net-
works [9], which unfortunately are either sensitive to ini-
tialization or computationally expensive.

Recently, it has been shown that the “chicken-and-



egg” cycle can be broken if linear models are chosen.
Using a method called generalized principal component
analysis (GPCA), the models and data segmentation can
be simultaneously estimated [14, 6]. For static images,
this method has been used for representation, segmenta-
tion, and compression [8, 5]. In this paper, we adopt this
approach for spatially segmentation of multiple temporal
textures in video sequences.

For a video sequence with multiple regions contain-
ing different textures or motions, we need to segment the
temporal textures spatially and model them separately. As
single temporal texture has been shown to be approxi-
mately modeled using an autoregressive process (the spa-
tial temporal autoregressive model, or STAR) in [11], we
formulate the problem of modeling and segmentation of
multiple temporal textures as a problem of fitting data
points to a mixture of linear models and solve for these
models using GPCA.

Our approach differs from most other works in
texture-based segmentation, temporal texture, dynamic
texture, and motion texture in several aspects. First, our
goal is to segment the regions in the video sequence based
on the dynamical behavior of the region. Therefore, our
data points should reflect both local texture and tempo-
ral dynamics. Second, as we are not studying the tempo-
ral segmentation, we do not use the single image as our
data point. Instead we use the stack of local patches at
fixed image coordinates over time to form the data points.
Third, we do not perform video synthesis at this point even
though our work can be the basis for synthesis. Thus it is
not necessary for us to fully model the noise or deviation
of the data from the linear models. As demonstrated in
this paper, the mixture linear models can effectively seg-
ment the temporal textures in the video sequence.

Related works.Our work is closely related to other works
on video dynamics including temporal, dynamic, or mo-
tion textures, a primary difference being that most of these
works treat the texture elements as sequences of whole
image frames. A common goal of such research is to syn-
thesize a new sequence of arbitrary length with perceptual
likeness to the original. In [11], the texture is treated as an
autoregressive process, and the model used for synthesis
is derived statistically using the conditional least squares
estimator. In [4], the sequence is modeled as a linear sys-
tem with Gaussian input. By identifying the system matri-
ces, the texture model is determined and a new sequence
is generated by driving the system with noise. In [3], the
sequence is also modeled as a linear system and the sys-
tem matrices are identified with a novel factorization and
are used for synthesis. In [10], instead of using a dynami-
cal model, the authors define a metric between images so

that the sequence can be extended in a natural way with
minimal difference between consecutive images. In [6]
and [7], GPCA is used to temporally segment the video
sequence using mixture linear dynamical models.

Our work is also related to image representation and
combined color and texture segmentation methods where
images are divided into blocks of pixels. The commonly
used image standard JPEG projects the image blocks onto
a fixed set of bases generated by discrete cosine transform
[2]. In [1], image blocks are used as data points for com-
bined color and texture segmentation using EM algorithm.
In [8], a set of mixture linear models are used to model
images via the GPCA algorithm.

The method adopted in this paper is similar to that
in [8] where image blocks observed over time are treated
as data points. However, as we show later, the method
presented in this paper is a more generalized form of the
autoregressive model.

Notations. Given a video sequences with N images of
the sizem×n, we uses(x, y, t) to denote the pixel of the
tth image at location(x, y). In addition we sets(x, y) to
be the union of the pixelss(x, y, i) (i = 1, · · · , N ). With
a little abuse of notation, we also calls(x, y) the pixel
(x, y) of the video sequence.

2 Mixture of linear models for temporal
textures

Given a sequences of N images, in order to study
the texture (both spatial and temporal) around the pixel
s(x, y), we apply anl × l window centered ats(x, y) and
denote the resultingl × l × N volume asB(x, y). We
then represent the volumeB(x, y) as the vectorx(x, y) ∈

R
Nl2 through a simple reshaping.

m

n(x, y)

l

x ∈R
Nl2

Figure 1. An l× l sliding window is applied to the pixel
(x, y) for each frame, producing anl × l × N volume.
The data pointx(x, y) is a reshaping of the volume into
anNl2-dimensional vector.



2.1 Linear model for single temporal texture

In [11], the authors have shown that the temporal tex-
ture can be modeled using a spatial temporal autoregres-
sive model (STAR). The STAR model is

s(x, y, t) =

p
∑

i=1

φis(x+∆xi, y+∆yi, t+∆ti)+a(x, y, t),

(1)
where the indexi (1 ≤ i ≤ p) indicates thep-neighbors
of the signals(x, y, t) anda(x, y, t) is a Gaussian noise.
With the noisea(x, y, t) unknown, we approximate the
above formula as

[

1 −φ1 · · · −φp

]







s(x,y,t)
s(x+∆x1,y+∆y1,t+∆t1)

...
s(x+∆xp,y+∆yp,t+∆tp)






≈ 0.

(2)
In other words, the(p + 1)-dimensional vector

[s(x, y, t), s(x + ∆x1, y + ∆y1, t + ∆t1), · · · ,

s(x + ∆xp, y + ∆yp, t + ∆tp)]
T

can be approximately fitted by a lower dimensional sub-
space (p-dimensional hyperplane). An important fact is
that given a suitable choice of window sizel, the signal
s(x, y, t) with its p neighbors could just be entries of our
Nl2-dimensional data pointx(x, y). Therefore, the data
pointsxi within the same temporal texture can be fitted by
the same subspace, and sinceNl2 ≫ p for large enoughl
andN , the dimension of the subspace is much lower than
Nl2.

2.2 Mixture linear models

While a single temporal texture can be modeled by
a single linear model, multiple temporal textures can be
better modeled using a mixture of linear models. This no-
tion is further supported by our observation that reduced-
dimensional representations of data pointsxi obtained
from sequences containing multiple temporal textures
form multiple linear structures. As shown in Figure 2,
the multiple linear (subspace) structure is visible in a very
low dimensional projection of the data points. In Figure
2, the data pointsxi obtained from a video sequence of
water flowing down a dam face are projected to 3-D space
via principal component analysis (PCA). Instead of form-
ing several clusters, the projected 3-D points form several
linear structures. We contend that the data should be seg-
mented from the linear structures present in the reduced-
dimensional representation as shown in Figure 3. Thus
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Figure 2. Left and Middle: two images from a 300-
frame sequence of water flowing down a dam. Right: the
3-D projection of the data points withN = 300 andl =
5. Different colors identify different groups segmented
using GPCA as described later.

given the data pointsxi ∈ R
Nl2 (i = 1, · · · , r), we first

generate their low-dimensional projectionyi by calculat-
ing the singular value decomposition of the matrixX =
[x1 − x̄, · · · ,xr − x̄] such thatUSV T = X with x̄ be-
ing the average ofxi (i = 1, · · · , r). Then we have the
projected coordinates matrixY = [y1, · · · ,yr] ∈ R

q×r

such that

Y = SqVq
T = Uq

T [x1 − x̄, · · · ,xr − x̄] , (3)

whereq is the dimension of the projection withq ≪ Nl2,
Uq andVq are the firstq columns for the matricesU andV ,
andSq is the firstq×q block of the matrixS. As the pixel

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

����
����
����
���� R

r

Figure 3. The scheme to group the data points in
low-dimensional space using mixture linear models (sub-
spaces).

block B(x, y) around pixels(x, y) contains both the spa-
tial texture and temporal dynamics information around the
pixel s(x, y), for textures (both spatial and temporal) with
different complexity and dynamics of different orders, the
corresponding linear models should have different dimen-
sions. Therefore, given the low-dimensional representa-
tion y(x, y) for each pixel(x, y), we need to segment the
yi into different low-dimensional linear models with (pos-
sibly) different dimensions.



3 Identification of the mixture linear mod-
els

3.1 Generalized principal component analysis
(GPCA)

GPCA is an algorithm for the segmentation of data
into multiple linear structures [14, 13, 6]. The algorithm
is non-iterative, segmentation and model identification are
simultaneous. In this paper we adopt the robust GPCA al-
gorithm, which recursively segments data into subspaces
to avoid an incomplete discovery of models [6]. For exam-
ple, as shown in Figure 4, data sampled from a combina-
tion of linear models may appear as though it comes from
one relatively higher dimensional model e.g. the union of
points on two distinct lines forms a plane.

Figure 4. The data points on the plane and the two
lines are first segmented as two planes and then the plane
formed by the lines is further segmented into two lines.
In the scenario depicted here there are two levels of recur-
sion.

3.2 Unsupervised vs. supervised learning

For the segmentation problem, each pixel should be
assigned to the appropriate model. This implies that for a
sequence with frames sized640×480, more than300, 000
data points must be segmented. For current unsupervised
learning algorithms, including GPCA, the computational
cost would be very significant if all data points were used.
In order to reduce the computational burden we turn the
modeling problem from a purely unsupervised learning
scenario to a hybrid scenario, i.e. we sample enough data
points (in this case about 800 to 2,000 sampled either pe-
riodically or randomly) to learn the mixture ofK linear
models and then assign the remaining data points to the
closest linear model. The sampled data is projected intoq-
dimensional space via the maximum-variance linear trans-
formationUq ∈ R

q×Nl2 before applying GPCA. TheK
subspaces that are identified by GPCA can be described
by their orthonormal basisDj ∈ R

q×kj (j = 1, · · · ,K)

with kj being the dimension of thejth subspace. Then
given any data pointy(x, y) it is assigned to themth
model such that

m = arg max
j

‖ DT
j y(x, y) ‖ . (4)

Overall, the steps for segmenting the temporal texture
spatially can be summarized as following follows:

(Spatial segmentation of temporal textures).Given a
video sequences, a block sizel, a reduced dimensionq,
and an upper boundn on the system order:

1. Data sampling. Periodically sample 800-2000 pix-
els s(xi, yi) and generate the correspondingNl2-
dimensional data pointsxi.

2. Dimensionality Reduction. Compute the reduced-
dimensional projection ofyi as the firstq principal
components ofxi and record the projection matrix
Uq.

3. Segmentation and identification of mixture linear
models. Use robust GPCA to compute the segmen-
tation of the training datayi and the bases for the
linear subspacesDj(j = 1, · · · ,K).

4. Segmentation on all pixels.For each pixel (border
regions excluded) derive the data pointx based on
the surroundingl × l block B. Obtain its reduced-
dimensional representationy by projecting alongUq.
Finally assign it to themth group based on (4).

4 Experiments and results

Water flow over dam. Figure 2 shows three images taken
from a 300 frame sequence of water flow at a dam. There
are multiple regions where the water dynamics are differ-
ent: flow on the face of the dam, waves in the river at the
bottom of the dam, and turbulence around the transition.
We chosel = 5, q = 4, and used an even tiling of the
sequence to produce 1,200 training data points. Applying
GPCA to these low-dimensional data points, we obtained
four groups as shown in Figure 5 and the model basis for
each group as well. The dimensions of the four models
are 3, 3, 2, and 2. Using the basis for each model, the
remaining pixels were assigned according to the above al-
gorithm to produce the segmentation shown in Figure 6.
Not only does the segmentation fit our visual observation,
the corresponding model dimensions also reflect the rel-
ative complexities of their textures. For the regions in
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Figure 5. Left: the mean image of the 300-frame se-
quence. Right: the training pixels from a5 × 5 tiling are
segmented into four classes.

Figure 6. The four classes of pixels.

groups 3 and 4 (dimension 2), the water flows with rel-
atively simpler dynamics than in the regions of groups 1
and 2 (dimension 3) where waves are present.
Trees on the river bank. Figure 7 shows three images
taken from a 159-frame sequence of bushes swaying in
a breeze on a river bank. The segmentation results are
shown in Figure 8, the dimensions of the linear models
are 7, 7, 6, and 6 respectively. While the scene is in gen-
eral more complex than the previous example, the classes
containing motion (classes 1 and 2) have higher dimen-
sions than the relatively more static classes.

Figure 7. Three images from the sequence with bushes
in a breeze on the river bank.

Segmentation of micro-ultrasound images.In the last
example we show the results of applying our method to
a 300-frame micro-ultrasound video sequence of a mouse
liver. Two sample frames are shown in Figure 9. Figure
10 shows the segmentation results where the mouse’s skin

Figure 8. The four classes of pixels. The first two
classes belong to 7-dimensional subspaces and the last
two classes belong to 6-dimensional subspaces.

Figure 9. Two sample frames from the sequence of
micro-ultrasound of the mouse liver.

is clearly segmented out due to both its texture and motion
due to periodic respiration.

Figure 10. The four classes of pixels. In the last class,
the elongated crescent structure contains the skin of the
mouse.

5 Conclusion

In this paper, we proposed a novel approach for the
spatial segmentation of video sequences containing mul-
tiple temporal textures. We extended the single linear
model, used for homogeneous temporal textures, to a mix-
ture linear model for scenes containing multiple temporal
textures. Model identification and segmentation were im-
plemented with a robust GPCA algorithm. A sampling
process was used to identify models on a subset of the
total data and the resulting models were used for com-
plete segmentation, reducing runtime to minutes in Mat-
lab. The effectiveness of our method was demonstrated in
several examples and has applications in video synthesis
and other areas including biomedical image analysis.
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