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Abstract. Agriculture is one of the most important economic activities in Brazil
and much research effort has been concentrated to develop new computer vi-
sion techniques to analyze agricultural images. The present paper focus on the
problem of detecting geometric primitives (straight lines and circles) in agricul-
tural images, which is done by a model fitting approach. Model fitting playsa
crucial role in many problems in computer vision and most state-of-art meth-
ods (e.g. RANSAC) rely on sampling to solve this problem. This paper presents
a new approach based on Gauss-Newton methods that does not depend on sam-
pling. Model fitting is expressed as an Order-Value Optimization (OVO) problem,
which consists in the minimization of an order-value function. An efficient algo-
rithm is then used to solve the OVO problem. The proposed approach is efficient,
robust to noise and presents a very important property: both running time and
memory costs increase linearly with the number of active points in the image.
The performance of the proposed algorithm improves when comparedto alter-
native methods as the number of model parameters increases. A curve detection
method based on the OVO approach is here described. Methods for the detection
of straight lines and circles are provided. Extensive comparative performance
assessment using synthetic data has been carried out considering the following
methods: Hough transform, RANSAC, QMDPE and LKS. The obtained results
indicate that the assessed methods are comparable regarding precisionand ro-
bustness to outliers. The introduced method is faster than the others in the case
of circle detection, as the number of model parameters is increased. Preliminary
experimental results using real agricultural images are provided to illustrate the
proposed approach.

1 Introduction

The analysis of biological forms has been a key shape analysis application for more
than 40 years [15]. There has been a great variety of computervision techniques devel-
oped aiming at the analysis of images from life sciences frommicro to macro scales.
For instance, bioinformatics became a very popular field mainly during the 90’s with
the sequencing techniques and projects that produced largeamounts of genome infor-
mation. After this initial phase, research attention started to be focused on the relation



between genotype and phenotype, i.e. how the genome information available can be ex-
plored to better understand how genotype generates phenotype. In this context, image
analysis will play a key role since it is a natural approach tocapture and to quantify
phenotype information. Among the important computer vision applications to analyze
images from life sciences, it is worth mentioning agricultural images. Agriculture is one
of the most important economic activities in Brazil and muchresearch effort has been
concentrated for the development of agricultural technology3. Examples of computer
vision applications in Brazilian agriculture include unmanned aircrafts for precision
faming [20], the analysis of raindrops [14] and volume calculation of fruits [12], to
name but a few. Curve fitting is a particular important issue that has many applications
in agriculture imaging such as the detection of seeds, fruits, tree tops and soil pores, for
instance. The present paper addresses this problem by introducing a new methodology
and comparing it to standard techniques available from the literature.

Even though there are some curve detection methods that are applied to gray-scale
images, most rely on a binary image representing points of interest (e.g. edges after
edge detection). Moreover, simple line fitting methods are not in general suitable be-
cause it is necessary to identify which image points are associated to each curve (i.e.
fitting a curve toall image edge points is not a solution in general as few discrepant
points are already sufficient to induce poor results). In other words, the image points
that do not actually belong to a given line may be viewed as outliers to be ignored
by the method. The most well-known solution for the curve detection problem is the
Hough transform [11]. The original idea has been proposed asa patent in the early
60’s [10], put into the pattern recognition context by Rosenfeld, Duda & Hart [8, 19],
and popularized in Ballard’s well known paper [4]. Since then, its performance has been
improved by much research based on important ideas like backmapping [6], gradient
information [17], digital straight line models [7], constraints [17, 18], probabilistic ap-
proaches [13] or resampling [5, 9]. The advantages of the Hough transform include
its generality and the fact that it is more robust to noise. However, there are some key
problems that limit its adoption for general curves, as its computational cost increases
substantially with the number of curve parameters. Curve detection may also be solved
by parametric model fitting methods like RANSAC, for instance. Some key issues re-
lated to such methods are robustness to outliers, running time, memory requirements
and quality of the final solution. Most state-of-art methodsexplore random sampling
to perform well regarding these issues. In particular, coping with outliers is a very im-
portant topic in computer vision, which explains the popularity of the so called robust
techniques in the field [16, 21]. A different approach, whichdoes not rely on sampling,
is proposed in the present paper: a new model fitting-based curve detection method
which is expressed as an Order-Value Optimization (OVO) problem [2].

The paper is organized as follows. Section 2 describes the OVO problem and the
Gauss-Newton algorithm that solves it. Section 3 models thecurve detection task as
an OVO problem, detailing the required steps to explore the Gauss-Newton method to
detect parametric curves in images. Experimental results are presented and discussed
in Section 4. The paper is concluded with some remarks on our ongoing research in
Section 5.

3 See e.g.http://www.embrapa.br/



2 Order-value optimization problem

Assume that the data is composed of pointsP1, . . . , Pm and that the model to be fitted
is defined byn parametersx = (x1, . . . , xn) ∈ Ω ⊂ R

n. For each pointPi, fi(x)
is defined as the error of the attribution of the pointPi to the model defined by the
parameters inx. For eachx ∈ Ω, let i1(x), . . . , im(x) be a permutation of the indices
that sorts the error, i.e.fi1(x)(x) ≤ ... ≤ fim(x)(x). The problem consists of minimizing
Fp(x) ≡

∑p

k=1 fik(x)(x), wherep ≤ m represents the minimum number of points that
are supposed to belong to the fitted model. Thisp parameter is very important as it
distinguishes the suggested model from simple model fittingwhere all the data points
enter in the error expression. In particular, it is the fact that only the closest points to the
model play a role in the error measurement that gives the model its robustness to noise
and outliers. This advantage does not come without its coststhough: the optimization
problem associated to the OVO model is nonsmooth and nonconvex, hence much more
difficult to solve than smooth and convex problems that usually appear in simple model
fitting.

Nevertheless, efficient algorithms for solving OVO problems have been recently
proposed in [1, 2]. Gradient methods have been initially proposed. More recently, New-
ton variations have also emerged: specially quasi-Newton and Gauss-Newton variants [1].
The theory ensures that limit points generated by many OVO algorithms are stationary
and almost certainly local minimizers. This is a typical optimization problem where lo-
cal minimizers are important and deserve to be detected, besides the global minimum.
In fact, one is interested in discovering as many meaningfulmodels as possible, not
only the one that best fitsp points. Fortunately, the theory supports the conjecture that,
starting from well distributed initial points, convergence to close local minimizers will
occur.

The OVO algorithms are iterative and the convergence of the Newton variants is,
usually, super-linear [1]. The complexity of a single iteration depends on the Hessian
approximation adopted. The Gauss-Newton approach used in this paper needs, at each
iteration, the computation of a matrixA ∈ R

p×n, the matricial productsAT A andAT v

and the resolution of ann × n linear system. The computation ofFp(x) involves, at
most,O(m) flops and is dominated by the selection of thep smallest errors. Therefore,
roughly speaking, an iteration of OVO may be completed usingO(m + pn + n2p +
np + n3) time cycles. As usuallyp andn are much smaller thanm, this complexity is,
roughly, linear in the number of points in the data. This value is quite moderate, but it
must be stressed that several iterations (typically10) are needed for convergence of the
Gauss-Newton method. Moreover, different initial points are necessary to detect many
local minimizers. Remarkably, the memory requirement of the proposed algorithm is
also roughly linear,O(mn + n2).

A curve inR
2 depending on the parametersx1, . . . , xn is defined byϕ(x, z) = 0,

wherez = (z1, z2). For example, circles are defined byϕ(x1, x2, x3, z1, z2) ≡ (z1 −
x1)

2+(z2−x2)
2−x2

3 = 0. Many times, one is interested only on a subset of the family
ϕ(x, z) = 0, represented by constraints on the parametersx. In this case, we denote by
Ω the constraint set and we writex ∈ Ω.



Given the setP1, . . . , Pm of target points, we define

ri(x) = ϕ(x, Pi) andfi(x) = ri(x)2.

Therefore,fi(x) measures the error implicit in the statement “Pi belongs to the curve
defined byx”. The integerp ≤ m is a problem-dependent parameter that, roughly
speaking, represents the number of target points that must belong to a curve so that it
can be recognized in the image. Typicallyp is much smaller thanm.

The indicesi1(x), . . . , im(x) are an index permutation that sorts the errors, as de-
fined in Section 1. The OVO objective function is:

Fp(x) =

p∑

k=1

fik(x)(x).

In order to minimizeFp we consider the following algorithm [2]:
Algorithm 1. Let x0 be an initial set of curve parameters. Letxk be the approximation
of the curve parameters at the beginning of iterationk. We computexk+1 as follows:
Step 1.Compute

∇r(xk) = (∇ri1(xk)(x
k), . . . ,∇rip(xk)(x

k))

If ‖∇r(xk)r(xk)‖ is small enough, stop.
Step 2.Solve the Gauss-Newton system

∇r(xk)∇r(xk)T d = −∇r(xk)r(xk).

(If the matrix is nearly singular, or the direction obtainedis almost orthogonal with the
gradient, use a diagonal perturbation to force positive definiteness.)
Step 3.Starting witht = 1, reducet using safeguarded quadratic interpolation, until
the following (Armijo) inequality holds:

Fp(x
k + td) ≤ Fp(x

k) + tdT∇r(xk)r(xk).

if the test succeeds witht = 1 then it is increased until failure.
Step 4.Definexk+1 = xk + td.

Limit points of sequences generated by this algorithm are stationary points in the
sense of [1]. This means that, ifx∗ is such an stationary point, we can definei1(x

∗), . . . ,
ip(x

∗) in such a way that∇Fp(x
∗) = 0. In other words,x∗ is a putative local minimizer.

3 Curve detection

3.1 Method Overview

Curve detection is performed in three steps: (1) detection of the image points of in-
terest (e.g. edge detection, image segmentation followed by contour extraction, etc.);
(2) selection of initial solutions for each curve candidate; (3) application of Algorithm



1 (Section 2). In the results reported in this paper, edge detection is performed by the
Canny edge detector, thus producing a set of 2D points that are used as input to the
curve detection algorithm. These points are referred asactive points. An initial solution
for Algorithm 1 (i.e.x0) is specified as the parameters that possibly converge to those
of the desired curve in the image. The selection of initial solutions depend on the curve
to be detected. Although the introduced framework applies to any parametric curve, we
discuss the cases for straight line and circle detection in the present paper. These are
detailed below.

3.2 Straight Lines

We have used the normal line parameterization, where each line is represented by an
angleθ and a driftρ. A point (x, y) belongs to the line ifx cos(θ) + y sin(θ) = ρ.

The initial solutions were chosen to form a regular grid in the(ρ, θ) parameter space.
We first divide the range of angles that define lines in the picture, [0, π], in ntheta
equally spaced arcs. We then compute the range of driftsρ that corresponds to lines that
intersect the image window and divide this range innrho intervals. The chosenρ are
the intervals midpoints. Usually,ntheta is larger thannrho as the function that has
to be minimized by Algorithm 1 is highly nonlinear inθ, and merely quadratic inρ. See
for example Figure 1(a).

Fig. 1.Schemes for producing initial solutions for (a) straight lines; and (b) circles.

Once a solution(ρ∗, θ∗) of the OVO problem is reached, some tests verify if a valid
straight line has been detected:

– The number of active points that satisfy|ri(ρ
∗, θ∗)| ≤ ǫ (usuallyǫ = 0.5) must be

larger than ana priori thresholdM . See Figure 2(a).
– The median and variance (relative to the median) of the detected points are calcu-

lated. The variance divided by the number of detected pointsmust be lower than an
a priori thresholdλ.



Fig. 2. (a) Active points counted on lines. (b) Dispersion test.

Using these tests, we exclude solutions that correspond to “lines” composed by few
active points or many dispersed points, like in Figure 2(b).

If a solution succeeds both tests, it corresponds to a real line in the image and the
points identified in the first test are excluded from the active points set. It is worth
noting that the image points that actually belong to the detected curve are recognized
(i.e. those active points that satisfy the first condition above), which is important in
different situations, e.g. grouping and edge filling. In case of straight lines, there is no
need for searching for the end points of each detected line (which is the case for the
Hough transform, for instance). The algorithm proceeds with the next initial solution
and remaining active points.

3.3 Circles

The image is divided inr × s points which are used as circle centers. Each center,
together with ana priori defined radius, is used as an initial solution for circle detec-
tion. See Figure 1(b). Depending on the specific application, different strategies may be
adopted to decrease the number of initial circles (e.g. we may eliminate regions without
edge points). Since this is not a central issue in the presentpaper, no such strategies
have been designed.

The initialization and application of Algorithm 1 to detectcircles are analogous to
the straight line case, explained above. The main differences are in tests to accept a
solution computed by the OVO model:

– Like in the straight line case, the number of active points near the solution is com-
pared to a threshold. See Figure 3;

– The number of active points identified above is divided by thearea of the respective
circular tolerance ring defined around the solution. The computed value is com-
pared to a threshold.

The second test ensures that circles with large radius have points enough to be re-
garded as a valid circle arc.



Fig. 3.Active points counted on circles.

After the tests, the method proceeds as in the straight line case. We exclude the
active points close to a circle (i.e. within the tolerance ring), that were identified in the
first test, and restart the process with the next initial solution.

4 Experimental results

In order to evaluate and compare the proposed method, comparative extensive perfor-
mance evaluation tests have been carried out based on the experiments described in [21],
which presents a comparison among the following curve detection methods: QMDPE,
RESC, ALKS, LMedS, RANSAC and Hough transform. In the present paper, we have
improved the evaluation protocol in some important aspectsand compare our method
to QMDPE, RANSAC, Hough transform, which presented better performance in [21],
as well as LKS, a natural upgrade of LMedS [3]. The image sizeshave been increased
from 100 × 100 to 400 × 400 for lines and from150 × 150 to 300 × 300 for circles to
allow accurate processing time measurement in modern computers.

The following methods have been implemented and compared: HT (Hough trans-
form), RANSAC, QMDPE [21], LKS [3], and OVO. These methods have been chosen
because they presented the best performance in [21] and may be considered state-of-art
algorithms for model fitting. Six patterns of noisy data havebeen generated: step, three
step, roof, six lines, one circle and five circles, as shown inFigure 4. Each experiment
corresponding to straight line detection, cases (a)-(d), has been carried out 1000 times
(i.e. 1000 different realizations of the noisy image). The number of samples for the
sampling methods have been computed to ensure that, with at least99% of confidence,
a real line would be found. More specifically, the number of samples were2000 for
step,4000 for three step,8000 for roof,4500 for six lines. In the OVO method, we used
ntheta= 16 andnrho= 10, as described in Section 3.2. The experiments for circle
detection, cases (e)-(f), have been repeated 100 times. Thenumber of samples for the
sampling methods was2000 for one circle, and75000 in five circles. The number of



initial circles for OVO was16 in one circle and400 in five circles. In both cases the
initial radius was30. Gaussian noise with zero mean has been adopted in all cases.For
each experiment, the time for a full run of each method has been measured and the best
line or circle found according to the respective criterion was computed. For OVO, we
did not use the tests to detect good curves described in Sections 3.2 and 3.3 since they
are not well suited for such synthetic tests. We used then theRANSAC criterion: the
best curve is the one with the largest number of active pointsclose to it. The parameter
p for OVO is taken as a rough upper bound of the visual length of the object (line or
circle) instead of the exact length to ensure realistic results for the synthetic test.

The parameters of the detected line or circle have been used to verify if a valid
curve has been detected. Table 1 summarize the obtained results. Each cell of the table
shows the percentage of correct matches and the average running time in seconds. As it
can be seen, all methods present a similar performance regarding precision, i.e. number
of correct matches. As far as running time is concerned, HT presented the best results
for the straight line detection experiments except for the step case, where RANSAC
outperformed the others in running time. On the other hand, for the circle detection ex-
periments, OVO was significantly faster than all others. Thereason is that circle fitting
involves a larger number of parameters.

Method Step 3 step roof 6 lines 1 circle 5 circles
HT 100 0.15100 0.1499.90.16100 0.10100 12.09100 7.18
RANSAC 99.60.1099.9 0.1999.2 0.44100 0.13100 0.1493 5.19
QMDPE 99.8 0.72100 1.3299.4 3.06100 0.8598 0.5568 17.40
LKS 100 0.29100 0.5499.9 1.24100 0.3999 0.20100 7.60
OVO 100 0.4999.8 0.4699.6 0.4999.6 0.32100 0.06100 0.64

Table 1.Precision results and running time for the experiments. Each cell shows the percentage
of correct matches and the average running time in seconds (best timesare shown in bold).

Another important parameter to evaluate a model fitting method is its robustness
to outliers, which may be measured by the breakdown point [21]. The experimental
setup described in [21] used noisy realizations of an image with one line to measure
the robustness of the method as the number of line points decreases while the noisy
points (i.e. outliers) increases. We have repeated this experiment but also evaluated
one case containing one single line and a cluster of points, which is known to degrade
the performance of some line fitting methods. The plots in Figure 5 shows the model
fitting error (in terms of the normal parametersρ andθ of the line) as a function of the
increasing noise. As it can be seen, all methods present a similar performance regarding
precision and breakdown point, being robust up to more than95% of outliers.

The introduced approach has been applied to agricultural images and some prelim-
inary results are shown in Figure 6. The original images are shown in the left column
while the corresponding edge points are shown in the right column. The detected curves



(a) (b)

(c) (d)

(e) (f)

Fig. 4.Example of each type of noisy data used in the performance evaluation: (a) step, (b) three
step, (c) roof, (d) six lines, (e) one circle, (f) five circles.



Fig. 5. Breakdown-point plots for two analyzed cases. The error is presented in log scale. The
plots for each case show the model fitting error in terms of the normal parametersρ andθ of the
line as a function of the increasing noise.

are shown superimposed to both images. As it can be seen, the methods have been suc-
cessfully able to detect the target objects (trees, fruits and tree tops from aerial images).

5 Concluding remarks

Computer vision plays an important role in many situations for agricultural image anal-
ysis. One of such problems is the detection and fitting of geometric parametric primi-
tives such as straight lines and circles. A new model fitting approach has been proposed
as an OVO problem. An efficient algorithm is used to minimize an order-value func-
tion and thus detect the desired curves in an image. The proposed approach has been
implemented to detect straight lines and circles (including circle arcs) and experimen-
tal results have been shown. The method is efficient, robust to noise and presents a
very important property: both running time and memory costsincrease linearly with
the number of active points in the image. Other parametric curves can also be detected
by the proposed approach, which is expected to perform well when more parameters
are involved, e.g. for ellipses. A very important issue is how to decide a good parame-
terization for the OVO problem, which has important implications in the computational
performance of the method. Also, a strategy for generating the initial solution should be
designed for each different type of curve. It is interestingto compare the OVO compu-
tational costs to those associated to the Hough transform. OVO complexity is basically
the number of initial solutions times the time to run the Gauss-Newton method that is
linear in the number of active points in the image and cubic inthe number of curve pa-
rametersn. Now, letq represent the number of voting cells for each parameter (i.e. the
parameter space discretization size). The Hough transformusesO(qn) in both running
time and memory. This difference may indicate that, in practice, the OVO approach is
not only suitable for detecting straight lines (n = 2), but it may be considered specially
appealing to shapes like circles (n = 3), ellipses (n = 5) and other parametric curves
that involve many parameters. The OVO performance is more attractive as the number



of model parameters increase and for large images that wouldrequire largeq to keep
good precision of the Hough approach.

Our ongoing work includes the development of a detector for ellipses, which are
much more commonly found in agricultural images due to 3D projection and the ap-
plication of the developed techniques in agricultural studies. Such advances will be
reported in due time.
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Fig. 6. Detected lines in agricultural images using the experimental setup of Section4 and edge
detection.


