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Abstract. Agriculture is one of the most important economic activities in Brazil
and much research effort has been concentrated to develop neputni-
sion techniques to analyze agricultural images. The present paper docthe
problem of detecting geometric primitives (straight lines and circles) ircalgr
tural images, which is done by a model fitting approach. Model fitting ptays
crucial role in many problems in computer vision and most state-of-athm
ods (e.g. RANSAC) rely on sampling to solve this problem. This papesepts

a new approach based on Gauss-Newton methods that does nod depsem-
pling. Model fitting is expressed as an Order-Value Optimization (OVQYlera,
which consists in the minimization of an order-value function. An efficiég-a
rithm is then used to solve the OVO problem. The proposed approactciseffi
robust to noise and presents a very important property: both runnirgéimd
memory costs increase linearly with the number of active points in the image.
The performance of the proposed algorithm improves when comparalter-
native methods as the number of model parameters increases. édrtaction
method based on the OVO approach is here described. Methods fatdwtiadn

of straight lines and circles are provided. Extensive comparativienpesince
assessment using synthetic data has been carried out considerindjatvinty
methods: Hough transform, RANSAC, QMDPE and LKS. The obtainedlt®
indicate that the assessed methods are comparable regarding precisioo-
bustness to outliers. The introduced method is faster than the others insthe ca
of circle detection, as the number of model parameters is increassmiRary
experimental results using real agricultural images are provided to dtestne
proposed approach.

1 Introduction

The analysis of biological forms has been a key shape asadygilication for more
than 40 years [15]. There has been a great variety of compisien techniques devel-
oped aiming at the analysis of images from life sciences fnaisro to macro scales.
For instance, bioinformatics became a very popular fielchiaduring the 90's with
the sequencing techniques and projects that produceddangents of genome infor-
mation. After this initial phase, research attention sthto be focused on the relation



between genotype and phenotype, i.e. how the genome infiomevailable can be ex-
plored to better understand how genotype generates phmndtythis context, image
analysis will play a key role since it is a natural approacledpture and to quantify
phenotype information. Among the important computer visagplications to analyze
images from life sciences, it is worth mentioning agrictdtumages. Agriculture is one
of the most important economic activities in Brazil and muebearch effort has been
concentrated for the development of agricultural techgyloExamples of computer
vision applications in Brazilian agriculture include unmad aircrafts for precision
faming [20], the analysis of raindrops [14] and volume ckltian of fruits [12], to
name but a few. Curve fitting is a particular important isha has many applications
in agriculture imaging such as the detection of seedssiririte tops and soil pores, for
instance. The present paper addresses this problem byglcirg a new methodology
and comparing it to standard techniques available fromitheature.

Even though there are some curve detection methods thappliedto gray-scale
images, most rely on a binary image representing pointstefest (e.g. edges after
edge detection). Moreover, simple line fitting methods areim general suitable be-
cause it is necessary to identify which image points arecist®sal to each curve (i.e.
fitting a curve toall image edge points is not a solution in general as few disatepa
points are already sufficient to induce poor results). Irepthiords, the image points
that do not actually belong to a given line may be viewed a$ievatto be ignored
by the method. The most well-known solution for the curveedbn problem is the
Hough transform [11]. The original idea has been proposed patent in the early
60’s [10], put into the pattern recognition context by Rdetsh Duda & Hart [8, 19],
and popularized in Ballard’s well known paper [4]. Sincathis performance has been
improved by much research based on important ideas likenbagging [6], gradient
information [17], digital straight line models [7], conaints [17, 18], probabilistic ap-
proaches [13] or resampling [5, 9]. The advantages of thegHdtansform include
its generality and the fact that it is more robust to noiseweler, there are some key
problems that limit its adoption for general curves, as @putational cost increases
substantially with the number of curve parameters. Curteai®n may also be solved
by parametric model fitting methods like RANSAC, for instan8ome key issues re-
lated to such methods are robustness to outliers, runnimg, themory requirements
and quality of the final solution. Most state-of-art methesgplore random sampling
to perform well regarding these issues. In particular, wopiith outliers is a very im-
portant topic in computer vision, which explains the popityfeof the so called robust
techniques in the field [16, 21]. A different approach, whildes not rely on sampling,
is proposed in the present paper: a new model fitting-basea aetection method
which is expressed as an Order-Value Optimization (OVOblerm [2].

The paper is organized as follows. Section 2 describes the @dblem and the
Gauss-Newton algorithm that solves it. Section 3 modelscthge detection task as
an OVO problem, detailing the required steps to explore tahess-Newton method to
detect parametric curves in images. Experimental restdtpresented and discussed
in Section 4. The paper is concluded with some remarks on pgoing research in
Section 5.
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2 Order-value optimization problem

Assume that the data is composed of poifits. . ., P,, and that the model to be fitted
is defined byn parameters = (z1,...,z,) € 2 C R". For each point?;, f;(z)

is defined as the error of the attribution of the paifitto the model defined by the
parameters . For eachr € 2, leti;(x),. .., i, (z) be a permutation of the indices
that sorts the error, i.¢;, (,)(z) < ... < f;, (2 (). The problem consists of minimizing
Fy(x) = Y0 1 fir(x)(2), wherep < m represents the minimum number of points that
are supposed to belong to the fitted model. Thisarameter is very important as it
distinguishes the suggested model from simple model fittihgre all the data points
enter in the error expression. In particular, it is the faet bnly the closest points to the
model play a role in the error measurement that gives the hitsdebustness to noise
and outliers. This advantage does not come without its ¢bstggh: the optimization
problem associated to the OVO model is nonsmooth and noegphence much more
difficult to solve than smooth and convex problems that ugagipear in simple model
fitting.

Nevertheless, efficient algorithms for solving OVO prob¢ehave been recently
proposed in [1, 2]. Gradient methods have been initiallyppszd. More recently, New-
ton variations have also emerged: specially quasi-NewtdrGauss-Newton variants [1].
The theory ensures that limit points generated by many O\gorahms are stationary
and almost certainly local minimizers. This is a typicalioptation problem where lo-
cal minimizers are important and deserve to be detectedjdsethe global minimum.
In fact, one is interested in discovering as many meaningiodiels as possible, not
only the one that best figspoints. Fortunately, the theory supports the conjectuag th
starting from well distributed initial points, convergento close local minimizers will
occur.

The OVO algorithms are iterative and the convergence of thetbh variants is,
usually, super-linear [1]. The complexity of a single itéa depends on the Hessian
approximation adopted. The Gauss-Newton approach usédsipdper needs, at each
iteration, the computation of a matrik € RP*", the matricial productsl” A andA™ v
and the resolution of an x n linear system. The computation &f,(x) involves, at
most,O(m) flops and is dominated by the selection of themallest errors. Therefore,
roughly speaking, an iteration of OVO may be completed ughig: + pn + n?p +
np + n3) time cycles. As usually andn are much smaller tham, this complexity is,
roughly, linear in the number of points in the data. This eakiquite moderate, but it
must be stressed that several iterations (typicHllyare needed for convergence of the
Gauss-Newton method. Moreover, different initial points aecessary to detect many
local minimizers. Remarkably, the memory requirement ef phoposed algorithm is
also roughly linearQ (mn + n?).

A curve inR? depending on the parameters, . .., x,, is defined byy(z, z) = 0,
wherez = (z1, 22). For example, circles are defined byz1, zo, x5, 21, 22) = (21 —
71)%+ (22 —22)% — 23 = 0. Many times, one is interested only on a subset of the family
o(x, z) = 0, represented by constraints on the parametehs this case, we denote by
{2 the constraint set and we writec (2.



Given the sef”,, .. ., P, of target points, we define
ri(z) = p(z, P;) and f;(x) = r;(x)>.

Therefore,f;(x) measures the error implicit in the statemef} belongs to the curve
defined byx”". The integerp < m is a problem-dependent parameter that, roughly
speaking, represents the number of target points that nelsidp to a curve so that it
can be recognized in the image. Typicahis much smaller tham.

The indicesi; (z), ..., i, (x) are an index permutation that sorts the errors, as de-
fined in Section 1. The OVO objective function is:

Fp(z) = Z fir(a) ().
k=1

In order to minimizel;, we consider the following algorithm [2]:

Algorithm 1. Let z° be an initial set of curve parameters. kétbe the approximation
of the curve parameters at the beginning of iteratioe compute:**+! as follows:
Step 1.Compute

Vr(zk) = (Vril(mk,)(xk), e V?“ip($k)(1:k))

If ||Vr(z*)r(2*)| is small enough, stop.
Step 2.Solve the Gauss-Newton system

Vr(z®)\Vr(@®)Td = —Vr(a®)r ().

(If the matrix is nearly singular, or the direction obtaine@&lmost orthogonal with the
gradient, use a diagonal perturbation to force positivenitefiess.)

Step 3.Starting with¢ = 1, reducet using safeguarded quadratic interpolation, until
the following (Armijo) inequality holds:

Ey(z* + td) < F,(z*) + td"Vr(a")r(2").

if the test succeeds with= 1 then it is increased until failure.
Step 4.Definez 1 = 2% 4 td.

Limit points of sequences generated by this algorithm aaostary points in the
sense of [1]. This means thatif is such an stationary point, we can definec*), . . .,
ip(z*) in such away thal’ F},(z*) = 0. In other wordsg* is a putative local minimizer.

3 Curve detection

3.1 Method Overview

Curve detection is performed in three steps: (1) detectfahe image points of in-
terest (e.g. edge detection, image segmentation followecbhtour extraction, etc.);
(2) selection of initial solutions for each curve candig8) application of Algorithm



1 (Section 2). In the results reported in this paper, edgectiet is performed by the
Canny edge detector, thus producing a set of 2D points tleatised as input to the
curve detection algorithm. These points are referreattige pointsAn initial solution

for Algorithm 1 (i.e.z°) is specified as the parameters that possibly converge $&tho
of the desired curve in the image. The selection of initiflisons depend on the curve
to be detected. Although the introduced framework apptiesy parametric curve, we
discuss the cases for straight line and circle detectiohénpresent paper. These are
detailed below.

3.2 Straight Lines

We have used the normal line parameterization, where eaelidirepresented by an
angled and a driftp. A point (z, y) belongs to the line if: cos(9) + y sin(d) = p.

The initial solutions were chosen to form a regular grid (it ) parameter space.
We first divide the range of angles that define lines in theupict0, 7], in nt het a
equally spaced arcs. We then compute the range of griftat corresponds to lines that
intersect the image window and divide this rangeairho intervals. The chosep are
the intervals midpoints. Usuallnt het a is larger thamr ho as the function that has
to be minimized by Algorithm 1 is highly nonlinear éh and merely quadratic in. See
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Fig. 1. Schemes for producing initial solutions for (a) straight lines; and (lo)est

Once a solutiorfp*, 6*) of the OVO problem is reached, some tests verify if a valid
straight line has been detected:

— The number of active points that satisfy(p*, 0*)| < e (usuallye = 0.5) must be
larger than ama priori thresholdM . See Figure 2(a).

— The median and variance (relative to the median) of the teEdgmints are calcu-
lated. The variance divided by the number of detected pamist be lower than an
a priori threshold\.



Fig. 2. (a) Active points counted on lines. (b) Dispersion test.

Using these tests, we exclude solutions that corresporiths" composed by few
active points or many dispersed points, like in Figure 2(b).

If a solution succeeds both tests, it corresponds to a mealihi the image and the
points identified in the first test are excluded from the &ctwints set. It is worth
noting that the image points that actually belong to thealetkcurve are recognized
(i.e. those active points that satisfy the first conditiomad), which is important in
different situations, e.g. grouping and edge filling. Ineca$ straight lines, there is no
need for searching for the end points of each detected litéckwis the case for the
Hough transform, for instance). The algorithm proceed$ wie next initial solution
and remaining active points.

3.3 Circles

The image is divided in x s points which are used as circle centers. Each center,
together with ara priori defined radius, is used as an initial solution for circle dete
tion. See Figure 1(b). Depending on the specific applicatidferent strategies may be
adopted to decrease the number of initial circles (e.g. weeatiminate regions without
edge points). Since this is not a central issue in the prgsgmer, no such strategies
have been designed.

The initialization and application of Algorithm 1 to detexitcles are analogous to
the straight line case, explained above. The main differerage in tests to accept a
solution computed by the OVO model:

— Like in the straight line case, the number of active pointrrke solution is com-
pared to a threshold. See Figure 3;

— The number of active points identified above is divided byattea of the respective
circular tolerance ring defined around the solution. The mpated value is com-
pared to a threshold.

The second test ensures that circles with large radius haimtspenough to be re-
garded as a valid circle arc.



Fig. 3. Active points counted on circles.

After the tests, the method proceeds as in the straight Bise.cWe exclude the
active points close to a circle (i.e. within the tolerancwgji that were identified in the
first test, and restart the process with the next initial thatu

4 Experimental results

In order to evaluate and compare the proposed method, catiygaextensive perfor-
mance evaluation tests have been carried out based on taieregpts described in [21],
which presents a comparison among the following curve tietemethods: QMDPE,
RESC, ALKS, LMedS, RANSAC and Hough transform. In the prégaper, we have
improved the evaluation protocol in some important aspastscompare our method
to QMDPE, RANSAC, Hough transform, which presented betesfqggmance in [21],
as well as LKS, a natural upgrade of LMedS [3]. The image dize® been increased
from 100 x 100 to 400 x 400 for lines and from150 x 150 to 300 x 300 for circles to
allow accurate processing time measurement in modern censpu

The following methods have been implemented and comparédHaugh trans-
form), RANSAC, QMDPE [21], LKS [3], and OVO. These methodséaeen chosen
because they presented the best performance in [21] anderaynisidered state-of-art
algorithms for model fitting. Six patterns of noisy data hbeen generated: step, three
step, roof, six lines, one circle and five circles, as showhigure 4. Each experiment
corresponding to straight line detection, cases (a)-@j,deen carried out 1000 times
(i.e. 1000 different realizations of the noisy image). Thenber of samples for the
sampling methods have been computed to ensure that, withs99% of confidence,
a real line would be found. More specifically, the number ohgkes were2000 for
step,4000 for three step8000 for roof, 4500 for six lines. In the OVO method, we used
nt het a= 16 andnr ho= 10, as described in Section 3.2. The experiments for circle
detection, cases (e)-(f), have been repeated 100 timesdrhber of samples for the
sampling methods wa000 for one circle, and’5000 in five circles. The number of



initial circles for OVO wasl6 in one circle andl00 in five circles. In both cases the
initial radius was30. Gaussian noise with zero mean has been adopted in all ¢ases.
each experiment, the time for a full run of each method has bezasured and the best
line or circle found according to the respective criterioasveomputed. For OVO, we
did not use the tests to detect good curves described inoBe@i2 and 3.3 since they
are not well suited for such synthetic tests. We used thelREESAC criterion: the
best curve is the one with the largest number of active paiote to it. The parameter
p for OVO is taken as a rough upper bound of the visual lengtthefdabject (line or
circle) instead of the exact length to ensure realisticlte$or the synthetic test.

The parameters of the detected line or circle have been wseerify if a valid
curve has been detected. Table 1 summarize the obtaindtsré&ach cell of the table
shows the percentage of correct matches and the averageguimme in seconds. As it
can be seen, all methods present a similar performancediegaorecision, i.e. number
of correct matches. As far as running time is concerned, HEqnted the best results
for the straight line detection experiments except for tlep £ase, where RANSAC
outperformed the others in running time. On the other haordhke circle detection ex-
periments, OVO was significantly faster than all others. fidason is that circle fitting
involves a larger number of parameters.

Method Step | 3step | roof 6 lines | 1circle | 5 circles
HT 100 0.15100 0.1499.90.16100 0.10100 12.09100 7.18
RANSAC|99.60.1099.9 0.1999.2 0.44100 0.13100 0.1493 5.19
QMDPE |99.8 0.72100 1.3299.4 3.06100 0.8%98 0.5368 17.4(
LKS 100 0.29100 0.5499.9 1.24100 0.3999 0.20100 7.6(
OovOo 100 0.4999.8 0.4699.6 0.4999.6 0.32100 0.06100 0.64

Table 1. Precision results and running time for the experiments. Each cell shevpetbentage
of correct matches and the average running time in seconds (bestiensisown in bold).

Another important parameter to evaluate a model fitting webtis its robustness
to outliers, which may be measured by the breakdown point [Pie experimental
setup described in [21] used noisy realizations of an imaifje @ne line to measure
the robustness of the method as the number of line pointedses while the noisy
points (i.e. outliers) increases. We have repeated thigrampnt but also evaluated
one case containing one single line and a cluster of poirighis known to degrade
the performance of some line fitting methods. The plots iufédgh shows the model
fitting error (in terms of the normal parameterand6 of the line) as a function of the
increasing noise. As it can be seen, all methods presentlasparformance regarding
precision and breakdown point, being robust up to more #5&h of outliers.

The introduced approach has been applied to agricultuiés and some prelim-
inary results are shown in Figure 6. The original images hosva in the left column
while the corresponding edge points are shown in the rigimen. The detected curves
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Fig. 4. Example of each type of noisy data used in the performance evaluatjostep, (b) three
step, (c) roof, (d) six lines, (e) one circle, (f) five circles.



Fig. 5. Breakdown-point plots for two analyzed cases. The error is prasémteg scale. The
plots for each case show the model fitting error in terms of the normahpeters andé of the
line as a function of the increasing noise.

are shown superimposed to both images. As it can be seengtheds have been suc-
cessfully able to detect the target objects (trees, fruitbteee tops from aerial images).

5 Concluding remarks

Computer vision plays an important role in many situati@rsagricultural image anal-
ysis. One of such problems is the detection and fitting of ggdmparametric primi-
tives such as straight lines and circles. A new model fittimgraach has been proposed
as an OVO problem. An efficient algorithm is used to miniminecader-value func-
tion and thus detect the desired curves in an image. The gedpapproach has been
implemented to detect straight lines and circles (inclgdiincle arcs) and experimen-
tal results have been shown. The method is efficient, rolousbise and presents a
very important property: both running time and memory castsease linearly with
the number of active points in the image. Other parametnigeesucan also be detected
by the proposed approach, which is expected to perform wedinamore parameters
are involved, e.qg. for ellipses. A very important issue isho decide a good parame-
terization for the OVO problem, which has important imptioas in the computational
performance of the method. Also, a strategy for generakiagtitial solution should be
designed for each different type of curve. It is interestmgompare the OVO compu-
tational costs to those associated to the Hough transfox®. €dmplexity is basically
the number of initial solutions times the time to run the GaNgwton method that is
linear in the number of active points in the image and cubib@number of curve pa-
rameters:. Now, letq represent the number of voting cells for each parametetrtlfiee
parameter space discretization size). The Hough transiges0(¢™) in both running
time and memory. This difference may indicate that, in pcacthe OVO approach is
not only suitable for detecting straight lines € 2), but it may be considered specially
appealing to shapes like circles & 3), ellipses ft = 5) and other parametric curves
that involve many parameters. The OVO performance is maractive as the number



of model parameters increase and for large images that wegldre large; to keep
good precision of the Hough approach.

Our ongoing work includes the development of a detector lgrses, which are
much more commonly found in agricultural images due to 30qmton and the ap-
plication of the developed techniques in agricultural EadSuch advances will be
reported in due time.
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Fig. 6. Detected lines in agricultural images using the experimental setup of Sdctind edge

detection.



