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Abstract

We present a motion segmentation algorithm that parti-

tions the image plane into disjoint regions based on their

parametric motion. It relies on a finer partitioning of the

image domain into regions of uniform photometric proper-

ties, with motion segments made of unions of such “super-

pixels.” We exploit recent advances in combinatorial graph

optimization that yield computationally efficient estimates.

The energy functional is built on a superpixel graph, and

is iteratively minimized by computing a parametric motion

model in closed-form, followed by a graph cut of the su-

perpixel adjacency graph. It generalizes naturally to multi-

label partitions that can handle multiple motions.

1. Introduction

Changes of vantage point and the motion of objects in

a scene induce a deformation of the domain of the image,

and estimating this motion field has been a central problem

in Computer Vision for many years. Horn and Schunck’s

pioneering work [15] proposed approximating such “opti-

cal flow” by a smooth vector field on the entire image do-

main. More modern renditions of their program include ro-

bust regularization that enable preserving motion disconti-

nuities [31, 5], as well as motion segmentation techniques

that partition the domain into regions where the motion is

well approximated by a low-dimensional parametric model

[11]. Although in principle such techniques can handle an

arbitrary number of regions, in practice the optimization be-

comes non-convex and rather laborious as soon as there are

more than two independently moving objects in the scene

[10]. There has also been work combining motion with in-

tensity and texture cues [3].

In this manuscript, we show that one can, without loss of

generality, approximate a given motion field to an arbitrary

degree by a partition of the image domain within which mo-

tion is constant, and then show that such a domain can be

described as the union of a finer partition based on photo-

metric characteristics of a static image. Then we formulate

the ensuing problem, that yields a multi-phase partitioning

of the image domain into regions of constant motion, as a

graph optimization problem, and exploit recent techniques

that yield fast and accurate results. This framework enables

us to handle multiple moving objects at no additional cost.

2. Motion Estimation and Segmentation

Let I(x, t) : D ⊂ R
2 × R

+ → R
+ denote a time-

varying image. Assuming a Lambertian scene seen under

constant illumination, it is common to model the domain

deformation induced by scene motion by assuming the ex-

istence of a motion field v : D → R
2; x 7→ v(x) such

that I(x, t + dt) = I(x + v(x)dt, t) + n(x, t), where the

L
2-norm of the residual n is assumed to be small. In the

limit where n = 0 and dt → 0, this is called the brightness

constancy constraint (BCC). As usual in functional approx-

imation problems, one has the choice of approximating v

globally (on the entire image domain D) with a very com-

plex function, for instance a general (infinite-dimensional)

diffeomorphism [28], or restricting the class of models sig-

nificantly (e.g. translational v(x) = d ∀ x or affine fields

v(x) = Ax + d), and then partitioning the domain into re-

gions, which we call Ωi, in which the model fits the data

within a specified accuracy. So, as long as the field is

square-integrable, either choice can make the residual n ar-

bitrarily small (for instance in the sense of L
2). The first

approach has been pioneered by Horn and Shunck [15],

while the second approach has been dubbed motion com-

petition [11]. Even more popular are local optical flow ap-

proaches that arbitrarily select both the model class and the

domain partition Ωi, typically made of rectangular windows

of fixed size [2]. These approaches, while attractive from a

computational standpoint, do not offer any guarantee of ap-

proximating the original motion field, assuming there was a

“true” one to begin with. Indeed, typically there is not. In

fact, even the previous two approaches are only valid on a

subset of the image domain D, away from occluding bound-

aries. Occluded regions O ⊂ D are those visible in one

image but not in the other. In these regions, v(x), x ∈ O is

simply not defined, as there is no possible correspondence.

Various approaches have been proposed to address this issue

[17, 27, 4], along with techniques to preserve discontinuities
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in the vector field (by using Total Variation as a regularizer,

rather than L
2, [1, 24, 12, 18, 16]). Most methods for deal-

ing with occlusions that we are aware of can be reduced to

the optimization of variants of the following functional:

v̂ = arg min
v,O

∫

D\O

(I(x, t + dt) − I(x + v(x)dt, t))
2

︸ ︷︷ ︸

BCC

dx+

+ λ1

∫

D

‖∇v‖1dx

︸ ︷︷ ︸

regularization

+λ2

∫

O

(
ε + ‖∇I‖2

2

)
dx

︸ ︷︷ ︸

occlusion

. (1)

where ∇I
.
= [ ∂I

∂x1

∂I
∂x2

] denotes the gradient of the image (a

row vector), It
.
= ∂I

∂t
, λ1, λ2, ε are weighting coefficients.

There are several possible variants of this model depending

on the choice of regularization or occlusion penalties in-

cluding just the area
∫

O εdx, rather than the area weighted

by the gradient of the image.

The alternative model would simultaneously attempt to

partition the domain into regions Ωi, with ∪iΩi = D,

within which the vector field is constant, say v = vi:

{v̂i}
N
i=1 = arg min

vi,ΩiO

∑

Ωi∩O=∅

∫

Ωi

(I(x, t + dt)−

− I(x + vidt, t))2dx + λ2

∫

O

(
ε + ‖∇I‖2

2

)
dx. (2)

Note that there is no need for an explicit regularization term,

assuming N is finite. The advantage of this formulation is

that, since each vi is constant in Ωi, it can be solved for in

closed-form given the region Ωi; omitting the arguments for

simplicity, and using the derivative notation to denote first

differences, we have

∫

Ωi

(∇Ivi + It)
2dx = vT

i

(∫

Ωi

∇I∇IT dx

)

︸ ︷︷ ︸

G(Ωi)

vi

+ 2

∫

Ωi

It∇Idx

︸ ︷︷ ︸

E(Ωi)

vi +

∫

Ωi

I2
t dx

︸ ︷︷ ︸

F (Ωi)

(3)

so vi(Ωi) = G−1(Ωi)E(Ωi), where G is called the second-

moment matrix, which has to be invertible, as we discuss

shortly. So, the problem becomes that of finding the parti-

tion {Ω} and the occlusion O. This can be cast as a region-

based segmentation problem, and solved using variational

techniques in the framework of Level Set methods [21].

This is easy to do for the case of two regions (e.g. “fore-

ground” and “background”), because it can be cast as a con-

vex optimization problem [10]. Unfortunately, in the pres-

ence of multiple motions (three or more), the problem be-

comes non-convex, and approaches involving logical com-

binations of level set functions quickly become unmanage-

able. For this reason, although developed in full general-

ity, variational motion segmentation approaches are mostly

used for binary (foreground/background) classification.

Consider a partition of the image domain sub-partitioned

into regions that have constant color or gray level to within

a specified accuracy ǫ,

Si | ∪i Si = D and

∣
∣
∣
∣
∣
I(x, t) −

∫

Si
I(x, t)dx
∫

Si
dx

∣
∣
∣
∣
∣
≤ ǫ

where the distance from the mean can be interpreted as

a proxy for constancy, and can be generalized to a small

gradient norm as a proxy for continuity. This partitioning

can be easily obtained with a number of “superpixel” over-

segmentation algorithms, for instance [30]. It is immediate

to see that the partition {Ωi}
N
i=1 must be a super-set of the

partition {Si}
M
i=1, in the sense that, at least away from oc-

cluding boundaries, each Ωi must be a union of Sj’s. If

this was not the case, I(x, t) would be constant (approxi-

mately within ǫ), and therefore ∇I(x, t) ≃ 0 ∀ x ∈ Ωi, and

the corresponding vi would be undefined, in the sense that

vi would have no effect in the BCC component of the cost

∇Ivi + It = 0vi + It = It. Therefore, it makes sense to

restrict the partition {Ω} to be made of unions of superpix-

els. Note also that this guarantees that the second-moment

matrix G(Ωi) is invertible, as previously mentioned.

We now address the issue of occlusions. In general, there

will be a subset of superpixels Sj that are entirely occluded,

but it is also possible for a superpixel region to be only par-

tially occluded. In other words, at occlusions, the motion

regions Ωi can split the superpixels Sj . However, these are

easily detected, for in this case ∇I(x, t) = 0, x ∈ Sj , but

at the same time I(x, t+dt)−I(x+vjdt, t) > 0, by the oc-

clusion assumption (unless the occluder region has the same

graylevel as the occluded region, in which case it cannot be

detected as an occlusion anyway). An accurate solution of

the functional (2) will have high residual at occluded re-

gions, therefore, the superpixel Sj is better off contributing

to the occlusion region Sj ⊂ O.

If a finer partition is desired, so partially occluded super-

pixels are further segmented into an occluded and an unoc-

cluded part, one can compare the intensity at time t with

that at t + 1 restricted to the superpixels that are detected

as occluded; by assumption, the occluding boundaries in

each image will be captured by the oversegmentation (illu-

sory contours, or boundaries between regions with identical

photometric properties will, again, not be detected).

In the next section, we illustrate our approach to carry-

ing out the minimization of the functional (2) using recently

introduced graph-based optimization methods, and in Sec-

tion 4 we show the results of our approach on representative

image data, including quantitative comparisons with motion

competition of [11].



3. Implementation

In this section, we describe our implementation of the

minimization (2) by restricting the regions Ωi and O to be

unions of superpixels Sj . We have implemented both the

case of translational motion as well as affine motion, which

we compare in Sect. 4.

3.1. Superpixelization

We use the publicly available Quick Shift [30] to extract

superpixels at multiple scales from the input frames. We

use a three-dimensional representation of each pixel, the

concatenation of the intensity value and its location within

the image. Unlike normalized-cut [25] superpixelization

techniques, the number of the superpixels are not fixed,

since the size and the number of superpixels is directly re-

lated to the complexity of the scene. The outcome of the

process in [30] is determined by three parameters: γ, the

trade-off between the intensity and the position of the pixel,

σ, the scale at which the density is estimated, and τ , the

maximum distance in feature space between pixels in the

same cluster. The parameter used for the experiments are

σ = 1, γ = 0.25 and τ = 3. A low value of σ can be used

to arrive at a conservative superpixelization.

Once the finer partitioning of the image is computed, the

superpixel graph is constructed. Each node in the graph rep-

resents a label. An edge is added between any two adjacent

neighbors. Furthermore, the features defined on regions

such as mean and standard deviation of the pixel intensi-

ties are stored on the nodes while the lengths of the shared

boundaries between two regions are stored on the edges.

3.2. Motion Segmentation Functional on Superpixel
Graph

We now write the data portion of the cost functional (2)

directly in terms of the superpixels; we also include the

shortest boundary length regularization which separates the

partitions:

{v̂i}
N
i=1 = arg min

vi,Ωi

∑

Ωi

∑

Sj⊂Ωi

∫

Sj

(

∇Ivi +
∂I

∂t
(x, t)

)2

dx

+
∑

Ωi

∫

∂Ωi

ds, (4)

where s denotes arc-length. In the next section we describe

the minimization of this functional.

3.3. Energy Minimization

We use an alternating minimization scheme to optimize

(4). For each given partition Ωi, we first compute the mo-

tion in closed form as defined in Section-2. For the case of

affine motion, we follow the lines of [11], and solve for the

parameters in closed form.

Given motion estimates for all the regions Ωi, we can

address the optimization of {Ωi} using the techniques de-

veloped in [14]. Since both the BCC and boundary regu-

larization terms are sub-modular, we can solve (4) for {Ωi}
as a max-flow/min-cut computation [19] which gives an op-

timal solution in the case of only two regions, foreground

and background. The first term in (4) describes unary terms

penalizing the optical flow residual, and the second term

penalizes the contour length and can be written in terms of

pairwise entities on the edges. Note that if we put the shared

boundary length of two neighboring superpixels as an entity

on the edges, a minimal-cut computed on the graph gives

the total shared boundary length. This value is basically the

length of the boundary separating two regions, see Figure 1.
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Figure 1: Graph Cuts optimization: The red cut separates

the superpixels {S1, S4} from {S2, S3}. It is clear that the

cut does the summation through the residuals which is the

first term of our motion segmentation functional. In addi-

tion, it sums the shared boundary lengths L({S1, S2}) and

L({S3, S4}) which is the boundary length separating these

two partitions.

3.4. Dealing with Multiple Classes

Our optimization scheme generalizes naturally to par-

titioning of the image plane when multiple motions exist.

While α-expansion and α/β-swap algorithms provide an

optimal solution for binary graph cuts minimization, they

also provide an approximate solution to the multi-labelling

problem on graphs [9, 19, 7].

3.5. Occlusion Detection

Theoretically, the superpixels at the occlusion should not

be assigned any flow since there is no correspondence. Nev-

ertheless, in practice, we start the minimization of (2) with

the assumption that there is no occlusion, and apply the mo-

tion segmentation algorithm explained in this section. In the



next step, given {Ωi, vi} pairs, occluded regions that mini-

mizes the energy (2) can be detected. In the case that a su-

perpixel Sj is fully occluded, it is straightforward to mark

it as occluded since any flow vector vj assigned will lead to

high residual. However, for a partially occluded superpixel

Sk, the residual computed on the pixels inside Sk can be

small unless vk is the correct motion that would have been

estimated in the case that Sk was never occluded.

To overcome this problem, we take advantage of inten-

sity as a coupling term in our motion segmentation algo-

rithm. When the intensity similarity term exp(−β(µj −
µk)2), where µj and µk are the intensity means of the su-

perpixels Sj and Sk and β is the coefficient, weights the

edges of superpixel graph, the graph cuts labeling will favor

the assignment of the same motion model to the superpix-

els with similar intensity profile. This approach is similar

to that of other occlusion detection algorithms [33, 26, 17]

which rely on anisotropic diffusion to recover from the er-

ror that occluded regions cause. Once we have a proper mo-

tion segmentation, we can detect fully or partially occluded

superpixels easily using graph cuts minimization. Subse-

quently, we split the partially occluded superpixels, and ex-

clude them together with the fully occluded ones from the

domain D. We repeat this procedure, alternating between

the motion segmentation and occlusion detection, until the

energy converges.

In our experiments, we use area based occlusion penalty
∫

O εdx, rather than the area weighted by the gradient of the

image.

4. Experiments

Figure 2 illustrates the features of our algorithm on a syn-

thetic example. In this test video, a puzzle-piece shaped re-

gion of a carpet texture is sliding to the left while the rest

of the image is moving to the right. The clustering algo-

rithm extracted 1,352 superpixels in the first frame of the

test video. The algorithm successfully segments the puzzle

piece in 3 iterations, each taking about 10ms, starting from

a random initialization in a bounding box. So, assuming

that we are given the superpixels, our algorithm finalizes

the segmentation in 30ms. Superpixelization on this image

takes about 400ms in Matlab, so the overall cost is still a

fraction of that of competing motion segmentation schemes.

Such a small number of iterations is made possible by

the optimal moves in the graph-cuts minimization and the

fast computation of the graph cut that relies on the super-

pixelization. Also, note that the initial bounding box does

not need to be close to the object to have a good segmenta-

tion.

In the following experiments, we have used two im-

age sequences recorded by D. Koller and H.-H. Nagel

(KOGS/IAKS, University of Karlsruhe)1. First, we have

tested our algorithm using both a translational and an affine

motion model and compared them in Figure 3. In this ex-

ample, a white car is turning to the right at the corner. Seg-

mentation and motion estimation are shown on the top, rel-

ative to the translational model, and on the bottom relative

to the affine model. Both are computed in 4 iterations, each

taking 10ms for the translational model, and 60ms for the

affine one.

Figure 4: Topological changes: Two distinct objects shar-

ing the same motion are shown. Although our algorithm is

initialized with a single object, it accurately labels the scene

since it allows splitting.

We also test the segmentation of two distinct object mov-

ing with the same motion, Figure-4. Even though we initial-

ize our algorithm with a single object, since the graph cuts

allows topological changes such as splitting and merging,

our motion segmentation algorithm accurately labels these

distinct objects.

In the next experiment, we test the estimation of multi-

ple motions. Graph cut minimization in this case provides

a more natural way of generalizing the approach to multi-

label segmentation, via a multi-way cut. Although there is

no polynomial time optimal solution for this problem, an

approximate solution is possible using the algorithms pro-

posed by [8].

The multi object motion segmentation for the frame-13

of the Taxi sequence is illustrated at Figure 5. In this frame,

the white car is still turning to the right (object 1) while an-

other black car is entering the scene from the left (object 2),

and the background is, for the most part, moving with trivial

(zero) motion, nevertheless, its motion is estimated (object

3). The segmentation and affine motion estimation are ac-

curate for both of the cars, and are a slight improvement on

the translational model.

Observe the “halo” effect, whereby an object includes, as

part of its motion, regions belonging to the uniform back-

1http://i21www.ira.uka.de/image sequences/



(a) (b) (c) (d) (e)

Figure 2: Synthetic Example: A puzzle-shaped part of the carpet is sliding to the left while the rest is moving to the right.

(a) The puzzle shape. (b) Superpixels (c),(d),(e) Motion segmentation at the first (initialization), second and third (and last)

iterations, respectively. The red superpixels describe the foreground while the blue ones describe the background. The green

arrows, starting from the centroid of the superpixels, represent the velocity of the superpixels.

(a)

Figure 3: Translational vs. Affine model: Motion segmentation for frame-13 of the “Taxi” sequence. (first column) Initial

bounding box on the reference frame and superpixels. (column 2,3,4) Evaluation of the segmentation regions and the motion

fields for both translational and affine motion models, in iteration one, two, and four. The affine motion model yields a

spatially-varying field on the turning taxi, but almost identical segmentation. Note that part of the background pavement is

attributed to the car. One could disambiguate split superpixels as described in the text and in Figure- 7, although in this case,

due to the constant background, technically one could not know for sure whether the car is indeed traveling with a “halo”

underneath.

ground. This can be eliminated by increasing the weight

of the boundary length regularizer, as shown in Figure-6.

Several authors have addressed this issue, including using

combinations of features [23, 22]. However, partially oc-

cluded superpixels still remain as a problem which will be

solved with the proposed occlusion detection algorithm.

In the next experiment, the proposed occlusion detection

method is tested on frame-1 and frame-13 of the Taxi se-

quence, Figure-7. Since the motion of both cars are slow

and the road beneath is smooth, in both cases the super-

pixels at the boundary are occluded only partially. Our ap-

proach successfully detects them, and splits to sub-regions

that are subsequently labeled as occlusions.

In order to arrive at a quantitative comparison, we use

[11] as a reference, we generated multiple sequences simi-

lar to that in Figure 2 (with different foreground and back-

ground texture), by randomizing the shape of the fore-

ground region and its motion under noise levels ranging

from 1% to 15%. We measure error by averaging the set-

symmetric difference between the estimated foreground re-

gion and the ground truth, normalized by the area of the true

foreground. This yields a figure of merit between 0 and 1.

Our algorithm presents superior robustness against salt and

pepper noise compared to [11], Figure 8. While the error of



Figure 5: Multiple Motion Segmentation: Three objects are shown: The white vehicle, the black vehicle, and the back-

ground. This poses no significant difficulty in our approach, that successfully estimates the motion and boundary of the

objects.

Figure 6: Effect of boundary regularization: The “halo”

effect discussed in Figure- 3 can also be easily eliminated

by increasing the weight on the boundary length regularizer;

the effect is shown for frame 1 of the Taxi sequence relative

to the translational and affine motion model.

our algorithm is 0.08 ± 0.01 at the 8% noise level, [11] has

achieved a poor accuracy with the error of 0.37± 0.01, and

could not converge at the higher noise ratios.

Since we adopt a partition-based approach to functional

estimation, the accuracy of the estimate is reflected in the

partition, and therefore we have chosen to compare the set-

symmetric difference, rather than the flow vector as one

would do in a plain optical flow algorithm.

Then we have measured the robustness to initialization

by computing the percentage of trials where the final solu-

tion at convergence was within expected error ratio. This

clearly depends on the initial conditions. While in our case

the algorithm is not particularly sensitive to initialization,

[11] exhibited some sensitivity, performing best with an ini-

tialization that was partially overlapping the object of inter-

est. In the absence of noise, both algorithms achieved 100%
convergence. However, at 3% noise level, [11] converged

only 66% of the times within the error of 21%, whereas our

algorithm converged 98% of the times within the error of

7%. Furthermore, we have tested our algorithm alone at the

noise level 10%, and it has managed to converge at 96% of

the trials.

Finally, as the computational efficiency was discussed

earlier, our approach converges to a solution with high ac-

curacy much faster than [11]. It should also be noted that

we are restricting this simulation experiment to two re-

gions, otherwise the approach [11] would require multi-

phase level set implementation at significantly increased

computational complexity.

5. Discussion

It may be at first seem surprising that we can outper-

form pixel-based motion segmentation schemes, since we

constrain the regions to be unions of superpixels. However,

the partition imposed by superpixels is non-committal from

the point of view of motion estimation, for it is a partition

within which the second-moment matrix is not invertible,

and therefore there is no added benefit in further subdivid-

ing these regions, for instance into pixels. On the other

hand, the computational advantage of operating on super-

pixels is evident in the computational improvements. Al-

though a vast literature on optical flow estimation exists,

with benchmark data sets [2], our model is more power-

ful than any of the (fixed-block partition) models thus de-

scribed. There are also other approaches based on Markov

Random Fields [20] deterministic relaxation [6], normal-

ized cuts [25] and expectation-maximization [32] that are

significantly slower than our approach.

Our approach is different than other methods utilizing

superpixels for motion segmentation [29] and motion esti-

mation [35]. The algorithm, proposed in [29], exhaustively

matches superpixels in two frames and solves the motion

segmentation problem on the pixel domain where the su-

perpixel matching is a motion prior. In the case of [35], the

authors propose a method for constructing consistent seg-

ments (superpixels) across the frames where the segments

that are matching to each other have similar shape and ap-

pearance. Once the consistent segments are constructed, it

is straightforward to estimate the motion relying on this cor-



Figure 7: Handling Occlusions: Here we illustrate the dis-

ambiguation of boundary superpixels that are split by an oc-

clusion, using intensity as a coupling term in the segmenta-

tion. We show the final segmentation for frame 1 and frame

13 respectively, which can be seen to eliminate the “halo”

underneath the vehicles. The superpixels that are splitted,

and than marked as occluded are represented with yellow

boundaries.

respondence.

We are able to obtain our result, also thanks to recent

advances in combinatorial optimization schemes for solving

variational problems of the kind (2) [19, 25, 34, 13], and in

particular [14].

Of course, our model has limitations. Since it relies on

superpixels, if superpixels fail to (over)segment the image,

and instead include within each region Sj significant photo-

metric variability, our algorithm will fail. Therefore, a key

to the successful use of our model consists in choosing a

conservative threshold for the superpixels.
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Figure 8: Accuracy: This figure presents the comparison

between the accuracy of both algorithms under different

noise levels.
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