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Abstract

We present an approach for dense estimation of motion

and depth of a scene containing a multiple number of dif-

ferently moving objects with the camera system itself being

in motion. The estimates are used to segregate the image

sequence into a number of independently moving objects

by assigning the object hypothesis with maximum a poste-

riori (MAP) probability to each image point. Different to

previous approaches in 3-dimensional (3D) scene analysis,

we tackle this task by first simultaneously estimating motion

and depth for a salient set of feature points in a recursive

manner. Based on the evolving set of estimated motion pro-

files, the scene depth is recovered densely from spatially and

temporally separated views. Given the dense depth map and

the set of tracked motion estimates, the likelihood of each

image point to belong to one of the distinct motion profiles

can be determined and dense scene segmentation can be

performed. Within our probabilistic model the expectation-

maximization (EM) algorithm is used to solve the inherent

missing data problem. A Markov Random Field (MRF) is

used to express our expectations on spatial and temporal

continuity of objects.

1. Introduction

This contribution addresses the detection of indepen-

dently moving objects in a traffic scene as a stereo camera

platform moves through it. Object detection is performed

based on the relative motion of textured objects and the ob-

server. To obtain a dense representation of the observed

scene, object detection is formulated as an image segmen-

tation task where each image point is tested for consistency

with a set of possible hypotheses, each defined by its rel-

ative 3D motion. Although a field of active research for

decades, a general and robust solution to this problem is

still elusive, since the observable 2D image motion is gen-

erated by the combined effects of camera motion, the mo-

tion of independently moving objects and scene structure.

As scene structure basically denotes the depth of a scene

point relative to the observing camera, in the sequel we use

the term scene depth likewise. Isolating these three factors

proves to be a difficult task as depth discontinuities and in-

dependently moving objects both cause discontinuities in

the image motion field. Therefore it is not possible to sep-

arate these factors without 3D motion and structure estima-

tion. Methods for finding the motion and structure of an en-

tire scene can be categorized into either (i) ‘direct’ methods

[10], where the unknown motion and structure parameters

are recovered simultaneously from measurable image quan-

tities at each pixel in the image(s) or (ii) ‘indirect’ methods

[14], which rely on a sparse set of distinct feature points

that are extracted beforehand from the image(s). As for our

application, the detection and segmentation of moving traf-

fic participants, the principle requirements on our segmen-

tation scheme are a sufficiently dense representation of the

scene, i.e. a maximum number of scene points should be

reconstructed, a reliable identification and correction of er-

roneous points, the ability to cope with general object mo-

tion and computational efficiency, we pursue the strategy of

(ii) when estimating the motion components and then use

the motion estimates to guide the computation of a dense

depth and segmentation map in a direct manner – also in re-

gions of the image where there is less information. Assum-

ing rigidity of the individual scene objects, the 3D motion

estimates can be used as a strong guide to stereo and tem-

poral matching in recovering a dense scene structure and

subsequently a dense scene segmentation. Object motion

is estimated using an EM-based approach that consists of a

multiple object tracking filter with probabilistic data asso-

ciation. In the E-step, the probability of an observation to

belong to each of the object hypothesis is computed based

on the current state estimates. In the M-step, the state and

error covariance of each object is robustly updated in a re-

cursive manner. Based on these motion estimates the scene

structure is then recovered densely from spatially and tem-

porally separated views. In the segregation step, we derive a

global cost function that incorporates the motion and struc-

ture estimates while considering the fundamental property

of spatial and temporal label consistency and segregate the

image accordingly.



The remainder of the paper is organized as follows: Sec-

tion 2 recapitulates the motion segmentation task and in-

troduces notation and constraints used within this work. In

Section 3 the segmentation filter framework is presented.

The performance of our approach is illustrated in Section 4

on real and synthetic image data.

2. Problem Formulation

Following the derivations of Longuett-Higgins and

Prazdny [12], for each object in the scene we consider the

equivalent problem of a stationary object and a moving

observer, i.e. we express the entire scene dynamics by a

set of rigidly moving objects, each measured relative to a

camera-fixed coordinate system. For each object, the in-

stantaneous rigid body motion of this coordinate system is

specified by the translational and rotational motion of its

origin, t = (tx, ty, tz)
T and Ω = (ωx, ωy, ωz)

T , respec-

tively. Formally this can be expressed by the 3D motion

field ω (X) ∈ R
3, with the parameterized motion of each

point X = (X,Y, Z) ∈ X being

ω (X) =
(

Ẋ, Ẏ , Ż
)T

= −t − Ω × X . (1)

The computation of the motion field is obviously under-

determined due to the projection u (x) ∈ R
2 of ω (X) onto

the image plane. The task becomes even more ambitious if

the observer itself is moving and the scene consists of a mul-

tiple number of differently moving objects. Consequently,

the flow field u (x) is generated by an unknown number of

unknown object motions with the observer motion super-

imposing all motion vectors (x states the collection of all

image points). A well studied area in this context is 2D mo-

tion estimation, which is concerned with the determination

of the flow field u (x). Here, variational techniques based

on the method of [8] yield the most accurate results as e.g.

presented in [3]. The major limitation of 2D motion esti-

mation is the fact that motion cues present in the 2D projec-

tion are insufficient to reconstruct the motion present in the

3D scene. The relatively young area of dense 3D motion

estimation resolves this limitation by additionally estimat-

ing the depth of the scene. Here, good results have been

achieved using the variational framework. Next to the com-

putationally expensive joint estimation of motion and struc-

ture at the same time [9], in [15] a method is presented that

separates the problem into the two sub-problem scene flow

and depth estimation, resulting in an efficient computation

of the individual problems.

In our approach we integrate 3D motion and depth es-

timation into one feature-based approach. Different to the

approaches above, we apply a parametric motion model, ex-

pressing the motion field as a collection of of a rigidly mov-

ing objects with each object being specified by its motion

parameters. Based on the joint estimate of depth and mo-

tion on the basis of a sparse set of features, we compute a

dense depth map of the scene and derive dense scene flow.

In the segmentation step, each image point is then assigned

to the object hypothesis, expressed by a unique set of mo-

tion parameters, that explains the underlying motion best.

Object state. In our framework, the 3D motion for

each object entity is expressed by the continuous-valued

variable θt. We use a factorial representation of our

state vector with θt = {θ1
t , . . . , θj

t , . . . , θ
J
t }, represent-

ing the quantitative state information for each object θj
t =

(ωx, ωy, ωz, tx, ty, tz)
T
, independently. The number of ob-

jects J within the current, discrete time instant t is assumed

to be fixed. θt is estimated for each object j independently

based on a distinct set of feature points that are tracked over

time. More details will be given in Section 3.2.

Vision cues. In our implementation we use two vision

cues to obtain dense 3D structure and motion information of

a scene from multiple images. One is stereo vision, which

drastically facilitates the problem stated above, as the scene

is reconstructed from two views recorded at the same time,

i.e. no constraints (e.g. rigidity, etc.) need to be imposed.

The other is visual motion, which expresses the displace-

ment of image points in temporally separated views caused

by the relative scene motion in between.

We integrate stereo vision and visual motion into one

probabilistic framework by introducing a depth related

parametrization of the spatial and temporal (epipolar) con-

straints [13]. The approach is based on a depth estimate

obtained by stereo vision, which greatly simplifies the com-

plexity of the segmentation task. Using the initial informa-

tion of the stereo reconstruction, the motion parameters can

be obtained without scalar ambiguity. After obtaining the

motion parameters, the initial depth estimates ẑt can be fur-

ther improved by integrating the motion cue and therefore

more epipolar geometry constraints can be used.

Our camera setup consists of a fully calibrated stereo rig

with the world origin at the right camera (quantities that are

related to the right camera are indexed with character ‘r’ in
the sequel). In normalized image coordinates x̃ = (x, y, 1),
the mapping from an image point x̃r in the right camera to

an image point x̃′ in a second camera is

x̃′ = K′RK−1
r x̃r + K′tZ . (2)

Kr and K′ state the camera calibration matrices of the two

cameras respectively. R is the 3x3 rotation matrix and t

the 1x3 translation vector specifying orientation and pose

of the second camera relative to the right camera. It can

be seen that the mapping is divided into a component that

depends on the image position alone but not on the depth Z.

This term takes account of the camera rotation. The second

term depends on Z but not on the image position and scales

with the amount of translation between the cameras, i.e. x̃′



moves along the epipolar line as a function of the inverse

depth, starting from Z = ∞ and going in the direction of

the epipole K′t.

Concerning the stereo cue, x̃′ represents the correspond-

ing image point x̃l in the left image. Given the internal

and external camera parameters, the only unknown in (2)

is d = 1/Z and the corresponding point in the left image,

along the epipolar line, can be parameterized by

s (xr, d) = s = xr + dKlt . (3)

Above, the correspondence search has been drastically sim-

plified by rectifying the stereo images such that the epipolar

lines coincide with the corresponding horizontal scan lines

in the warped images, i.e. t = (tx, 0, 0)
T
.

For the motion cue, x̃′ consists of the temporally corre-

sponding image point x̃t+1,r in the right camera. The epipo-

lar constraint here expresses the geometrical relationship of

point correspondences between two views due to the motion

of the stereo camera system. The feature-based estimation

of object motion θt from point correspondences is explained

in Section 3.2. An adequate description, which formally de-

scribes the displacement of an image point as a function of

3D motion and (inverse) depth, is given by

ut,i = CΩΩt + dCttt , with Ctt
=

[−f 0 x
0 −f y

]

and CΩ =





xiyi

f
− (f2+x2

i )
f

yi

(f2+y2

i )
f

−xiyi

f
−xi



 .
(4)

The corresponding image point in image Gt+1 for image

point xr in image Gt, parameterized by d, then is

m (xt,r, d, θt) = m = xt,r + CΩΩt + dCttt . (5)

The constraints introduced above are used within the motion

and structure estimation process to efficiently guide the cor-

respondence search and evaluate current estimates as pre-

sented in the sequel.

Observations. Information from the environment is ac-

quired through a sequence of observations Y0:t =
(Y0, . . . ,Yt), with Yt = {Yt,1, . . . ,Yt,i, . . . ,Yt,N} be-

ing a set of random variables. Throughout the paper, yt =
{yt,1, . . . , yt,i, . . . , yt,N} represents a sample realization of

Yt. N states the number of image points. The reconstruc-

tion and segmentation process are directly evaluated on the

image gray values gt(xi) = gt,i ∈ Gt, assuming observa-

tions to be i.i.d. Gaussians. Concerning the stereo cue, the

similarity between gray value gt,i at image position xt,i in

the right camera (‘r’ is omitted in the sequel) and gt,si
at

image position si in the left image, parameterized by zt,i, is

expressed by

P (ǫs
t,i|zt,i) =

1√
2πσ

exp

(

−
(

gt,i − gt,si

)2

2σ2

)

. (6)

The similarity of the motion cue is evaluated along the tem-

poral epipolar line and is written

P (ǫm
t,i|θt, zt,i) =

1√
2πσ

exp

(

−
(

gt,i − gt,mi

)2

2σ2

)

, (7)

withmi stating the corresponding point in the next right im-

age, parameterized by θt. σ states the error distribution of

motion and stereo cue. With this, our observations consist

of the combined error mapEt, which is composed of the er-

ror ǫm
t and ǫs

t at each pixel position. For optimal motion and

depth estimates, Et should reach values close to or equal to

zero.

Association process. The fact that the scene consists of

a multiple number of differently moving objects is consid-

ered next by introducing a data association process. Ob-

viously, this is a crucial task for motion estimating as pro-

posed in this work. Different to methods that are operating

on pixel level to determine the local motion field, our ap-

proach operates on a global scale in the entire image. A

wrong or erroneous assignment of observations in the mo-

tion estimation process would lead to heavily corrupted re-

construction and segmentation results. Generally, the dif-

ferent approaches can be classified as either hard or soft

data assignment method. Hard denotes the assignment of

an observation to one (and only one) hypothesis, whereas

soft means the assignment of an observation to an object

hypothesis proportional to some weight. We pose the prob-

lem of multiple object tracking and scene segmentation as

incomplete data problem with the observations being the in-

complete data, whereas the object-associated observations

state the complete data.

To capture the unknown relationship between an obser-

vation and the object that caused it, an association process

Lt is introduced with its components being defined

ljt,i =
{

1 if yt,i originated from object j
0 else .

(8)

A sample realization of the association process is defined

as binary label field lt = (lt,1, . . . , lt,N ) with a label vec-

tor lt,i = ej for each observation i. ej states a unity vector

of length J . This formalizes our assumption that an obser-

vation yt,i originates from exactly one object j. For nota-

tional convenience we restrict our description to only one

object instance within θt in the sequel and skip the hypoth-

esis index j. If necessary, we will resort to it in the text. To

account for observations with a low confidence, i.e. all hy-

potheses seem to be equally unlikely for that observation,

we further introduce an ambiguity label (AMB) which will

be expressed by j = 0. In our estimation scheme the asso-

ciation process is interpreted as missing data regarding the

observations. Finally, we define the complete data through

time as E0:t = {E0:t,L0:t}.



3. Segmentation Filter

The aim is now to find the optimal motion and depth es-

timates and derive from that a segmentation that segregates

the scene into regions of similar 3D motion. In this con-

tribution we carry on the work presented in [1], where an

iterative scheme is proposed that splits the problem stated

above into a set of sub-problems which are then solved sep-

arately. Concerning the estimation of θt the EM frame-

work [5] is applied, which consists of iteratively comput-

ing the expected complete data in the E-step and afterwards

estimating the state, based on the complete data, in the

M-step. Different to the standard EM algorithm, a penal-

ized maximum likelihood (ML) estimate is obtained (see

e.g. [6]), leading to a MAP estimate of θt according to the

Bayesian recursive update rule. The presented approach is

time-recursive in that the motion estimates from the previ-

ous time instant are used as prior. Based on the motion es-

timates, the scene depth ẑt is then recovered densely from

spatially and temporally separated views. Each EM-loop

terminates with the segregation of the image into a set of

disjoint, non-overlapping regions, resulting in a hard scene

segmentation l̂t. Though the approach presented in [1] in-

corporates temporal dependencies in the motion estimates,

it ignores them in the segmentation and depth estimation

process. Therefore, in this contribution, we extend our ex-

isting framework by temporal dependencies of the segmen-

tation and depth estimation process, resulting in a spatially

and temporally consistent scene segmentation scheme. Fol-

lowing the notation of [1], each iteration of the proposed

algorithm consists of the following steps on the (k + 1)-th
iteration, with Θt = {θt, zt} for notational convenience.

In the E-step, the conditional expectations of lt are com-

puted based on the actual observations and state estimates,

which is equivalent to computing the probabilities of an im-

age point to belong to each of the object hypotheses

Q(Θt|Θ̂k
t ) = E[logP (Et|Θk

t , Et−1)|Et, Θ̂
k
t ] . (9)

A segmentation

l̂k+1
t = arg max

lt

{

Q(Θt|Θ̂k
t )

}

, (10)

is derived from these conditional expectations in the im-

age segmentation step. The segmentation is used to derive

object-specific data, as e.g. the gray value/depth distribution

within the object boundaries. The conditional probabilities

are then used in the motion update of theM-step

Θ̂k+1
t = arg max

θ
t
,z

t

{

Q(Θt|Θ̂k
t ) + logP (Θt|Et−1)

}

, (11)

to weight the observations. Scene depth ẑt is recovered

densely from spatially and temporally separated views. k ∈
{1, . . . ,K} states the iteration index. The two steps are

repeated until either the parameter estimates converge or

some maximum number of iterations is reached.

3.1. Estep

By only considering data from the present and previous

time step, the likelihood term in (9) gets

logP (Et|Θt, Et−1) = logP (Et, lt|Θt, Et−1) =

logP (Et|lt,Θt, Et−1) + logP (lt|Θt, Et−1) .
(12)

Regarding our label prior, spatial dependencies are incor-

porated into the model to account for the natural notion that

physical objects extend in space. The final Q-function gets
1

Q(Θt|Θ̂k
t ) =

N
∑

i=1

E[lt,i|Et, Θ̂
k
t , Et−1]

(

D(ǫt,i|Θt) − V1(Θt)
)

−
∑

i,n∈c

E[lTt,iV2(Θt)lt,n|Θ̂k
t ] .

(13)

V2(Θt) is a matrix of dimension J ×J with element {j, u}
equals to logP (lt,i = ej , lt,n = eu) = λ(eTj eu). λ is a

regularization constant rating the influence of neighbouring

sites to the prior term. This model can be interpreted as

the well known Potts model. A detailed mathematical

derivation of the single terms can be found in [1].

To capture the strong statistical dependency of the as-

signment process in the temporal domain (as image points

with coherent label value are expected to follow the under-

lying, true object along a smooth trajectory, parameterized

by state variable θt) we extend the single elements of our

first-oder clique V1(·) from above in such a way that

V1(Θt, Et−1) = [logP (e1|Θt, Et−1),

. . . , logP (ej |Θt, Et−1), . . . , logP (eJ |Θt, Et−1)]
T .

(14)

We take the corresponding fixed label field estimate from

the previous time step and evaluate the label consistency

over time. Therefore, for each image point at time t, its ex-
pected location in the previous image must be determined.

This is done by deriving the expected image coordinates

from (5), given state estimate θt. With this simple image

warping method, the corresponding label value in the pre-

vious label field can be determined. As a measure of label

similarity along the expected object trajectory we propose

to evaluate the similarity of the assumed object motion in

the present and in the previous image. This is quantified by

the translational motion component tt ⊂ θt. The individual

elements of V1(Θt, Et−1) then are

logP (ej |Θt, Et−1) =
(

t
j
t − tu

t

)T

Σ−1
(

t
j
t − tu

t

)

, (15)

with u being the hypothesis index which has been extracted

at the back-projected position in l̂t−1. Equation (15) quanti-

fies the dissimilarity of the two state vectors indexed j and u

1D(ǫt,i|Θt) = [logP (ǫt,i|e1, Θt), . . . , logP (ǫt,i|eJ , Θt)]
T

V1(Θt) = [logP (e1|Θt), . . . , logP (eJ |Θt)]
T



under the assumption that they are distributed Gaussian. Σ
states a fixed, isotropic covariance matrix. With this mea-

sure we enforce a smooth propagation of our association

process over time.

Finally, the posterior probability of the label variable at

position xi is E[lt,i|ǫt,i, θ̂
k
t , ẑk

t,i, l̂t−1] = πt,i, with the j-th
element

πj
t,i =

P (ǫt,i|lt,i = ej , Θ̂
k
t )P (lt,i = ej |Θ̂k

t )
∑J

s=1
P (ǫt,i|lt,i = es, Θ̂k

t )P (lt,i = ej |Θ̂k
t )

, (16)

expressing the probability that xi is assigned to object hy-

potheses j.

Soft data assignment. A probabilistic data association

measure is obtained by applying pseudo-likelihood (PL) ap-

proximation. The PL is evaluated by restricting the statis-

tical dependencies of the label field in above expression to

the local neighborhood Gi of each point, i.e.

P (lt,i|Θt) ≈ P (lt,i|πk−1
t,u , u ∈ Gi,Θt) , (17)

with πk−1
t,u being the estimates from the previous iteration

step.

Scene segmentation. In the segmentation step the label

that generates the highest probability is assigned to each im-

age point. C quantifies the overall costs of a segmentation

with each erroneously assigned image point producing the

same costs. Our Bayesian decision rule assigns the hypothe-

ses with MAP probability to each image point and therefore

minimizes C , i.e. minimizes the number of segmentation

errors. Based on our test statistic πt,i, we formulate our

segmentation problem as

l̂k+1
t = arg min

lt

{

N
∑

i=1

D(ǫt,i|Θ̂k
t ) + V1(Θ̂

k
t , Et−1)+

∑

i,n∈c

lTt,iV2(Θ̂
k
t )lt,n







.

(18)

An optimal labeling is found using a discrete energy min-

imization technique based on the well known graph-cut

framework [2]. The optimal labeling l̂k+1
t is then used

within a gating process in the update step of our track-

ing filter, restricting the number of valid observations for

a given object hypothesis to the observations that have been

assigned to the respective label. If a track has no support in

the current segregation step, i.e. no image point is assigned

to the respective label, the track is deleted from the list of

tracked object hypotheses.

3.2. Mstep

Motion estimation. Different to direct approaches as i.e.

[15, 9], which determine the motion from the image gray

value variations itself, we use an indirect feature-based ap-

proach in our current framework. This allows for efficient

and robust motion and depth estimation simultaneously in

one filter step. We show that, though we are minimizing

a different error metric when applying feature-based mo-

tion estimation, also the overall error Et converges to low

values. For each object hypothesis independently, a state

estimate is obtained based on a set of Mt ⊂ N salient fea-

ture points Xt,i, i = (1, . . . ,Mt) of a rigidly moving ob-

ject in 3D space. Following [4], we have applied the idea of

the ‘reduced-order observer’ in order to reduce the dimen-

sion of Xt to one state for each tracked point, encoding its

depth ρt,i, i.e. Xt,i = (xt,i, ρt,i). It is assumed that the cor-

responding image points of xt,i can be determined exactly

for all scene points in all views within the feature tracking

scheme. Depth points propagate over time according to

ρt,i = (0, 0, 1) [R (Ωt) Xt−1,i + tt] . (19)

With this, the coordinates of a scene point at time t are

Xt,i = Π−1 (xt,i, ρt,i), whereΠ−1 (·) states the inverse pro-
jection function.

Given the set of tracked feature points, observations con-

sist of the corresponding image points in the left and follow-

ing right camera with image coordinates xt,l,i and xt+1,i, i.e.

yt,i = (xt,l,i, xt+1,i).
Concerning our observation model, the image position

in the following right image can be predicted from the cur-

rent frame using (5), which states the instantaneous veloc-

ity field model. Given the current depth estimate ρt,i, it

is also possible to derive the corresponding image coordi-

nate st,i in the current left image using (3). With this, our

combined observation equation is defined as h(θt,i, ρt,i) =
(mt,i; st,i) + rt. Observation noise rt is assumed to be a

zero-mean, white Gaussian with covariance matrix Rt =
E[rtr

T
t ]. The observation residual is then vT

t,iR
−1
t,i vt,i, with

vt,i = (|xt+1,i − mt,i| + |xt,l,i − st,i|), expressing the pro-

jection error for each point xt,i into the following right and

current left camera image. We weight this residual with the

posterior probability πt,i of the label variable at the respec-

tive position i.
By additionally evaluating the second term of (11), we

obtain a MAP state estimate considering state informa-

tion from time (t − 1), i.e. we integrate the state evolution
through time into our estimation scheme. This is formu-

lated by the Chapman-Kolmogorov equation P (θt|Et−1) =
∫

P (θt|θt−1)P (θt−1|Et−1)dθt−1, which expresses the pre-

dicted state distribution from time instant (t − 1) to t based
on the a priori state distribution P (θt−1|Et−1) and an ap-

propriate model that accounts for the system dynamics. The

model accounts for uncertainties and model errors through



white, zero-mean Gaussian process noise qt with error co-

variance matrix Qt = E[qtq
T
t ]. We assume the prior

distribution being embodied in the probability statement

P (θt−1|Et−1) = N (θ̂t−1,Pt−1), with θ̂t−1 and Pt−1

being the mean estimate and covariance of a Gaussian.

Given the above equations, the best choice for θt then is

P (θt|Et−1) = N (θ
t|t−1

,P
t|t−1

), with θ
t|t−1

= f
(

θ̂t−1

)

stating the predicted state based on the previous estimate

θ̂t−1. The same holds for the predicted error covariance

P
t|t−1

. In [1], the iterated extended Kalman filter is pre-

sented to find the MAP estimate to this formulation. Non-

linearities in the system model are handled by iterative re-

linearization of the model equations within the update step.

Outlier detection is performed based on a significance test

of the error distribution of vt.

Besides yielding a robust motion estimate, the output

of the proposed method is also used to initialize new ob-

ject hypotheses. This is done by analyzing the outliers

for pattern of similar motion, as distinct moving objects

that are not contained in the tracking process yet, produce

coherent groups in the outlier vector. To identify these

groups, an iterative RANSAC approach 2 is chosen. It par-

titions the outliers into point sets with the members of each

specific set following a motion that can be approximated

by the same constant motion model over n frames. For

any stable outlier point set, 4 random points are selected

from the set of outliers and the 2d homography H is cal-

culated for all n − 1 correspondences. The distance for

each putative correspondences in the outlier set is calcu-

lated using the squared symmetric transfer error d2
transfer =

(xout − H−1x′
out)

2 + (x′
out − Hxout)

2 as proposed in [7].

To enforce local connectivity and motion similarity, the dis-

tance function is also weighted with the spatial distance and

motion vector distance of outliers. As the number of match-

ing points is unknown in this context, outliers are assumed

to belong to the same group when their distance d2
transfer to

the estimated homography is below a predefined threshold

t. The group that fulfills d2
transfer < t is the new consensus

set. For the cost function of a consensus set the points of the

consensus set are scored according to their distance d2
transfer

to the model while the outliers are given a constant weight.

The steps are repeated until the number of correspondences

is stable and the costs of the consensus are minimal. The

resulting consensus set is assumed to be the largest group

in the remaining outlier set that can be approximated by ho-

mographic projection. After storing the group members for

later initializiation, they are removed from the outlier set.

The algorithm is repeated with the remaining outliers until

either the size of the last found consensus set or the num-

ber of remaining feature points is below a predefined thresh.

The result is a set of groups which represent the new mo-

tion segments. To avoid an over segmentation, a maximum

2Based on the RANSAC Toolbox for Matlab by M. Zuliani

number of groups is defined. The resulting groupings are

used to initialize a new object hypotheses if the number of

spatially clustered image points exceeds a certain threshold.

Scene depth estimation. The final step within one EM-

cycle is the dense estimation of the scene depth. For each

scene point, the depth with MAP probability is determined

ẑt,i,MAP ∝ P (ǫt,i |̂lt,i, θ̂t, zt,i)P (zt|θ̂t, Et−1) (20)

Similar to the notation introduced above, we formulate this

as a discrete, combinatorial optimization problem with the

likelihood being expressed as data term

logP (ǫt,i |̂lt,i, θ̂t, zt,i) = T (ǫt,i |̂lt,i, θ̂t) , with

T (ǫt,i |̂lt,i, θ̂t) = [logP (ǫt,i|zt,i = 1, l̂t,i, θ̂t), . . .

. . . , logP (ǫt,i|zt,i = T, l̂t,i, θ̂t))]
T .

(21)

Like in the motion estimation step, a MAP estimate consid-

ering information from time (t − 1) is obtained by evaluat-

ing the second term of (11)

logP (zt,i|θ̂t, Et−1) = V1(θ̂t, Et−1), with

V1(θ̂t, Et−1) = [logP (zt,i = 1|θ̂t, Et−1), . . .

. . . , logP (zt,i = T|θ̂t, Et−1)]
T .

(22)

Temporal coherence is evaluated by predicting the MAP es-

timate ẑt−1,i from (t − 1) to t according to (5) and (19),

resulting in the predicted depth estimate ẑ
t|t−1,i

. Equa-

tion (22) is evaluated according to the temporal compatibil-

ity term V1(θ̂t, Et−1) = min(|zt,i − ẑ
t|t−1,i

|, a), assigning

low cost to values that are close to the prediction and high

values otherwise. a states the maximum value of our robust,

truncated linear cost function.

Spatial smoothness of the reconstruction result is guar-

anteed by modeling zt as a MRF with the same configura-

tion as the label field. Disparity estimation is achieved to

pixel accuracy by finding the optimal configuration of zt,i

for each image point, which is equivalent to minimizing the

following energy functional

ẑt,MAP = arg min
z

t

{

N
∑

i=1

T (ǫt,i |̂lt,i, θ̂t)+

V1(θ̂t, Et−1) +
∑

i,n∈c

zt,i
TV2(Θ̂

k
t )zt,n







(23)

Each image point can be assigned to one value zt,i = z out

of a set of candidate depth values z ∈ (1, . . . ,T). Similar to

the label term introduced above, we enforce spatial and tem-

poral smoothness on the evolving 3D structure which is also

modeled through an MRF. At initialization, depth map ẑ1
t,i

and segmentation l̂
1

t,i consist of the predicted values from

ẑK
t−1 and l̂Kt−1. (23) is computed using a belief propagation

framework similar to the approach of Larsen et al. [11].



Figure 1. (a) Right camera image. (b) Ground truth disparity map. (c) Sub-pixel accurate correlation-based SVS stereo matcher (Γ =

0.56, Λ = 0.57) (http://www.ai.sri.com/software/SVS). (d) Sub-pixel accurate block-based stereo matcher (Γ = 0.65, Λ =

0.68). (e) Pixel accurate belief-propagation framework as presented above (Γ = 1.03, Λ = 0.87).

4. Experiments

The performance of our approach has been evaluated on

real and synthetic 3 image data. For each track, the obser-

vations within the M-step are extracted from the respective

set of tracked feature points based on a correlation-based

block matching technique. The filter output, representing

the time-smoothed object parameters of object j, is then

fed back into the image segmentation process. In a sub-

sequent step, points that are not conform with the label-

ing are deleted from the list of tracked feature points and

replaced by new points, sampled from the labeled region

in the image. The system state for each track is initial-

ized with zero velocity and depth ρ1:M0
, which is extracted

from the initially estimated depth map. The number of pos-

sible hypotheses J is defined by the momentary number

of distinct 6-DoF motion profiles in the scene. Regarding

the relative importance of data and smoothness term the

regularization factor has been adapted empirically to val-

ues between λ = 0.05 − 0.5. In Figure 1, the output of

different stereo reconstruction methods is shown. The es-

timation quality of the different approaches has been de-

termined quantitatively by computing the average dispar-

ity error Γ = 1/N
∑N

i=1
|∆gt − ∆est| (gt:ground truth,

est:estimate). As we are interested in a dense scene rep-

resentation, also the total number of reconstructed scene

points must be considered when evaluating the different ap-

proaches. Therefore we define Λ = Nest/Ngt as a mea-

sure of the density of our depth map. Our examination of

the different stereo matching algorithms showed, that the

block-based approach (Figure 1-(d)) produced slightly bet-

ter estimation results (Γ < 0.6,Λ ≈ 0.6) compared to the

matcher based on belief-propagation (Γ < 0.9,Λ ≈ 0.85)
(Figure 1-(e)). The crucial benefit of latter approach is the

much higher reconstruction density. See caption for details.

Figure 2 depicts the mean segmentation error per pixel, ac-

cording to (6) and (7), over time when initialization of new

object hypothesis is suppressed (solid blue) and when new

object hypotheses are added to the filter bank for the stan-

3Downloaded from the .enpeda.. web site at

http://www.mi.auckland.ac.nz

Figure 2. Mean segmentation error per pixel ǫt and mean recon-

struction error per feature point vt (‘Feature Error (M-Step)’) for

a traffic scene where two objects are entering the field of view

at frame 30 and 65, respectively. ‘SUPPRESS’ shows the er-

ror propagation if the initialization of objects with a distinct mo-

tion is suppressed and the ambiguity label (AMB) is switched off.

‘AMB>20’ shows the error propagation if AMB is considered in

the segmentation. Image points with an error ǫ
i
t > 20 are then

assigned to AMB. ‘STD’ shows the standard case, where object

hypotheses have been initialized at frame 32 and 68.

dard case (dashed red). The colored, vertical bars indi-

cate the time instant when an object hypotheses has been

added to the filter bank. Figure 3 illustrates the segmenta-

tion pipeline. After estimating scene motion (a) and scene

structure (b), the image is partitioned accordingly (c+d).

Figure 4 shows segmentation results of typical traffic sce-

narios with differently moving objects.

5. Conclusion

In this contribution we have presented an iterative pro-

cedure for dense estimation of motion and depth of a scene

containing a multiple number of differently moving objects

with the camera system itself being in motion. The data

association problem has been solved using the EM frame-

work. Within the association process, which has been im-

plemented as labeling problem, a MRF has been used to ac-



Figure 3. (a) Estimated image flow field. (b) Estimated depth map.

(c) Segmentation result. Points that are coloured red are assigned

the ambiguity label. (d) Original image with image points assigned

to the object hypothesis being highlighted in blue.

Figure 4. Segmentation results with detected objects being

coloured differently.

count for spatial and temporal relationships. The EM frame-

work has been adapted for time-recursive tracking of a mul-

tiple number of objects. Based on the motion estimates, the

scene structure is recovered densely from spatially and tem-

porally separated views. In the segregation step, the image

is segregated into a set of non-overlapping regions which

represent independently moving objects.

In ongoing work we integrate relational classification

based on Markov logic into our segmentation scheme. We

assume that the interaction of segmentation/tracking with

the results from the classification step can be exploited to

drive low-level object detection schemes tending towards

more human-like scene perception.
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