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Abstract

We apply the Spectral Curvature Clustering (SCC) al-

gorithm to a benchmark database of 155 motion sequences,

and show that it outperforms all other state-of-the-art meth-

ods. The average misclassification rate by SCC is 1.41% for

sequences having two motions and 4.85% for three motions.

Supp. webpage: http://www.math.umn.edu/∼lerman/scc/

1. Introduction

Multiframe motion segmentation is a very important yet

challenging problem in computer vision. Given multiple

image frames of a dynamic scene taken by a (possibly mov-

ing) camera, the task is to segment the point correspon-

dences in those views into different motions undertaken by

the moving objects. A more formal definition of the prob-

lem appears below.

Problem 1. Consider a dynamic scene consisting of K
rigid-body motions undertaken by K objects relative to a

moving camera. Suppose that F frames of images have

been taken by the camera, and that N feature points

y1, . . . ,yN ∈ R
3 are detected on the objects. Let zij ∈ R

2

be the coordinates of the feature point yj in the ith image

frame for every 1 ≤ i ≤ F and 1 ≤ j ≤ N , and form N
trajectory vectors: zj = [z′1j z′2j . . . z′Fj ]

′ ∈ R
2F . The

task is to separate these trajectories z1, . . . , zN into inde-

pendent motions undertaken by those objects.

There has been significant research on this subject over

the past few years (see [19, 16] for a comprehensive liter-

ature review). According to the assumption on the camera

model, those algorithms can be divided into the following

two categories:

1. Affine methods [5, 15, 14, 17, 20, 9, 19, 3] assume

an affine projection model, so that the trajectories
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associated with each motion live in an affine sub-

space of dimension at most three (or a linear sub-

space of dimension at most four containing the affine

subspace). Thus, the motion segmentation prob-

lem is equivalent to a subspace clustering problem.

State-of-the-art affine algorithms that have been ap-

plied to this problem include Random Sample Con-

sensus (RANSAC) [5, 15], Multi-Stage Learning

(MSL) [14], Generalized Principal Component Anal-

ysis (GPCA) [17, 9, 19], Local Subspace Affinity

(LSA) [20], and Agglomerative Lossy Compression

(ALC) [8, 11].

2. Perspective methods [7, 13, 18, 6, 12, 1] assume a per-

spective projection model under which point trajecto-

ries associated with each moving object lie on a mul-

tilinear variety. However, clustering multilinear vari-

eties is a challenging task and very limited research

has been done in this direction.

An extensive benchmark for comparing the performance

of these algorithms is the Hopkins 155 Database [16]. It

contains 155 video sequences along with features extracted

and tracked in all frames for each sequence, 120 of which

have two motions and the rest (35 sequences) consist of

three motions.

In this paper we examine the performance of a recent

affine method, Spectral Curvature Clustering (SCC) [3, 2],

on the Hopkins 155 database and compare it with other

affine algorithms that are mentioned above (their results

have been reported in [16, 11] and also partly online at

http://www.vision.jhu.edu/data/hopkins155/).

Our experiments show that SCC outperforms all the

above-mentioned affine algorithms on this benchmark

dataset with an average classification error of 1.41% for

two motions and 4.85% for three motions. In contrast,

the smallest average misclassification rate among all other

affine methods is 2.40% for sequences containing two mo-

tions and 6.26% for sequences with three motions, both

achieved by ALC [11].

The rest of the paper is organized as follows. We first
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briefly review the SCC algorithm in Section 2, and then test

in Section 3 the SCC algorithm against other common affine

methods on the Hopkins 155 database. Finally, Section 4

concludes with a brief discussion.

2. Review of the SCC algorithm

The SCC algorithm [3, Algorithm 2] takes as input a data

set X = {x1, . . . ,xN}, which is sampled from a mixture

of affine subspaces in the Euclidean space R
D and pos-

sibly corrupted with noise and outliers. The number of

the subspaces K and the maximum1 of their dimensions d
should also be provided by the user. The output of the al-

gorithm is a partition of the data into K (disjoint) clusters,

X =
⋃

1≤k≤K Ck, representing the affine subspaces.

The initial step of the SCC algorithm is to randomly se-

lect from the data c subsets of (distinct) points with a fixed

size d+1. Based on these c (d+1)-tuples, an affinity matrix

Ac ∈ R
N×c is formed in the following way. Let J1, . . . , Jc

be the index sets of the c subsets. Then for each 1 ≤ r ≤ c
and 1 ≤ i ≤ N , if i ∈ Jr, we set Ac(i, r) = 0 by default;

otherwise, we form the corresponding union I := [i Jr] and

define

Ac(i, r) := e−c2
p(I)/(2σ2), (1)

in which σ > 0 is a fixed constant whose automatic

choice is explained later, and c2
p(I) is the (squared) polar

curvature [3] of the corresponding d + 2 points, xI :=
[· · ·xi · · · ]i∈I. That is,

c2
p(I) := max

j,k∈I
‖xj − xk‖

2
2

·
1

d + 2

∑

j∈I

det(x′
I · xI + 1)

∏
k∈I,k 6=j ‖xj − xk‖

2
2

. (2)

Note that the numerator det(x′
I · xI + 1) is, up to a fac-

tor, the (squared) volume of the (d + 1)-simplex formed by

the d + 2 points xI. Therefore, the polar curvature can be

thought of as being the volume of the simplex, normalized

at each vertex, averaged over the vertices, and then scaled

by the diameter of the simplex. When d+2 points are sam-

pled from the same subspace, we expect the polar curvature

to be close to zero and consequently the affinity close to

one. On the other hand, when they are sampled from mixed

subspaces, the polar curvature is expected to be large and

the affinity close to zero.

The SCC algorithm next forms pairwise weights W

from the above multi-way affinities:

W = Ac · A
′
c, (3)

1By using only the maximal dimension we treat all the subspaces to be

d-dimensional. This strategy works quite well in many cases, as demon-

strated in [3].

and applies spectral clustering [10] to find K clusters

C1, . . . ,CK .

In order to refine the clusters, SCC then re-samples c/K
(d + 1)-tuples from each of the clusters Ck, 1 ≤ k ≤ K,

and re-applies the rest of the steps. This procedure is re-

peated until convergence for a best segmentation, and is re-

ferred to as iterative sampling (see [3, Sect. 3.1.1]). Its con-

vergence is measured by the total orthogonal least squares

(OLS) error of d-dimensional affine subspace approxima-

tions F1, . . . , FK to the clusters C1, . . . ,CK :

e2
OLS =

K∑

k=1

∑

x∈Ck

dist2(x, Fk). (4)

In situations where the ground truth labels of the data points

are known, we also compute the misclassification rate:

e% =
# of misclassified points

N
· 100%. (5)

The parameter σ of Eq. (1) is automatically selected by

SCC at each iteration in the following way. Let c denote the

vector of all the (N − d − 1) · c squared polar curvatures

computed in an arbitrarily fixed iteration. The algorithm ap-

plies the following set of candidate values which represent

several scales of the curvatures:

{c ((N − d − 1) · c/Kq) | q = 1, . . . , d + 1}, (6)

and chooses the one for which the error of Eq. (4) is mini-

mized. A quantitative derivation of the above selection cri-

terion for σ appears in [3, Section 3.1.2]. It is also demon-

strated in [3] that SCC will often fail with arbitrary choices

of σ.

We present (a simplified version of) the SCC algorithm

below (in Algorithm 1). We note that the storage require-

ment of the algorithm is O(N · (D + c)), and the total run-

ning time is O(ns · (d + 1)2 · D · N · c), where ns is the

number of sampling iterations performed (till convergence,

typically O(d)).

3. Results

We compare the SCC algorithm with other state-of-the-

art affine methods, such as ALC [8, 11], GPCA [17, 9, 19],

LSA [20], MSL [14], and RANSAC [5, 15], using the Hop-

kins 155 benchmark [16]. We also compare the perfor-

mance of affine methods with an oracle, the Reference al-

gorithm (REF) [16], which fits subspaces using the ground

truth clusters and re-assigns points to its nearest subspace.

Though it cannot be used in practice, REF verifies the valid-

ity of affine camera model and provides a basis for compari-

son among practical algorithms. The results of the latter six

methods (including REF) are already published in [19, 11],

so we simply copy them from there.



Figure 1. A sample image from each of the three categories in the Hopkins155 database.

Algorithm 1 Spectral Curvature Clustering (SCC)

Input: Data set X, maximal intrinsic dimension d, and

number of subspaces K (required); number of sampled

subsets c (default = 100 · K)

Output: K disjoint clusters C1, . . . ,CK .

Steps:

1: Sample randomly c subsets of X (with indices

J1, . . . , Jc), each containing d + 1 distinct points.

2: For each sampled subset Jr, compute the squared polar

curvature of it and each of the remaining N − d − 1
points in X by Eq. (2). Sort increasingly these (N −
d − 1) · c squared curvatures into a vector c.

3: for q = 1 to d + 1 do

• Form the matrix Ac ∈ R
N×c by setting σ2 =

c((N − d − 1) · c/Kq) in Eq. (1), and estimate

the weights W via Eq. (3)

• Apply spectral clustering [10] to these weights and

find a partition of the data X into K clusters

end for

Record the partition C1, . . . ,CK that has the smallest

total OLS error, i.e., e2
OLS of Eq. (4), for the correspond-

ing K d-dimensional affine subspaces.

4: Sample c/K subsets of points (of size d+1) from each

Ck found above and repeat Steps 2 and 3 to find K
newer clusters. Iterate until convergence to obtain a

best segmentation.

The Hopkins 155 database contains sequences with two

and three motions, and consists of three categories of mo-

tions (see Figure 1 for a sample image in each category and

Table 1 for some summary information of each category,

e.g., number of sequences, average number of tracked fea-

tures, and average number of frames):

• Checkerboard: this category consists of 104 se-

quences of indoor scenes taken with a handheld cam-

era under controlled conditions.

Table 1. Summary information of the Hopkins 155 database: num-

ber of sequences (# Seq.), average number of feature points (N ),

and average number of frames (F ) in each category for two mo-

tions and three motions separately.

2 motions 3 motions

# Seq. N F # Seq. N F

Checker. 78 291 28 26 437 28

Traffic 31 241 30 7 332 31

Other 11 155 40 2 122 31

All 120 266 30 35 398 29

• Traffic: this category consists of 38 sequences of out-

door traffic scenes taken by a moving handheld cam-

era.

• Other (Articulated/Non-rigid): this category con-

tains 13 sequences displaying motions constrained by

joints, head and face motions, people walking, etc.

It is proved (e.g., in [9]) that the trajectory vectors asso-

ciated with each motion live in a distinct affine subspace of

dimension d ≤ 3 (or a linear subspace of dimension d ≤ 4
containing the affine subspace). Also, it is possible to clus-

ter the trajectories either in the full space R
2F (F is the

number of frames) or in some projected space (after dimen-

sionality reduction by PCA), e.g., R
4K (K is the number

of motions) or R
d+1. Thus, we will apply the SCC algo-

rithm (Algorithm 1) to each of the 155 motion sequences

to segment d-dimensional subspaces in R
D in six ways:

(d, D) = (3, 4), (3, 4K), (3, 2F ), (4, 5), (4, 4K), (4, 2F ).
Each case is correspondingly represented by the shorthand

SCC (d, D).

We use the default value c = 100 ·K for all SCC (d, D)
when applied to the 155 sequences. Also, in order to mit-

igate the randomness effect due to initial sampling, we re-

peat the experiment 100 times and record only the average

misclassification rate. For each SCC (d, D), we report in

Table 2 the mean and median of the averaged errors for se-

quences with two motions, and in Table 3 results on three

motions. Figure 2 shows histograms of the misclassifica-



Table 2. Misclassification rates for sequences with two motions. ALC 5 and ALC sp respectively represent ALC with projection dimensions

5 and a sparsity-preserving dimension, LSA n means applying LSA in the projected space R
n (after dimensionality reduction), and REF

refers to the reference algorithm.

Checkerboard Traffic Other All

mean median mean median mean median mean median

ALC 5 2.66% 0.00% 2.58% 0.25% 6.90% 0.88% 3.03% 0.00%

ALC sp 1.55% 0.29% 1.59% 1.17% 10.70% 0.95% 2.40% 0.43%

GPCA 6.09% 1.03% 1.41% 0.00% 2.88% 0.00% 4.59% 0.38%

LSA 5 8.84% 3.43% 2.15% 1.00% 4.66% 1.28% 6.73% 1.99%

LSA 4K 2.57% 0.27% 5.43% 1.48% 4.10% 1.22% 3.45% 0.59%

MSL 4.46% 0.00% 2.23% 0.00% 7.23% 0.00% 4.14% 0.00%

RANSAC 6.52% 1.75% 2.55% 0.21% 7.25% 2.64% 5.56% 1.18%

REF 2.76% 0.49% 0.30% 0.00% 1.71% 0.00% 2.03% 0.00%

SCC (3, 4) 2.99% 0.39% 1.20% 0.32% 7.71% 3.67% 2.96% 0.42%

SCC (3, 4K) 1.76% 0.01% 0.46% 0.16% 4.06% 1.69% 1.63% 0.06%

SCC (3, 2F ) 1.77% 0.00% 0.63% 0.14% 4.02% 2.13% 1.68% 0.07%

SCC (4, 5) 2.31% 0.25% 0.71% 0.26% 5.05% 1.08% 2.15% 0.27%

SCC (4, 4K) 1.30% 0.04% 1.07% 0.44% 3.68% 0.67% 1.46% 0.16%

SCC (4, 2F ) 1.31% 0.06% 1.02% 0.26% 3.21% 0.76% 1.41% 0.10%

Table 3. Misclassification rates for sequences with three motions. ALC 5 and ALC sp respectively represent ALC with projection dimen-

sions 5 and a sparsity-preserving dimension, LSA n means applying LSA in the projected space R
n (after dimensionality reduction) and

REF refers to the reference algorithm.

Checkerboard Traffic Other All

mean med. mean med. mean med. mean med.

ALC 5 7.05% 1.02% 3.52% 1.15% 7.25% 7.25% 6.26% 1.02%

ALC sp 5.20% 0.67% 7.75% 0.49% 21.08% 21.08% 6.69% 0.67%

GPCA 31.95% 32.93% 19.83% 19.55% 16.85% 16.85% 28.66% 28.26%

LSA 5 30.37% 31.98% 27.02% 34.01% 23.11% 23.11% 29.28% 31.63%

LSA 4K 5.80% 1.77% 25.07% 23.79% 7.25% 7.25% 9.73% 2.33%

MSL 10.38% 4.61% 1.80% 0.00% 2.71% 2.71% 8.23% 1.76%

RANSAC 25.78% 26.01% 12.83% 11.45% 21.38% 21.38% 22.94% 22.03%

REF 6.28% 5.06% 1.30% 0.00% 2.66% 2.66% 5.08% 2.40%

SCC (3, 4) 7.72% 3.21% 0.52% 0.28% 8.90% 8.90% 6.34% 2.36%

SCC (3, 4K) 6.00% 2.22% 1.78% 0.42% 5.65% 5.65% 5.14% 1.67%

SCC (3, 2F ) 6.23% 1.70% 1.11% 1.40% 5.41% 5.41% 5.16% 1.58%

SCC (4, 5) 5.56% 2.03% 1.01% 0.47% 8.97% 8.97% 4.85% 2.01%

SCC (4, 4K) 5.68% 2.96% 2.35% 2.07% 10.94% 10.94% 5.31% 2.40%

SCC (4, 2F ) 6.31% 1.97% 3.31% 3.31% 9.58% 9.58% 5.90% 1.99%

tion rates with the percentage of sequences in which each

algorithm achieved a certain error. The corresponding his-

tograms for other methods are shown in [19, Figure 3].

4. Discussion

Looking at Tables 2 and 3, we conclude that the SCC

algorithm (with all six pairs (d, D)) outperforms all com-

peting methods (in terms of the mean error) and is very

close to the reference algorithm (REF). In the checker-

board category, it even has a better performance than REF.

In addition, SCC has the following two strengths in com-

parison with most other affine methods. First, as we ob-

served in experiments, the performance of SCC is not so

sensitive to its free parameter c. In contrast, the ALC al-

gorithm is very sensitive to its distortion parameter ε and

often gives incorrect number of clusters, requiring running

it for many choices of ε while having no theoretical guar-

antee. Second, SCC can be directly applied to the orig-

inal trajectory vectors (which are very high dimensional),

thus preprocessing of the trajectories, i.e., dimensionality

reduction, is not necessary (unlike GPCA and LSA). Fi-

nally, we remark that SCC also outperforms some per-

spective methods, e.g., Local Linear Manifold Clustering
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Figure 2. Histograms of misclassification errors obtained by SCC.

(LLMC) [6] (their misclassification rates are also available

at http://www.vision.jhu.edu/data/hopkins155/).

The histograms (in Figure 2) show that the SCC al-

gorithm obtains a perfect segmentation for 80% of two-

motion sequences and for over 50% of three-motion se-

quences. Under this criterion, SCC is at least comparable

to the best algorithms (ALC, LSA 4K, MSL) and the ref-

erence algorithm (REF); see [11, Figure 4] and [19, Figure

3]. Moveover, SCC has the shortest tails; its worst case seg-

mentation error (about 35%) is much smaller than those of

other methods some of which are as large as 50%.

Regarding running time, the SCC algorithm generally

takes 1 to 2 seconds to process one sequence on a compute

server with two dual core AMD Opteron 64-bit 280 proces-

sors (2.4 GHz) and 8 GB of RAM. It is much faster than

the best competitors such as ALC, LSA 4K, and MSL (see

their computation time in [11, Table 6] and [16, Tables 3 &

5] while also noting that there were all performed on faster

machines).

At the time of finalizing this version we have found out

about the very recent affine method of Sparse Subspace

Clustering (SSC) [4] which reportedly has superb results on

the Hopkins 155 database and outperforms the results re-

ported here for both SCC and REF. It will be interesting to

test its sensitivity to its tuning parameter λ in future work.
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