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Abstract

Estimation of structure and motion in computer vision
systems can be performed using a dynamic systems ap-
proach, where states and parameters in a perspective sys-
tem are estimated. This paper presents a new approach to
the structure estimation problem, where the estimation of
the 3D-positions of feature points on a moving object is re-
formulated as a parameter estimation problem. For each
feature point, a constant parameter is estimated, from which
it is possible to calculate the time-varying 3D-position. The
estimation method is extended to the estimation of motion,
in the form of angular velocity estimation. The combined
structure and angular velocity estimator is shown stable us-
ing Lyapunov theory and persistency of excitation based ar-
guments. The estimation method is illustrated with simula-
tion examples, demonstrating the estimation convergence.

1. Introduction

Estimation of 3D information from 2D images in com-
puter vision systems can be performed using dynamic sys-
tems. Estimation of 3D positions of observed feature points
in a sequence of images is often referred to as structure esti-
mation, and estimation of the corresponding motion param-
eters, e.g. expressed using angular and linear velocities, is
often referred to as motion estimation.

A specific class of algorithms for structure estimation,
where available values for the angular and linear velocities
are used and where position is estimated, can be formu-
lated as nonlinear observers. This kind of algorithms are
described e.g. in [18, 11,19, 2,9, 7, 1, 15, 12, 10, 5, 8],
where estimators for structure only are presented, based on
different nonlinear observers. Various analytical results re-
garding stability are provided in the mentioned references,
and simulation examples are used to illustrate the perfor-
mance of the different observers.
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This paper describes how a parametrization of the un-
derlying perspective dynamic system can be used to for-
mulate the structure estimation problem as an estimation
problem, where the task is to estimate a constant parame-
ter. The parametrization is derived using similar methodol-
ogy as used in an earlier introduced parametrization [5], and
can be regarded as a reformulation of the estimation prob-
lem, resulting in a simplified analysis due to the constant
parameter estimation approach.

The parametrization allows for estimation of structure as
well as motion, which is the case also for the parametriza-
tion in [5], as shown e.g. in [6, 4]. The stability of the struc-
ture estimation problem can be analyzed using Lyapunov
theory and persistency of excitation based reasoning. This
is the case also for the parametrization in [5], which was an-
alyzed with respect to stability in [4]. The stability analysis
for the new parametrization, as presented below, is however
simplified compared to the analysis in [4], due to the differ-
ent parametrization.

The perspective dynamic system, which is the base for
derivation of estimators for structure and motion, is re-
viewed in Section 2, and the earlier parametrization method
introduced in [5] is reviewed in Section 3.

The main results are given in Section 4 and Section 5
where algorithms are given, and in Section 6 where the sta-
bility of the structure and angular velocity estimator is ana-
lyzed. Simulation examples are presented in Section 7.

2. Perspective Dynamic System

Consider a moving object observed by a camera. The ob-
jectis rigid, and it has IV feature points. The feature points
are extracted by image processing and then used as input
to the 3D-reconstruction estimation. The three-dimensional
coordinates of the feature points are denoted

xi:(xl,i T2 xS,i)T, i1=1,...,N (1)
The angular velocity of the object is denoted

w= (w1 w ws) 2



The translational velocity is given by a vector denoted
b=(by by b3) 3)

Introduce the quantity
i i wea\! .
glz(m r) . i=1,...,N @)

and the camera parameters Cy € R?*? and § € R?*!, A
perspective camera (e.g. [16]) then computes the image co-
ordinates

yi:(yl,i 212,1‘)T, i=1,...,N (5)

as
y'=CrE 46 (6)

Introducing a skew-symmetric matrix A, defined using the
angular velocity (2) as

0 —Wws w2
A= ws 0 —w1 @)
—Ww?2 w1 0

the motion of the rigid body object, together with its ob-
served images, is then described by the perspective dynamic
system

it = Az' +b

G Ciirs ic{1,2...N}. 8)
=Cy

Note that the quantities A, b, C'y and 4, as a result of the
rigid body assumption and the use of a single camera, are
common to all the points z*. When considering only one
point, the simplified notation

T =Ax+b

y=Cre+o )

will be used.
Introduce a mapping, denoted .S, which given a vector

v:(vl Vo ’U3)T (10)

defines a skew-symmetric matrix according to

0 —U3 (%)
Sw)= | vs 0 —-un (11
—V2 U1 0

The matrix A is then defined from the angular velocity as

A= S(w) (12)

3. Dynamic Vision Parametrization

Considering one point, i.e. using the simplified notation
(9), adynamic vision parametrization, introduced in [5], can
be derived. For this purpose, introduce the scalar parameter
~ and the vector z by

1

V= )
'

z ="z (13)

Observe that £, according to (4) and by the definition of
z in (13), also can be expressed as

T
E=(% 2, (14)
From the equation for y in (9) it can be seen that if the cam-
era is calibrated, i.e. if C'y and § in (9) are known, and fur-
ther if the matrix C is invertible, then £ can be calculated
given y (and hence assumed known). This means, using

(13) and the definition of £ in (4), that the vector z which
then can be expressed as

1 r
2= (& & 1 (15)
VETa )
can also be assumed known.

Hence, z is a measurable signal, and can therefore be
considered an output of the system (9). The dynamic vision
parametrization exploits this fact, and aims at rewriting the
system (9) so that z appears explicitly in the equations.

Using (9) and the fact that 2" Az = 0, since A is skew-
symmetric, and introducing

go(z) =1 —zz" (16)
gives a rewritten dynamic system, corresponding to (9), on
the form

z2=Az+ go(2)by
. o r ) a7
Y =—y"2'b.

For the motion of more than one point a dynamic system
corresponding to (8) is obtained as
2= Az' + go(2")by'
3 = — () ()
Equation (13) together with (17) and its multipoint version

(18), constitute the desired dynamic vision parametrization,
from which we shall proceed.

, ie{l,2...N}.  (18)

4. Structure Estimation as Parameter Estima-

tion
4.1. Reformulation of the dynamic vision
parametrization
Introduce a quantity «, defined as
1
a=— (19)

v



with time derivative ¢, computed using the last equation in
(17), as
. 1 . 1 2.1 T
d=——=F9=——(—2"b) =2'D (20)
p ,YQ( )
An alternative dynamic vision parametrization can then be
obtained, by rewriting (17) as

1
2= Az+ go(z)b—
!

(21)
& =12"b
Using
¢
/ a(r)dr = a(t) — alty) (22)
to
and
t t
/ a(r)dr = / 2"'(T)b(T)dT (23)
to to
we get
t
a(t) = alty) +/ 2"(T)b(7)dr 24)
to
Introducing
Qg = Oé(to) (25)
and .
¢(t) = / 2"(1)b(7)dr (26)
to

where we note that ((¢) is a measurable quantity, an expres-
sion for a(t) is obtained as

a(t) = ao +¢(1) 27

The dynamic system (21) can now be written as

Z=Az+ go(2)b (28)

ag+¢

where the differential equation ¢y = 0 is omitted. The con-
stant quantity g can thus be interpreted as a parameter in
(28), where all quantities except g are known.

4.2. Structure estimation algorithm

A structure estimation formulation can be formulated as
the task of estimating g in (28). Given knowledge of ),
an estimate of the object position can be obtained, using the
equation for z in (13) together with (19), (25), (26) and (27),
to obtain an equation for z, as

z=2z-(ao+() (29)

An estimator for ag can be designed as follows. Introduce
a matrix F' which is Hurwitz, and a symmetric positive def-
inite matrix ). A symmetric positive definite matrix P can

then be computed as the unique solution to the Lyapunov
equation [13],
F'P+PF=-Q. (30)

Introducing the estimated quantities 2 and &g, an estimator
can be formulated as

z:Az—l—F(z—z)4—go(z)bd0_’_< a1

do = b'go(2)'P(2 — 2) .

The estimator (31) is inspired by [20], where however the
parameters to be estimated appears linearly. Even if this is
not the case for ag in (28), we choose the update law for ag
as proposed in [20].

Defining the estimation errors

— 2z, Gp=0&—ag, (32)

x>

2:

while also observing that &9 = 0, a system of error dif-
ferential equations can be obtained by combining (28) and
(31), as

Z=FZ%+go(2)b (

Gio = b'go(2)"P% .

#_#>
ao+¢  ap+¢ (33)

The term ) )
— 34
ot a0+l G
can be rewritten as
1 1 — Qg —
_agt(—an—(¢ (35)

do+¢ ao+C  (Go+C)(ao+C)

which, when using the definition of &g in (32) can be re-
garded as a function of &g, here denoted o(dyp), as

&
(G0 + ag + ¢) (o + )

o(to) = (36)

Using (36), the estimator error equations (33) can be written

as

Z = FZz+ go(z)bo(do)

. 37
5[0 = brgo(Z)TPZ .

The estimator (31) is considered asymptotically stable if the
estimation errors Z and &g approach zero. An estimate of
the 3D-coordinates x can then be obtained, using (29), as

& = 2(ao +¢) (38)
An alternative formulation could be to use

&= 2(o + ) (39)



instead, where the estimated value of z is used instead of
the measured value. The purpose of this approach is to ob-
tain an increased noise sensitivity, which would be the case
provided the estimator (31) has a low-pass filtering effect on
the measured signal z. It can also be observed that the con-
vergence rate of the estimator is affected by the choice of
the matrices F and (), which therefore could be considered
as design parameters for the estimator (31).

S. EXTENSION TO ANGULAR VELOCITY
ESTIMATION

As can be seen in (28), the parameter A appears linearly.
This could be used for development of estimators for the
angular velocity w, which is related to the skew-symmetric
matrix A according to (12). Since multiplication of a vector
v € R3*! by a skew-symmetric matrix can be equivalently
formulated as a vector cross product, i.e. S(w)v = w X v,
using w X z = —z X w then gives S(w)z = —S5(z)w. The
system (28) can therefore be rewritten as

2 =-5(2)w+ go(2)b

(40)
oo+ ¢

Considering the estimation problem for the case of a con-
stant w, again using inspiration from [20], the estimator (31)
can be extended to an estimator where also the angular ve-
locity w is estimated, as

L aim L ms 1
Z2=-8S(z)w+ F(2—2) —|—g0(z)bdo+C
(41)

where the factor &2 in the last equation is needed in order
to prove stability later on. It can be regarded as a weight-
ing/time scaling component in the estimation of the angular
velocity. Defining the angular velocity estimation error

D=0 —w (42)

and using (32), a system of error differential equations can
be obtained by combining (40) and (41), as

1 B 1
ap+¢  ap+(

Z=FZ%+go(2)b (

5[0 = b”'go(z)”‘Pé

©=a%5(2)T Pz

) ~ S(2)@
(43)

6. Stability Analysis

A stability analysis for the case of structure estimation
is presented. The analysis shows asymptotic stability of the
estimator, hence giving a proof of convergence in the sense

that if the initial structure estimate is close enough to its true
value, the estimate will converge as the time ¢t — c0.

The purpose of the stability analysis is to show that the
estimation errors Z, &g and @ in (43) approach zero.

We will show stability of the error equations by Lya-
punov’s indirect method, where stability of a nonlinear sys-
tem is deduced from the stability of a linear system, ob-
tained from a linearization of the nonlinear system [13].

Linearization of (43) results in

1

F=F3— b————=00 — S(2)&
£ = F2 = go(2)b gyt — S(2)E
OLJO = ngo(Z)TPZ (44)
w=a’8(2)T Pz
Using (27), equation (44) is rewritten as
z . 1 -
z=Fz— go(z)bgao —S5(z)©
do = b'go(2)" Pz (45)
©=a%8(2)TPz

As a first step, we show that Z — 0 and that &y and @ are
bounded. Introduce the Lyapunov function

1 1 1
V (%, a0,0) = a2§2TP2 + 5&3 + 5@% (46)
Differentiating (46) along the trajectories of (45), gives (as-
suming F' is symmetric for simplicity, but the final result
holds for general F’)
V(Z,d0,0) =
1
= a4z Pz +a*2TP (Fz — g0(2)b— a0 — S(z)&;)
@
+ aob'go(2) Pz + o*&7 S(2)" Pz
= #'ad Pz + o2 PF% — 2T Pgo(2)bay
— o227 PS(2)& 4 agb'go(2)' Pz + o*0TS(2)T Pz
= #'adPz + o*2T PF% .
(47

Using the Lyapunov equation (30), equation (47) can be
written as

1 " "
—§a22'Qz + Z"ad P2

=
R
jo}}
e
&
Il

. (48)
_ 1 210 g I~
=za’% ( Q—I—QQP)z

Assuming that the matrices (Q and P are such that the matrix
&

M=-Q+2-P (49)
«

is negative definite for the object motions considered,
i.e. for the range of values for z, b, ¢ and ag, we get



V(Z,é0,@) < 0 from which we can conclude that Z — 0
and that ¢ and @ are bounded, e.g. [13, 17].
The matrix M in (49) can be rewritten as

M=-Q+ 2% In(a)P (50)
Observing that « is the distance from the camera to the ob-
ject, the matrix M is thus a function of the logarithm of the
distance. Hence, with some information about the possible
motions, i.e. how fast In(«) can change, it should be pos-
sible to choose @ and P such that M is negative definite,
while still fulfilling (30), e.g. by choosing the eigenvalues
of ) sufficiently large.
In order to show that also &g — 0 and @ — 0 areasoning
inspired by a stability proof in [17] will be used. First, a
function ¢(t) is defined as

e(t) = = (Go(t+1)° —ao(t)> +@(t+T)*—a(t)%) (51)

l\.’JIn—l

The function ¢(t) is bounded since &g and & are bounded.
The time derivative (t) becomes
p(t) = ao(t + T)&o(t +T) — ot );o(t)
+ot+T)To+T) o) 'e

/t+T

The integral in (52) can be rewritten, using (45), resulting
in

aodo +0Tw) = (;lt(dobT 0(2)"Pz +@Ta?S(2)T P?)

dt(

~ 3T T~ d ~ 1T T s
= aob"go(2)" Pz + E(aob go(z)'P)Z

+ 207 8(2)T Pz + %(anZJTS(z)TP)E

(53)

Using the first equation in (45), we get
- r 1.
—aob go(2) Pgo(z)b?ao

(2)'P)z

- 1
2wTS(z)TPgo(z)b?ao

d ~ A ~ b
%(aoao +oTd)) =
d
+ dongo(Z)TPF2 + %(dongo
+a20TS(2)TPFz —
20T8(2)TPS(2)0 + %((a2)aTSTP)2 . (54)

Introducing the matrix

7 b(1) 90 (2(7) Pgo(2(7))b(r) —b(7)"go(2(7))" PS(2(7))

N = g
—S(2(1)Pgo(2(r)b(r)  —a(r)*S(=(r)) PS(x(r))

the integral in (52) becomes

If we now assume a persistency of excitation condition, also
denoted PE condition, i.e. that for all £ and 7', there is a

positive number k such that
&(1)T] N { ao } dr > kI, (56)

[ o(m

we can show that &g — 0 and @ — 0 by the following
reasoning.

Assume, contradictory to what we would like to show,
that it is not the case that &g — 0 and © — 0, i.e. either
&g — 01s violated or & — 0 is violated. The PE condition
(56) then implies that the first integral in (55) fulfils

t+T
o
t

We also see that, for ¢ large enough, the first integral in
(55) will dominate over the two remaining integrals, which
all tend to zero since Z — 0. Hence it is possible to
achieve, possibly by selecting Q) such that the eigenvalues
of P are sufficiently large (which can be done, according to
e.g. [14]), that for ¢ large enough, there exists a time ¢; for
which it holds that ¢(¢) < 0, V¢ > t; which contradicts
the fact that ¢(t) is bounded. Hence, &g — 0 and @ — 0.

To summarize, we have shown asymptotical stability of
the error equations (37) by using the corresponding lin-
earized equations (45), provided the matrix (49) is negative
definite for the motions considered and also that the PE con-
dition (56) holds.

The PE condition (56) can be interpreted in terms of un-
favourable motions, using the following reasoning. From
(16) and the observation that z by its definition (13) is a
vector of unit length, it can be seen that if b || z over
some time interval, the upper left part of the integrand of
(56) will be identically zero over that interval, and the PE
condition will not be fulfilled. Except for the case b = 0,
this means that the translational velocity of the observed

o(r)T| N [wc(“g)} dr>0. (57)

> point relative to the camera should not be directed along



a straight line connecting the camera center with the cur-
rent measurement z during any time interval. The obser-
vation that b || z results in an unfavorable motion from an
observability point of view can also be seen directly from
(28), since such a b would disrupt the influence of ap on
the z-dynamics, and thus render the parameter identifica-
tion process infeasible, since then the parameter oy cannot
be observed through the dynamics of the available signal z.
It can also be seen that b || z implies that provided b3 # 0,
it holds that (y1 y2) = (b1/bs ba/bs)’, which is the
focus of expansion mentioned as an unobservable case also
for the observers presented in e.g. [11, 2, 9, 12].

7. Simulations

The performance of the estimators described in Sections
4 and 5 is illustrated using simulation examples.

A structure estimation example is first presented, using
the estimator (31) applied to the dynamic system (28) as
described in Section 4.

The observed object contains one feature point, execut-
ing a periodic motion used also in [3], and governed by the
parameter vectors

w=(-04 05 4)

(58)

b= (0 2rsin(27t) 2mcos(2mt)) .
A single feature point is observed, with an initial position
selected as o = (0 2 S)T.

The simulation is done using the initial values 6o = 1,
2 =0,and we select ¥ = —10-Tand Q = 750 - I as the
matrices employed to determine the matrix P from (30).

A simulation result is shown in Figure 1. From Figure 1
it can be seen that the estimated parameter &g converges to
its true value. This has the effect that also the 3D position
estimates converge to their true values, as can be seen from
the lower plot in Figure 1.

A structure and angular velocity estimation example is
now presented, using the estimator (41) applied to the dy-
namic system (40) as described in Section 5.

The observed object contains one feature point, execut-
ing the same motion as in the previous example, shown in
Figure 1. A single feature point is observed, with an initial
position selected as zo = (0 2 3)". The initial value for
the estimated angular velocity vector was set to zero.

The simulation is done using the initial values 6o = 1,
2 =0, and we select /' = —10 - I and

100
Q=100-{0 5 0
00 1

as the matrices employed to determine the matrix P from
(30).

The simulation result is shown in Figure 2. From Figure
2 it can be seen that the estimated parameter & converges
to its true value, and that the angular velocity vector con-
verges to its true value (which can be seen in (58)). This
has the effect that also the 3D position estimates converge
to their true values, as can be seen from the lower right plot
in Figure 2.

8. Conclusions

Estimation of 3D structure and motion from 2D im-
ages can be achieved using a dynamic systems formula-
tion, where nonlinear and adaptive observers can be used
for estimation of states and parameters. In this paper we
have demonstrated how a single parametrization of the un-
derlying perspective dynamic system can be used for re-
formulation of the structure estimation problem as a param-
eter estimation problem, where a constant parameter is es-
timated. It is also shown how the so obtained structure esti-
mator can be extended to also estimate the angular velocity.

A stability analysis is presented, showing convergence of
the structure and angular velocity estimator using Lyapunov
theory and persistency of excitation based arguments. The
performance of the estimators for structure, and structure
and angular velocity, is also demonstrated using simulation
examples.
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