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Kernel Principal Component Analysis

Figure 1: Basic idea of kPCA
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Kernel Principal Component Analysis

• Positive definite kernel k

Given a nonempty set X and a positive definite kernel k,
there exists a map Φ : X 7→ H into a dot product space H
such that for all x, x′ ∈ X , 〈Φ(x),Φ(x′)〉 = k(x, x′).
Thus k is a nonlinear similarity measure.

• Given centered data x1, ..., xm ∈ X , kPCA computes the
principal components of the points Φ(x1), ....,Φ(xm) ∈ H
(in feature space).

• Consider the covariance matrix in H,

C =
1

m

m
∑

i=1

Φ(xi)Φ(xi)
T (1)
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Kernel Principal Component Analysis

• We now have to find eigenvalues λ ≥ 0 and nonzero
eigenvectors v ∈ H\{0} satisfying

λv = Cv (2)

By substituting C, we observe that all solutions v with
λ 6= 0 lie in the span of Φ(·).

• First observation: We may consider the set of equations

λ〈Φ(xn),v〉 = 〈Φ(xn),Cv〉 (3)

for all n = 1, ....,m.
• Second observation: There exist coefficients αi, i = 1, ...,m

such that

v =
m

∑

i=1

αiΦ(xi) (4)
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Kernel Principal Component Analysis

• Combining the two observations, we get

λ

m
∑

i=1

αi〈Φ(xn),Φ(xi)〉 =
1

m

m
∑

i=1

αi

〈

Φ(xn),

m
∑

j=1

Φ(xj)〈Φ(xj),Φ(xi)〉
〉

(5)
for all n = 1, ..,m.

• With the m × m Gram matrix is given as
Kij = 〈Φ(xi),Φ(xj)〉, we rewrite the above equation as

mλKα = K2
α (6)

⇒ mλα = Kα (7)

where α is the column vector with entries α1, ...., αm.
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Kernel Principal Component Analysis

• As analogous to PCA, we consider the largest p

eigenvectors, and λ1, ...λp are all non-zero eigenvalues.

• Normalization of α by imposing for all n = 1, ..., p,

1 = 〈vn,vn〉 =
m

∑

i,j=1

αn
i αn

j 〈Φ(xi),Φ(xj)〉 =
m

∑

i,j=1

αn
i αn

j Kij

= 〈αn,Kα
n〉 = λn〈αn,αn〉 (8)

We want to compute projections onto the eigenvectors v
n in H

(n = 1, ..., p). Let x be a test point with an image Φ(x) in H. Then

〈vn,Φ(x)〉 =

m
∑

i=1

αn
i 〈Φ(xi),Φ(x)〉 (9)

are the nonlinear principal components corresponding to Φ.
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Summary of kPCA algorithm

1. Compute the Gram matrix Kij = k(xi, xj)ij .

2. Diagonalize K, and normalize eigenvector expansion
coefficients αn by requiring λn〈αn,αn〉 = 1

3. Compute projections onto the eigenvectors.

Final equation:
〈vn,Φ(x)〉 =

1√
λn

m
∑

i=1

αn
i k(xi, x)
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Modification to account for zero mean

• The previous construction of kPCA assumes that the data
in feature space has zero mean.

• It is not true for arbitrary data, and hence there is a need to
subtract the mean

1

m

∑

i

Φ(xi)

from all the points Φ(·)
• This leads to a different eigenvalue problem with the

following Gram matrix

K ′ = (I − eeT )K(I − eeT )

where

e =
1√
m

(1, 1, ..., 1)T
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ISOMAP

kPCA and MDS
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ISOMAP

Recall ISOMAP= MDS on geodesic distances. Thus, one can
write

KISOMAP = −1

2
(I − eeT )S(I − eeT ) (10)

where S is the squared distance matrix. There is no theoretical
guarantee that KISOMAP is positive definite.

There is, however, a theorem by Grimes and Donoho (Hessian
LLE) that apply in the continuum limit for a smooth manifold
which says the geodesic distance between points on the
manifold will be proportional to Euclidean distance in the
low-dimensional parameter space of the manifold. In the
continuum limit, (−S) will be conditional positive definite and so
will KISOMAP . Hence, ISOMAP is a form of kPCA.
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LLE

Recall in the last step of LLE, we find the smallest eigenvectors
of the matrix M = (I − W )(I − W T ).

Denote the maximum eigenvalue of M by λmax, we define the
matrix

K = λmaxI − M

NOTE

• M = MT . Hence M is real symmetric.
• Positive definite matrix ≡ All eigenvalues are positive
• For a eigenvector v of M , Mv = λv.
• Consider Kv = (λmaxI − M)v = (λmax − λ)v.

By construction, K is positive definite.
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LLE

K = λmaxI − M

The leading eigenvector of K is e and the coordinates of the
eigenvectors 2, ...., d + 1 provide the LLE embedding.

If we project out e and use the eigenvectors 1, ..., d of the
resulting matrix

(I − eeT )K(I − eeT )

we get the embedding vectors.

If we project out e and use the eigenvectors 1, ..., d of the
resulting matrix

(I − eeT )K(I − eeT )

we get the embedding vectors.
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LLE

Remember that LLE is invariant under scaling, translation and
rotation. LLE embedding is equivalent to the kPCA projections
up to a multiplication with

√
λn.

This corresponds to the whitening step which is performed in
LLE in order to fix the scaling, but not normally in kPCA, where
the scaling is determined by the variance of the data along the
respective directions in H.

Finally, there need not be an analytic form of a kernel k which
gives rise to the LLE kernel matrix K. Hence, there need not be
a feature map on the whole input domain.

But one can give a feature map defined on the training points by
writing the SVD of K.
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So far

• MDS, ISOMAP, LLE, and Laplacian eigenmaps can be
interpreted as kPCA with special kernels.

• Note that the kernel matrix is only defined on the training
data, unlike kPCA where one starts with the analytic form
of the kernel and hence defining over entire space.

• Recap that MDS, ISOMAP, LLE, and Laplacian eigenmaps
are manifold learning algorithms.
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Question:

In classification algorithm such as Support Vector Machines,
there is a set of kernels commonly used. These includes
polynomial, Gaussian, sigmod (tanh), and B-spline kernels and
they are used in "normal" kPCA.

In particular, consider the Gaussian kernel

k(x, x′) = e−
‖x−x

′‖2

2σ
2 = e−β‖x−x′‖2

and we see that it preserves the mapping property of "nearby
inputs into nearby features".

Can we use the Gaussian kernel to do manifold learning?
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Question:

In classification algorithm such as Support Vector Machines,
there is a set of kernels commonly used. These includes
polynomial, Gaussian, sigmod (tanh), and B-spline kernels and
they are used in "normal" kPCA.

In particular, consider the Gaussian kernel

k(x, x′) = e−
‖x−x

′‖2

2σ
2 = e−β‖x−x′‖2

and we see that it preserves the mapping property of "nearby
inputs into nearby features".

Can we use the Gaussian kernel to do manifold learning?

NO!
Connection of Local Linear Embedding, ISOMAP, and Kernel Principal Component Analysis – p. 16/21



Answer:

Consider the Gaussian kernel

k(x, x′) = e−
‖x−x

′‖2

2σ
2 = e−β‖x−x′‖2

Not forgetting that k(x, x′) is the dot product of the input vectors
in feature space, we see that if the two feature vectors are far
away, k(x, x′) = 0.

Physically, we are mapping distant patches of the manifold into
orthogonal feature spaces. Thus, we can no longer unroll the
swissroll.
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Answer:

Consider the Gaussian kernel

k(x, x′) = e−
‖x−x

′‖2

2σ
2 = e−β‖x−x′‖2

In addition, for every patch of radius β− 1

2 , the Gaussian kernel
create an additional dimension. Hence, impossible to do
dimension reduction.

Physically, the Gaussian kernel is really doing dimension
EXPANSION. This follows logically from the SVM school of
thought of mapping inputs into higher dimensions in order to find
a linear classifier in feature space. By creating orthogonal
spaces for different patches, one can easily find a linear
classifier. This is why the Gaussian kernel is commonly used in
SVM whose purpose is to do clustering/classification.
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Summary

What we covered so far

1. Principal Components Analysis PCA

2. Multi Dimensional Scaling MDS

3. ISOMAP

4. k-means

5. Locally Linear Embedding

6. Laplacian LLE

7. Hessian LLE

8. Kernel Principal Components Analysis

Connection of Local Linear Embedding, ISOMAP, and Kernel Principal Component Analysis – p. 19/21



Topics not covered

Dimension Reduction: Semi Definite Programming

- Maximum variance unfolding

- Conformal eigenmaps

Dimension Reduction: Spectral Clustering

- Laplacian matrix used in Laplacian eigenmaps and
normalized cuts.

- Manifold learning and clustering are linked because the
clusters that spectral clustering manages to capture can be
arbitrary curved manifolds as long as there is enough data
to locally capture the curvature of the manifold.

Feature Extraction: Probabilistic PCA

- Probabilistic PCA

- Oriented PCA
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