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Support Vector Machines (SVMs)

Classification problem

Given m observations (xi , yi ) ∈ X × Y, X ⊆ Rd ,Y = {−1, 1}
find f : X → Y

Support Vector Machines use

f = sign(〈w , x〉+ b) (1)

The hyperplane H(w , b) = {x |〈w , x ,+〉b = 0} splits X in two
half spaces and is given by

min
w ,b,ξi

1

2
‖w‖2 + C

n∑
i=1

ξi

subject to yi (〈w , x〉+ b) ≥ 1− ξi

ξi ≥ 0

∀i = 1, . . . ,m

(2)
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H(w , b) depends only on some points (called support vectors)
⇒ efficient computations in training
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Kernel methods

SVMs use the hypothesis of linearly separable clusters. What to
do if the surface of separation is not linear?

Idea: use Φ : X → H to map the points xi into a higher
(possible infinite) dimensional feature space where Φ(xi ) are
linearly separable

f and ‖w‖2 can be expressed in term of the dot product
〈Φ(x),Φ(x ′)〉
⇒ avoid explicite computation of the mapping Φ(x)
⇒ Kernel Trick: the classification can be done by replacing
〈Φ(x),Φ(x ′)〉 with the kernel function k(x , x ′)
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Compound matrices

Let A ∈ Rm×n. Given q ≤ min(m, n), define
I n
q = {i = (i1, i2, . . . , iq) : 1 ≤ i1 ≤ . . . ≤ iq, ii ∈ N} and likewise
Im
q .

The compound matrix of order q, Cq(A) is defined as

[Cq(A)]i,j = det(A(ik , jl)) where i ∈ I n
q and j ∈ Im

q (3)

The size of Cq(A) is
( n

q

)
×

( m
q

)
.

Two particular cases:

if q = m = n, Cq(A) = det(A)

if q = 1, Cq(A) = A
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Binet-Cauchy kernels

Theorem (Binet-Cauchy)

Let A ∈ Rl×m and B ∈ Rl×n. For all 1 ≤ q ≤ min(m, n, l) we
have Cq(A

>B) = Cq(A)>Cq(B)

Theorem (Binet-Cauchy kernels)

Let A,B ∈ Rn×k . For all 1 ≤ q ≤ min(n, k) the two kernels

k(A,B) = tr(Cq(A
>B)) (4)

k(A,B) = det(Cq(A
>B)) (5)

are well defined and positive semi-definite
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Dynamical systems and trajectories
Definitions

The state of a dynamical system is defined by some x ∈ H where
H is a RKHS with kernel κ(·, ·). The evolution of a linear
dynamical system is denoted as:

xA(t) = A(x , t) for t ∈ T (6)

A : H× T → H is a set of linear operators indexed by T , the set
of times of measurement.
The pair (x ,A) identifies the trajectory of a dynamical system,
defined as the map:

TrajA : H → HT , TrajA(x)(t) = xA(t) (7)



Binet-Cauchy Kernerls
on Dynamical Systems

Vishwanathan S.V.N.
Smola A. J., Vidal R.

Introductive material

Binet-Cauchy Kernels

Dynamical systems

Introduction

Trace kernels

Determinant kernels

Linear dynamical systems

Connections with existing
kernels

Non-linear dynamical
systems

Applications and results

Conclusion

Dynamical systems and trajectories
Comparison approaches

Two approaches:

Compare parameters: useful when suitable
parametrization exist. But systems with different parameters
can behave almost identically.

Example

The two systems

x ← a(x) = |x |p and x ← b(x) = min(|x |p, |x |) (8)

give identical trajectories as long as p > 1 and |x | < 1

Compare trajectories: independent from parametrization,
can take in account initial conditions. Requires a similarity
measure.
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Trace kernels on dynamical systems

Applying the trace kernel on trajectories involve the computation
of

tr
(
TrajA(x)>TrajA′(x ′)

)
=

∑
t∈T

κ(xA(t), x ′A′(t)) (9)

To assure convergence, a popular solution is to adopt discounting
schemes:

µ(t) = ce−λt (10)

µ(t) = δτ (t) (11)

Definition (Trace kernel for trajectories)

The trace kernel on trajectories is defined as

k((x ,A)(x ′,A′)) = Et∼µ(t) [κ(xA(t), x ′A′(t))] (12)
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Trace kernels on dynamical systems

This kernel can be further specialized:

on model parameters

k(A,A′) = Ex,x′ [k((x ,A)(x ′,A′))] (13)

on initial conditions

k(x , x ′) = EA,A′ [k((x ,A)(x ′,A′))] (14)
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Determinant kernel on dynamical systems

Definition (Determinant kernel for trajectories)

Like the previous case, the determinant kernel is defined as

k((x ,A)(x ′,A′)) = Et∼µ(t)

[
det(TrajA(x)>TrajA′(x ′))

]
(15)

For the determinant to exist, µ(t) must have finite support.
Then, the kernel reduce to

k((x ,A)(x ′,A′)) = det(K) (16)

where Ki,j = κ(xA(ti ), x
′
A′(tj))

This kernel, following an information-theoretic interpretation,
measures the statistical dependence between two sequences



Binet-Cauchy Kernerls
on Dynamical Systems

Vishwanathan S.V.N.
Smola A. J., Vidal R.

Introductive material

Binet-Cauchy Kernels

Dynamical systems

Linear dynamical systems

Discrete time

Trace kernel

Determinant kernel

Continous time

Connections with existing
kernels

Non-linear dynamical
systems

Applications and results

Conclusion

Linear dynamical systems - Discrete time

ARMA model

yt = Cxt + wt where wt ∼ N (0,R), y ∈ Rm (17)

xt+1 = Axt + vt where vt ∼ N (0,Q), x ∈ Rn (18)

In this case, closed form solution can be found for both trace and
determinant kernels
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Trace kernel on linear dynamical systems

With the assumption µ(t) = e−λt , κ(yt , y
′
t ) = y>t Wy ′t , W

positive semi-definite, the trace kernel can be written

with same realization of noise for both systems

k((x0,A,C ), (x ′0,A
′,C ′)) = x>0 Mx ′0 +

1

1− e−λ
tr(QM +WR)

(19)

with different noise realizations

k((x0,A,C ), (x ′0,A
′,C ′)) = x>0 Mx ′0 (20)

where M satisfies the Sylvester’s equation

M = e−λA>MA′ + C>WC ′ (21)

Other closed forms exist when independence from initial condition
is desired and when the model is fully observable (C = I,R = 0)
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Determinant kernel on linear dynamical systems

With the same assumption used for the trace kernel, the
determinant kernel can be expressed in a closed form

k((x0,A,C ), (x ′0,A
′,C ′)) = det(W ) det(C>MC ′) (22)

where
M = e−λAM(A′)

>
+ x0(x

′
0)
> (23)

N.B.

1 k is uniformly zero if C or M do not have full rank (e.g.
m > n)

2 if we consider Ex0,x′
0
[k] to obtain independence from initial

conditions, a closed form is possible only for m = n = 1
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Linear dynamical systems - Continous time

The evolution of an LTI system can be described with the model

d

dt
x(t) = Ax(t) (24)

which has solution

x(t) = exp(At)x(0) (25)

Using the exponential discount µ(t) = e−λt , the trace kernel
becomes

k((x0,A), (x0,A
′)) = x>0 Mx ′0 (26)

where

(A− λ

4
I)M + M(A− λ

4
I) = −W (27)
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Connections with existing kernels
Subspaces angles

Given an ARMA model without noise, the Henkel matrix

Z =

y0 y1 y2 . . .
y1 y2 . . .
...

. . .

 =


C
CA
CA2

...

 [
x0 x1 x2 . . .

]
= O

[
x0 x1 x2 . . .

]
(28)

lives in a subspace spanned by the columns of O
The kernel

k((A,C ), (A′,C ′)) =
n∏

i=1

cos2(θi ) = det(Q>Q ′)2 (29)

measure the angle between subspaces
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Connections with existing kernels
Cepstral coefficient

Let H(z) be the transfer function of an ARMA model without
noise. The cepstrum is defined as

log(H(z)H∗(z−1)) =
∑
n∈Z

cnz
−n (30)

The Martin kernel

k((A,C ), (A′,C ′)) =
∞∑

n=1

nc∗n c ′n (31)

is equivalent to the Subspace Angles approach (De Cock and De
Moor, 2002)
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Connections with existing kernels
Random walks

Random walk on a graph can be seen as an ARMA model
without noise

yt = Cxt (32)

xt+1 = Axt (33)

Assume equiprobable distribution over starting node

k(G1,G2) =
1

|V1||V2|
1>M1 (34)

M = e−λA>1 MA2 + C>1 WC2 (35)

Equivalent to the geometric graph kernel of Gärtner et al. (2003)
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Connections with existing kernels
Diffusion on graphs

Continuous diffusion process can be seen as the continuous LTI
system

d

dt
x(t) = Lx(t) (36)

Assume same Laplacian matrix, different initial conditions,
µ(t) = δτ (t)

[K ]i,j = k((L, ei ), (L, ej)) = [exp(Lτ)> exp(Lτ)]i,j (37)

If undirected graph, L = L>

K = exp(2Lτ) (38)

Same as the diffusion kernel of Kondor and Lafferty (2002).
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Connections with existing kernels
Polygons comparison

Burkhardt (2004) uses feature functions Φ(x , p) where p is a
polygon and x is a vertex index
Dynamic of the system from x ← (x mod n) + 1
Compare two polygons from their trajectories
(Φ(1, p), . . . ,Φ(n, p))
Equiprobable distribution on initial conditions (starting points on
each polygon)

k(p, p′) =
1

nn′

n,n′∑
x,x′=1

〈Φ(x , p),Φ(x ′, p′)〉 (39)

Equivalent to Burkhardt (2004) but can be generalized to any
kernel
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Non-linear dynamical systems

The time evolution of a fully observable non-linear dynamical
systems is governed by

xt+1 = f (xt) (40)

Find a mapping Φ : X → H which linearize the system

Φ(xt+1) = AΦ(xt) (41)

and apply the same tools.
N.B.

the space of possible solutions have to be restricted by
imposing constraints on the structure of A

the same constraints appears on M while solving the
Sylvester’s equations
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Dynamic textures
Setup

The proposed kernels have been applied to the problem of
comparing dynamic textures, using ARMA models

System identification performed using the sub-optimal closed
form solution of Doretto et al. (2003)

Dataset of 150 sequences (grayscale 8 bit, 115x170 px, 120
frames each)

Sequences from 65 to 80 cannot be modeled as dynamic textures
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Dynamic textures
Results

Figure: Binet-Cauchy kernel Figure: Martin kernel

Darker area ⇒ low value kernel ⇒ similar sequences

The value of λ doesn’t affect clustering

Sequences 65-80 are recognized as novel
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Dynamic textures
Parameters interpretation

Initial condition of the system x0: discriminate between
sequences with same the foreground (dynamic behaviour)
but different background (contained in the initial condition)

Exponential decay λ: relative weights between short and
long range interactions

Dynamics (A,C ): systems with A and A′ with different
dimensionality can be compared if the outputs yt , y ′t belong
to the same space. Can compare various levels of detail in
the parametrization of the same system.
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Video clips clustering

Clustering of random video clips (120 frames each)
The kernel has been used to compute the k-nearest neighborhood
and LLE (Local Linear Embedding) has been used for clustering
and embedding in the 2D space
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Conclusion

General framework which includes previous kernels as
particular cases

Can be applied to a wide class of dynamical systems
(linear/non-linear, DT/CT)

Computational-efficient closed form solution for linear
dynamical systems

Good results
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