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Abstract

In this paper we develop a theory for characterizing
how deformable a shape is. We define a term called “de-
formability index” for shapes. The deformability index is
computed from the tracked positions of a sequence of de-
formable shapes, using a scaled orthographic camera pro-
jection model. Our method assumes that a deformable
shape sequence can be represented by a linear combination
of basis shapes, where the weights assigned to each basis
shape changes with time. The tracked points obtained from
the shape sequence is transformed to a 3D shape space. Us-
ing statistical models to separate out the “true” deforma-
tions from those induced by noise in the trajectories, the
dimension of this shape space is estimated using spectral
analysis methods. The dimension of this shape space deter-
mines the number of basis shapes needed to represent the
shape sequence, which, in turn, determines the deformabil-
ity index. Rigid 3D transformations of the shape are taken
into account in estimating the deformability index; however,
the method does not require estimation of 3D structure or
motion. Experimental results are shown using motion cap-
ture data as well as real imagery of different human activ-
ities. The results show that the deformability index is in
accordance with our intuitive judgement and corroborates
certain hypotheses in human movement analysis studies.

1 Introduction

Shape analysis is an active area of research in computer
vision with applications in object recognition. Most of the
current work in this area has focused on comparing the sim-
ilarity of two or more shapes extracted from images. A
detailed review of existing work in shape analysis is pro-
vided in Section 2. Recently, there has been some work
on shape sequence analysis, including an understanding of
the underlying dynamics. Applications of shape dynamics
in event recognition and image formation have being stud-

ied in [6, 18, 19, 10]. In modeling the dynamics of shape
evolution, it is important to separate out the “global” mo-
tion of the shape (i.e. the translation and rotation) from its
“deformation”, an issue that was analyzed in [12]. While
there are well-defined measures for the global motion of an
object, quantitative measures of its deformations are less
well known. This paper addresses the issue of quantify-
ing the deformation of a shape sequence by defining a “de-
formability index”. This index measures how deformable a
shape is. For a rigid shape (i.e., the shape does not change
from one image frame to the next), the deformability index
is one. We show how to derive this index in shape space
using tools from spectral analysis. Experiments on real-life
data of human activities are carried out and the results are in
accordance with our intuitive judgment of the deformation
involved in those activities and corroborate certain experi-
mental findings in human gait analysis.

Consider the set of images of a walking person in Figure
1 (obtained from the USF database for the Gait Challenge
problem [8]). The binary representation is used to clearly
show the change in shape of the body for one complete walk
cycle. Contrast this with the set of images that would be
produced if the person was standing still for the same pe-
riod of time. In the first case, the shape of the body deforms
as the person walks, while in the latter case, the shape re-
mains almost the same. If we consider a different example,
like a dance sequence, the shape of the body changes and
most viewers would agree that, in this case, the shape usu-
ally deforms more than in the case of a walk. Thus the shape
of the human body while dancing is more deformable than
that when walking, which is more deformable than when
standing still. Our aim is to quantify this intuitive idea of
deformability of a shape. Since it is possible for the hu-
man observer to obtain an idea of deformability based on
the contents of the video sequence, the information about
how deformable a shape is must be contained in the se-
quence itself. Therefore, it should be possible to quantify
the deformability of the shape from a set of tracked points
on the object.
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Figure 1. Sequence of shapes representing a human walk.

The aim of this paper is to derive a quantitative mea-
sure of shape deformability and justify it through experi-
mental evaluation. The basic input for this derivation is the
set of tracked feature points (landmark points) on the ob-
ject (shape) over all the frames. This set of points is trans-
formed to a 3D shape space using the ideas of deformable
shape modeling in [17]. Using statistical models to separate
out the “true” deformations from those induced by noise in
the trajectories, the dimension of this shape space is esti-
mated using tools from spectral analysis [13]. Experimen-
tal evaluation on simulation data, as well as real imagery, is
presented.

The paper is organized as follows. We start with a re-
view of relevant work in shape analysis in the next section.
We then proceed to outline the theory for deriving the “de-
formability index” in Section 3. We first revisit the tech-
niques for estimation of 3D deformable models and then
present how they can be extended to compute a measure of
deformability. Experimental evaluation is done on motion
capture data and real-life video of various human activities.
We conclude by outlining future extensions to this work.

2 Related Work

Some of the commonly used representations of shape
are Fourier descriptors [20], extended Gaussian images [3],
splines and deformable snakes [9], all of which model the
shape of continuous curves. Active shape models [1] and
Kendall’s statistical shape theory [5, 2] have considered the
shape of a discrete set of points. Methods for deformation
of one shape into another and for comparing the similar-
ity of two shapes have been proposed in [2, 7, 11]. How-
ever, there has been very little work on shape sequence
processing. Some recent work in this area involves shape-

dynamical models for activity [18] and human motion anal-
ysis [19] and for image synthesis [6]. In the domain of 3D
shape estimation from 2D images, the factorization theo-
rem is one well-known approach, though it is usually ap-
plied under the assumption of a scaled orthographic cam-
era projection model [16]. Its extension to modeling de-
formable shapes was proposed in [17], by approximating a
non-rigid object by a composition of basis shapes, thus lim-
iting the rank of the measurement matrix of the entire image
sequence. In this paper, we propose a method for estimat-
ing the deformability of shapes by analyzing a sequence of
such shapes from video. Though the calculation of the de-
formability index is carried out purely on the 2D shapes, it
involves estimation of the dimension of the 3D shape space.
Thus the method is capable of taking into account general
3D rigid transformations of the shape.

3 Estimating the Deformability Index

3.1 Intuitive Explanation

As a shape deforms, the position of the set of points
defining the shape changes from one image frame to the
next. The change in the position of this sequence of points
determines how much the shape is changing, e.g. whether
it is being squeezed or expanded or remaining the same.
Defining a deformability index depends on the ability to
obtain a mathematical description of this shape change. A
shape sequence that deforms over time can be thought of to
be composed of a number of basis shapes, where the weight
given to each basis shape changes with time, thus leading
to deformations in the original shape. This idea has been
used by a number of authors and applied to studies in hu-
man motion and activity analysis [17, 4, 10]. It is usually
the case that more deformable a shape is, more is the num-
ber of basis shapes required to represent it. However, there
is no well-defined criterion for estimating the number of ba-
sis shapes. Presently, this is done heuristically by analyzing
the physics of the underlying deforming process. At a min-
imum, a rigid shape would require only one basis shape,
while there is no theoretical upper limit. Therefore we need
a method to estimate the number of basis shapes from the
point sequence.

The theoretical derivation which follows does precisely
this. It proceeds by transforming the point sequence to a
shape space and estimating the dimensionality of this shape
space. Spectral analysis provides a method for achieving
this purpose. The intuitive notion is that spatial deforma-
tion of the shape must be reflected in the frequency domain.
The dimensionality of the shape space determines the de-
formability index. The noise in the sequence of feature po-
sitions is taken into account in order to correctly estimate
the deformability index. Since the noise can randomly al-



ter the positions of the points, it can give a false notion
of increased variability in the shape sequence, leading to
a higher dimensionality of the shape space. Also, rigid 3D
transformations of the shape can provide the impression of
deformation. This will be factored out in estimating the de-
formability index. However, estimation of 3D structure will
not be required for this purpose.

3.2 From Trajectories to Shape Space

We hypothesize that each shape sequence can be repre-
sented by a linear combination of 3D basis shapes. Math-
ematically, if we consider the trajectories of P points rep-
resenting the shape (e.g. landmark points), then the overall
configuration of the P points is represented as a linear com-
bination of the basis shapes as

S =
K∑

i=1

liSi, S, Si ∈ �3×P , l ∈ �. (1)

The choice of K determines the deformability of the shape
sequence and is the focus of the derivation that follows. We
will assume a scaled orthographic projection model for the
camera.

A number of methods exist in the computer vision liter-
ature for estimating the basis shapes. In [16], the authors
considered P points tracked across F frames in order to
obtain two F × P matrices U and V. Each row of U con-
tains the x-displacements of all the P points for a specific
time frame, and each row of V contains the corresponding
y-displacements. It was shown in [16], that for 3D rigid mo-

tion under orthographic camera model, the rank, r, of

[
U
V

]
has an upper bound of 3. The rank constraint is derived

from the fact that

[
U
V

]
can be factored into two matrices

M2F×r and Sr×P , corresponding to the pose and 3D struc-
ture of the scene, respectively. In [17], it was shown that
for non-rigid motion, the above method could be extended
to obtain a similar rank constraint, but one that is higher
than the bound for the rigid case. We will adopt the last
mentioned method for computing the basis shapes. We will
outline the basic steps of their approach in order to clarify
the notation for the remainder of the paper.

Given F frames of a video sequence with P moving
points, we can obtain the trajectories of all these points over
the entire video sequence. These P points can be repre-

sented in a measurement matrix as

W2F×P =




u1,1 · · · u1,P

v1,1 · · · v1,P

...
...

...
uF,1 · · · uF,P

vF,1 · · · vF,P


 , (2)

where uf,p represents the x-position of the pth point in the

f th frame and vf,p represents the y-position of the same
point. Under weak perspective projection, the P points of
a configuration in a frame f , are projected onto 2D image
points (uf,., vf,.) as

[
uf,1 · · · uf,P

vf,1 · · · vf,P

]
= Rf

(
K∑

i=1

lf,iSi

)
+ Tf , (3)

where,

Rf =
[

rf,1 rf,2 rf,3

rf,4 rf,5 rf,6

]
∆=

[
R(1)

f

R(2)
f

]
. (4)

Rf represents the first two rows of the full 3D camera ro-
tation matrix and Tf is the camera translation. The trans-
lation component can be eliminated by subtracting out the
mean of all the 2D points, as in [16]. We now form the mea-
surement matrix W, which was represented in (2), with the
means of each of the rows subtracted. The weak perspec-
tive scaling factor is implicitly coded in the configuration
weights, {lf,i}.

Using (2) and (3), it is easy to show that

W =




l1,1R1 · · · l1,KR1

l2,1R2 · · · l2,KR2

...
...

...
lF,1RF · · · lF,KRF






S1

S2

...
SK


 (5)

= Q2F×3K .B3K×P , (6)

which is of rank 3K. The matrix Q contains the pose for
each frame of the video sequence and the weights l1, ..., lK .
The matrix B contains the basis shapes corresponding to
each of the activities. In [17], it was shown that Q and B
can be obtained using singular value decomposition (SVD),
and retaining the top 3K singular values, as W2M×P =
UDVT and Q = UD

1
2 and B = D

1
2 VT .

3.3 Estimating Deformability Index in Shape
Space

The above mentioned rank constraint requires knowl-
edge of K in order to estimate the shape and motion pa-
rameters. This is usually determined heuristically from the
physics of the object whose structure is being estimated.



We now provide a theoretical method for estimating K by
reinterpreting the above equations in stochastic framework.
In turn, it leads to a definition of deformability of a shape
sequence.

Consider the set of coordinates representing the shape
of the deformable object in a particular frame of a video
sequence to be the realization of a random process. The
sequence of frames depicts the deformation of the shape,
along with the effects of the 3D translation and rotation.
Represent the x and y coordinates of the sampled points in a
single frame as a vector y = [u1, ..., uP , v1, ..., vP ]T . Then,
from (6), it is easy to show that for K basis shapes (K is
unknown)

yT =
[
l1R(1), ..., lKR(1), l1R(2), ..., lKR(2)

]
∗



S1

...
Sk

0

0

S1

...
Sk




+ ηT , (7)

i.e., y = (q1×6Kb6K×2P )T + η

= bT qT + η, (8)

where η represents the noise in the sequence of tracked
points and is assumed to be a zero-mean random process.
The vector q is obtained by juxtaposing two consecutive
rows of Q, corresponding to the same image frame, in equa-
tion (6). The matrix b, which is constant across all the
frames, is obtained by duplicating B in equation (6), as
shown in equation (7).

Assuming that the coordinates of the points represent-
ing the shape in all the F frames can be considered to be
realizations of the same random process (which is a reason-
able assumption since they represent the same shape), with
possibly different noise statistics, we can compute the cor-
relation matrix of y. Let Ry = E[yyT ] be the correlation
matrix of y and Cη the covariance matrix of η. Hence,

Ry = bT E[qT q]b + Cη. (9)

The correlation matrix, Ry, is of size 2P × 2P and can
be estimated from the sequence of points representing the
shapes as Ry = 1

F

∑F
f=1 yfyT

f , where yf is the vector
y (defined above) in the frame f . The expectation on the
right hand side of equation (9) can be computed similarly
as E[qT q] = 1

F

∑F
f=1 qT

f qf , where qf is the vector q (de-
fined above) for frame f and is obtained from the matrix Q
in equation (6).

The noise covariance matrix, Cη , represents the accuracy
with which the feature points are tracked and needs to be
estimated from the image frames. Since η need not be an

independent and identically distributed (IID) noise process,
Cη will not necessarily have a diagonal structure (but it is
symmetric and positive semi-definite). For the purposes of
setting a precise threshold (which will become clear soon),
it is desirable that Cη be a diagonal matrix.

Consider the diagonalization of Cη = PΛPT , where
Λ = diag[Λs, 0] and Λs is an L×L matrix of non-zero sin-
gular values of Λ. Let Ps denote the orthonormal columns
of P corresponding to the non-zero singular values. There-
fore,

Cη = PsΛsPT
s . (10)

Premultiplying equation (8) by (PsΛ
1
2
s )−1, we see that (8)

becomes

ỹ = b̃T qT + η̃, (11)

where ỹ = Λ− 1
2

s PT
s y is a L × 1 vector, b̃T = Λ− 1

2
s PT

s bT

is a L × 6K matrix and η̃ = Λ− 1
2

s PT
s η. It can be easily

verified that the covariance of η̃ is an identity matrix IL×L.
This is known as the process of “whitening”, whereby the
noise process is transformed to be IID [13].

Representing by Rỹ the correlation matrix of ỹ, it can
be seen that

Rỹ = b̃T E[qT q]b̃ + I = ∆ + I, (12)

where, for simplicity, ∆∆=b̃T E[qT q]b̃. Now, Rỹ is of di-
mension L × L, b̃T is of size L × 6K and E[qT q] is of
size 6K × 6K. Thus, ∆ has maximum rank 6K, where K
is the number of basis shapes (assuming L > 6K). This
is based on the fact that if Am×n = Fm×rGr×n, then the
Rank(A) ≤ r. For a general 3D scene undergoing transla-
tion and rotation, the rank will be 6K, which is the case we
will consider below. Representing by µi(A) the ith eigen-
value of the matrix A, we see that

µi(Rỹ) = µi(∆) + 1, for i = 1, ..., 6K, and

µi(Rỹ) = 1, for i = 6K + 1, ..., L. (13)

Hence, there are 6K eigenvalues above 1. By counting the
number of eigenvalues that are greater than 1 and dividing
it by 6, we can obtain an estimate of K, which is the dimen-
sionality of the shape space represented by the sequence of
deforming points. Since K denotes the number of basis
shapes that can model the feature point sequence, it pro-
vides a measure of the deformability of the shape sequence.
The more the number of basis shapes required to model a
shape sequence, the more deformable it is. Thus, for a gen-
eral 3D scene undergoing translation and rotation, we have

Deformability Index =
#eigenvalues of Rỹ > 1

6
. (14)



3.4 Properties of the Deformability Index

• For the case of a 3D rigid body, the deformability index
is 1. In this case, the only variation in the values of the
vector y from one image frame to the next is due to
the global rigid translation and rotation of the object.
The rank of the matrix ∆ will be 6 [17, 16] and the
deformability index will be 1.

• For the special case of a planar scene, the correspond-
ing rank of ∆ would be 4K, and thus the deformability
index should be calculated by dividing the number of
eigenvalues over 1 by 4.

• Estimation of the deformability index does not require
explicit computation of the 3D structure and motion in
equation (6), since we need to compute the eigenvalues
of the covariance matrix of the 2D feature positions.
In fact, for estimating the shape and rotation matrices
in equation (6) it is essential to know the value of K.
Thus the method outlined in Section 3.3 should pre-
cede computation of the shape in Section 3.2. Using
our method, it is possible to obtain an algorithm for
deformable shape estimation without having to guess
the value of K.

• The computation of the deformability index takes into
account any rigid 3D translation and rotation of the ob-
ject (as recoverable under a scaled orthographic cam-
era projection model), even though it has the simplicity
of working only with the covariance matrix of the 2D
projections. Thus it is more general than a method that
considers purely 2D image plane motion.

• The “whitening” procedure described above enables us
to choose a fixed threshold of one for comparing the
eigenvalues.

• The proposed algorithm in non-iterative. This is un-
like other approaches (e.g. [4, 17]) where the sum of
squared differences is minimized to determine K.

4 Experimental Results

Experimental evaluation of the above theory was carried
out on real life imagery. The experiments were in the do-
main of human motion analysis, where the deformation of
the human body during various activities was estimated us-
ing the deformability index. We performed two sets of ex-
periments. In the first one, motion capture data for various
activities was used as the input. We computed the deforma-
bility index of the human body for each of these activities,
and found them to be very consistent with what would be
expected intuitively by a human observer. Next, we applied
our theory to walking sequences of humans as available in

the USF Gait Challenge Database [8]. Here we found that
our deformability estimates are in accordance with some
of the results on shape representation reported in the gait
recognition literature. In both the experiments, the shapes
were centered in the image frames, scaled and aligned so as
to make the human body upright.

4.1 Experiments With Motion Capture Data

We used the motion-capture data available from Credo
Interactive Inc. and Carnegie Mellon University in the Bio-
Vision Hierarchy and Acclaim formats. It has a number of
examples of different activities and is thus a rich dataset
for studying shape sequences. 1 The combined dataset in-
cluded a number of subjects performing various activities,
like walking, jogging, sitting, crawling, brooming, etc. For
each of these activities, we had multiple video sequences.
Also, many of the activities contained video from different
viewpoints.

Using the video sequences and the theory outlined in
Section 3.2, we computed the 3D basis shapes and their
combination coefficients (see equation (1)). The first basis
shapes are shown in Figure 2 for six different activities.

For the different activities in this database, we computed
the deformability index from equation (14). The deforma-
bility index, computed for each of these sequences, is shown
in Table 1. Since this value denotes the number of basis
shapes required to represent the video sequences, we resyn-
thesized the original sequences using the basis shapes and
combination coefficients obtained from equation (6). Equa-
tion (3) was used for the synthesis and the value of K was
determined by the procedure in Section 3. In all the cases,
the error at none of the feature points was more than 1 pixel.

From Table 1, a number of interesting observations can
be made. For the walk sequences, the deformability index
was between 5 and 6. This matches the hypotheses in pa-
pers on gait recognition where it is mentioned that about
five exemplars are necessary to represent a full cycle of gait
[4]. The number of basis shapes increases for fast walk, as
expected from some of the results in [15]. When the person
walks doing some other things (like moving head or hands
or a blind person’s walk), the number of basis shapes needed
to represent it (i.e. the deformability index) increases from
that of normal walk. The result that might seem surpris-
ing initially is the high deformability index for sitting se-
quences. On closer examination though, it was found that
the person, while sitting, was making all kinds of random
gestures as in talking to someone else. That increased the
deformability index for these sequences. The deformabil-
ity index, thus calculated, is used to estimate the 3D shape,
some of which are shown in Figure 2.

1While there are a number of standard datasets for shapes, we could
not find many for the study of shape sequences.



(a) (b)

(c) (d)

(e) (f)

Figure 2. (a) - (f): Plots of the first basis shape, S1, for
walk, sit, broom, jog, blind walk and crawl sequences, re-
spectively.

4.2 Experiments on Gait Dataset

The USF Gait Challenge Dataset [8] was used for our
experiments because of two reasons. It has a number of
examples of different people walking under different condi-
tions. Thus it would allow us to test the consistency of the
estimates for the deformability index. Secondly, a number
of researchers have reported results on this dataset and thus
we would be able to corroborate our conclusions with their
results.

We used the background subtracted images of the walk-
ing person, when the person is presenting a side view to the
camera, as shown in Figure 1. The outer boundary of the
person was sampled in order to obtain the shape vector. The
method described in [14] was adopted to estimate the vari-
ance of the noise in the feature positions from the original
images. The method uses the inverse of the Hessian matrix
of the second-order partial derivatives of the intensity along
the horizontal and vertical axes. By using the same num-
ber of sample points in each frame, an approximate corre-
spondence was maintained between the feature points in the
different frames. We experimented with 10 subjects walk-

Table 1. Deformability Index for Human Activ-
ities Using Motion Capture Data

Activity Deformability Index

Walk (Seq. 1) 5.8
Walk (Seq. 2) 4.7

Fast Walk 8.0
Walk while throwing hands around 6.8

Walk with drooping head 8.8
Blind walk 8.8

Female Walk 7.0
Slow Dance 8.0

Jog 5.0
Broom (Seq. 1) 7.5
Broom (Seq. 2) 8.8

Broom in a circle 9.0
Crawl 8.0

Sit (Seq. 1) 8.0
Sit (Seq. 2) 8.2
Sit (Seq. 3) 8.2

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

Figure 3. Plot of the eigenvalues, in decreasing order
of magnitude, for a typical walking sequence in the USF
database.

ing on grass and concrete surfaces and wearing different
types of shoes. For all the cases, the deformability index
ranged from 3.8 to 5.2. Figure 3 shows a typical plot of
the eigenvalues arranged in descending order of magnitude
along with the threshold of one. It has been noted in [4] that
four to five exemplars are needed to represent a complete
cycle of gait. Reasonably good recognition results were
obtained using their algorithm on the USF database. Our
analysis, presented in this paper, provides a theoretical jus-
tification for the choice of the number of exemplars. The
results show that the deformability index for human walk is
indeed between 4 and 5.



5 Conclusions

In this paper, we have a presented a method for estimat-
ing the deformability of shape sequences obtained from a
set of video frames. We assumed a scaled orthographic
camera projection model and that a deformable shape can be
represented using a linear combination of basis shapes. The
theory relied on estimating the number of 3D basis shapes
from the 2D feature positions representing the shapes. The
deformability index is directly related to the number of ba-
sis shapes. The computation of the deformability index
can handle rigid 3D transformations of the shape, though
it does not require prior estimation of the 3D structure or
motion. We presented experimental results in human move-
ment analysis using motion capture and real-life video im-
ages. The estimates of the deformability index are in accor-
dance with what would be expected intuitively by a human
observer and corroborate certain hypotheses in the existing
literature on human motion analysis.
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