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Fiber tract trajectories in coherently organized brain white mat-
ter pathways were computed from in vivo diffusion tensor mag-
netic resonance imaging (DT-MRI) data. First, a continuous
diffusion tensor field is constructed from this discrete, noisy,
measured DT-MRI data. Then a Frenet equation, describing the
evolution of a fiber tract, was solved. This approach was vali-
dated using synthesized, noisy DT-MRI data. Corpus callosum
and pyramidal tract trajectories were constructed and found to
be consistent with known anatomy. The method’s reliability,
however, degrades where the distribution of fiber tract direc-
tions is nonuniform. Moreover, background noise in diffusion-
weighted MRIs can cause a computed trajectory to hop from
tract to tract. Still, this method can provide quantitative infor-
mation with which to visualize and study connectivity and con-
tinuity of neural pathways in the central and peripheral nervous
systems in vivo, and holds promise for elucidating architectural
features in other fibrous tissues and ordered media. Magn
Reson Med 44:625–632, 2000. Published 2000 Wiley-Liss, Inc.†
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Diffusion tensor MRI (DT-MRI) (1) is the first noninvasive
in vivo imaging modality with the potential to generate
fiber-tract trajectories in soft fibrous tissues, such as
nerves, muscles, ligaments, tendons, etc. (1–3). However,
until recently this end could not be realized primarily for
technical and mathematical reasons: First, the resolution
and quality of diffusion-weighted images (DWIs) in vivo
was not adequate for this demanding application. How-
ever, these problems have been ameliorated with the in-
troduction of faster, more powerful gradients; single-shot
diffusion-weighted echo-planar imaging (DW-EPI) se-
quences (4) with higher SNR and reduced motion artifacts
(5); as well as schemes to reduce eddy current artifacts (6),
and B0 distortion (7). Second, the macroscopic fiber-tract
direction field, «1(x,y,z), is obtained from measured DT-
MRI data that is discrete, coarsely sampled, noisy, and
voxel-averaged (8). Just as in hydrodynamics, it is difficult
to construct fluid streamlines accurately from discrete,
noisy, velocity field data (9); here it is difficult to follow a
white matter fiber trajectory using discrete, noisy, direc-
tion field data. A methodology capable of generating a
continuous, smooth representation of the measured DT-
MRI data first had to be developed in order to ensure the
reliability and robustness of DT-MRI fiber tractography.

This mathematical framework is described in (10). Finally,
a framework for following individual fiber tracts had to be
developed, the underpinnings of which can be found in
earlier works (3,8,11).

More recently, several groups have proposed tractogra-
phy methods and have reported success in following fiber
tracts, and even individual fascicles, over distances on a
gross anatomical length scale (12–15). We do not attempt
to compare and contrast our method or results with theirs.
First, there are many new biologically relevant findings
presented here and methodological issues raised in this
work, so that including additional material would make
this article unnecessarily long. Second, the steps involved
in implementing some of these more recent tract-following
schemes have, to date, only been outlined schematically,
making it difficult to reproduce them, and thus to compare
their findings fairly with ours.

The aims of this article are to 1) propose and describe a
methodology to calculate continuous fiber-tract trajecto-
ries from discrete measured diffusion tensor MRI data; 2)
present a general framework for testing the fidelity and
robustness of this (and of other) fiber tract following
schemes; 3) demonstrate that our method follows fiber
tracts in the brain using in vivo DT-MRI data; 4) elucidate
artifacts and inherent limitations of fiber tract following
schemes that employ DT-MRI data; and 5) describe poten-
tial applications of DT-MRI fiber tractography.

THEORY

Evolution of Fiber Tract Trajectories

Previously, we proposed that a white matter fiber tract
trajectory could be represented as a 3D space curve (3,8
11), i.e., a vector, r(s), parameterized by the arc length, s, of
the trajectory.

The Frenet equation describing the evolution of r(s) is
(16):

dr~s!

ds
5 t~s! [1]

where t(s) is the unit tangent vector to r(s) at s. These
vectors are depicted in Fig. 1.

We also claimed that the normalized eigenvector, «1,
associated with the largest eigenvalue of the diffusion ten-
sor, D, l1, lies parallel to the local fiber tract direction (1,2)
in coherently organized white matter. To within accept-
able experimental error, several groups have confirmed
this to be true in the heart (17,18).

A key idea in our fiber tract following algorithm is to
equate the tangent vector, t(s), and the unit eigenvector, «1,
calculated at position r(s):

t~s! 5 «1~r~s!!. [2]

1Section on Tissue Biophysics and Biomimetics, NICHD, Bethesda, Mary-
land.
2Mathematical and Statistical Computing Laboratory, CIT; NIH, Bethesda,
Maryland.
3Department of Mathematics, Vanderbilt University, Nashville, Tennessee.
Grant sponsor: NSF; Grant number: DMS-9805483 (to A.A.).
*Correspondence to: Peter J. Basser, Ph.D., National Institutes of Health,
Bldg. 13, Rm. 3W16, 13 South Drive, Bethesda, MD 20892-5772.
E-mail: pjbasser@helix.nih.gov
Received 27 January 2000; revised 2 June 2000; accepted 5 June 2000.

Magnetic Resonance in Medicine 44:625–632 (2000)

Published 2000 Wiley-Liss, Inc. † This article is a US Government
work and, as such, is in the public domain in the United States of America.

625



Therefore, combining Eqs. [1] and [2] we obtain:

dr~s!

ds
5 «1~r~s!!. [3]

This system of three implicit (vector) differential equa-
tions is solved for the fiber tract trajectory subject to an
initial condition:

r~0! 5 r0 [4]

which specifies a starting point on the fiber tract.

METHODOLOGY

The system of differential equations above, Eqs. [3] and [4],
are implicit and forced. We could not find a general, ana-
lytical solution for r(s). Instead, numerical methods were
employed.

Euler’s Method

We use Euler’s method (19) to see how such a solution
might proceed. It is graphically outlined in Fig. 1. We
choose a point on r(s), r(s0), and evaluate the diffusion
tensor there, D(r(s0)) (here we use the continuous repre-
sentation of the tensor field at that point, as described
elsewhere in the text). Then we approximate the position
of a nearby point on r(s), r(s1), by using a Taylor series
expansion of r(s) about r(s0): r(s1) 5 r(s0) 1 r’(s0) (s1 - s0) 1
…. Since the slope of r(s0) at s0, r’(s0), is assumed to be
parallel to «1(r(s0)), we can always find some small number
a (with 0 , uau ! 1) such that r’(s0) (s1 - s0) ; a «1(r(s0)).
Once a is chosen, we can write:

r~s1! , r~s0! 1 aε1~r~s0!!. [5]

Thus, we can estimate r(s1) from the values of r(s0) and
«1(r(s0)). This procedure can now be repeated starting at
the new point, r(s1) …, and can be iterated to predict the
location of discrete points along the fiber trajectory, r(s).

Runge-Kutta Method

While Euler’s method is easy to explain and to implement,
it is accurate only to 1st-order, and thus is susceptible to
large accumulated errors and to numerical instabilities
(19). Since our continuous representation of the diffusion
tensor, D(x) can furnish estimates of 2nd and higher de-
rivatives of «1(x), it is prudent to use this information in a
more robust and accurate numerical method to integrate
these trajectories.

The 2nd-order or adaptive 4th-order Runge-Kutta meth-
ods are preferred to Euler’s method to solve the system of
differential equations above. One advantage of Runge-
Kutta is that its estimates of higher derivatives of r(s) are
more reliable. Another is that it is possible to employ
adaptive step sizing to control the amount of error intro-
duced in each integration step. Finally, a 4th-order Runge-
Kutta scheme, described in Numerical Recipes (19), has
been implemented as a callable subroutine within IDL
(Research Systems, Boulder, CO), making it relatively easy
to program.

Other Considerations in Fiber Tracking

One of the problems still to address is to assign the direc-
tion of the tangent vector in Eq. [2] consistently (20). This
is complicated by the fact that the sign of «1 is indetermi-
nate, i.e., it can be positive or negative. Once the direction
of the path of integration (i.e., the direction of the tangent
to the curve) is first determined, «1 should be chosen to
point along the integration path consistently. This is done
to avoid making erratic forward and backward steps as the
path integration proceeds. To choose the tangent vector for
the present step, we take the dot product between the
eigenvector obtained in the previous step and the one
calculated in the present step. If the result is positive (i.e.,
they point in the same direction) we preserve the sign of
the new eigenvector; if the result is negative (i.e., they
point in opposite directions), we swap its sign.

Not only must we choose the sign of «1 consistently, but
its direction as well. In each iteration above, we sort the
eigenvalues of D(x) according to their magnitude, associ-
ating the largest eigenvalue with «1. However, background
noise in DWIs can cause these eigenvalues to be misclas-
sified (21), which consequently leads one to misclassify
their corresponding eigenvectors (20). While at high SNR
in coherent white matter tracts missorting eigenvalues is a
relatively rare event, it occurs more frequently in less
coherently organized white matter regions and at low SNR
(22). If it occurs, «1 no longer points along the true direc-
tion of the fiber (20), causing the trajectory suddenly to
veer off course. To mitigate this problem, we check the
coherence of fiber directions along the computed fiber tract
and determine whether the local curvature (described be-
low) between successive integration steps is large. If so, we
stop the program, and report an error.

To help monitor the tract-following process, we also
calculate intrinsic parameters of the trajectory, r(s), that
characterize its torsional and bending motion within the
imaging volume. The curvature, k(s), describes the propen-
sity of r(s) to bend, while the torsion, t(s), describes its

FIG. 1. Representation of a white matter fiber trajectory as a space
curve, r(s). The local tangent vector, t(s1), is identified with the
eigenvector, «1(r(s1)), associated with the largest eigenvalue of the
diffusion tensor, D at position r(s1).
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propensity to twist about the fiber axis. Both quantities can
be readily calculated from the fiber tract trajectory, and its
higher derivatives (23):

k~s! 5
udt~s!u

ds
5

UdS r9~s!

ur9~s!uDU
ds

and

t~s! 5
r9~s! z ~r0~s! 3 r-~s!!

k~s!2 for k~s! Þ 0. [6]

The curvature and torsion can also be used as MRI stains
that elucidate novel intrinsic geometric features of the
fiber trajectory (3).

We stop following fibers for four reasons: 1) the tract
reaches the boundary of the imaging volume; 2) the tract
reaches a region with low diffusion anisotropy (lattice
index , 0.1); 3) the radius of curvature of the tract is
smaller than approximately two voxels; and 4) the eigen-
vector that is the most collinear is not the same as the
eigenvector associated with the largest eigenvalue.

Algorithms to Approximate or Interpolate a Tensor Field

We recently developed a mathematical framework and
methodology to obtain a continuous representation of
«1(x), which is necessary to integrate the differential equa-
tions above. We do this by first generating a continuous
approximation of D(x), and then calculating «1(x) from it.
The underpinnings of this approach have been described
elsewhere (10,24). There are two types of continuous rep-
resentations of tensor field data that we use in this study:
approximation and interpolation (10). Approximation in-
volves finding a set of B-spline functions that smoothly
“fits” the noisy discrete experimental data in a least-
squared sense, just as linear regression fits a line to a set of
discrete noisy data points. We use approximation in our
tract-following scheme to obtain a noise-reduced,
smoothed, continuous representation of the experimental
diffusion tensor field data, from which a smooth represen-
tation of the fiber direction field can be obtained. Interpo-
lation involves finding a continuous representation, using
an appropriate set of B-spline functions that are con-
strained to pass through all of the measured noisy, discrete
tensor data. We see below that using smoothed approxi-
mated data rather than noisy interpolated data results in
improved performance of our tract-tracing scheme.

Diffusion Tensor Field Templates

To test the fidelity and robustness of the fiber-following
algorithm, we synthesized a family of analytical 3D D(x)
maps whose fiber tract direction fields possess character-
istics or patterns seen in vivo, or exhibit peculiar mathe-
matical features or pathologies. The former include uni-
form (white matter) fiber tracts in isotropic (gray matter)
domains, or fiber tracts that circulate, cross or “kiss,”
merge or branch, bulge or neck, terminate or kink. The
latter include, fiber tract trajectories that oscillate period-
ically or variably (e.g., “chirp”). These tensor fields are
synthesized from piecewise-continuous functions and

then discretely sampled as described in Ref. 8. To assess
noise immunity of the fiber tract-following method, Monte
Carlo simulations of DT-MRI experiments were performed
using these tensor field patterns. In each voxel, Rician RF
noise (25,26) was added to an ideal NMR signal that is
calculated from the prescribed diffusion tensor there, and
from the gradient sequence, as described previously (21).
This procedure results in noisy diffusion-weighted MRIs
(DWIs) (21) from which we estimate a discrete, noisy dif-
fusion tensor field using methods described previously
(27–29). In this way we can vary the SNR systematically to
study the effect of background noise on the variability of
the fiber direction field itself, and to assess the ability of
the fiber tractography scheme to follow fibers faithfully. To
assess the reliability and reproducibility of this tract-fol-
lowing method, we construct noisy realizations of a uni-
form anisotropic diffusion tensor field within a straight
white matter fiber tract. A straight, synthetically generated
fiber tract, 128 voxels long and 5 voxels in diameter, was
constructed for this purpose. We launch trajectories from a
particular point along the tract and follow them until they
intersect the fiber boundary, at which point we deem that
the tract-following method fails.

DT-MRI Methods

Healthy volunteers were scanned using a 1.5 T GE Signa
Horizon EchoSpeed equipped with a 2.2 G/cm gradient set,
according to an approved NIH clinical protocol. A set of
DWIs were acquired in six isotropically distributed direc-
tions, using an interleaved, spin-echo, echo-planar sequence,
employing navigator echo correction, as described in (30).
DWI parameters were as follows: FOV 5 22 cm, TE 5 78 ms,
TR . 5 sec with cardiac gating, voxel size 5 3.5 3 1.75 3
1.75 mm, data matrix 5 128 3 128. The strength of diffusion
weighting as measured by Trace(b) (where b is the b-matrix
(27–29,31) calculated for each DWI) was varied from approx-
imately 0 to 1000 s/mm2.

An effective diffusion tensor was calculated in each
voxel according to (27,29,31). Maps of useful MR param-
eters calculated from the diffusion tensor, such as
Trace(D), diffusion anisotropy measures (such as the rela-
tive anisotropy (RA), the fractional anisotropy (FA) (32)
and the lattice index (21)), diffusion ellipsoid images, etc.
(1,2) all provide information to evaluate fiber tract archi-
tecture in the brain (22).

RESULTS

Synthetic Data

To identify possible artifacts and/or limitations of the
tract-following method, we constructed continuous tensor
fields described above. Figure 2 shows a synthetically
generated fiber map whose primary eigenvectors are cir-
cumferentially orientated. The object is constructed
within a 128 3 128 3 1 imaging volume. Trajectories are
computed in each ring using the Euler method with a 0.1
voxel step size. In each case, starting at a particular point
on a ring, we attempt to follow a fiber tract for 20 revolu-
tions. Tract-following is most accurate in the ring with the
largest diameter, or smallest radius of curvature, but de-
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grades as ring diameter decreases, as evidenced by the
increasing width of the trajectories. In the innermost ring,
following was terminated after only 17 revolutions when
the trajectory intersected the perimeter of the ring.

Generally, we find that the Euler method can be used to
follow fiber tracts provided that the step size is chosen to
be significantly smaller than the minimum radius of cur-
vature along the entire length of the tract. Operationally,
the step size can be decreased until the fiber trajectory
becomes stable and reproducible. In this application, it is
usually sufficient to choose a , (0.05 3 L), where L is a
voxel dimension. Still, an adaptive Runge-Kutta or Gear’s
method is preferred to Euler’s method for reasons given
above.

To identify possible artifacts introduced by interpo-
lating or approximating discrete noisy tensor data, we
sampled continuous tensor fields at discrete points, add-
ing Rician noise in the manner described in the Methods
section. We then obtained an interpolated or approxi-
mated continuous tensor field representation of the sam-
pled data from the noisy DWIs. Figure 3a shows trajec-
tories obtained by interpolating the noisy data; Fig. 3b
shows trajectories obtained by approximating the noisy
data. The SNR of both simulations is the same, 10; and
l1 : l2 : l3 5 2 : 1 : 1.

The performance of the tract-following algorithm is
poorer when using interpolated noisy data rather than
smoothed approximated data at the same SNR. Similar
results were found in other synthetic datasets and at all
other SNRs tested. Most of the trajectories using interpo-
lated data failed to traverse the entire length of the fiber.

Tensor fields were constructed to identify possible arti-
facts introduced when fibers kiss, cross, merge, branch,

bulge, or neck. Two such fields are represented in Fig.
4a,b. Crossing fibers are depicted in Fig. 4a, while “kiss-
ing” fibers are depicted in Fig. 4b. In Figure 4a trajectories
were released from a small ROI and allowed to follow
fibers in both directions. Again, the diffusion tensor field
was approximated using the methods described above
with a scale factor of 0.75. Here, fibers released on one
branch are reflected at the plane of symmetry. However, as
SNR decreases one can also observe fibers occasionally
crossing the plane of symmetry, as in Fig. 4b. In Fig. 4b
trajectories were released from a small ROI in the left ring.
In some cases, the fiber trajectory crosses from the left to
the right ring. The tensor approximation scheme, which
tries to establish continuity of the tensor field, including at
singularities, chooses solutions that tend to keep fibers
separated.

Human Brain Data

Figure 5 shows fiber tract trajectories, r(s), computed from
in vivo human DT-MRI data by launching trajectories from
an ROI located at the center of the splenium of the corpus
callosum on a single slice. Tracts are followed in both

FIG. 2. Fiber tract trajectories, r(s), calculated from a synthetic
diffusion tensor field consisting of concentric rings in which the
primary eigenvector, «1(r(s)), is oriented circumferentially. Fiber tract
trajectories, depicted in different colors, are launched from a single
point in the middle of each ring, and followed for 20 revolutions.
Accuracy degrades as the radius of curvature decreases.

FIG. 3. Following straight fiber tracts. Simulated fiber tract trajec-
tories, r(s), are calculated from 50 different noise realizations of
synthetic diffusion tensor fields (SNR 5 10; l1:l2:l3 5 2:1:1). Tracts
are launched from a single point within a bundle of straight fibers.
Tract following is less accurate and robust when using interpolated
(top) rather than approximated (bottom) diffusion tensor data.

FIG. 4. Artifacts in fiber following due to singularities in the diffusion
tensor field. a,b: Crossing and “kissing” fibers tracts, respectively. a
shows a bias against fibers crossing the plane of symmetry
(SNR520; l1:l2:l3 5 3:1:1). b shows that occasionally noise can
cause trajectories to jump from one tract to another near a singu-
larity (SNR520; l1:l2:l3 5 2:1:1).
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directions. Figure 5a shows a projection of these computed
trajectories onto a T2-weighted amplitude image of the
brain at the level of the selected ROI. Figure 5b shows a 3D
rendering of the computed trajectories with T2-weighted
amplitude images displayed at slices below the ROI. Fiber
trajectories within the body of the corpus callosum are
consistent with the known anatomy of this structure. Fiber
trajectories continuing beyond the external margins of the
lateral ventricles appear to follow anatomically defined
tracts (external capsule and pathways projecting to the
occipital lobe); however, establishing if the apparent con-
tinuity of callosal fibers into these tracts is a true anatom-
ical feature requires validation by histological techniques.

Figure 6a also shows a 3D rendering of computed trajec-
tories from human DT-MRI data. In this figure we map long
projection pathways by launching trajectories from ROIs
positioned in the internal capsule at the level of the globus
pallidum, in the pyramidal tract at the level of the cerebral
peduncles and the pons, and in the ascending sensory
fibers (lemniscus medialis) at the level of the pons. Tracts
are followed in both directions. Only regions within the
imaging volume for which the lattice anisotropy index is
greater than 0.3 are used. This is to ensure that fiber tracts
are launched from regions of coherently organized white
matter. Figure 6b shows a projection of these computed
trajectories. This figure is obtained from the previous one

by counting the number of fibers passing through each voxel
and assigning an intensity to each voxel which is propor-
tional to this number. This distribution is then projected onto
the plane of view in a manner similar to the way a maximum
intensity projection (MIP) image would be produced. The
pathways highlighted in this figure are consistent with the
known gross anatomy of the long projection pathways. Inter-
estingly, motor fiber trajectories originating from the ROI in
the cerebral peduncle usually continue superiorly up to the
cortex, while sensory fiber trajectories from the ROI in the
lemniscus medialis do not. This is consistent with the notion
that sensory fibers project to the thalamus, while motor fibers
of the pyramidal tract descend uninterrupted from the cortex
to the brainstem and the spine.

Figure 7 shows a 3D rendering of computed trajectories
within the corpus callosum. This figure is obtained by
launching trajectories from a multislice ROI located in the
body of the corpus callosum in the proximity of the mid-
line. We require that the lattice anisotropy index of all
voxels within the ROI is greater than 0.6 to ensure that
fiber tracts are being launched from regions of coherently
organized white matter with no partial volume contami-
nation from CSF. Tracts are also followed in both direc-
tions. The majority of fiber trajectories from the corpus
callosum continue upward toward the cingular cortex.

FIG. 6. 3D rendering of computed trajectories of
long projection pathways using in vivo human DT-
MRI data. Trajectories are launched from ROIs in
the internal capsule at the level of the globus pal-
lidum, in the pyramidal tract at the level of the
cerebral peduncles and the pons, and in the as-
cending sensory fibers (lemniscus medialis) at the
level of the pons. Tracts are followed in both di-
rections. a: Surface shaded rendering of these
pathways. b: A fiber tract density map of these
computed trajectories in which the image intensity
is proportional to the number of fibers passing
through each voxel. This distribution is then pro-
jected onto the plane of view, as in a MIP image.

FIG. 5. Fiber tract trajectories, r(s), computed in
the corpus callosum using in vivo human DT-MRI
data. Trajectories were “launched” from a ROI lo-
cated at the center of the splenium of the corpus
callosum at its intersection with the interhemi-
spheric plane. a: A projection of these computed
trajectories onto a T2-weighted amplitude image of
the brain at the level of the ROI. b: 3D rendering of
the computed trajectories superimposed on a T2-
weighted amplitude images of the brain at a level
below the ROI.
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Interestingly, the cingulum can be clearly seen as a rela-
tively thin bundle running anteroposteriorly above the
corpus callosum (arrows in Fig. 7a). Considering that the
ROI from which the trajectories originate does not include
any portion of the cingulum, its inclusion implies that the
tractography algorithm had found a connection between
the callosal and cingular fibers. Whether this is an impor-
tant anatomical finding or just an artifact requires further
study.

DISCUSSION

Obstacles to DT-MRI Tractography

There are several obstacles to elucidating fiber tract trajec-
tories quantitatively. First, there is presently no “gold stan-
dard” for in vivo fiber tractography (33). In fact, DT-MRI is
the only method of which we are aware that permits the
calculation and visualization of fiber tract trajectories in
optically turbid tissue in vivo (and was developed, in part,
to address this unmet need). In vitro validation of fiber
tract direction fields obtained by DT-MRI has been at-
tempted histologically (17,18). Of course, sample registra-
tion, dissection, freezing, dehydration, fixation, microtom-
ing, thawing, etc., each can alter tissue microstructure and
microanatomy and introduce geometric distortion in the
histological sample. Therefore, great care is required to
compare fiber directions in living tissue and a fixed spec-
imen prepared from it. Thus, the diffusion tensor field
templates take on greater importance in helping us to
validate fiber-tracking methods that use DT-MRI data.

All of the usual artifacts and problems in DWI experi-
ments can adversely affect fiber tracking in predictable
ways. Misregistration of DWIs caused by eddy currents,
ghosting due to motion artifacts, and signal loss due to
susceptibility variations could all affect the computed tra-
jectories. However, many of these problems can be miti-
gated using well-established correction schemes. The use
of isotropic voxels is recommended to ensure that the
accuracy of the tractography scheme is independent of
fiber direction.

The diffusion tensor used to measure the fiber tract
direction is a voxel-averaged quantity. In voxels contain-
ing anisotropic fibrous tissues having a uniform fiber di-
rection, the eigenvector associated with the largest eigen-
value of the effective diffusion tensor provides an unbi-
ased estimate of the microscopic fiber field direction
vector (34). However, if there is a nonuniform distribution
of fiber directions then the NMR signal we measure de-
pends in a complicated way on structure and architecture
of the tissue (22). Then the eigenvector associated with the
largest eigenvalue of the effective diffusion tensor only
corresponds to a consensus average fiber direction within
the voxel. There, “powder averaging” of the microscopic
D-field occurs (21,22). If the voxel contains curved fiber
tracts, then using smaller voxels can ameliorate this prob-
lem. If the voxel contains two or more distinct populations
of interdigitating fibers, then reducing voxel size does not
remedy the problem (21). This problem becomes even
more severe at singularities in the microscopic direction
field (3,8,35), for example, where fiber tracts cross or
“kiss,” or branch or merge. As we have shown above,
within singular regions fiber tract trajectories calculated
from the original or smoothed direction field may fail to
follow the true fiber tract trajectory. While recently pro-
posed novel methods of Bossart et al. (36) and Tuch et al.
(37) identify two nonexchanging populations of water
molecules that diffuse anisotropically within a voxel, they
still do not address how such fibers are connected within
a singular region. Do they kiss, cross, or is their pattern
some combination of both? A future challenge is to cir-
cumvent powder-averaging effects by employing addi-
tional a priori anatomical information about the distribu-
tion of fiber tract directions and structural information
about tissue composition within these voxels, so one can
reconstruct white matter fiber tract trajectories in complex
structures such as the ventral internal capsule, the optic
chiasm, the pyramidal tract, and in other white matter
structures where the fiber direction field may not be uni-
form.

FIG. 7. 3D rendering of computed trajectories
within the corpus callosum. Trajectories are
launched in both directions from a multislice ROI
located in the body of the corpus callosum in the
proximity of the midline. The majority of fiber tra-
jectories continue upward toward the cingular cor-
tex. The cingulum is the thin bundle running an-
teroposteriorly above the corpus callosum (see ar-
rows in figure showing posterior view).
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Moreover, at points where there are discontinuities in
r(s), or in its derivatives (such as where there are transec-
tions, or at points where the fiber tract is kink), tractogra-
phy methods that “regularize” (13) the fiber trajectory may
artifactually introduce fiber continuity there. This would
apply particularly to schemes that introduce “memory” or
which model the tract as having some inherent “bending
stiffness.” Generally, our ability to observe wiggles, gaps,
or discontinuities in fiber tracts depends on a number of
variables, such as the radius of the fiber, the width of the
gap, the voxel size, the scale of the smoothing window, the
background noise level, and the algorithm used. If we
choose our smoothing window to be too large, it is possible
to smooth over a transected fiber so it will appear contin-
uous.

Other artifacts may be introduced when smoothing a
noisy diffusion tensor field. Generating a continuous ap-
proximation to the tensor field can introduce phantom
connections between tracts which do not exist anatomi-
cally. In an attempt to make the field continuous within
white matter regions, distinct fiber tracts that may be sep-
arated from each other by a voxel or two may be bridged or
merged. In this way, “blebs” on different neighboring
tracts can coalesce to form an artifactual connection or
nexus, which can cause the computed trajectory to “jump”
tracts. The larger the smoothing window chosen for the
tensor approximation, the greater the likelihood of this
problem occurring.

Not remediating noise in the DWIs can also have adverse
consequences, since it can cause one to sort eigenvectors
incorrectly (20). As described above, this results in a sud-
den 90° deviation in the computed trajectory, which
causes the trajectory to “jump” to another tract (20). Noise
in DT-MRI data also introduces scatter in the distribution
of the eigenvectors (38), even when the eigenvalues are
sorted correctly. A fiber-tracking scheme that follows
noisy (interpolated) eigenvector data will eventually me-
ander away from the true trajectory. Moreover, owing to
noise, MRI data obtained under the same experimental
conditions is not expected to produce identical trajecto-
ries. It is troubling that noise-induced artifacts described
above can produce anatomically plausible but erroneous
nerve trajectories and potentially false connections.

In our in vivo studies, we observed significant differ-
ences in both the geometry (i.e., shape) and topology (i.e.,
branching pattern) of fiber tract trajectories when we per-
turb their starting points slightly (i.e., on a length scale
smaller than an individual voxel). A direct consequence is
that one could infer an altogether different “connectivity”
pattern and biological function of adjacent tracts. Whether
this observation is anatomically correct is not ascertain-
able at this time.

With the many concerns raised and caveats described
above about fiber tractography using DT-MRI data, one
should view reports of newly discovered white matter
fiber pathways within the brain with healthy skepticism,
as these findings could easily be due to one of the many
artifacts described above. In evaluating any DT-MRI fiber
tractography study, one should be convinced that all pos-
sible artifacts were considered, assessed, controlled for,
and remedied.

Applications of DT-MRI Tractography

DT-MRI tractography should improve our understanding
of brain pathology, particularly of white matter abnormal-
ities occurring in closed head trauma, stroke, etc. It is also
likely that DT-MR fiber tractography will be used to follow
trajectories of the peripheral nervous system (PNS). There,
branching patterns are simpler to follow than in the CNS,
and the distances over which fiber direction and architec-
tural organization are uniform are greater. Changes in di-
ameter of injured nerves, and localized bulging or necking
of fiber tracts, might also be detectable using this ap-
proach. Radial displacement of a computed fiber tract
could indicate a region of local nerve swelling or focal
compression. A localized net displacement of a computed
fiber tract could indicate nearby pathological tissue re-
gions.

Finally, DT-MRI fiber tractography methods could be
applied to other fibrous tissues, such as the heart, whose
fiber directional pattern and organization is critical in
following its normal development and diagnosing disease.
Tractography adds new information to what is provided by
the computed fiber direction field (39).

Methods to visualize fiber tracts that employ contrast
agents, such as manganese (40), are complementary with
DT-MRI fiber tractography and could be used in conjunc-
tion with it.

Concluding Remarks

Here we have reduced the complex task of tracing the
trajectory of white matter fiber tracts in vivo to solving a
system of ordinary differential equations that employ mea-
sured DT-MRI data. The primary applications of DT-MRI
fiber tractography are in establishing 1) whether and how
different regions of the brain that perform critical process-
ing tasks are connected via large fiber pathways (8,35), and
2) whether a white matter fiber tract is continuous (8). The
first problem entails determining whether two points (or
two different ROIs) can be joined by one or more fiber-tract
trajectories. The second problem entails following a trajec-
tory from one point along a fiber to its terminus. The latter
is an initial-value problem; the former is a two-point
boundary value problem.

Coherently oriented white matter tracts, such as the
corpus callosum, can be followed provided that the arti-
facts brought to light above are carefully assessed and
systematically addressed.

DT-MRI fiber-tractography can provide unique quantita-
tive and qualitative information to aid in visualizing and
in studying fiber tract architecture in the brain and in other
fibrous tissues. It has the potential to advance our under-
standing of connectivity and continuity in the central and
peripheral nervous system in vivo.
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