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Chapter 1

Introduction

Most models employed for recursive scene computation (such as those in [7], [8], [9], [10] and

[11]) use correspondences over two consecutive frames and model them in terms of the motion

parameters between the two frames. If one considers correspondences over three consecutive

frames, one can come up with a much more robust model for scene computation. The better

quality for estimation can be attributed to the fact that we have a larger data set to estimate a

particular parameter. One method of doing so is by using tri focal tensors for estimation since

the tri focal tensors help establish a relationship between correspondences over three scenes.

The object of this project is to develop a model for recursive estimation of tri-focal tensors over

frames that would give rise to a very robust model for scene computation. A linear predictive

model is aimed at in order to employ the Kalman filter.

The report is organised as follows: Chapter 2 deals with a brief introduction to tri focal tensors

and the mathematics that would be required in developing the model for recursive estimation

of tri focal tensors. Chapter 3 deals with the formulation of the model. Chapter 4 deals with

the results obtained on simulating the model. Chapter 5 deals with concluding remarks about

the project and chapter 6 deals with improvements that can be explored in the future.
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Chapter 2

Tri focal tensors: An introduction

As discussed in [1] the tri-focal tensor plays an analogous role in three views to the fundamental

matrix in two views. It helps establish incidence relations between three different views of a

particular scene. In our project we are dealing with point correspondences in each frame as

depicted in the figure below:

Figure 2.1: point-point-point correspondence

If a 3D point X projects to points x = (x,y,1), x
′ = (x′,y′,1) and x

′′ = (x′′,y′′,1) respectively

in the three different frames as shown in figure 2.1 then the tri focal tensor T can be used to

express the incidence relationship for these points as

xi(x′jεjpr)(x
′′kεkqs)T

pq
i = 0rs i, j, k, p, q, r, s = 1, 2, 3 (2.1)

where

εijk =















0 unless i,j and k are distinct

+1 if ijk is an even permutation of 123

−1 if ijk is an odd permutation of 123

(2.2)
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From equation (2.1) one notices that we can get 9 different equations or trilinearities, however

only 4 out of these trilinearities are linearly independent. Hence for every given point correspon-

dence over 3 frames it is possible to get a set of 4 independent trilinearites. These trilinearities

can be written as follows:

x[x’x”T33
1 − x′′

T
13

1 − x′
T

31

1 + T
11

1 + y[x′x′′
T

33

2 − x′′
T

13

2 − x′
T

31

2 + T
11

2

+[x’x”T33
3 − x′′

T
13

3 − x′
T

31

3 + T
11

3 = 0 (2.3)

x[x’y”T33
1 − y′′T13

1 − x′
T

32

1 + T
12

1 + y[x′y′′T33

2 − y′′T13

2 − x′
T

32

2 + T
12

2

+[x’y”T33
3 − y′′T13

3 − x′
T

32

3 + T
12

3 = 0 (2.4)

x[y’x”T33
1 − x′′

T
23

1 − y′T31

1 + T
21

1 + y[y′x′′
T

33

2 − x′′
T

23

2 − y′T31

2 + T
21

2

+[y’x”T33
3 − x′′

T
23

3 − y′T31

3 + T
21

3 = 0 (2.5)

x[y’y”T33
1 − y′′T23

1 − y′T32

1 + T
22

1 + y[y′y′′T33

2 − y′′T23

2 − y′T32

2 + T
22

2

+[y’x”T33
3 − y′′T23

3 − y′T32

3 + T
22

3 = 0 (2.6)

Now it has been shown in [1],[3] and[4] that the tri focal tensor can be calculated upto a scale

factor, hence we assume the term T
33

3 to be equal to 1. Since the tri focal has 27 elements

this scaling reduces the number of unknown elements in the tri focal tensor to 26. The fact

that every point correspondence over 3 scenes gives rise to 4 independent equations implies that

we would require at least 7 point correspondences to calculate the tri focal tensor to the chose

scale. Thus if we are given 7 point correspondences with no four of them being coplanar we can

evaluate the tri focal tensor to the required scale factor.

We thus use the following method for evaluating the tri focal tensor from 7 given point corre-

spondences over 3 scenes. In the equations (2.3), (2.4), (2.5) and (2.6) we substitute the value

for T
33

3 as 1 and can form 28 equations for the given 7 points as

C1T = C2 (2.7)

where the above is formed by rearranging equations (2.3), (2.4), (2.5) and (2.6). C2 is a 28×1

vector that contains the negative of the coefficients of T
33

3 . T is a 28×1 vector that contains all

the elements of the tri focal tensor T except for T
33

3 . C1 is the coefficient matrix obtained from

equations (2.3),(2.4),(2.5) and (2.6).
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Chapter 3

Model for recursive estimation of tri

focal tensors

As stated earlier we intend to use the Kalman filter for recursive estimation of tri focal tensors.

We shall first look at the mathematical model of the Kalman filter discussed in [2] that is to be

used for the estimation process. Later we shall discuss the method for evaluating the parameters

of this mathematical model for estimating tri focal tensors.

3.1 Kalman filtering

The operation of the Kalman filter can be considered as a predictor. Let us consider that the

current time of measurement is t. The noisy measurement being made at time t is denoted by

y(t) and the corresponding actual state is denoted by x(t). At time t we receive the previous

filtered estimate x̂(t − 1|t − 1) and the covariance P̃ . We now need to get the best possible

estimate of the state x(t) using the previous t-1 data samples.

We can refer to the first phase of the algorithm as the prediction phase of the algorithm.

Once the prediction is made we obtain the estimate x̃(t|t−1) and the associated error covariance

P̃ (t|t−1). After we have made these predictions we calculate the error covariance Re(t) and the

Kalman gain K(t). When we obtain the measurement y(t) at time t we determine the innovation

e(t). After this we enter the phase that can be termed as the correction phase of the algorithm.

In the correction stage, we correct the state based on the new measurement made and this is

called the innovation. The old predicted state x̃(t|t− 1) is used to form the filtered or corrected

state estimate x̃(t|t) and P̃ (t|t). After this has been done the innovation is weighed by the

Kalman gain K(t) to correct the old state estimate predicted by x̃(t|t−1). The idea behind this

is that we cannot entirely depend on the measurement or the prediction and hence we need to

choose a weighted mean between the two. The whole process involves finding the correct weight

in order to optimize the estimation process. We also correct the associated error covariance.

This process involves taking into account the process noise covariance Rw and measurement

noise covariance Rv Once this is done the algorithm repeats for time t + 1. The algorithm can

be summarized as follows:

Prediction:

x̃(t|t − 1) = A(t − 1)x̃(t − 1|t − 1) + B(t − 1)u(t − 1) = W (t − 1)w(t − 1) (3.1)
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P̃ (t|t − 1) = A(t − 1)P̃ (t − 1|t − 1)A′(t − 1) + W (t − 1)Rw(t − 1)W ′(t − 1) (3.2)

Measurement Model

y(t) = C(t)x(t) + v(t) (3.3)

Innovation

e(t) = y(t) − ỹ(t|t − 1) = y(t) − C(t)x̃(t|t − 1) (3.4)

Re(t) = C(t)P̃ (t|t − 1)C ′(t) + Rv(t) (3.5)

Gain

K(t) = P̃ (t|t − 1)C ′(t)R−1

e (t) (3.6)

Correction

x̃(t|t) = x̃(t|t − 1) + K(t)e(t) (3.7)

P̃ (t|t) = [I − K(t)C(t)]P̃ (t|t − 1) (3.8)

3.2 Calculation of parameters for the Kalman filter model

Let us consider 4 consecutive frames corresponding to the motion of a particular scene, say

F1,F2,F3 and F4. Let the tri focal tensor T1 and T2 correspond to the frames (F1, F2, F3)

and (F2, F3, F4) respectively. It can be seen that both the tri focal tensors T1 and T2 have 2

common frames i.e F2 and F3. Hence we would like to exploit this common information and

use it to predict T2 from T1. Now we should note that the process of using the Kalman filter

is equivalent to a minimum square error method[2]. This is most effective for linear predictive

systems and hence we aim at deriving a linear relationship between T2 from T1.

Let us first define certain parameters of the Kalman filter model in terms of the different

image frames. At a given time t we have x(t-1) and x(t) are 27 element columns vector repre-

senting the tri focal tensor T1 and T2 and y(t) is a 14 element column vector representing the

points in the frame F4 such that

x(t − 1)(l, 1) = T
jk
i l = 9 × (i − 1) + 3 × (j − 1) + k (3.9)

x(t)(m, 1) = T
jk
i m = 9 × (i − 1) + 3 × (j − 1) + k (3.10)

y(t) = [ x′′′

1 y′′′1 x′′′

2 y′′′2 x′′′

3 y′′′3 x′′′

4 y′′′4 x′′′

5 y′′′5 x′′′

6 y′′′6 x′′′

7 y′′′7 ]T (3.11)

We have chosen Rv = I27×27, Rw = I14×14 and B(t) = 027×27. We shall now evaluate the

value of C(t) and A(t). We shall first do so for C(t) and then for A(t), the reason being A(t) can

be calculated under two particular cases, i.e. uniform motion between frames and non uniform

motion between frames.

To evaluate the value of C(t) we need to derive equations for expressing the points x ′′′

i and

y′′′i (i=1,2, . . . 7) in terms of the tri focal tensor T2. We can rewrite equations (2.3), (2.4), (2.5)

and (2.6) as
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[x′′x′′T 33

1 −x′T 13

1 +y′x′′T 33

2 −y′T 13

2 +x′′T 33

3 −T 13

3 ]x′′′ = x′x′′T 31

1 −x′T 11

1 +x′′y′T 31

2 −y′T 11

2 +x′′T 31

3 −T 11

3

(3.12)

[x′′x′′T 33

1 −x′T 13

1 +y′x′′T 33

2 −y′T 13

2 +x′′T 33

3 −T 13

3 ]y′′′ = x′x′′T 32

1 −x′T 12

1 +x′′y′T 32

2 −y′T 12

2 +x′′T 32

3 −T 12

3

(3.13)

[x′′y′′T 33

1 −x′T 23

1 +y′y′′T 33

2 −y′T 23

2 +y′′T 33

3 −T 23

3 ]x′′′ = x′y′′T 31

1 −x′T 21

1 +y′′y′T 31

2 −y′T 21

2 +y′′T 31

3 −T 21

3

(3.14)

[x′′y′′T 33

1 −x′T 23

1 +y′y′′T 33

2 −y′T 23

2 +y′′T 33

3 −T 23

3 ]y′′′ = x′y′′T 32

1 −x′T 22

1 +y′′y′T 32

2 −y′T 22

2 +y′′T 32

3 −T 22

3

(3.15)

Now let the co-efficients of x′′′

i in equation (3.12) and (3.14) be a1
i and a2

i respectively.

Similarly the co-efficients of y′′′

i in equation (3.13) and (3.15) are a1
i and a2

i respectively. We use

the equation pairs (3.12) and (3.13) or (3.14) and (3.15) to write the relation between y(t) and

x(t) in the form

C1 × y(t) = C2 × x(t) (3.16)

where C1 is a 14 × 14 matrix and C2 is a 14 × 27 matrix. Now we need C1 to be invertible

in order to reduce equation (3.16) to the form of (3.3). But from simulation it was noticed that

if C1 is formed using only the equation pair (3.12) and (3.13) or the equation pair (3.14) and

3.15), C1 is not full rank(when noise was not added to the points). In order to eliminate this

problem a value λ is chosen between 0 and 1 and λ 6= 0.5 and we form equations E1 and E2

such that

E1 : λ × (3.12) + (1 − λ) × (3.14) (3.17)

E2 : (1 − λ) × (3.13) + λ × (3.15) (3.18)

We get 2 such equations for every point (x′′′

i , y′′′i ), (i=1,2,. . .,7 ) and we can use these equations

to evaluate C1. C1 is no more rank deficient. The rank deficiency is removed in this case

because for a given pt (x′′′

i , y′′′i the coefficients in E1 and E2 are now λ × a1
i + (1 − λ) × a2

i and

λ× a2
i +(1−λ)× a1

i respectively. In the initial case the coefficients were equal and this resulted

in the rank deficiency. In order to ensure full rank we make sure that λ 6= 0.5. Now that C1 is

full rank we can calculate C(t) by the following relation

C(t) = C−1

1
C2 (3.19)

We now come to the evaluation of A(t). Since the tri focal tensor is dependent on the relative

motion between frames we can consider 2 separate cases. The first and trivial case is when the

motion between all the frames is the same. In such a case the tri focal tensor for any given set

of 3 consecutive frames will be the same and in this case A(t) works out to be I27×27. We shall

now consider the non trivial case where the motion is non uniform between the frames.

In order to predict T2 from T1 we need to identify what are the common parameters in

calculating these 2 tensors. The answer to this is the motion parameters between the frames
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F2 and F3. We thus try to express these 2 tensors in terms of the motion parameters between

F2 and F3 and consequentially relate them. Before we do so let us define certain parameters or

variables that we shall use in the deduction of the above mentioned expressions.

Let the rotation matrices (of order 3×3) between the frames (F1, F2), (F2, F3) and (F3, F4)

be α, β and γ respectively. Similarly the translation matrices between the above frame pairs

are t1, t2 and t3 respectively. We can thus express T1 and T1 in terms of β and t2 as follows.

(let T1 and T1 be represented by L and M respectively)

L11

i = (α1it12 − α2it11)β12 + (α1it13 − α3it11)β13 + α1it21 (3.20)

L12

i = (α1it12 − α2it11)β22 + (α1it13 − α3it11)β23 + α1it22 (3.21)

L13

i = (α1it12 − α2it11)β32 + (α1it13 − α3it11)β33 + α1it23 (3.22)

L21

i = (α2it11 − α1it12)β11 + (α2it13 − α3it12)β13 + α2it21 (3.23)

L22

i = (α2it11 − α1it12)β21 + (α2it13 − α3it12)β23 + α2it22 (3.24)

L23

i = (α2it11 − α1it12)β31 + (α2it13 − α3it12)β33 + α2it23 (3.25)

L31

i = (α3it11 − α1it13)β11 + (α3it12 − α2it13)β12 + α3it21 (3.26)

L32

i = (α3it11 − α1it13)β21 + (α3it12 − α2it13)β22 + α3it22 (3.27)

L3i
i = (α3it11 − α1it13)β31 + (α3it12 − α2it13)β32 + α3it23 (3.28)

i = 1, 2, 3

M11

i = +(γ12t22 + γ13t23 + t31)β1i − γ21t21β2i − γ13t21β3i (3.29)

M12

i = +(γ22t22 + γ23t23 + t32)β1i − γ22t22β2i − γ23t21β3i (3.30)

M13

i = +(γ32t22 + γ33t23 + t33)β1i − γ31t23β2i − γ33t21β3i (3.31)

M21

i = −γ11t22β1i + (γ11t21 + γ13t23 + t31)β2i − γ13t22β3i (3.32)

M22

i = −γ21t22β1i + (γ21t21 + γ23t23 + t32)β2i − γ23t22β3i (3.33)

M23

i = −γ31t22β1i + (γ31t21 + γ33t23 + t33)β2i − γ33t22β3i (3.34)

M31

i = −γ1it23β1i − γ12t23β2i + (γ11t21 + γ12t22 + t31)β3i (3.35)

M32

i = −γ2it23β1i − γ22t23β2i + (γ21t21 + γ22t22 + t32)β3i (3.36)

M33

i = −γ3it23β1i − γ32t23β2i + (γ31t21 + γ32t22 + t33)β3i (3.37)

i = 1, 2, 3

Now using the above equations we can formulate an equation of the type of equation (3.38 )

by eliminating β and t2. Now A1 is invertible and hence we can get T2 in terms of T1 as shown

in the equation. Now it can be seen that there are many ways of expressing T2 in terms of the

parameters of β and t2. We choose A2 in such a way that the coefficients of t21, t22 and t23 are

0. The justification for this step has been given later.
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T1 = A1 × Xmotion T2 = A2 × Xmotion =⇒ A(t) = A2 × A−1

1

where Xmotion =























































β11

β12

β13

β21

β22

β23

β31

β32

β33

t21

t22

t23























































(3.38)

With this we have laid down methods for evaluation the parameters used in the mathematical

model defined for the Kalman filter. W(T) is taken as I27×27. It should be noted that the motion

parameters used in estimating the tensor have been assumed to have been given. In practice it

might be possible to retrieve the motion parameters but the translation can only be calculated

to a scale[6]. This is a reason for setting the co-efficients of t21, t22 and t23 to 0 because they can

be calculated only to a particular scale. The rotation between frames however can be calculated

accurately. Thus the current model for estimating the tri focal tensors assumes that the motion

parameters are known to the user and methods for accurately calculating these parameters from

the image frames may be explored later.
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Chapter 4

Results

4.1 Details about the program code

A code was written in MATLAB implementing the model developed in the previous chapter,

for the recursive estimation of tri focal tensors. The code assumes that the motion can be non

uniform between certain frames, however the degree of non uniform motion is restricted to a

certain level, i.e linearly varying rotational and translational acceleration . The code asks the

user to enter

• The axis of rotation around which the scene rotates

• The initial rotational velocity of the scene: φ0

• The change in φ0 per frame: φv

• The change in φv per frame: φa

• The initial translation velocity of the scene : T0

• The change in T0 per frame: Tv

• The change in Tv per frame: Ta

Once the above parameters are generated the program generates 7 random points in 3D space

and generates further frames(the number is also inputted from the user) from this set of points

by using the motion parameters defined by the user. The tri focal tensors for consecutive frames

are calculated and then the mathematical model developed in the previous chapter is used

for estimating tri focal tensors. An initial error covariance is assumed for the tri focal tensor

corresponding to the first 3 image frames. The error covariance is then expressed in terms of the

Frobenius norm of the error covariance matrix. It is expected that the error covariance should

reduce with time (or consecutive frames in this case). Hence we expect our graphs of ”Frobenius

norm of error covariance matrix” vs ”frame” to be a graph that falls down, depicting reduction

in error.

4.2 Details about the results of the program

The program was first tested for the trivial case of uniform (i.e. same) motion between all

frames. In this case the tri focal tensor remained constant over the frames. This was tested in

10



the absence of noise in the scene points. The reason for doing so is because in the presence of

noise one would not expect the tensor to remain constant over the consecutive frames. Here A(t)

(refer: eqn(3.1)) was taken to be I27×27. The fact that the tri focal tensor was correctly evaluated

was checked by calculating the motion parameters between 2 consecutive frames, assuming that

the motion between the other 2 consecutive frames corresponding to the tensor, are known.

The code was then tested for non uniform motion between frames. In this case also the motion

parameters were correctly evaluated from the tensors thus indicating the correct evaluation of

the tensors. The results of the simulations are at the end of the chapter.

In the uniform case the error covariance falls and that is as expected. However it is noticed

that for the non uniform case in which T0 parameters are less than or equal to 1 the solution

appears to diverge, while the error reduces in the other cases. This is not expected as the error

is supposed to reduce with the passage of frames. One probable reason for this error is the

calculation of A(t). It is noticed that even when the translation and rotation is constant over

the frames A(t) does not come out to be identity matrix, though the tensors T1 and T2 are

equal with a difference in the 15th decimal only. This problem has not been resolved so far.

4.3 Sample outputs

4.3.1 A(t) = I27×27
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Frame plot of the Frobenius Norm of the error covariance matrix of the tri focal tensor
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Figure 4.1:
(n1, n2, n3) = (0, 1, 0) (φ0, φv, φa) = ( π

34
, 0, 0), (T0, Tv, Ta) = ([2, 4, 5]T , [0, 0, 0]T , [0, 0, 0]T )
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Figure 4.2:
(n1, n2, n3) = (0, 1, 0), (φ0, φv, φa) = ( π

34
, 0, 0), (T0, Tv , Ta) = ([1, 1, 1]T , [0, 0, 0]T , [0, 0, 0]T )
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Figure 4.3:
(n1, n2, n3) = (0, 1, 0), (φ0, φv, φa) = ( π

34
, 0, 0), (T0, Tv , Ta) = ([0.1, 0.1, 0.1]T , [0, 0, 0]T , [0, 0, 0]T )
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4.3.2 A(t) is calculated from the trilinearities
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Figure 4.4:
(n1, n2, n3) = (0, 1, 0) (φ0, φv, φa) = ( π

34
, 0, 0), (T0, Tv, Ta) = ([2, 4, 5]T , [0, 0, 0]T , [0, 0, 0]T )
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Figure 4.5:
(n1, n2, n3) = (0, 1, 0) (φ0, φv, φa) = ( π

34
, 0, 0) (T0, Tv , Ta) = ([1, 1, 1]T , [0, 0, 0]T , [0, 0, 0]T )
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Figure 4.6:
(n1, n2, n3) = (0, 1, 0), (φ0, φv, φa) = ( π

34
, 0, 0), (T0, Tv , Ta) = ([0.1, 0.1, 0.1]T , [0, 0, 0]T , [0, 0, 0]T )
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Figure 4.7:
(n1, n2, n3) = (0, 1, 0), (φ0, φv, φa) = ( π

34
, 0.1, 0), (T0, Tv, Ta) = ([2, 4, 5]T , [0, 0, 0]T , [0, 0, 0]T )
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Figure 4.8:
(n1, n2, n3) = (0, 1, 0), (φ0, φv, φa) = ( π

34
, 0.1, 0), (T0, Tv, Ta) = ([1, 1, 1]T , [0, 0, 0]T , [0, 0, 0]T )
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Figure 4.9:
(n1, n2, n3) = (0, 1, 0),(φ0 , φv , φa) = ( π

34
, 0.1, 0)

(T0, Tv , Ta) = ([0.1, 0.1, 0.1]T , [0, 0, 0]T , [0, 0, 0]T )
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Figure 4.10:
(n1, n2, n3) = (0, 1, 0), (φ0, φv, φa) = ( π

34
, 0.1, 0.05), (T0, Tv , Ta) = ([2, 4, 5]T , [0, 0, 0]T , [0, 0, 0]T )
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Figure 4.11:
(n1, n2, n3) = (0, 1, 0), (φ0, φv, φa) = ( π

34
, 0.1, 0.05), (T0, Tv , Ta) = ([1, 1, 1]T , [0, 0, 0]T , [0, 0, 0]T )
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Figure 4.12:
(n1, n2, n3) = (0, 1, 0), (φ0, φv, φa) = ( π

34
, 0.1, 0.05)

(T0, Tv , Ta) = ([0.1, 0.1, 0.1]T , [0, 0, 0]T , [0, 0, 0]T )
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Figure 4.13:
(n1, n2, n3) = (0, 1, 0), (φ0, φv, φa) = ( π

34
, 0, 0)

(T0, Tv , Ta) = ([2, 4, 5]T , [0.1, 0.1, 0.1]T , [0, 0, 0]T )
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Figure 4.14:
(n1, n2, n3) = (0, 1, 0), (φ0, φv, φa) = ( π

34
, 0, 0)

(T0, Tv , Ta) = ([1, 1, 1]T , [0.1, 0.1, 0.1]T , [0, 0, 0]T )
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Figure 4.15:
(n1, n2, n3) = (0, 1, 0), (φ0, φv, φa) = ( π

34
, 0, 0)

(T0, Tv , Ta) = ([0.1, 0.1, 0.1]T , [0.1, 0.1, 0.1]T , [0, 0, 0]T )
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Figure 4.16:
(n1, n2, n3) = (0, 1, 0), (φ0, φv, φa) = ( π

34
, 0, 0)

(T0, Tv , Ta) = ([2, 4, 5]T , [0.1, 0.3, 0.4]T , [0.01, 0, 01, 0.01]T )
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Figure 4.17:
(n1, n2, n3) = (0, 1, 0), (φ0, φv, φa) = ( π

34
, 0, 0)

(T0, Tv , Ta) = ([1, 1, 1]T , [0.1, 0.3, 0.4]T , [0.01, 0.01, 0.01]T )
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Figure 4.18:
(n1, n2, n3) = (0, 1, 0), (φ0, φv, φa) = ( π

34
, 0, 0)

(T0, Tv , Ta) = ([0.1, 0.1, 0.1]T , [0.1, 0.3, 0.4]T , [0.01, 0.01, 0.01]T )
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Figure 4.19:
(n1, n2, n3) = (0, 1, 0), (φ0, φv, φa) = ( π

34
, 0.1, 0.05)

(T0, Tv , Ta) = ([2, 4, 5]T , [0.1, 0.3, 0.4]T , [0.01, 0, 01, 0.01]T )
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Figure 4.20:
(n1, n2, n3) = (0, 1, 0), (φ0, φv, φa) = ( π

34
, 0.1, 0.05)

(T0, Tv , Ta) = ([1, 1, 1]T , [0.1, 0.3, 0.4]T , [0.01, 0.01, 0.01]T )
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Figure 4.21:
(n1, n2, n3) = (0, 1, 0), (φ0, φv, φa) = ( π

34
, 0.1, 0.05)

(T0, Tv , Ta) = ([0.1, 0.1, 0.1]T , [0.1, 0.3, 0.4]T , [0.01, 0.01, 0.01]T )
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Chapter 5

Conclusion

The results show that model for recursively estimating tri focal tensors is yet not fully functional

for all the cases and that it is erroneous for a certain set of inputs. However at the same time

the error seems to fall very fast in the other cases. This is a positive result as the very idea

of estimating tri focal tensors was to exploit correspondences over 3 frames in order to get a

more robust model for scene computation. As of now the reconstruction of scene has not been

done because the model is still incomplete. Once the model has been tested and verified for

synthetic images the results can be tried on actual images to see if the estimation of tri focal

tensors actually does give better results than using correspondences over 2 image frames.
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Chapter 6

Future work

The following are a few suggestions that one could keep in mind while developing the model in

future, in order to make it more effective.

• The current model uses the linear model for the Kalman filter. One can probably come

up with better results by using the iterated extended Kalman filter.

• As of now while calculating C(t) for the measurement equation of the Kalman filter C(t)

is meant to be the co-efficient of a tri focal tensor but it itself has parameters consisting of

terms of the tri focal tensor which is being estimated. If possible C(t) should be evaluated

in such a way that it does not contain any parameters of the tensor that is being evaluated.

If it is not possible, then it becomes even more imperative to use the iterated extended

Kalman filter to estimate the tensor.

• A method must be developed for calculating all the motion parameters from the image

frames. It should be noted that if the motion parameters are given for the first 3 frames of

the process, the motion parameters can be accurately calculated for the remaining frames.
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