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Consensus in Networked Multi-Agent Systems

I In networks of agents (dynamic systems), ”consensus” means
to reach an agreement regarding a certain quality of interest
that depends on the state of all agents.

I ”Consensus Algorithm” is an interaction rule that specifies the
information exchange between an agent and all of its
neighbors on the network.

I Tools for analysis of consensus: Matrix Theory, Algebraic
Graph Theory, Control Theory
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Applications

I Synchronization of Coupled Oscillators
I Kuramoto model of coupled oscillators on a graph:
θ̇i = k

∑
j∈Ni

sin(θj − θi ) + ωi

I Goal is to align the states θ1 = θ2 = · · · = θn.

I Flocking Theory
I exhibited by many living being such as birds, fish, bacteria,

insects, ...
I mobile sensor networks for massive distributed sensing in an

environment.
I The role of consensus is for an agent to achieve velocity

matching with respect to its neighbors.

I Rendezvous in Space
I reaching a consensus in position by a number of agents with

an interaction topology which is position induced.
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Applications

I Fast Consensus in Small-Worlds
I Designing network weights using semi-definite programming to

increase algebraic connectivity of the network.
I Keep the weights fixed and design the topology of the network

to achieve a relatively high algebraic connectivity.

I Distributed Sensor Fusion in Sensor Networks
I implement a Kalman filter or linear least squares estimator
I using consensus filters to dynamically calculate the average of

their inputs.

I Distributed Formation Control
I moving in a formation is a cooperative task that requires

consent and collaboration of every agent in the formation.
I Local cost Ui (x) =

∑
j∈Ni
||xj − xi − rij ||2 where xi = position

of vehicle i and rij = desired inter-vehicle relative position
vector.
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Consensus Algorithms for DSN

Consensus Problems

I Unconstrained Consensus Problem: is simply an alignment
problem in which it suffices that the state of all agents
asymptotically be the same.

I f-Consensus Problem: is a constrained consensus problem
requiring the state of all agents asymptotically become equal
to the function f (z).

The two problems are cooperative tasks requiring the willing
participation of all agents.

I Cooperation: giving consent to providing one’s state and
following a common protocol that serves the group objective.
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Consensus Algorithms for DSN

Information Censensus

I A network of decision making agents with dynamics ẋi = ui

on a graph G = (V ,E )

I Goal is reaching consensus via local communication with
neighbors, x = α1 with 1 = (1, · · · , 1)>, and α ∈ R is the
collective decision
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Basics from Algebraic Graph Theory

I Graph denoted by G = (V ,E ) with V = {1, 2, · · · , n}, and
E = {(i , j) ∈ V × V : i ∼ j}

I A = [aij ] is Adjacency Matrix

I Ni = {j ∈ V : aij 6= 0}

I Graphs:
I Undirected: A = A>

I Directed: A 6= A> (in general)

I Dynamic Graph: G (t) = (V ,E (t))
I edges E (t) and adjacency matrix A(t) are time-varying.
I useful for describing network topology of mobile sensor

networks and flocks.

I Laplacian of graph: L = D − A where
D = diag{d1, d2, · · · , dn} and di =

∑
j 6=i aij
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Properties of Laplacian Matrix

I L has a right eigenvector of 1⇒ L1 = 0.

I x>Lx = 1/2
∑

(i ,j)∈E aij(xi − xj)
2.

I Gershgorin Theorem ⇒ eigenvalues of L are in a closed disk
centered at ∆ + 0j with radius of ∆ where ∆ = maxdi .

I If G is undirected (L = L> with real elements), then L has
real eigenvalues

0 = λ1 ≤ λ2 ≤ · · · ≤ λn ≤ 2∆

I λ2 is called the ”algebraic connectivity of graph” and is a
measure of performance/speed of consensus algorithm.

I If undirected graph G is connected, then λ2 > 0.
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Algebraic Connectivity

λ1 = 0, λ2 = 0.48

λn = 6.24,∆ = 4

λ1 = 0, λ2 = 0.25

λn = 9.37,∆ = 8
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Information Consensus for undirected networks

I Distributed consensus algorithm:
ẋi =

∑
j∈Ni

aij(xj(t)− xi (t))⇒ ẋ = −Lx .

I Lemma: Let G be a connected undirected graph. Then the
algorithm above asymptotically solves the ”average consensus
problem” for all initial states, α = 1/n

∑n
i=1 xi (0).
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What about directed graphs?

I Directed graph is ”Strongly Connected” if there is a directed
path connecting any two arbitrary nodes of the graph.

I Lemma (Spectral Localization): Let G be a strongly
connected digraph on n nodes. Then rank(L) = n − 1 and all
nontrivial eigenvalues of L have positive real parts. If G has
c ≥ 1 strongly connected components, then rank(L) = n − c.

I Note: the above lemma holds under weaker condition of
existence of a directed spanning tree. (there exists a node r
such that all other nodes can be linked to r via a directed
path.)

I Balanced Digraph: G is balanced if∑
j 6=i aij =

∑
j 6=i aji ⇒ 1>L = 0. Thus, 1 is a left eigenvector

of L with eigenvalue of 0.
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Information Consensus for directed networks

Lemma: Consider a network of n agents with topology G and the
following consensus algorithm:
ẋi =

∑
j∈Ni

aij(xj(t)− xi (t)), x(0) = z . Suppose G is a strongly

connected digraph with left eigenvector of γ (γ>L = 0), then

I A consensus is asymptotically reached for all initial states.

I The algorithm solves the f -consensus problem with
f (z) = γ>z/γ>1.

I If the digraph is balanced, an average consensus is
asymptotically reached.
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Nonnegative Matrices

I Irreducible matrix: a matrix A is irreducible if its associated
graph is strongly connected.

I (Column) Stochastic matrix: if all row (column) sums are 1.
I Primitive matrix:

I P ≥ 0,∃k such that Pk > 0
I irreducible stochastic matrix P is primitive if it has only one

eigenvalue with maximum modulus.

Lemma (Perron-Frobenius): Let P be a primitive matrix with left
and right eigenvectors v , w so that Pv = v and w>P = w> with
v>w = 1. Then, limk→∞ Pk = vw>.
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eigenvalue with maximum modulus.

Lemma (Perron-Frobenius): Let P be a primitive matrix with left
and right eigenvectors v , w so that Pv = v and w>P = w> with
v>w = 1. Then, limk→∞ Pk = vw>.
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Consensus in Discrete-Time

I Distributed consensus algorithm:
xi (k + 1) = xi (k) + ε

∑
j∈Ni

aij(xj(k)− xi (k))
⇒ x(k + 1) = Px(k).

I P = I − εL is called the Perron Matrix.

Lemma: Let G be a digraph with n nodes and maximum degree ∆.
Then the Perron matrix P with ε ∈ (0, 1/∆] satisfies the following
properties:

I P is row stochastic matrix with trivial eigenvalue of 1.

I All eigenvalues of P are in the unit circle.

I If G is a balanced digraph, then P is doubly stochastic matrix.

I If G is strongly connected and 0 < ε < 1/∆, then P is a
primitive matrix.
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Consensus in Discrete-Time

Theorem: Consider a network of agents with topology G , and
distributed consensus algorithm
xi (k + 1) = xi (k) + ε

∑
j∈Ni

aij(xj(k)− xi (k)) with 0 < ε < 1/∆.
If G is strongly connected, then

I A consensus is asymptotically reached for all initial states.

I The group decision value is α =
∑

i wixi (0) with
∑

i wi = 1.

I If the digraph is balanced, average consensus is asymptotically
achieved, α =

∑
i xi (0)/n.
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Performance Analysis of Consensus Algorithms

I Speed of convergence is the key in design of the network
topology as well as performance analysis of a consensus
algorithm for a given network.

I For an undirected or balanced directed graph, define
”disagreement vector”= δ = x − α1⇒ 1>δ = 0.

I Disagreement dynamics:
I CT: δ̇(t) = −Lδ(t)
I DT: δ(k + 1) = Pδ(k)

Lemma: Let G be a balanced digraph or undirected graph with
Laplacian L and Ls = (L + L>)/2, Ps = (P + P>)/2. Then, for
any δ with 1>δ = 0,

I λ2 = min δ>Lδ/δ>δ with λ2 = λ2(Ls)

I µ2 = Max δ>Pδ/δ>δ with µ2 = 1− ελ2
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Performance Analysis of Consensus Algorithms

Corollary: A continuous-time consensus is globally exponentially
reached with a speed that is faster or equal to λ2 = λ2(Ls) for a
strongly connected and balanced directed network.

Corollary: A discrte-time consensus is globally exponentially
reached with a speed that is faster or equal to µ2 = 1− ελ2(L) for
a connected undirected network.
Note: This results also holds for a strongly connected balanced
digraph.
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Weighted average consensus

I For undirected graph/balanced digraph with dynamics
ẋ = −Lx , average consensus is achieved.

I What if we want a weighted average consensus using the
desired weighting vector γ = (γ1, · · · , γn) ?

I Proposed dynamics: Kẋ = −Lx with K = diag(γ1, · · · , γn).
Thus, each node updates its states by
γi ẋi =

∑
j∈Ni

aij(xj(t)− xi (t)).
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Consensus under communication time delays

I Suppose that agent i receives a message sent by its neighbor j
after a time-delay of τ .

I For an undirected graph, consider the consensus algorithm:
ẋi =

∑
j∈Ni

aij(xj(t − τ)− xi (t − τ))⇒ ẋ = −Lx(t − τ).

I Laplace transform ⇒ X (s) = H(s)/s x(0) where
H(s) = (In + e−sτL)−1 ⇒ Nyquist Criterion for stability of
H(s)

Theorem: The algorithm above, asymptotically solves the average
consensus problem for a uniform one-hop time delay τ for all initial
states, if 0 ≤ τ < π/2λn.
Note: A sufficient condition for having average consensus under
time delay is τ < π/4∆⇒ trade-off between maximum degree of
the network and robustness to time delays.
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ẋi =

∑
j∈Ni

aij(xj(t − τ)− xi (t − τ))⇒ ẋ = −Lx(t − τ).
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Alternative forms of consensus algorithms

I Consider ẋi = 1/|Ni |
∑

j∈Ni
(xj(t)− xi (t))⇒ ẋ = −Lx(t)

where L = I − D−1A

I Discrete representation: x(k + 1) = Px(k) where P = I − εL
with 0 < ε < 1. (∆ = 1 here!)

I If ε = 1, does not converge for some digraphs such as cycles of
length n.

I Does not solve the average consensus problem,
α =

∑
i dixi (0)/

∑
i di .

I For undirected networks, consider
xi (k + 1) = (xi (k) +

∑
j∈Ni

xj(k))/(1 + |Ni |)⇒ x(k + 1) =

(I + D)−1(I + A)x(k)

I Does not solve the average consensus problem,
α =

∑
i (di + 1)xi (0)/

∑
i (di + 1).
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where L = I − D−1A
I Discrete representation: x(k + 1) = Px(k) where P = I − εL

with 0 < ε < 1. (∆ = 1 here!)
I If ε = 1, does not converge for some digraphs such as cycles of

length n.
I Does not solve the average consensus problem,
α =

∑
i dixi (0)/

∑
i di .

I For undirected networks, consider
xi (k + 1) = (xi (k) +

∑
j∈Ni

xj(k))/(1 + |Ni |)⇒ x(k + 1) =

(I + D)−1(I + A)x(k)
I Does not solve the average consensus problem,
α =

∑
i (di + 1)xi (0)/

∑
i (di + 1).

Author: Reza Olfati-Saber Presented by: Ehsan Elhamifar, Vision Lab, Johns Hopkins UniversityConsensus Algorithms for Distributed Sensor Networks



Consensus Algorithms for DSN

Consensus in Switching Networks

I Networked systems can possess a dynamic topology that is
time-varying due to node and link failure/creations,
packet-loss, formation reconfiguration, evolution, and flocking.

I Networked systems with dynamic topology are called
”Switching Networks”.

I Dynamic graph Gs(t) parameterized with a switching signal
s(t) : R→ J that takes its values in an index set
J = {1, · · · ,m}.

Theorem: Consider a network of agents with consensus algorithm
ẋ = −L(Gk)x with k = s(t) ∈ J. Suppose every graph Gk is a
balanced digraph which is strongly connected and let
λ∗2 = min λ2(Gk). Then, for any arbitrary switching signal, the
agents asymptotically reach an average consensus for all initial
states with a speed faster than or equal to λ∗2.
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Consensus in Switching Networks

I Let P = {P1, . . . ,Pm} denote the set of Perron matrices
associated with a finite set of undirected graphs Γ with n
self-loops. The switching network is ”Periodically Connected”
with N > 1 if the unions of all graphs over a sequence of
intervals [j , j + N) for j=0,1,... are connected graphs.

I Lemma (Wolfowitz): Let P = {P1, . . . ,Pm} be a finite set of
primitive stochastic matrices such that for any sequence of
matrices Psk , . . . ,Ps0 ∈ P, with k ≥ 1, the product
Psk . . .Ps1Ps0 is a primitive matrix. Then there exist a row
vector w> such that limk→∞ Psk . . .Ps1Ps0 = 1w>.
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Consensus in Switching Networks

Theorem (Jadbabaie’03): Consider the system xk+1 = Psk xk with
Psk ∈ P for all k. Assume the switching network is periodically
connected. Then, limk→∞ xk = α1, meaning that an alignment is
asymptotically reached.

Note: w depends on the switching sequence and can not be
determined a priori.
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