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Distributed Kalman Filtering

» Distributed estimation and filtering is one of the most
fundamental collaborative information processing problems in
wireless sensor networks (WSN).

» We have a number of sensors observing a process which is not
observable for each sensor, but the process is observable for
the collection of sensors.

» Central Kalman Filter (X.) is computationally expensive!

» Is it possible that each sensor estimate X, based on only local
information from its neighbors? VYes!
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network G = (V/, E), undirected connected graph
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Consider a sensor network with n sensors, interconnected via a
network G = (V/, E), undirected connected graph

» Process evolves according to:
x(k +1) = Akx(k) + Bxkw(k), x(0) ~ N(x(0), P) € R™
» Sensing model for the ith sensor:

Z,'(k) = H,(k)X(k) + V,‘(k),Z,' € RP
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Consider a sensor network with n sensors, interconnected via a
network G = (V/, E), undirected connected graph

» Process evolves according to:
x(k + 1) = Agx(k) + Biw(k), x(0) ~ N(x(0), Py) € R™
» Sensing model for the ith sensor:
zj(k) = Hi(k)x(k) + vi(k),zi € RP
» w(k), vi(k) are zero mean white Gaussian noise (WGN) with
Elw(k)w(1)T] = Q(K)di

Elvi(k)vi(1) "] = Ri(k)b16;5
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Central Kalman Filter for Sensor Networks

> Let z(k) = col(zi(k),--- ,zn(k)) € R be the collective
sensor data of the entire sensor network at time k.
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> Let z(k) = col(zi(k),--- ,zn(k)) € R be the collective
sensor data of the entire sensor network at time k.

» Given the information Zx = {z(0),--- ,z(k)}, we want to
estimate the state of the process.

» Define

> estimate of the process state: X, = E(xk|Zk), Xk = E(xk|Zk—1)
> estimate of the error covariance: Py = ¥ i—1, Mk = Ty«
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Central Kalman Filter for Sensor Networks

> Let z(k) = col(zi(k),--- ,zn(k)) € R be the collective
sensor data of the entire sensor network at time k.

» Given the information Zx = {z(0),--- ,z(k)}, we want to
estimate the state of the process.
» Define
> estimate of the process state: X, = E(xk|Zk), Xk = E(xk|Zk—1)
> estimate of the error covariance: Py = ¥ i—1, Mk = Ty«
» Thus we want to perform KF for the system:
» x(k+1) = Akx(k) + Biw(k)
> z(k) = Hkx(k) + vk
» with Hx = col(Hi(k), ..., Ha(k)), vi = col(va(k), ..., va(k)),
Ry = diag(Ri(k), ..., Ra(k))
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Kalman Filter iterations for the sensor network would be of the
form:
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Central Kalman Filter for Sensor Networks

Kalman Filter iterations for the sensor network would be of the
form:

> My = (Pt + H R H) ™!

Kk = MKH] R.!

X(k) = x(k) + Ki(z(k) — Hix(k))
P(k +1) = AKMA] + BkQiB/
X(k 4+ 1) = Ack(k)

vV v vy
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Central Kalman Filter for Sensor Networks

Kalman Filter iterations for the sensor network would be of the
form:

> My= (Pt + HI R H) ™!

Kk = MKH] R.!

R(k) = x(k) + Kk(z(k) — Hix(k)) : central estimate (Xc)
P(k +1) = AKMA] + BkQiB/

x(k+1) = Ack(k)

vV v vy
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Central Kalman Filter for Sensor Networks

Kalman Filter iterations for the sensor network would be of the
form:

M= (Pt + H R T HI) ™
Kk = MKH] R.!
R(k) = x(k) + Kk(z(k) — Hix(k)) : central estimate (Xc)
P(k+ 1) = AcM AL + BeQiB,

> x(k+1) = Acx(k)
Next: Perform distributed state estimation (or tracking) for the
process

vV v.v Y
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Define two aggregate quantities:
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Define two aggregate quantities:

» Fused inverse-covariance matrices:

S(k) = 1/n>; H (k)R (k) Hi(k)
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Distributed KF for Sensor Networks

Define two aggregate quantities:
» Fused inverse-covariance matrices:
S(k) =1/n 3 Hi (k)R (K)Hi(k)
> Fused sensor data: y(k) =1/n"; HI (k)R (k)zi(k)
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Define two aggregate quantities:

» Fused inverse-covariance matrices:

S(k) =1/n32; H (k)R (k) Hi(k)

> Fused sensor data: y(k) =1/n"; HI (k)R (k)zi(k)
Transformed update equations for the Central KF:

> Mu(k) = (P, 1 (k) + S(k)~!

> K(k) = X(k) + Mu(k)(y(k) = S(k)x(k)
Puk+1)= Akl\/lu(k)AT + BkQu(k)B
X(k 4+ 1) = Ax(k)
where M, (k) = nMy, Qi(k) = nQ(k), P.(0) = nPy.

)

v

v

v
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Distributed KF for Sensor Networks

Define two aggregate quantities:

» Fused inverse-covariance matrices:

S(k) = 1/n>; H (k)R (k) Hi(k)

> Fused sensor data: y(k) =1/n"; HI (k)R (k)zi(k)
Transformed update equations for the Central KF:

> Mu(k) = (P, 1 (k) + S(k)~!

> K(k) = X(k) + Mu(k)(y(k) = S(k)x(k)

> Pu(k +1) = AcMu(K)A] + BkQu(k)B{

> x(k+1) = Agx(k)

> where M, (k) = nMy, Q;(k) = nQ(k), P.(0) = nPy.
If each sensor implements a KF with above iterations, then all
nodes have the same estimates as central estimate. Is it a DKF?

)
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» If each node can compute
the averages y(k) and S(k),
a distributed KF emerges!
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» If each node can compute
the averages y(k) and S(k),
a distributed KF emerges!
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» If each node can compute
the averages y(k) and S(k),
a distributed KF emerges!

Node i |m——mmm e ——
» Two consensus filters to s ! :
el
compute S(k) and y(k) at Data | BN :
. I
each node using local | Miero | | &
. . 1 Kalman X
information. | Filter |
. ) (WKE) | |
» Each node of the distributed ol i |
. . === Consensus Filter—>, |
Kalman filter that provides i i
I

a state estimate is called a 1w SO mp— i
Micro-Filter.

» Microfilters have identical
structures.
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Consensus Filters for DKF

» Use highpass consensus filters of the form

> qi = BZjeNi(qj - ql) + BZJ'GN,-(UJ - U,'), ﬁ >0
> pi=qi+u
» where 5 ~ O(1/X2) is relatively large.
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Consensus Filters for DKF

» Use highpass consensus filters of the form
> g = ﬁZjeN,(qj —qi)+ 5ZjeN,-(“j —uj), >0
> pi=gqitu
» where 8 ~ O(1/)\,) is relatively large.
» u denotes the input for each node:
> For CF1 [— y(K)]: uj = H R 'z
» For CF2 [—> S(k)]: up = HjTRj_lHj
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Consensus Filters for DKF

» Use highpass consensus filters of the form
> g = ﬁZjeN,(qj —qi)+ 5ZjeN,-(“j —uj), >0
> pi=gqitu
» where 8 ~ O(1/)\,) is relatively large.
» u denotes the input for each node:
> For CF1 [— y(K)]: uj = H R 'z
» For CF2 [—> S(k)]: up = HjTRj_lHj
» It is shown that for a connected network, outputs p} (k) and
p,-z(k) of the highpass consensus filters asymptotically
converge to y(k) and S(k).
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» Node / sends the message:
msg; = (qt(k), g?(k), ut(k), u?(k)) to all of its neighbors. =
Message size is of dimension O(m(m + 1)) with m being the
dimension of the state x.
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DKF for Sensor Networks

» Node / sends the message:
msg; = (qt(k), g?(k), ut(k), u?(k)) to all of its neighbors. =
Message size is of dimension O(m(m + 1)) with m being the
dimension of the state x.

» The communication scheme is fully compatible with
packet-based communication in real-world WSN.
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DKF Results

Distributed vs. Cenralized Kalman Filter

Distributed vs. Cenralized Kalman Filter
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Distributed position estimation for a moving object by node & = Distributed position estimation for a moving object by node i = 25
100: (a) DKF vs. KF (DKE is the smooth curve in red) and (b) Distributed  (a) DKF vs. KF (DKF is the smooth curve in red) and (b} Distributed
Kalman filter estimate (in red) vs. the actual position of the object (in blue).  Kalman filter estimate (in red) vs. the actual position of the object (in blue)
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