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Distributed Kalman Filtering

I Distributed estimation and filtering is one of the most
fundamental collaborative information processing problems in
wireless sensor networks (WSN).

I We have a number of sensors observing a process which is not
observable for each sensor, but the process is observable for
the collection of sensors.

I Central Kalman Filter (x̂c) is computationally expensive!

I Is it possible that each sensor estimate x̂c based on only local
information from its neighbors?

Yes!
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Kalman Filtering for Sensor Networks

Consider a sensor network with n sensors, interconnected via a
network G = (V ,E ), undirected connected graph

I Process evolves according to:

x(k + 1) = Akx(k) + Bkw(k), x(0) ∼ N(x̄(0),P0) ∈ Rm

I Sensing model for the ith sensor:

zi (k) = Hi (k)x(k) + vi (k), zi ∈ Rp

I w(k), vi (k) are zero mean white Gaussian noise (WGN) with

E [w(k)w(l)>] = Q(k)δkl

E [vi (k)vj(l)
>] = Ri (k)δklδij
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Central Kalman Filter for Sensor Networks

I Let z(k) = col(z1(k), · · · , zn(k)) ∈ Rnp be the collective
sensor data of the entire sensor network at time k.

I Given the information Zk = {z(0), · · · , z(k)}, we want to
estimate the state of the process.

I Define
I estimate of the process state: x̂k = E (xk |Zk), x̄k = E (xk |Zk−1)
I estimate of the error covariance: Pk = Σk|k−1, Mk = Σk|k

I Thus we want to perform KF for the system:
I x(k + 1) = Akx(k) + Bkw(k)
I z(k) = Hkx(k) + vk

I with Hk = col(H1(k), . . . ,Hn(k)), vk = col(v1(k), . . . , vn(k)),
Rk = diag(R1(k), . . . ,Rn(k))
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Central Kalman Filter for Sensor Networks

Kalman Filter iterations for the sensor network would be of the
form:

I Mk = (P−1
k + H>k R−1

k Hk)−1

I Kk = MkH>k R−1
k

I x̂(k) = x̄(k) + Kk(z(k)− Hk x̄(k))

: central estimate (x̂c)

I P(k + 1) = AkMkA>k + BkQkB>k
I x̄(k + 1) = Ak x̂(k)

Next: Perform distributed state estimation (or tracking) for the
process
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Distributed KF for Sensor Networks

Define two aggregate quantities:

I Fused inverse-covariance matrices:
S(k) = 1/n

∑
i H
>
i (k)R−1

i (k)Hi (k)

I Fused sensor data: y(k) = 1/n
∑

i H
>
i (k)R−1

i (k)zi (k)

Transformed update equations for the Central KF:

I Mµ(k) = (P−1
µ (k) + S(k))−1

I x̂(k) = x̄(k) + Mµ(k)(y(k)− S(k)x̄(k))

I Pµ(k + 1) = AkMµ(k)A>k + BkQµ(k)B>k
I x̄(k + 1) = Ak x̂(k)

I where Mµ(k) = nMk , Qi (k) = nQ(k), Pµ(0) = nP0.

If each sensor implements a KF with above iterations, then all
nodes have the same estimates as central estimate. Is it a DKF?
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DKF for Sensor Networks

I If each node can compute
the averages y(k) and S(k),
a distributed KF emerges!

I Two consensus filters to
compute S(k) and y(k) at
each node using local
information.

I Each node of the distributed
Kalman filter that provides
a state estimate is called a
Micro-Filter.

I Microfilters have identical
structures.
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Consensus Filters for DKF

I Use highpass consensus filters of the form
I q̇i = β

∑
j∈Ni

(qj − qi ) + β
∑

j∈Ni
(uj − ui ), β > 0

I pi = qi + ui

I where β ∼ O(1/λ2) is relatively large.

I u denotes the input for each node:

I For CF1 [→ y(k)]: uj = H>j R−1
j zj

I For CF2 [→ S(k)]: uj = H>j R−1
j Hj

I It is shown that for a connected network, outputs p1
i (k) and

p2
i (k) of the highpass consensus filters asymptotically

converge to y(k) and S(k).
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DKF for Sensor Networks

I Node i sends the message:
msgi = (q1

i (k), q2
i (k), u1

i (k), u2
i (k)) to all of its neighbors. ⇒

Message size is of dimension O(m(m + 1)) with m being the
dimension of the state x .

I The communication scheme is fully compatible with
packet-based communication in real-world WSN.
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DKF Results
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