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Preface

In the past few years, we have encountered a variety of practical problems in com-
puter vision, image processing, pattern recognition, and systems identification,
that can be abstracted to be solutions of a common mathematical problem: Given
a set of data points sampled from a “mixture” of unknown geometric or statistical
models, how to automatically learn or infer these models? The word “mixture”
means that the data points are clustered into different groups, each of which be-
longs to a different model. In the literature, in different contexts, such data sets are
sometimes referred to as “mixed,” or “multi-modal,” or “multi-model,” or “hetero-
geneous,” or “hybrid.” In this book, we have settled on the usage of the expression
“mixed data” and the associated model as a “hybrid model.” Thus, a solution to
the problem is to segment the data into groups, each belonging to one of the con-
stituent models and to then estimate the parameters of each model. In the case that
each of the constituent models are linear, the foregoing problem is reduced to one
of fitting multiple low-dimensional affine subspaces to the set of sample points in
a high-dimensional space.

The main goal of this book is to introduce a new method to study hybrid mod-
els, which we refer to as generalized principal component analysis, with the
acronym GPCA.1 The general problems that GPCA aims to address represents

1In the literature, the word “generalized” is sometimes used to indicate different extensions to
the classical principal component analysis (PCA) [Jolliffe, 1986]. In our opinion these are indeed
extensions rather than a more extensive generalization that we propose in this book. Additionally, for
the “nonlinear” case when each component is an algebraic variety of higher degree such as a quadratic
surface or a more complicated manifold, we may still use the same term GPCA. Other names like
“hybrid component analysis” (HCA) have also been suggested and would also be appropriate.



viii Preface

a fairly general class of unsupervised learning problems — many data clustering
and compression methods in machine learning can be viewed as special cases of
this method.2

A major difficulty associated with estimation of a hybrid model is that, with-
out knowing which subset of sample points belong to which constituent model it
is not possible to determine the model that this group belongs to. Thus, there
is seemingly a “chicken-and-egg” relationship between data segmentation and
model estimation: If the segmentation of the data was known, one could easily fit
a single model to each subset of samples using classical model estimation tech-
niques; and conversely, if the models were known, one could easily find the subset
of samples that best fit each model. This relationship has been the intuitive and
heuristic justification for many iterative multi-model estimation techniques, such
as the well-known expectation maximization (EM) algorithm. This book aims
to provide a non-iterative and general solution to the problem of simultaneously
grouping and model fitting the data, based on a repertoire of new tools drawn from
a novel and somewhat unconventional source in the statistics literature: algebraic
geometry – mainly polynomial and linear algebra. The immediate reaction of a
statistician to this statement is that the methods of classical algebraic geometry
are extremely sensitive to noise and modeling uncertainties and are therefore not
robust in problems of estimation and model fitting. However, we will show how
to combine these new tools with traditional statistical techniques so as to obtain
robust simultaneous data segmentation and model estimation algorithms.

There are several reasons why we felt that it was the right time to write a book
on estimation of mixed models. First, although the classical model estimation
techniques, for a single model, have been well studied in systems theory, signal
processing, and pattern recognition, techniques for hybrid models, even for hybrid
linear models, has not been well-understood and thoroughly developed. Designing
a working algorithm, for many practical problems of this nature is currently a
matter of intuition and clever heuristics: almost a work of art from application
from application! Of course, as a result it is difficult to abstract the lessons from
one context and use it in another.

Second the conventional single-model paradigm has shown to have significant
limitations in numerous important emerging applications. For example, in image
processing, it is well known that to achieve a more economic (compressed) rep-
resentation of images, different images or different regions of the same image,
it is best to represent either the regions of a single image or a class of images
adaptively using different sets of linear bases. However, the traditional image
processing doctrine advocates the use of a prefixed or prechosen set of bases
(for e.g., the discrete cosine transform or a wavelet transform). This approach
is largely because segmentation of the image and identification of adaptive bases
are difficult problems – they belong to a hybrid model. Yet another example arises

2Classical clustering analysis can be viewed as the specialization of GPCA to the case that each
affine subspace is of dimension 0.
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from systems theory: classical system identification theory and techniques are of
limited use for a system that switches among multiple control systems, called a hy-
brid linear system. New identification theory and algorithms need to be developed
for such systems.

Finally in our opinion even though attempts have been made in the past to
study and solve many special cases of estimating mixed models, for instance
in multi-modal statistics, machine learning, and pattern recognition, there has
never been an attempt to unify and truly generalize the results in a unified frame-
work that is able to encompass all aspects of the problem. For instance, both
the so called Expectation Maximization or EM method and the K-means method
have been proposed to resolve the “chicken-and-egg” difficulty between data seg-
mentation and model estimation. However, these methods resort primarily to an
incremental and iterative scheme that starts from a random initialization. They
are therefore prone to converge to local minima. Only recently has GPCA, a new
algebro-geometric approach, been developed that offers a global and non-iterative
solution to this problem. Not only does this new approach lead to simple and ef-
fective algorithms that do not have the same difficulty as the existing methods, but
it also offers new insights to modeling data with a hybrid model. This book gives
an introduction to such new methods and algorithms.

The primary goal of this book is to introduce the fundamental geometric and
statistical concepts and methods associated with modeling and estimation for the
hybrid models, especially the hybrid linear models. The topics covered in this
book are of relevance and importance to researchers and practitioners in the ar-
eas of machine learning, pattern recognition, computer vision, image and signal
processing, and systems identification (in many fields including control theory,
econometrics, and finance). The applications given in this book highlight our own
experiences which are certainly relevant for researchers who work on practical
areas such as image segmentation & compression, motion segmentation & estima-
tion from video data, and hybrid system identification. However, even a cursory
examination of the literature shows that the number of other application domains
is virtually limitless. Although, traditionally, data modeling and model estimation
has been primarily a topic of study in statistics, this book requires surprising little
by way of background in statistical theory. Our analysis and techniques will be
based mainly on linear algebra and polynomial algebra, largely complementary
and indeed compatible with existing statistical methods.

Organization of the Book.

Part I of this book develops the fundamental theory and basic algorithms for the
identification and estimation of hybrid linear models. The chapters in this part
systematically extend classical principal component analysis (PCA) for a single
linear subspace, also known as the Karhunen-Loève (KL) expansion, to the case
of a subspace arrangement. We begin after an introduction in Chapter 1, with a
review of Principal Component Analysis: from a geometric, statistical and robust-
ness standpoint and its extensions in Chapter 2. In Chapter 3, we start to study the
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problem of modeling data with subspace arrangements. The focus is primarily
on existing iterative subspace segmentation methods such as K-Means and EM.
These methods are based on either geometric intuition or statistical inference. In
Chapter 4 we develop a non-iterative algebraic method for subspace segmentation,
i.e., the Generalized Principal Component Analysis (GPCA) algorithm. In Chap-
ter 5, we further study important algebraic concepts and properties of subspace
arrangements that are behind the GPCA algorithm. Statistical considerations and
robustness issues which provide the link between the algebraic techniques and
some traditional statistical methods are given in Chapter 6. Nonlinear extensions
of the basic GPCA algorithm to arrangements of quadratic surfaces and finally to
more general manifolds are investigated in Chapter 7.

Parts II-IV of this book provide a few case studies of real-world problems. The
problems studied in Part II are from image processing and computer vision. They
include image representation & segmentation (Chapter 8) and 2-D or 3-D motion
segmentation (Chapter 9 and 10). Part III consists of the identification of hybrid
linear systems (Chapter 11-12). Part IV includes applications in systems biology
(Chapter 13). Some of the case studies are straightforward application of the pro-
posed algorithms, while others require certain more elaborate justification and
special domain knowledge. We hope that these case studies will inspire the reader
to discover new applications for the general concepts and methods introduced in
this book.

To make the book self-contained, we have summarized useful notations, con-
cepts and results of algebra and statistics in Appendix A and B, respectively. They
may come by handy for readers who are not so familiar with certain subjects
involved in the book, especially for the early chapters of the book.

René Vidal, Baltimore, Maryland
Yi Ma, Champaign, Illinois
Shankar Sastry, Berkeley, California
Spring, 2005
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Following René’s PhD thesis and our earlier papers, many of our graduate
students have studied and extended GPCA to many new problems in computer
vision, image processing, and system identification. We especially thank Jacopo
Piazzi of Johns Hopkins, Kun Huang now at the Biomedical and Informatics De-
partment of Ohio State University, Yang Yang, Shankar Rao, and Andrew Wagner
of UIUC. Their research projects have led to many exciting theories, applications,
and examples presented in this book.



This is page xii
Printer: Opaque this

Contents

Preface vii

Acknowledgments xi

1 Introduction 2
1.1 Modeling Data with a Parametric Model . . . . . . . . . . . 3

1.1.1 The Choice of a Model Class . . . . . . . . . . . . . 3
1.1.2 Statistical Models versus Geometric Models . . . . . 4

1.2 Modeling Mixed Data with a Hybrid Model . . . . . . . . . 6
1.2.1 Examples of Mixed Data Modeling . . . . . . . . . . 7
1.2.2 Mathematical Representations of Hybrid Models . . 11
1.2.3 Hybrid Model Selection for Noisy Data . . . . . . . 15

1.3 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . 16

I Theory, Analysis, and Algorithms 19

2 Data Modeling with a Single Subspace 21
2.1 Principal Component Analysis (PCA) . . . . . . . . . . . . . 21

2.1.1 A Geometric Approach to PCA . . . . . . . . . . . . 22
2.1.2 A Statistical View of PCA . . . . . . . . . . . . . . 24
2.1.3 Determining the Number of Principal Components . 26

2.2 Robustness Issues for PCA . . . . . . . . . . . . . . . . . . 27
2.2.1 Outliers . . . . . . . . . . . . . . . . . . . . . . . . 27



Contents xiii

2.2.2 Incomplete Data Points . . . . . . . . . . . . . . . . 29
2.3 Extensions to PCA . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.1 Nonlinear PCA . . . . . . . . . . . . . . . . . . . . 30
2.3.2 Kernel PCA . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . 33

3 Iterative Methods for Multiple-Subspace Segmentation 35
3.1 Unsupervised Learning Methods for Data Clustering . . . . . 35

3.1.1 K-Means . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1.2 Expectation Maximization (EM) . . . . . . . . . . . 39

3.2 Problem Formulation of Subspace Segmentation . . . . . . . 45
3.2.1 Projectivization of Affine Subspaces . . . . . . . . . 46
3.2.2 Subspace Projection and Minimum Representation . 47

3.3 Subspace-Segmentation Algorithms . . . . . . . . . . . . . . 49
3.3.1 K-Subspaces . . . . . . . . . . . . . . . . . . . . . . 49
3.3.2 Expectation Maximization for Subspaces . . . . . . . 51
3.3.3 Relationships between K-Subspaces and EM . . . . . 54

3.4 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . 56

4 Algebraic Methods for Multiple-Subspace Segmentation 57
4.1 Introductory Cases of Subspace Segmentation . . . . . . . . 58

4.1.1 Segmenting Points on a Line . . . . . . . . . . . . . 58
4.1.2 Segmenting Lines on a Plane . . . . . . . . . . . . . 61
4.1.3 Segmenting Hyperplanes . . . . . . . . . . . . . . . 63

4.2 Knowing the Number of Subspaces . . . . . . . . . . . . . . 66
4.2.1 An Introductory Example . . . . . . . . . . . . . . . 66
4.2.2 Fitting Polynomials to Subspaces . . . . . . . . . . . 68
4.2.3 Subspaces from Polynomial Differentiation . . . . . 70
4.2.4 Point Selection via Polynomial Division . . . . . . . 71
4.2.5 The Basic Generalized PCA Algorithm . . . . . . . . 75

4.3 Not Knowing the Number of Subspaces . . . . . . . . . . . . 76
4.3.1 Introductory Examples . . . . . . . . . . . . . . . . 76
4.3.2 Segmenting Subspaces of Equal Dimension . . . . . 77
4.3.3 Segmenting Subspaces of Different Dimensions . . . 79
4.3.4 The Recursive GPCA Algorithm . . . . . . . . . . . 81

4.4 Relationships between GPCA, K-Subspaces, and EM . . . . 82
4.5 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . 83
4.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 Statistical Techniques and Robustness Issues 85
5.1 Discriminant Analysis . . . . . . . . . . . . . . . . . . . . . 86

5.1.1 Fisher Linear Discriminant Analysis (LDA) . . . . . 87
5.1.2 Fisher Discriminant Analysis for Subspaces . . . . . 88
5.1.3 Simulation Results . . . . . . . . . . . . . . . . . . 90

5.2 Voting Techniques . . . . . . . . . . . . . . . . . . . . . . . 94



xiv Contents

5.2.1 Stacks of Bases and Counters . . . . . . . . . . . . . 94
5.2.2 A Voting Scheme for Subspaces . . . . . . . . . . . 95
5.2.3 Simulation Results . . . . . . . . . . . . . . . . . . 96

5.3 Model-Selection Methods . . . . . . . . . . . . . . . . . . . 97
5.3.1 Minimum Effective Dimension . . . . . . . . . . . . 98
5.3.2 Hilbert Function for Model Selection . . . . . . . . . 101

5.4 Robust Statistical Techniques . . . . . . . . . . . . . . . . . 105
5.4.1 The Sample Influence Function . . . . . . . . . . . . 106
5.4.2 First Order Approximation of the Sample Influence . 107
5.4.3 Multivariate Trimming . . . . . . . . . . . . . . . . 108
5.4.4 Simulation Comparison . . . . . . . . . . . . . . . . 109

5.5 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . 113

II Applications in Image Processing & Computer Vision 115

6 Image Representation, Segmentation & Classification 117
6.1 Lossy Image Representation . . . . . . . . . . . . . . . . . . 117

6.1.1 A Hybrid Linear Model . . . . . . . . . . . . . . . . 120
6.1.2 Multi-Scale Hybrid Linear Models . . . . . . . . . . 126
6.1.3 Experiments and Comparisons . . . . . . . . . . . . 130
6.1.4 Limitations . . . . . . . . . . . . . . . . . . . . . . 133

6.2 Multi-Scale Hybrid Linear Models in Wavelet Domain . . . . 134
6.2.1 Imagery Data Vectors in Wavelet Domain . . . . . . 134
6.2.2 Estimation of Hybrid Linear Models in Wavelet Domain 136
6.2.3 Comparison with Other Lossy Representations . . . . 137
6.2.4 Limitations . . . . . . . . . . . . . . . . . . . . . . 138

6.3 Image Segmentation . . . . . . . . . . . . . . . . . . . . . . 139
6.3.1 Hybrid Linear Models for Image Segmentation . . . 139
6.3.2 Dimension and Size Reduction . . . . . . . . . . . . 142
6.3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . 143

6.4 Image Classification . . . . . . . . . . . . . . . . . . . . . . 143
6.5 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . 145

7 2-D Motion Segmentation from Image Partial Derivatives 146
7.1 An Algebraic Approach to Motion Segmentation . . . . . . . 147
7.2 The Multibody Brightness Constancy Constraint . . . . . . . 148
7.3 Segmentation of 2-D Translational Motion Models . . . . . . 151

7.3.1 The Multibody Optical Flow . . . . . . . . . . . . . 151
7.3.2 Computing the 2-D Translational Model Parameters . 151

7.4 Segmentation of 2-D Affine Motion Models . . . . . . . . . 152
7.4.1 The Multibody Affine Matrix . . . . . . . . . . . . . 153
7.4.2 Computing the Number of 2-D Affine Motion Models 154
7.4.3 Computing the 2-D Affine Motion Model Parameters 156

7.5 Segmentation of Motions Models of Different Type . . . . . 157



Contents xv

7.5.1 The Multibody Motion Matrix . . . . . . . . . . . . 158
7.5.2 Computing the Number of 2-D Motion Models . . . 158
7.5.3 Computing the Type of 2-D Motion at Each Pixel . . 160
7.5.4 Computing the 2-D Motion Model Parameters . . . . 161

7.6 Algorithm Summary . . . . . . . . . . . . . . . . . . . . . . 162
7.7 Experimental Results . . . . . . . . . . . . . . . . . . . . . 162

7.7.1 Simulation Results . . . . . . . . . . . . . . . . . . 164
7.7.2 2-D Translational Motions . . . . . . . . . . . . . . 165
7.7.3 2-D Affine Motions . . . . . . . . . . . . . . . . . . 166
7.7.4 2-D Translational and 2-D Affine Motions . . . . . . 166

7.8 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . 169
7.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

8 3-D Motion Segmentation from Point Correspondences 175
8.1 The Motion Estimation Problem . . . . . . . . . . . . . . . 176

8.1.1 Rigid-Body Motions and Camera Projection Models . 176
8.1.2 The Fundamental Matrix . . . . . . . . . . . . . . . 177
8.1.3 The Homography Matrix . . . . . . . . . . . . . . . 178
8.1.4 The Trifocal Tensor . . . . . . . . . . . . . . . . . . 179

8.2 The Motion Segmentation Problem . . . . . . . . . . . . . . 180
8.3 Segmentation of Linear Motion Models . . . . . . . . . . . . 181

8.3.1 The Affine Motion Subspaces . . . . . . . . . . . . . 181
8.3.2 Segmentation of Motion Affine Subspaces . . . . . . 181

8.4 Segmentation of Bilinear Motion Models . . . . . . . . . . . 183
8.4.1 Segmentation of Fundamental Matrices . . . . . . . 183
8.4.2 Segmentation of Homography Matrices . . . . . . . 185

8.5 Segmentation of Trilinear Motion Models . . . . . . . . . . 189
8.5.1 The Multibody Trifocal Tensor . . . . . . . . . . . . 191
8.5.2 Segmentation of Trifocal Tensors . . . . . . . . . . . 193

8.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . 195
8.6.1 Segmentation of Affine Motion Subspaces . . . . . . 195
8.6.2 Segmentation of Fundamental Matrices . . . . . . . 198
8.6.3 Segmentation of Homography Matrices . . . . . . . 200

8.7 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . 201
8.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

9 Dynamical Texture and Video Segmentation 206

III Extensions to Arrangements of Dynamical Systems
and Nonlinear Varieties 207

10 Switched ARX Systems 209
10.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . 211
10.2 Identification of a Single ARX System . . . . . . . . . . . . 212



xvi Contents

10.3 Identification of Hybrid ARX Systems . . . . . . . . . . . . 215
10.3.1 The Hybrid Decoupling Polynomial . . . . . . . . . 216
10.3.2 Identifying the Hybrid Decoupling Polynomial . . . 217
10.3.3 Identifying System Parameters and Discrete States . . 220
10.3.4 The Basic Algorithm and its Extensions . . . . . . . 222

10.4 Simulations and Experiments . . . . . . . . . . . . . . . . . 223
10.4.1 Error in the Estimation of the Model Parameters . . . 224
10.4.2 Error as a Function of the Model Orders . . . . . . . 224
10.4.3 Error as a Function of Noise . . . . . . . . . . . . . 225
10.4.4 Experimental Results on Test Datasets . . . . . . . . 226

10.5 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . 227

11 Switched ARMA Models 229

12 Extensions to Arrangements of Nonlinear Surfaces 230
12.1 Arrangements of Quadratic Surfaces . . . . . . . . . . . . . 230

12.1.1 Problem Formulation . . . . . . . . . . . . . . . . . 231
12.1.2 Properties of the Fitting Polynomials . . . . . . . . . 232
12.1.3 Generalized Principal Surface Analysis (GPSA) . . . 235
12.1.4 Variations to the Basic GPSA Algorithm . . . . . . . 238
12.1.5 Experiments on Synthetic Data . . . . . . . . . . . . 240

12.2 Other Nonlinear Extensions . . . . . . . . . . . . . . . . . . 241
12.3 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . 241

IV Appendices 243

A Basic Facts from Algebraic Geometry 245
A.1 Polynomial Ring . . . . . . . . . . . . . . . . . . . . . . . . 245
A.2 Ideals and Algebraic Sets . . . . . . . . . . . . . . . . . . . 247
A.3 Algebra and Geometry: Hilbert’s Nullstellensatz . . . . . . . 249
A.4 Algebraic Sampling Theory . . . . . . . . . . . . . . . . . . 250
A.5 Decomposition of Ideals and Algebraic Sets . . . . . . . . . 253
A.6 Hilbert Function, Polynomial, and Series . . . . . . . . . . . 254

B Algebraic Properties of Subspace Arrangements 256
B.1 Ideals of Subspace Arrangements . . . . . . . . . . . . . . . 257
B.2 Subspace Embedding and PL-Generated Ideals . . . . . . . . 258
B.3 Hilbert Function of Subspace Arrangements . . . . . . . . . 261

B.3.1 Hilbert Function and GPCA . . . . . . . . . . . . . 261
B.3.2 Special Cases of Hilbert Functions . . . . . . . . . . 264
B.3.3 Computation of Hilbert Function . . . . . . . . . . . 266

B.4 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . 268

C Basic Facts from Mathematical Statistics 270



Contents 1

C.1 Estimation of Parametric Models . . . . . . . . . . . . . . . 270
C.1.1 Uniformly Minimum Variance Unbiased Estimates . 272
C.1.2 Maximum Likelihood Estimates . . . . . . . . . . . 273
C.1.3 Estimates from a Large Number of Samples . . . . . 274

C.2 Expectation Maximization . . . . . . . . . . . . . . . . . . . 277
C.3 Mixture Models . . . . . . . . . . . . . . . . . . . . . . . . 279

C.3.1 Minimax Estimates . . . . . . . . . . . . . . . . . . 279
C.3.2 Minimum Entropy-Product Estimates . . . . . . . . 280

C.4 Model Selection Criteria . . . . . . . . . . . . . . . . . . . . 282
C.5 Robust Statistical Methods . . . . . . . . . . . . . . . . . . 284

C.5.1 Sample Influence Function . . . . . . . . . . . . . . 284
C.5.2 Multivariate Trimming . . . . . . . . . . . . . . . . 284
C.5.3 Random Sample Consensus . . . . . . . . . . . . . . 284

References 285



This is page 2
Printer: Opaque this

Chapter 1
Introduction

The primary goal of this book is to study how to model a data set that consists
of multiple subsets with each drawn from a different primitive model. In differ-
ent contexts, such a data set is sometimes referred to as “mixed,” “multi-modal,”
“multi-model,” “piecewise,” “heterogeneous,” or “hybrid.” To unify the terminol-
ogy, in this book, we will refer to such data as “mixed data” and the model used to
fit the data as a “hybrid model.” Thus, a hybrid model typically consists of mul-
tiple constituent (primitive) models. Modeling mixed data with a hybrid model
implies grouping the data into multiple (disjoint) subsets and fitting each subset
with one of the constituent models. In the literature, the words “group,” “clus-
ter,” “decompose,” or “segment” are often used interchangeably. However, in this
book, we will use the words “group” or “cluster” primarily for data points,1 and
use the words “decompose” or “segment” for models.2

An ever growing number of problems that arise today in computer vision,
image processing, pattern recognition, system identification or system biology re-
quires us to model mixed data. The techniques in this book are most evolved from
studying the specific case of modeling data with an arrangement of subspaces,3

also called hybrid (piecewise) linear models, with algorithms that we refer to as

1For instance, we may say “group (or cluster) the data into multiple subsets,” or “a group (or a
cluster) of sample points.”

2For instance, we may say “decompose (or segment) a hybrid model into its constituent primitive
models.”

3In this book, we will use interchangeably “a mixture,” “a collection,” “a union,” or “an arrange-
ment” of subspaces or models. But be aware that, in the case of subspaces, the formal terminology in
Algebraic Geometry is “an arrangement of subspaces.”
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generalized principal component analysis (GPCA), we also discuss the develop-
ment of techniques for hybrid quadratic models and more general hybrid models.
We also discuss extensions to hierarchical and recursive approaches to finding hy-
brid (sub)models inside an initial grouping of data according to an initial hybrid
model. Taken together these techniques provide a powerful set of general tech-
niques which are computationally efficient and statistically robust. In this chapter
we give a brief introduction to some basic concepts associated with data modeling
along with some motivating examples for modeling mixed data along with a brief
account of a few related approaches.

1.1 Modeling Data with a Parametric Model
In scientific studies and engineering practice, one is frequently called upon to
infer (or learn) a quantitative model M of a given set of sample points, denoted as
X = {x1,x2, . . . ,xN} ⊂ R

D. For instance, Figure 1.1 shows a simple example
in which one is given a set of four sample points on a two dimensional plane.
Obviously, these points can be fitted perfectly by a (one-dimensional) straight
line. The line can then be called a “model” for the given points. The reason for
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Figure 1.1. Four sample points on a plane are fitted by a straight line. However, they can
also be fitted by many other smooth curves, for example the one indicated by the dashed
curve.

inferring such a model is because it serves many useful purposes: It can reveal
the information encoded in the data or the underlying mechanisms from which
the data were generated; Or it may simplify significantly the representation of the
given data set or it help to predict effectively future samples.

1.1.1 The Choice of a Model Class
However, inferring the “correct” model of a given data set is an elusive, if not
impossible, task. A fundamental difficulty is that, if we are not specific about
what we mean by a “correct” model, there could easily be many different models
that fit the given data set “equally well.” For instance, for the example shown in
Figure 1.1, any smooth curve that passes through the sample points would seem
to be an as valid model as the straight line. Furthermore, if there were noise in
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the given sample points, then any curve, including the line, passing through the
points exactly would unlikely be the “ground truth.”

The question now is: in what sense then can we say a model is correct for a
given data set? Firstly, to make the model-inference a well-posed problem, we
need to impose additional assumptions or restrictions on the class of models con-
sidered. This is to say we should not be looking for any model that can describe
the data. Instead, we seek a model M ∗ that is the best among a restricted class
of modelsM = {M}.4 In fact, the well-known No Free Lunch Theorem in sta-
tistical learning stipulates that in the absence of prior information or assumptions
about the models, there is no reason to prefer one learning algorithm over another
[Duda et al., 2000]. Secondly, we need to specify how restricted the class of mod-
els need to be. A common strategy is to try to get away with the simplest possible
class of models that is just necessary to describe the data or solve the problem at
hand – known as the principle of Occam’s Razor. More precisely, the model class
should be rich enough that it contains at least one model that can fit the data to a
desired accuracy and yet be simple enough so as to make the inference of the best
model for the given data tractable.

In engineering practice, a popular strategy is to start from the simplest class of
models, and only increase the complexity of the models when the simpler mod-
els become inadequate. For instance, to fit a set of sample points, one may try
first the simplest class of models, namely linear models, then hybrid (piecewise)
linear models, followed by (piecewise) quadratic models, and eventually by gen-
eral topological manifolds. One of the goals of this book is to demonstrate that
between them piecewise linear and quadratic models can already achieve an excel-
lent balance between expressiveness and simplicity for many important practical
problems.

1.1.2 Statistical Models versus Geometric Models
Roughly speaking, without any training samples whose group membership are
known a priori, the problem of modeling mixed data falls into the category of
unsupervised learning. In the literature, almost all unsupervised-learning methods
fall into one of two categories. The first category of methods model the data as
random samples from a probabilistic distribution and try to learn the distribution
from the data. We call such models as statistical models. The second category of
methods model the overall geometric shape of the data set as smooth manifolds
or topological spaces.5 We call such models as geometric models.

4Or equivalently, we may impose a non-uniform prior distribution over all models.
5Roughly speaking, a smooth manifold is a special topological space that is locally smooth –

Euclidean space-like, and has the same dimension everywhere. A general topological space may have
singularities and consist of components with different dimensions.
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Statistical Learning.

In the statistical paradigm, one assumes that the points xi in the data set X

are drawn independently from a common probability distribution p(x), then the
task of learning a model from the data becomes one of inferring the most likely
probability distribution within a family of distributions of interest (for example
Gaussian distributions). Normally the family of distributions is parameterized and
denoted as M = {p(x|θ)θ ∈ Θ}. Consequently, the optimal model p(x|θ∗) is
given by the maximum likelihood (ML) estimate6

θ∗ML
.
= arg max

θ∈Θ

N∏

i=1

p(xi|θ). (1.1)

If a prior distribution (density) p(θ) of the parameter θ is also given, then, fol-
lowing the Bayesian rule, the optimal model is given by the maximum a posterior
(MAP) estimate

θ∗MAP
.
= arg max

θ∈Θ

N∏

i=1

p(xi|θ)p(θ). (1.2)

Many effective methods and algorithms have been developed in the statistics and
machine learning literature to infer the optimal distribution p(x|θ∗) or a good
approximation of it if the exact solution is computationally prohibitive. The esti-
mated probability distribution gives a generative description of the samples and
can be used to generate new samples or predict the outcomes of new observations.

Geometric Modeling.

However, in many practical scenarios, it is rather difficult to know a priori the
statistical origins of the data, since we frequently begin with only a few raw
sample points, which are insufficient to determine a unique optimal distribu-
tion within a large (unrestricted) functional space. Very often, the data points
are subject to certain hard geometric constraints, and can only be represented
as a singular distribution.7 It is very ineffective to learn such a singular distrib-
ution [Vapnik, 1995]. Thus, an alternative data-modeling paradigm is to directly
learn the overall geometric shape of the given data set X . Typical methods in-
clude fitting one or more geometric primitives such as points8, lines, subspaces,
surfaces, and manifolds to the data set. For instance, the approach of classi-
cal principal component analysis (PCA) is to fit a lower-dimensional subspace,
say S .

= span{u1, u2, . . . , ud}, to a data set in a high-dimensional space, say

6If the true distribution from which the data are drawn is q(x), then the maximum likelihood
estimate p(x|θ∗) minimizes the Kullback-Leibler (KL) divergence: d(p, q) =

R

p log p
q

dx among
the given class of distributions.

7Mathematically, singular distributions are represented as generalized functions in the Sobolev
space. The delta function δ(·) is one such example.

8As the means of multiple clusters.
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X = {xi} ⊂ R
D. That is,

xi = yi1u1 + yi2u2 + · · ·+ yidud + εi, ∀ xi ∈X, (1.3)

where d < D, yij ∈ R, and u1, u2, . . . , ud ∈ R
D are unknown parameters and

need to be determined – playing the role of the parameters θ in the foregoing
statistical model. The line model in Figure 1.1 is an example of PCA for the four
points on the plane. In the above equation, the terms εi ∈ R

D denote possible
errors between the samples and the model. PCA minimizes the error

∑
i ‖εi‖2 for

the optimal subspace (see Chapter 2 for details).9 In general, a geometric model
gives an intuitive description of the samples, and it is often preferred to a statistical
one as a “first-cut” description of the given data set. Its main purpose is to capture
global geometric, topological, or algebraic characteristics of the data set, such as
the number of clusters and their dimensions. A geometric model always gives a
more compact representation of the original data set, which makes it useful for
data compression and dimension reduction.

As two competing data-modeling paradigms, the statistical modeling tech-
niques in general are more effective in the high-noise (or high-entropy) regime
when the generating distribution is (piecewise) smooth and non-singular; and the
geometric techniques are more effective in the low-noise (or low-entropy) regime
when the underlying geometric space is (piecewise) smooth, at least locally. The
two paradigms thus complement each other in many ways. Once the overall geo-
metric shape, the clusters and their dimensions, of the data set are obtained from
geometric modeling, one can choose the class of probabilistic distributions more
properly for further statistical inference. Since samples normally have noise and
sometimes contain outliers or incomplete data, in order to robustly estimate the
optimal geometric model, one often resorts to statistical techniques. Therefore,
while this book puts more emphasis on geometric or algebraic modeling tech-
niques, we will also thoroughly investigate their connection to and combination
with various statistical techniques (see Chapter 5).

1.2 Modeling Mixed Data with a Hybrid Model
However, in practice, many data sets X cannot be modeled well by any single
model M in a pre-chosen or preferred model class M. Nevertheless, it is often
the case that if we group such a data set X into multiple subsets:

X = X1 ∪X2 ∪ · · · ∪Xn, (with X l ∩Xm = ∅, for l 6= m, ) (1.4)

then each subset Xj can be modeled sufficiently well by a primitive model in the
chosen model class:

M∗
j = arg min

M∈M

[
Error(Xj ,M)

]
, j = 1, 2, . . . , n. (1.5)

9When the data points xi are independent samples drawn from a Gaussian distribution, the
geometric formulation of PCA coincides with the classical statistical formulation [Jolliffe, 1986].
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Precisely in this sense, we call the data set X mixed (with respect to the chosen
model class M) and call the collection of models {M ∗

j }nj=1 together a hybrid
model for X . For instance, suppose we are given a set of sample points shown in
Figure 1.2. These points obviously cannot be fitted well by any single line, plane
or smooth surface in R

3; but once they are grouped into three subsets, each subset
can be fitted well by a line or a plane (as a standard PCA problem). Note that in
this example the topology of the data is indeed “hybrid” – two of the subsets are
of dimension one and the other is of dimension two.

1.2.1 Examples of Mixed Data Modeling
In fact, the aforementioned example of mixed data is quite representative of many
real data sets that one often encounters in practice. To motivate further the im-
portance of modeling mixed data, we give below a few real-world problems that
arise in computer vision and image processing. Most of these problems will be
revisited later in this book with more detailed and principled solutions given.

Example One: Vanishing Points in a Perspective Image

The first example is the problem of vanishing point detection in computer vision.
It is known in computer vision that the perspective images of a group of parallel
lines in space all pass through a common point on the image plane which is the so-
called vanishing point – a fact already well-known to and extensively exploited
by Renaissance artists. Detecting vanishing points is very important for many
practical applications such as estimating camera orientation and reconstructing
scene structure, especially for man-made environments. A line on the image plane
is described as the set of points (x, y) described by an equation ax+ by + c = 0.
For each of the lines passing through the same vanishing point, its coefficient
vector x = [a, b, c]T ∈ R

3 must lie on a 2-D subspace, whose normal vector is
exactly the vanishing point v = [vx, vy, 1]

T , i.e., vTx = 0. The vanishing point
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Figure 1.3. Results for clustering edge segments. Each group is marked with a different
color. The arrow on each edge segment points to the corresponding vanishing point.

is the point in the plane (vx, vy) ∈ R
2. The extra entry 1 in the vector v ∈ R

3

may be thought of as representing membership in the plane.
For a scene that consists of multiple sets of parallel lines, as is usually the case

for man-made objects and environments, the problem of detecting all the vanish-
ing points from the set of all edge segments is then mathematically equivalent to
clustering points into multiple 2-D subspaces in R

3. As we will see later that this
is a special case of the subspace-segmentation problem addressed by GPCA (see
Chapter 4). Figure 1.3 shows the application of the GPCA algorithm to one such
example, in which edge segments are correctly grouped to three vanishing points.

Example Two: Motion Segmentation from Two Images

The second example is the so-called motion segmentation problem that arises also
in the field of computer vision: given a sequence of images of multiple mov-
ing objects in a scene, how does one segment the images so that each segment
corresponds to only one moving object? This is a very important problem in ap-
plications such as motion capture, vision-based navigation, target tracking, and
surveillance. If we study the image sequence two images at a time, as it has been
known in computer vision, feature points that belong to the same moving object
are subject to either linear or quadratic constraints (see Chapter 8), depending on
the type of motions and camera models. Therefore, mathematically, the problem
of motion segmentation is equivalent to segmentation of points to different lin-
ear subspaces and quadratic surfaces. Figure 1.4 shows two images of a moving
checker board and cube. The image on the left shows the starting positions of
the board and the cube and their directions of motion; and the image on the right
shows the final positions. The image on the right also shows the segmentation re-
sults obtained using the GPCA algorithm applied to their motion flow for points
on the cube and the board. We will describe in detail the motion segmentation
method used to achieve the above result in Chapter 8.

Example Three: Image Segmentation and Compression

A third example arises in the context of image segmentation and compression. It
is commonplace that, in an image, pixels at different regions have significantly
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Figure 1.4. Clustering feature points according to different 3-D motions.

different local color/texture profiles (normally anN×N window around a pixel).
Conventional image processing/compression schemes (JPEG, JPEG2000) often
ignore such differences and apply the same linear filters or bases (for example.,
the Fourier transform, discrete cosine transform, wavelets, or curvelets) to the en-
tire set of local profiles. Nevertheless, modeling the set of local profiles as a mixed
data set allows us to segment the image into different regions and represent and
compress them differently. Each region consists of only those pixels whose local
profiles span the same low-dimensional linear subspace.10 The base vectors of the
subspace can be viewed as a bank of adaptive filters for the associated image re-
gion. Figure 1.5 shows an example of a segmentation performed using the GPCA
algorithm. The so-obtained subspaces (and their bases) normally provide a very

⇒

Figure 1.5. Image segmentation based on fitting different linear subspaces (and bases) to
regions of different textures. The three segments correspond to the ground, the cloud, and
the sky.

compact representation of the image, often more compact than any of the fixed-
basis schemes, and therefore very useful for image compression. More details on
this image segmentation/compression scheme can be found in Chapter 6.

10Unlike the previous two examples, there is no rigorous mathematical justification that local pro-
files from a region of similar texture must span a low-dimensional linear subspace. However, there is
strong empirical evidence that a linear subspace is normally a very good approximation.
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Figure 1.6. Classifying a subset of the Yale Face Database B consisting of 64 frontal views
under varying lighting conditions for subjects 2, 5 and 8. Left: Image data projected onto
the first three principal components. Right: Classification of the images given by GPCA.

Example Four: Object Classification

The fourth example arises in the context of image-based object classification.
Given a collection of unlabeled images {Ii}ni=1 of several different faces taken
under varying illumination, we would like to classify the images corresponding to
the face of the same person. For a Lambertian object, it has been shown that the set
of all images taken under all lighting conditions forms a cone in the image space,
which can be well approximated by a low-dimensional subspace [Ho et al., 2003].
Therefore, we can classify the collection of images by estimating a basis for each
one of those subspaces, because the images of different faces will live in differ-
ent subspaces. This is obviously another subspace-segmentation problem. In the
example shown in Figure 1.6, we use a subset of the Yale Face Database B con-
sisting of n = 64× 3 frontal views of three faces (subjects 5, 8 and 10) under 64
varying lighting conditions. For computational efficiency, we first down-sample
each image to a size of 30 × 40 pixels. We then project the data onto their first
three principal components using PCA, as shown in Figure 1.6 (left).11 We apply
GPCA to the projected data in R

3 and obtain three affine subspaces of dimension
2, 1, and 1, respectively. Despite the series of down-sampling and projection, the
subspaces lead to a perfect classification of the images, as shown in Figure 1.6
(right).

Example Five: Video Segmentation and Event Detection

The last example arises in the context of detecting events from video sequences.
A typical video sequence contains multiple activities or events separated in time.
For instance, Figure 1.7 left shows a news sequence where the host is interviewing
a guest and the camera is switching between the host, the guest and both of them.
Let us assume that all the consecutive frames of the same scene can be modeled as

11The legitimacy of the projection process will be addressed in Chapter 12.
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the output from a linear dynamical system and that different scenes correspond to
different dynamical systems. Since the image data live in a very high-dimensional
space (∼ 105, the number of pixels), we first project the image data onto a low-
dimensional subspace (∼ 10) using principal component analysis (PCA) and then
apply GPCA to the projected data to identify the different dynamical systems (see
Chapter 10). Figure 1.7 shows the segmentation results for two video sequences.
In both cases, a perfect segmentation is obtained.
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Figure 1.7. Clustering frames of a news video sequence into groups of scenes by modeling
each group with a linear dynamical system. Left: 30 frames of a video sequence clustered
into 3 groups: host, guest, and both of them. Right: 60 frames of a news video sequence
from Iraq clustered into 3 groups: rear of a car with a burning wheel, a burnt car with
people, and a burning car.

As we see from the above examples, in some cases, one can rigorously show
that a given data set belongs to a collection of linear and quadratic surfaces of
the same dimension (example one) or of possibly different dimensions (example
two). In many other cases, one can use piecewise linear structures to approximate
the data set and obtain a more compact and meaningful geometric representa-
tion of the data, including segments, dimensions, and bases (examples three, four,
and five). Subspace (or surface) segmentation is a natural abstraction of all these
problems and thus merits systematic investigation. From a practical standpoint,
the study will lead to many general and powerful modeling tools that are applica-
ble also to many types of data, such as feature points, images, videos, audios,
dynamical data, genomic data, proteomic data, and other bio-informatic data sets.

1.2.2 Mathematical Representations of Hybrid Models
Obviously, whether the model associated with a given data set is hybrid or not de-
pends on the class of primitive models considered. In this book, the primitives are
normally chosen to be simple classes of smooth manifolds or non-singular distrib-
utions. For instance, one may choose the primitive models to be linear subspaces.
Then one can use an arrangement of linear subspaces {Si}ni=1 ⊂ R

D,

Z
.
= S1 ∪ S2 ∪ · · · ∪ Sn, (1.6)
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also called a hybrid linear model, to approximate many nonlinear manifolds or
piecewise smooth topological spaces. This is the typical model studied by gener-
alized principal component analysis (GPCA). Or as its statistical counterpart, one
can assume that the samples points are drawn independently from a mixture of
Gaussian distributions {pi(x),x ∈ R

D}ni=1:

q(x)
.
= π1p1(x) + π2p2(x) + · · ·+ πnpn(x), (1.7)

with πi > 0 and π1 + π2 + · · · + πn = 1. This is the typical model
studied in mixtures of probabilistic principal component analysis (PPCA)
[Tipping and Bishop, 1999a]. In this book, we will study and clarify the similar-
ities and differences between these geometric models and statistical models (see
Chapter 3 and 4).

Difficulties with Conventional Data-Modeling Methods.

One may have been wondering why not simply to enlarge the class of primi-
tive models to include such hybrid models so that we can deal with them by the
conventional single-model paradigms for learning distribution- or manifold-like
models? If this were the case, then there would be no need of developing a theory
for hybrid models and thus no need of this book! However, the most compelling
reason that we do need hybrid models is that smooth manifolds and non-singular
distributions are not rich enough to describe the structure of many commonly ob-
served data, as we have seen in the examples in the previous section. On one
hand, the underlying topological space of a mixed data set may contains multiple
manifolds of different dimensions which may probably intersect with each other,
as the case with a collection of multiple subspaces. Conventional estimation tech-
niques for manifold-like models do not apply well to this class of spaces. On the
other hand, if one represents a hybrid model as a probabilistic distribution, then
the distribution will typically not be a (piecewise) smooth function but is singular.
Conventional statistical-learning techniques become rather ineffective in inferring
such singular distributions [Vapnik, 1995].

An alternative approach to model mixed data is first to segment the data set into
coherent subsets and then to model each subset using the classical single-model
methods. This is a popular approach adopted by many practitioners in industry.
The fundamental difficulty with this approach is that, without knowing which
subset of sample points belongs to which constituent model, there is seemingly a
“chicken-and-egg” relationship between data segmentation and model estimation:
If the segmentation of the data was known, one could fit a model to each subset
of samples using classical model estimation techniques; and conversely, if the
constituent models were known, one could easily find the subset of samples that
best fit each model. This relationship has been the rationale that supports all the
iterative modeling techniques such as the well-known expectation maximization
(EM) algorithm and the K-means method. These iterative methods share several
disadvantages:
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• The iteration needs to start with a good initial guess of the solution;
otherwise the iteration is likely to converge to an irrelevant local minimum.

• Without knowing a-priori the number of models and the dimension of each
model, the algorithm may diverge if it starts with a wrong guess on these
key parameters.

• There are cases in which it is difficult to solve the grouping problem
correctly, yet it is possible to obtain a good estimate of the models. In
such cases a direct estimation of the models without grouping seems more
appropriate than that based on incorrectly segmented data.

Hybrid Models as Algebraic Sets.

In this book, instead of manifolds or distributions, we will represent hybrid mod-
els mainly as algebraic sets.12 To see the merit of such a representation, let us
suppose that data that belong to the ith constituent model can be described as
the zero-level set of some polynomials in a prime ideal pi, i.e., an (irreducible)
algebraic variety:13

Zi
.
= {x : p(x) = 0, p ∈ pi} ⊂ R

D, i = 1, 2, . . . , n. (1.8)

The (mixed) data from a union of n such models then belong to an algebraic set:14

Z
.
= Z1 ∪ Z2 ∪ · · · ∪ Zn
=

{
x : p1(x)p2(x) · · · pn(x) = 0, ∀pi ∈ pi, i = 1, 2, . . . , n

}
.(1.9)

From a number of (random) sample points on the algebraic set X
.
= {xj ∈ Z},

one can determine the (radical) ideal of polynomials that vanish on the set Z:15

X → q(Z)
.
=

{
q(xj) = 0, ∀xj ∈ Z

}
. (1.10)

Obviously, the ideal q is no longer a prime ideal. Thus, once the ideal q is obtained,
the constituent models pi (or Zi) can be subsequently retrieved by decomposing
the ideal q into irreducible prime ideals:16

q → q = p1 ∩ p2 ∩ · · · ∩ pn. (1.11)

12Roughly speaking, an algebraic set is the common zero-level set of a family of algebraic equa-
tions. For instance, most constraints we encounter in imagery data are given in the form of algebraic
equations.

13A prime ideal is an ideal that cannot be decomposed further as the intersection of two other ideals.
Geometrically, its zero-level set corresponds to an algebraic set that cannot be reduced to multiple
algebraic sets. An irreducible algebraic set is called an algebraic variety. A subspace is one such
example.

14Notice that the “union” of algebraic varieties corresponds to the “multiplication” of the
polynomials associated with the varieties.

15According to Hilbert’s Nullstellensatz, there is a one-to-one correspondence between algebraic
sets and radical ideals [Eisenbud, 1996].

16For the special case in which the ideal is generated by a single polynomial, the decomposition is
equivalent to factoring the polynomial into irreducible factors.



14 Chapter 1. Introduction

Clearly, this representation establishes a natural correspondence between com-
mon terminologies used in algebraic geometry with the heuristic languages
developed in (mixed) data modeling.

Modeling Hybrid Topologies and Degenerate Distributions.

Despite its pure algebraic nature, the above representation is closely related to, as
well as complements, the aforementioned two paradigms of data modeling. From
the geometric viewpoint, unlike a smooth manifold M which sometimes can be
implicitly represented as the level set of a single function, an algebraic set Z is the
zero-level set of a family of polynomials. Because of that, algebraic sets Z may
have components with different dimensions and singular topologies. From the
statistical viewpoint, one can also view the irreducible components {Zi} of Z as
the “means” of a collection of probabilistic distributions {pi(·)} and the overall set
Z as the “skeleton” of their mixture q(·). For instance, a piecewise linear structure
can be viewed as the skeleton of a mixture of Gaussian distributions (see Figure
1.8). Therefore, hybrid models represented by algebraic sets can be interpreted as
a special class of generative models such that the random variables have very low
entropy outside the algebraic sets but high entropy inside.

Algebraic VarietyManifold Distribution

Figure 1.8. Comparison of three representations of the same data set: 1. a (nonlinear)
manifold, 2. a (mixed Gaussian) distribution, or 3. a (piecewise linear) algebraic set.

As we will show in this book, if the primitive varieties are simple models such
as linear subspaces or quadratic surfaces, then in principle, the problem of seg-
menting mixed data and estimating a hybrid model can be solved non-iteratively
(see Chapter 4). As it turns out, the correct number of models and their dimen-
sions can also be correctly determined via purely algebraic means, at least in the
noise-free case (see Chapter 12). The algebraic theory of GPCA will be thor-
oughly developed from Chapter 2 through Chapter 12. The algorithms developed
in these chapters are algebraic in their methods. The most common concern that
one hears is that algebraic methods are extremely sensitive to noise. We will ad-
dress this question in considerable detail in this book, but the amazing fact is that
even the basic algorithm works extremely well with moderate noise in the data;
it can also be applied to high-dimensional data if the data in fact is clustered on
fairly low-dimensional structures.
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1.2.3 Hybrid Model Selection for Noisy Data
If there is significant noise in the sample points, the problem of finding the “cor-
rect” model becomes more challenging. An important observation is that, in the
presence of noise, a model is not necessarily the best if it has the highest fidelity
to the data. This is especially the case for GPCA since the number of subspaces
and their dimensions are not known. In fact, for every point in the data set, one
can fit a separate line to it, which results in no modeling error at all. But such a
model is not so appealing since it has exactly the same complexity as the original
data.

In general, the higher is the model complexity, the smaller the error is.17 A
good model should strike a balance between the complexity of a model M and its
fidelity to the data X .18 Many general model selection criteria have been proposed
in the statistics or machine learning literature, including the minimum description
length (MDL), the minimum message length (MML), and the Akaike information
criterion (AIC). Despite some small differences, they all tradeoff modeling error
for model complexity and minimize an objective of the form:

min
M∈M

J(M)
.
= [α · Complexity(M) + β · Error(X,M)].

In this book, we will introduce a model complexity measure that is specially de-
signed for an arrangement of linear subspaces of different dimensions, namely the
effective dimension (see Chapter 5).

There is yet another fundamental tradeoff that is often exploited for model se-
lection. When the model complexity is too high, the model tends to over-fit the
given data, including the noise in it. Such a model does not generalize well in
the sense that it would not predict well the outcome of new samples; when the
model complexity is too low, the model under-fits the data and, again, would re-
sult in a large error in the prediction. Therefore, a good model should minimize
the prediction error. The relationships between modeling error and prediction er-
ror as a function of model complexity is plotted in Figure 1.9. Unfortunately, the
“optimal” models obtained from trading off modeling error and prediction error
can be different, as illustrated in the figure. In such a case, a choice between the
two has to be made. In the unsupervised learning setting, it is often difficult to
obtain the prediction error curve;19 and for purposes such as data compression,
the prediction error is of less concern than the modeling error. In these cases, we
often choose the tradeoff between the modeling error and the model complexity
(see Chapter 5).

17For example, any function can be approximated arbitrarily close by a piecewise linear function
with a sufficient number of pieces.

18For instance, the complexity of a model can be measured as the minimum number of bits needed
to fully describe the model and the data fidelity can be measured by the distance from the sample
points to the model.

19Unless one does cross-validation within the given data set itself.
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Figure 1.9. Modeling and prediction error versus model complexity.

The algebraic techniques used in the algebraic GPCA algorithm though not
very poorly conditioned are by their very nature not tremendously robust to
noise.20 Nevertheless, we will show how one can improve the robustness of the
algebraic GPCA algorithm to noisy date by incorporating proper model selection
criteria such as the one discussed above. Various robust statistical techniques will
also be introduced to handle problems with outliers. Finally this robustified GPCA
algorithm can be combined with the existing EM and K-means algorithms (for in-
stance for initializing them well) so as to result in much improved robustness,
efficiency, and optimality.

1.3 Bibliographic Notes
Yi’s notes:
Do we need the historical notes in the introduction or can we put them to the end
of each chapter? Do we need to add:

• Applications of PCA in various areas: signal processing, image compres-
sion, data analysis in biology, psychometrics...?

• A review of multi-modal statistics, especially its connection to polynomial
factorization, and GPCA...?

• The use of mixed models in other areas besides image processing, computer
vision, and systems theory...? In particular system biology?

20The techniques include polynomial fitting, factorization, division, and differentiation.
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• References on the learning of kernels.

• A review of other related unsupervised learning methods, such as EM, K-
means, ICA, multidimensional scaling, local linear embedding, Isomap...?
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Chapter 2
Data Modeling with a Single Subspace

In this chapter, we give a brief review of principal component analysis (PCA), i.e.,
the method for finding a dominant affine subspace to fit a set of data points. The
solution to PCA has been well established in the literature and it has become one
of the most useful tools for data modeling, compression, and visualization. In this
section, we first show that the singular value decomposition (SVD) provides an
optimal solution to PCA. Both the geometric and statistical formulation of PCA
will be introduced and their equivalence will be established. When the dimension
of the subspace is unknown, we introduce some conventional model selection
methods to determine the number of principal components. When the samples
contain outliers and incomplete data points, we review some robust statistical
techniques that help resolve these difficulties. Finally, some nonlinear extensions
to PCA such as nonlinear PCA and kernel PCA will also be reviewed.

2.1 Principal Component Analysis (PCA)
Principal component analysis (PCA) refers to the problem of fitting a low-
dimensional affine subspace S to a set of points X = {x1,x2, . . . ,xN} in a
high-dimensional space R

D, the ambient space. Mathematically, this problem can
be formulated as either a statistical problem or a geometric one, and they both lead
to the same solution, as we will show in this section.
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2.1.1 A Geometric Approach to PCA
We first examine the more intuitive geometric approach to PCA. That is, one
tries to find an (affine) subspace that fits the given data points. Let us assume for
now that the dimension of the subspace d is known. Then every point xi on a
d-dimensional affine subspace in R

D can be represented as

xi = x0 + Udyi, i = 1, . . . , N (2.1)

where x0 ∈ R
D is a(ny) fixed point in the subspace, Ud is a D × d matrix with d

orthonormal column vectors, and yi ∈ R
d is simply the vector of new coordinates

of xi in the subspace. Notice that there is some redundancy in the above represen-
tation due to the arbitrariness in the choice of x0 in the subspace. More precisely,
for any y0 ∈ R

d, we can re-represent xi as xi = (x0 + Udy0) + Ud(yi − y0).
Therefore, we need some additional constraints in order to end up with a unique
solution to the problem of finding an affine subspace to fir the data. A common
constraint is to impose that the mean of yi is zero:1

ȳ
.
=

1

N

N∑

i=1

yi = 0. (2.2)

In general the given points are imperfect and have noise. We define the “op-
timal” affine subspace to be the one that minimizes the sum of squared error
between xi and its projection on the subspace, i.e.,

min
x0,Ud,{yi}

N∑

i=1

∥∥xi − x0 − Udyi
∥∥2
, s.t. UTd Ud = I and ȳ = 0. (2.3)

Differentiating this function with respect to x0 and yi (assuming Ud is fixed) and
setting the derivatives to be zero,2 we obtain the relations:

x̂0 = x̄
.
=

1

N

N∑

i=1

xi; ŷi = UTd (xi − x̄). (2.4)

The vector ŷi ∈ R
d is simply the coordinates of the projection of xi ∈ R

D in the
subspace S. We may call such ŷ the “geometric principal components” of x.3

Then the original objective becomes one of finding an orthogonal matrix Ud ∈
R
D×d that minimizes

min
Ud

N∑

i=1

∥∥(xi − x̄)− UdUTd (xi − x̄)
∥∥2
. (2.5)

1In the statistical setting, xi and yi will be samples of two random variables x and y, respectively.
Then this constraint is equivalent to setting their means to be zero.

2which are the necessary conditions for the minima.
3As we will soon see in the next section, it coincides with the traditional principal components

defined in a statistical sense.
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Note that this is a restatement of the original problem with the mean x̄ subtracted
from each of the sample points. Therefore, from now on, we will consider only
the case in which the data points have zero mean. If not, simply subtract the mean
from each point and the solution for Ud remains the same. The following theorem
gives a constructive solution to the optimal solution Ûd.

Theorem 2.1 (PCA via SVD). Let X = [x1,x2, . . . ,xN ] ∈ R
D×N be the matrix

formed by stacking the (zero-mean) data points as its column vectors. Let X =
UΣV T be the singular value decomposition (SVD) of the matrix X . Then for any
given d < D, a solution to PCA, Ûd is exactly the first d columns of U ; and ŷi is
the ith column of the top d×N submatrix ΣdV

T
d of the matrix ΣV T .

Proof. Note that the problem

min
Ud

N∑

i=1

∥∥xi − UdUTd xi
∥∥2 (2.6)

is equivalent to

min
Ud

N∑

i=1

trace
[(

xi − UdUTd xi
)(

xi − UdUTd xi
)T ]

⇔ min
Ud

trace
[
(I − UdUTd )XXT

]
,

where, for the second equivalence, we use the facts trace(AB) = trace(BA),
UdU

T
d UdU

T
d = UdU

T
d , and XXT =

∑N
i=1 xix

T
i to simplify the expression.

Substitute X = UΣV T into the above expression, the problem becomes

min
Ud

trace
[
(I − UTUdUTd U)Σ2

]
.

Let
∑D
i=1 σ

2
i eie

T
i be the dyadic decomposition of the diagonal matrix Σ2.4 Since

UTd U is an orthogonal matrix, the above minimization is the same as

min
Ud

D∑

i=1

trace
[(
σiei − UTUdUTd Uσiei

)(
σiei − UTUdUTd Uσiei

)T ]

⇔ min
Ud

D∑

i=1

σ2
i

∥∥(
I − UTUdUTd U

)
ei

∥∥2
.

Because Ud is an orthogonal matrix of rank d so is UTd U so that I−UTUdUTd U is
an idempotent matrix of rank D− d, so that the D terms

∥∥(
I −UTUdUTd U

)
ei

∥∥2

always sum up to a constant D − d, and σ2
1 ≥ σ2

2 ≥ · · ·σ2
D are ordered.

Therefore, the minimum is achieved when the d terms associated with the higher
weights σ2

1 , . . . , σ
2
d become zero. This happens only when Ûd consists of the first

d columns of U . The rest of the theorem then easily follows.

4Here ei ∈ RD is the standard ith base vector of RD , i.e., its ith entry is 1 and others are 0.
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When there are repeated singular values with σd = σd+1, there is a loss of
uniqueness of the solution corresponding to the principal components.

According to the theorem, the SVD gives an optimal solution to the PCA
problem. The resulting matrix Ûd (together with the mean x̄ if the data is not
zero-mean) provides a geometric description of the dominant subspace structure
for all the points;5 and the columns of the matrix ΣdV

T
d = [ŷ1, . . . , ŷN ] ∈ R

d×N ,
i.e., the principal components, give a more compact representation for the points
X = [x1, . . . ,xN ] ∈ R

D×N , as d is typically much smaller than D.

2.1.2 A Statistical View of PCA
Historically PCA was first formulated in a statistical setting: to estimate the prin-
cipal components of a multivariate random variable x from given sample points
{xi} [Hotelling, 1933]. For a multivariate random variable x ∈ R

D and any
d < D, the d “principal components” are defined to be d uncorrelated linear
components of x:

yi = uTi x ∈ R, i = 1, . . . , d (2.7)

for some ui ∈ R
D such that the variance of yi is maximized subject to

uTi ui = 1, Var(y1) ≥ Var(y2) ≥ · · · ≥ Var(yd).

For example, to find the first principal component, we seek a vector u∗1 ∈ R
D

such that

u∗1 = arg max
u1∈RD

Var(uT1 x), s.t. uT1 u1 = 1. (2.8)

Without loss of generality, we will, in what follows assume x has zero-mean.

Theorem 2.2 (Principal Components of a Random Variable). The first d princi-
pal components of a multivariate random variable x are given by the d leading
eigenvectors of its covariance matrix Σx

.
= E[xxT ].

Proof. Notice that for any u ∈ R
D,

Var(uTx) = E[(uTx)2] = E[uTxxTu] = uTΣxu.

Then to find the first principal compoent, the above minimization (2.8) is
equivalent to

max
u1∈RD

uT1 Σxu1, s.t. uT1 u1 = 1. (2.9)

Solving the above constrained minimization problem using s Lagrange multiplier
method, we obtain the necessary condition for u1 to be an extrema:

Σxu1 = λu1 (2.10)

5From a statistical standpoint, the column vectors of Ud give the directions in which the data X

has the largest variance, hence the name “principal components.”
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for some Lagrange multiplier λ ∈ R, and the the associated extremum value
is uT1 Σxu1 = λ. Obviously, the optimal solution u∗1 is exactly the eigenvector
associated with the largest eigenvalue of Σx.

To find the remaining principal components, since uT1 x and uTi x (i > 1) need
to be uncorrelated, we have

E[(uT1 x)(uTi x)] = E[uT1 xxTui] = uT1 Σxui = λ1u
T
1 ui = 0.

That is, u2, . . . , ud are all orthogonal to u1. Following the proof for the optimality
of u1, u2 is then the leading eigenvector of Σx restricted to the orthogonal com-
plement of u1.6 Overall, u2 is the second leading eigenvector of Σx. Inductively,
one can show for the rest of the principal components.

Normally, we do not know Σx and can only estimate it from the given N
samples xi. It is known from statistics that

Σ̂x
.
=

1

N

N∑

i=1

xix
T
i =

1

N
XXT (2.11)

is an asymptotically unbiased estimate of the covariance matrix Σx. The eigen-
vectors of Σ̂x, or equivalently those of XXT , lead to the “sample principal
components”:

ŷi = ûTi x, s.t. Σ̂xûi = λûi and ûTi ûi = 1. (2.12)

One can show that, if x is Gaussian, then every eigenvector u of Σ̂x is
an asymptotically unbiased estimate for the corresponding eigenvector of Σx

[Jollife, 1986].

Theorem 2.3 (Equivalence of Geometric and Sample Principal Components). Let
X = [x1,x2, . . . ,xN ] ∈ R

D×N be the data matrix (with x̄ = 0). The vectors
û1, û2, . . . , ûd ∈ R

D associated with the d sample principal components for X

are exactly the columns of the matrix Ûd ∈ R
D×d that minimizes the least-squares

error (2.6).

Proof. The proof is simple. Notice that if X has the singular value decomposition
X = UΣV T , then XXT = UΣ2UT is the eigenvalue decomposition of X . If
Σ is ordered, then the first d columns of U are exactly the leading d eigenvectors
of XXT , which give the d sample principal components.

Therefore, both the geometric and statistical formulation of PCA lead to exactly
the same solutions/estimates of the principal components. The geometric formu-
lation allows us to apply PCA to data even if the statistical nature of the data is
unclear; the statistical formulation allows to quantitatively evaluate the quality of
the estimates. For instance, for Gaussian random variables, one can derive explicit
formulae for the mean and covariance of the estimated principal components. For

6The reason for this is that both u1 and its orthogonal complement u⊥
1 are invariant subspaces of

Σx.
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a more thorough analysis of the statistical properties of PCA, we refer the reader
to the classical book [Jollife, 1986].

2.1.3 Determining the Number of Principal Components
Notice that SVD of the noisy data matrix X does not only give a solution to
PCA for a particular d, but also the solutions to all d = 1, 2, . . . , D. This has
an important side-benefit: if the dimension d of the subspace S, or equivalently
the rank of the matrix X , is not known or specified a priori, one may have to
look at the entire spectrum of solutions to decide on the “best” estimate d̂ for the
dimension and hence the subspace S for the given data.

As we have discussed in the introduction of the book, the conventional wisdom
is to strike a good balance between the complexity of the chosen model and the
data fidelity (to the model). The dimension d of the subspace S can be viewed as
a natural measure of the complexity of the model; and the sum of squares of the
remaining singular values

∑D
i=d+1 σ

2
i is exactly the modeling error

∑N
i=1 ‖xi −

x̂i‖2. The leading singular value σ2
d+1 of the remaining ones is a good index of

the modeling error. Therefore, one can seek for a model that balances between d
and σ2

d+1 by minimizing an objective function of the form:

JPCA(d)
.
= α · σ2

d+1 + β · d (2.13)

for some proper positive weightsα, β > 0. Another somewhat similar and popular
objective function that people often use to determine the rank d of the noise matrix
X from its singular values is (e.g., [Kanatani and Matsunaga, 2002a]):

Jrank(d)
.
=

σ2
d+1∑d
i=1 σ

2
i

+ κd. (2.14)

In this book, unless stated otherwise, this will be the criterion of choice when we
try to determine the rank of a matrix corrupted by noise.

In general, the ordered singular values of the data matrix X versus the dimen-
sion d of the subspace resemble a plot as in Figure 2.1. In the statistics literature,
this is known as the “Scree graph.” We will see a significant drop in the singular
value right after the “correct” dimension d̂, which is sometimes called the “knee”
or “elbow” point of the plot. Obviously, such a point is a stable minimum as it
optimizes the above objective function (2.13) for a range of values for α and β,
or (2.14) for a range of κ.

A model can also be selected from the Scree graph in another way. If, instead of
the dimension d, a tolerance τ for the modeling error is specified, one can easily
use the plot to identify the model that has the lowest dimension and satisfies the
given tolerance, as indicated in the figure.

There are many other methods for determining the dimension for PCA.
Interested readers may find more references in [Jollife, 1986].
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Figure 2.1. Singular value as a function of the dimension of the subspace.

2.2 Robustness Issues for PCA
In the above discussions, we have assumed that all the sample points can be fit
with the same geometric or statistical model. In this section, we discuss vari-
ous robustness issues for PCA. More specifically, we study how to resolve the
difficulties with outliers and incomplete data points.

2.2.1 Outliers
In practice, it is often the case that a small subset of the data points do not fit well
the same model as the rest of the data. Such points are called outliers. The true
nature of outliers can be very elusive. There is really no unanimous definition for
what is an outlier. Outliers can be perfectly valid samples from the same distrib-
ution as the rest of the data and it just happens so that they are small-probability
instances; or they are not samples drawn from the same model at all and there-
fore they will likely not be consistent with the model derived from the rest of the
data; or they are atypical samples that have an unusually large influence on the
estimated model parameters. In principle however, there is no way that one can
really tell which case is really true for a certain “outlier” sample point. But these
different interpretations of outliers lead to different approaches to “detect” (and
subsequently eliminate) outliers.

Error-Based Outlier Detection

The first approach is to first fit a model to all the sample points, including potential
outliers, and then detect the outliers as the ones that, with respect to the identified
model, correspond to small-probability events or result in too large modeling er-
rors. In PCA, if we assume the samples are drawn from a Gaussian distribution,
the probability of a sample is approximately inversely proportional to its (squared)
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geometric distance to the identified subspace. Hence using either the probability
or the geometric error ends up similar criteria for outlier detection. For instance,
from the SVD X = UΣV T , we know

yi = uTi x, i = 1, . . . , D (2.15)

are the new coordinates of each point x with respect to a new orthonormal co-
ordinate frame specified by U . The first d terms y1, . . . , yd are the principal
components (the new coordinates of x̂ in the principal subspace); and the last
D − d terms yd+1, . . . , yD are the new coordinates of x − x̂ in the orthogonal
complement of the principal subspace. Clearly the geometric modeling error is

∥∥x− x̂
∥∥2

= y2
d+1 + y2

d+2 + · · ·+ y2
D. (2.16)

Then one may simply call a point x an “outlier” if

C(x)
.
= y2

d+1 + y2
d+2 + · · ·+ y2

D ≥ τ (2.17)

for some chosen threshold τ > 0. However, this criterion does not take into ac-
count how the rest of the points are distributed away from the principal subspace.
To fix this oversight, notice that as a random variable, yi has the (estimated) vari-
ance σ2

i . Therefore, if we assume x − x̂ has a Gaussian distribution (and so are
yi), then we have

− log p
(
x− x̂

)
∝ y2

d+1/σ
2
d+1 + y2

d+2/σ
2
d+2 + · · ·+ y2

D/σ
2
D. (2.18)

Therefore, we should use the following criterion

Cn(x)
.
= y2

d+1/σ
2
d+1 + y2

d+2/σ
2
d+2 + · · ·+ y2

D/σ
2
D ≥ τ (2.19)

to detect outliers. The left hand is nothing but the geometric error normalized
by the respective variance of x in the direction of each eigenvector. When the
variances σ2

d+1, . . . , σ
2
D are approximately the same, the two criteria (2.17) and

(2.19) coincide. In practice, we find either criterion (2.17) or (2.19) can be very
effective in detecting outliers, depending on the nature of the data.

Consensus-Based Outlier Detection

The second approach assumes that the outliers are not drawn from the same model
as the rest of the data. Hence it makes sense to try to avoid the outliers when we
infer a model from the data. However, without knowing which points are outliers
beforehand, how can we avoid them? One idea is to fit a model, instead of to
all the data points at the same time, only to a proper subset of the data. This is
possible when the number of data points required for a unique solution for model
estimation can be much smaller than that of the given data set. Of course, one
should not expect that a randomly chosen subset will have no outliers and always
lead to a correct model. Thus, one should try on many different subsets:

X1,X2, . . . ,Xn ⊂ X. (2.20)

The rationale is that if the percentage of outliers is relatively small, one of the
trial subsets, say X i, likely contains few or no outliers and hence the resulting
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model would be the most consistent with the rest of the data points. For instance,
for PCA we may claim a subset X i gives a consistent estimate of the subspace
Ûd(Xi) if the following criterion is satisfied:

#
{
x ∈X :

∥∥x− Ûd(Xi)
∥∥ ≤ τ

}
≥ N · δ%, (2.21)

for some error threshold τ > 0 and some percentage threshold δ (nor-
mally larger than 50 percent). This scheme is typically called Random Sample
Consensus (RANSAC), and it normally improves the robustness of the model se-
lection/estimation to outliers. As a word of caution, in practice, in order to design a
successful RANSAC algorithm, one needs to carefully choose a few key parame-
ters: the size of each subset, the number of subsets, and the consensus criterion.7
There is a vast amount of literature on RANSAC-type algorithms, and for a more
thorough introduction, we refer interested readers to [Fischler and Bolles, 1981].

Influence-Based Outlier Detection

The third approach relies on the assumption that an outlier is an atypical sample
which has an unusually large influence on the estimated model parameters. This
leads to an outlier detection scheme which to some extent combines the character-
istics of the previous two approaches: it determines the influence of a sample by
comparing the difference between the model estimated with and without this sam-
ple. For instance, for PCA one may use a sample influence function to measure
the difference:

I(xi, Ud)
.
= d

(
Ûd, Ûd(i)

)
, (2.22)

where d(·, ·) is a proper distance measure between the subspace basis estimated
with the ith sample Ûd and that without the ith sample Ûd(i).8 The larger the
difference is, the larger is the influence and more likely is the sample xi an outlier.
Thus, we may eliminate a sample x as an outlier if

I(x, Ud) ≥ τ (2.23)

for some threshold τ > 0. However, this method does not come without an extra
cost. We need to compute the principal components for N times: one time for all
the samples together and another N − 1 times with one sample eliminated from
each time. There is also a vast amount of literature on sample influence of PCA,
we refer interested readers to [Jollife, 2002].

2.2.2 Incomplete Data Points
Another issue that we often encounter in practice is that some of the given data
points are “incomplete.” For an incomplete data point x = [x1, x2, . . . , xD]T , we

7That is, the criterion that verifies whether each point is consistent with the model derived from
the subset.

8One can choose either the largest subspace angle between the two bases or the sum of squares of
all the subspace angles.



30 Chapter 2. Data Modeling with a Single Subspace

mean that some of its entry or entries are missing or unspecified. For instance, if
the xi-entry is missing from x, it means that we know x only up to a line in R

D:

x ∈ L
.
=

{
[x1, . . . , xi−1, t, xi+1, . . . , xD]T , t ∈ R

}
. (2.24)

One should be aware that an incomplete data point is in nature rather different
from a noisy data point or an outlier.9 In general, such incomplete data points can
contain useful information about the model, and in the case of PCA, the princi-
pal subspace. For instance, if the principal subspace happens to contain the line
L, then knowing enough number of such lines, the principal subspace can be
uniquely determined. In general, the line L may or may not lie in the principal
subspace. We therefore should handle incomplete data points with more care. A
key observation here is that the incomplete data point x is just as good as any
point on the line L. Hence it is natural to choose a representative x̂ ∈ L that is the
closest to the principal subspace. Let us denote Bd

.
= I −UdUTd , then the closest

point x∗ = [x1, . . . , xi−1, t
∗, xi+1, . . . , xD]T on L to the principal subspace can

be found by minimizing the following quadratic function in t:

t∗ = arg min
t

(
xTBTBx

)
. (2.25)

This problem has a unique solution as long as the line L is not parallel to the
principal subspace, i.e., ei 6∈ span(Ud).

In essence, the above process of finding x∗ on the principal subspace is to give
a rank-d approximation of the entire data set containing both complete and incom-
plete data points. Mathematically, PCA with incomplete data is equivalent to find
a rank-d approximation/factorization of the data matrix X with incomplete data
entries (in a least-squares sense). In numerical linear algebra, power factorization
is especially designed to solve this problem. We refer the interested readers to
[Vidal and Hartley, 2004].

2.3 Extensions to PCA
Although PCA offers a rather useful tool to model the linear structure of a given
data set, it however becomes less effective when the data actually has some sig-
nificant nonlinearity, e.g., belonging to some nonlinear manifold. In this section,
we introduce some basic extensions to PCA which can, to some extent, handle the
difficulty with nonlinearity.

2.3.1 Nonlinear PCA
For nonlinear data, the basic rationale is not to apply PCA directly to the given
data, but rather to a transformed version of the data. More precisely, we seek a

9One can view incomplete data points as a very special type of noisy data points which have infinite
uncertainty only in certain directions.
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nonlinear transformation (more precisely, usually an embedding):

φ(·) : R
D → R

M ,

x 7→ φ(x),

such that the structure of the resulting data {φ(xi)} becomes (significantly more)
linear. In machine learning, φ(x) is called the “feature” of the data point x, and
R
M is called the “feature space.”
Define the matrix Φ

.
= [φ(x1), . . . , φ(xN )] ∈ R

M×N . The principal compo-
nents in the feature space are given by the eigenvectors of the sample covariance
matrix10

Σφ(x)
.
=

1

N

N∑

i=1

φ(xi)φ(xi)
T =

1

N
ΦΦT ∈ R

M×M .

Let vi ∈ R
M to be the eigenvectors:

Σφ(x)vi = λivi, i = 1, . . . ,M. (2.26)

Then the d “nonlinear principal components” of every data point x are given by

yi
.
= vTi φ(x) ∈ R, i = 1, . . . , d. (2.27)

In general, we do not expect that the map φ(·) is given together with the data.
In many cases, searching for the proper map is a difficult task, and the use of
nonlinear PCA is therefore limited. However, in some practical applications, good
candidates for the map φ(·) can be found from the nature of the problem. In such
cases, the map, together with PCA, can be very effective in extracting the overall
geometric structure of the data.

Example 2.4 (Veronese Map for Mixtures of Subspaces). As we will see later in
this book, if the data points belong to multiple subspaces, then a natural choice of the
transformation φ(·) is the Veronese map:

νn(·) : x 7→ νn(x),

(x1, . . . , xD) 7→ (xn
1 , xn−1

1 x2, . . . , x
n
D)

where the monomials are ordered in the degree-lexicographic order. Under such a mapping,
the multiple low-dimensional subspaces are mapped into a single subspace in the feature
space, which can then be identified via PCA for the features.

NLPCA in a High-dimensional Feature Space.

There is a potential difficulty associated with nonlinear PCA. The dimension of
the feature space, depending on the map φ(·), can be very high and it may be
computationally prohibitive to compute the principal components in the feature

10In principle, we should use the notation Σ̂φ(x) to indicate that it is the estimate of the actual
covariance matrix. But for simplicity, we will drop the hat in the sequel and simply use Σφ(x). The
same goes for the eigenvectors and the principal components.
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space. For instance, if we try to search for a Veronese map of the proper degree
n, the dimension of the feature space M grows exponentially with the degree.
When M exceeds N , the eigenvalue decomposition of ΦΦT ∈ R

M×M becomes
more costly than that of ΦTΦ ∈ R

N×N , although the two matrices have the same
eigenvalues.

This motivates us to examine whether computation of PCA in the feature space
can be reduced to computation with the lower-dimensional matrix ΦTΦ. The an-
swer is actually yes. The key is to notice that, despite the dimension of the feature
space, every eigenvector v ∈ R

M of ΦΦT associated with a non-zero eigenvalue
is always in the span of the matrix Φ:11

ΦΦT v = λv ⇔ v = Φ(λ−1ΦT v) ∈ range(Φ). (2.28)

We define the vector w .
= λ−1ΦT v ∈ R

N . Obviously ‖w‖2 = λ−1. It is straight-
forward to check that w is an eigenvector of ΦTΦ for the same eigenvalue λ.
Once such a w is computed from ΦTΦ, we can recover the corresponding v in the
feature space as:

v = Φw. (2.29)

Therefore the ith nonlinear principal component of x under the map φ(·) can be
computed as:

yi
.
= vTi φ(x) = wTi ΦTφ(x) ∈ R, (2.30)

where wi ∈ R
M is the ith leading eigenvector of ΦTΦ.

2.3.2 Kernel PCA
One should notice a very interesting feature about the above NLPCA method.
Entries of both the matrix ΦTΦ and the vector ΦTφ(x) (in the expression for
yi) are all inner products of two features, i.e., of the form φ(x)Tφ(y). In other
words, computation of the principal components involves only inner products of
the features. In the machine learning literature, one defines the “kernel function”
of two vectors x,y ∈ R

D to be the inner product of their features

k(x,y)
.
= φ(x)Tφ(y) ∈ R. (2.31)

The so-defined function k(·, ·) is a symmetric semi-positive definite function in x

and y.12 The entries of the matrix ΦTΦ are nothing but k(xi,xj).
As a consequence of our discussion above, one can perform nonlinear principal

component analysis as long as a (semi-positive definite) kernel function is given.
One does not have to explicitly define and evaluate the map φ(·). In fact, given any
(positive-definite) kernel function, according to a fundamental result in functional
analysis, one can in principle decompose the kernel and recover the associated
map φ(·) if one wishes to:

11The remaining M − N eigenvectors of ΦΦT are associated with the eigenvalue zero.
12A function k(x, y) is semi-positive definite if

R

RD f(x)k(x, y)f(y) dxdy ≥ 0



2.4. Bibliographic Notes 33

Theorem 2.5 (Mercer’s Theorem). Given a symmetric function k(x,y) with
|k(·, ·)| ≤ K for some K, if the linear operator L : L2(RD)→ L2(RD):

L(f)(x)
.
=

∫

RD

k(x,y)f(y)dy (2.32)

is semi-positive definite, then:

• The operatorL has an eigenvalue-eigenfucntion decomposition
{
(λi, φi(·)

}

such that
∑
i |λi| <∞ and |φi(·)| < Ki for some Ki.

• The kernel k(x,y) =
∑
i λiφi(x)φi(y) for almost all (x,y).13

The interested readers may refer to [?] for a proof of the theorem.
One important reason for computing with the kernel function is because when

the dimension of the feature space is high (sometimes even infinite), the com-
putation of features and their inner products is expensive. But for many popular
choices of embedding, the evaluation of the kernel function can be much simpler.
Example 2.6 (Examples of Kernels). There are several popular choices for the nonlinear
kernel function:

k1(x, y) = (xT
y)n, k2(x, y) = exp

„
−‖x − y‖2

2

«
. (2.33)

Evaluation of such functions only involves the inner product or the difference between
two vectors in the original space R

D . This is much more efficient than evaluating the
inner product in the associated feature space, whose dimension for the first kernel grows
exponentially with the degree n and for the second kernel is infinite.

We summarize our discussion in this section as Algorithm 2.1.

2.4 Bibliographic Notes
As a matrix decomposition tool, SVD was initially developed independently from
PCA in the numerical linear algebra literature, also known as the Erkart and
Young decomposition [Eckart and Young, 1936, Hubert et al., 2000]. The result
regarding the least-squares optimality of SVD given in Theorem 2.1 can be traced
back to [Householder and Young, 1938, Gabriel, 1978]. While principal com-
ponents were initially defined exclusively in a statistical sense [Pearson, 1901,
Hotelling, 1933], one can show that the algebraic solution given by SVD gives
asymptotically unbiased estimates of the true parameters in the case of Gaussian
distributions. A more detailed analysis of the statistical properties of PCA can be
found in [Jollife, 2002].

Note that PCA only infers the principal subspace (or components), but
not a probabilistic distribution of the data in the subspace. Probabilistic PCA
was developed to infer an explicit probabilistic distribution from the data

13“Almost all” means except for a zero-measure set.
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Algorithm 2.1 (Nonlinear Kernel PCA).
For a given set of data points X = [x1,x2, . . . ,xN ] ∈ R

D×N , and a given map
φ(x) or a kernel function k(x,y):

1. Compute the inner product matrix

ΦTΦ =
(
φ(xi)

Tφ(xj)
)

or
(
k(xi,xj)

)
∈ R

N×N ; (2.34)

2. Compute the eigenvectors wi ∈ R
N of ΦTΦ:

ΦTΦwi = λiwi, (2.35)

and normalize ‖wi‖2 = λ−1
i ;

3. For any data point x, its ith nonlinear principal component is given by

yi = wTi ΦTφ(x) or wTi [k(x1,x), . . . , k(xN ,x)]T , (2.36)

for i = 1, . . . , d.

[Tipping and Bishop, 1999b]. The data is assumed to be independent sam-
ples drawn from an unknown distribution, and the problem becomes one of
identifying the subspace and the parameters of the distribution in a maximum-
likelihood or a maximum-a-posterori sense. When the underlying noise dis-
tribution is Gaussian, the geometric and probabilistic interpretations of PCA
coincide [Collins et al., 2001]. However, when the underlying distribution is non
Gaussian, the optimal solution to PPCA may no longer be linear. For exam-
ple, in [Collins et al., 2001] PCA is generalized to arbitrary distributions in the
exponential family.

PCA is obviously not applicable to data whose underlying structure is nonlin-
ear. PCA was generalized to principal curves and surfaces by [Hastie, 1984] and
[Hastie and Stuetzle, 1989]. A more general approach however is to find a non-
linear embedding map, or equivalently a kernel function, such that the embedded
data would lie on a linear subspace. Such methods are referred to as nonlinear
kernel PCA [Scholkopf et al., 1998]. Finding such nonlinear maps or kernels are
by no means simple problems. Learning kernels is still an active research topic in
the machine learning community.
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Chapter 3
Iterative Methods for
Multiple-Subspace Segmentation

In this chapter, we consider a generalization of PCA in which the given sam-
ple points are drawn from an unknown arrangement of subspaces of unknown
and possibly different dimensions. To some extent, this problem can be cast as
a variation to the problem of unsupervised data clustering, that has been widely
studied in pattern recognition and machine learning. We will first review some
basic concepts and approaches for unsupervised data clustering. We then give a
clear formulation of the problem in which the clusters are subspaces and intro-
duce the basic notation for representing both linear and affine subspaces. We then
customize two existing iterative algorithms from unsupervised learning, K-means
and Expectation Maximization, for segmenting a known number of subspaces
with known dimensions. We point out the advantages and disadvantages of these
algorithms, particularly their sensitivity to initialization.

3.1 Unsupervised Learning Methods for Data
Clustering

In clustering analysis, the basic assumption is that the given data points X =
{xi}Ni=1 ⊂ R

D are grouped into a number of clusters n ≤ N such that the
“distance” (or “dissimilarity”) among points in the same group is significantly
smaller than those between clusters. Thus the outcome of clustering analysis is a
map:

c(·) : i ∈ {1, 2, . . . , N} 7→ j = c(i) ∈ {1, 2, . . . , n} (3.1)
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that assigns each point xi to one of the n clusters. Obviously, the outcome of
the clustering very much depends on what the chosen measure of distance is.
If the notion of distance is not clearly specified, the clustering problem can be
ill-defined. The following example shows some of the reasons.

Example 3.1 (No Invariant Clustering by the Euclidean Distance). If we always choose
the Euclidean distance, then clustering result cannot be invariant under an arbitrary linear
transformation of the data points – usually representing a change of coordinates. That is,
if we replace xi with x′

i = Axi for some non-singular matrix A ∈ R
D×D , then the

clustering of {xi} and {x′
i} will in general be different. This is easy to see with a simple

example. Suppose we need to cluster the N = 4 points in R
2 as follows

x1 = [1, 10]T , x2 = [−1, 10]T , x3 = [1,−10]T , x4 = [−1,−10]T

into n = 2 clusters. The two clusters are obviously {x1, x2} and {x3, x4}. Now consider
two linear transformations A1 and A2 ∈ R

2×2:

A1 =

»
100 0
0 1

–
, A2 =

»
10 0
0 10

– »
0 −1
1 0

–
=

»
0 −10
10 0

–
.

Applying the two maps to the original set of points, we obtain two new sets of points
{x′

i = A1xi} and {x′′
i = A2xi}, respectively:

x
′
1 = [100, 10]T , x

′
2 = [−100, 10]T , x

′
3 = [100,−10]T , x

′
4 = [−100,−10]T ;

x
′′
1 = [−100, 10]T , x

′′
2 = [−100,−10]T , x

′′
3 = [100, 10]T , x

′′
4 = [100,−10]T .

As a set {x′
i} is the same as {x′′

i }. However, the two clusters are {x′
1, x

′
3} and {x′

2, x
′
4}

for the first set; and {x′
1, x

′
2} and {x′

3, x
′
4} for the latter. In fact, regardless of the choice

of objective or method, it is always the case that the clustering result for one of the two
new sets will be different from that for the original set.

From the above example, we see that in order for the clustering result to be
invariant under a linear transformation, instead of always using the distance in the
original representation, one should properly adjust the distance measure after any
linear transformation of the data. To be more precise, let the length of a vector
x ∈ R

D is measured by

‖x‖2Σ = xTΣ−1x (3.2)

for some positive-definite symmetric matrix Σ ∈ R
D×D. Notice that Σ = ID×D

corresponds to the Euclidean length. Then under a linear transformation, x′ = Ax

for some D ×D matrix A, the “induced” length of x′ is defined to be

‖x′‖2Σ′ = (x′)T (Σ′)−1x′ = (x′)T (AΣAT )−1x′ = xTΣ−1x. (3.3)

Thus, the induced length remains the same after the transformation.
Notice that the relationship between Σ and Σ = AΣAT is just like that between

the covariance matrices of two random vectors related by a linear transformation
A. Thus, the change of distance measure is largely equivalent to the assump-
tion that the original data {xi} are drawn from some probabilistic distribution.
In the context of clustering analysis, it is natural to further assume that the distri-
bution itself is a mixture of n (Gaussian) distributions with different means and
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covariances:1

pj(x) ∼ N (µj ,Σj), j = 1, 2, . . . , n. (3.4)
Thus, the clustering problem becomes a statistical model estimation problem and
can be solved by principled statistical methods. We introduce below two such
methods that based on two different estimation (and optimization) paradigms: 1.
Minimax estimate; 2. Maximum-likelihood estimate. In the rest of this section,
we illustrate the basic ideas using mixtures of Gaussians; and a discussion of the
general case can be found in Appendix C.

3.1.1 K-Means
With respect to the above statistical model, a natural measure of the distance be-
tween a sample point and the mean of a cluster is given by the log-likelihood of
the point with respect to the distribution of the cluster:

d(xi,µj)
.
= − log pj(xi) = ‖xi − µj‖2Σj

. (3.5)
The map c∗(·) that represents an optimal clustering of the data {xi} minimizes
the following “within-cluster scatter”:

min
c(·)

w(c)
.
=

1

N

n∑

j=1

∑

c(i)=j

‖xi − µj‖2Σj
. (3.6)

That is, w(c) is a measure of the average distance of all the sample points to
their respective cluster means. Notice that the minimum value of w(c) decreases
with the increase of the number n of clusters. In the extreme case n = N , i.e.,
each point is a cluster itself, we have w(c) = 0. Therefore, before conducting
clustering analysis, it is very important to know the correct value of n. We will
discuss methods to determine n in later chapters; and in this chapter, we always
assume the correct cluster number n is known.

In the above objective w(c) (3.6), c(·), {µj}, and {Σj} are all unknown. The
problem is how to find the optimal c∗(·), µ∗

j and Σ∗
j so that w(c) is minimized.

Unfortunately, there is no closed-form solution to the optimal solution. The main
difficulty is that the objective (3.6) is hybrid – it is a combination of minimization
on the continuous variables {µj ,Σj} and the discrete variable c(i). Conventional
nonlinear optimization techniques, such as gradient descent, do not directly apply
to this case either. Hence special optimization schemes have to be developed.

Notice that for w(c) to be minimum, it is necessary that each point xi is as-
signed to the cluster whose mean is the closest to xi. That is, given {µj ,Σj}, we
have

c(i) = arg min
j
‖xi − µj‖2Σj

. (3.7)

1From the viewpoint of subspaces, here we try to fit the data with multiple zero-dimensional affine
spaces – one mean for each cluster. Later in this Chapter, we will see how to generalize the cluster
means from points to arbitrary (affine) subspaces.
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Also, from the samples that belong to each cluster, we can obtain unbiased
estimates of the mean and covariance of the cluster:

µ̂j
.
=

1

Nj

∑

c(i)=j

xi ∈ R
D, Σ̂j

.
=

1

Nj − 1

∑

c(i)=j

(xi−µ̂j)(xi−µ̂j)
T ∈ R

D×D,

(3.8)
where Nj is the number of points that are assigned to cluster j by the map c(·).

The above discussions have suggested the following two-step iterative process
for minimizing w(c).

Suppose that some initial estimates {µ̂(0)
j , Σ̂

(0)
j } of the means are available.

Then we can easily minimize the objective (3.6) for c(i). That is, for each cluster
with the mean µ̂

(0)
j and covariance Σ̂

(0)
j , we obtain the subset of points X

(0)
j that

are closer to µj than to any other means. The data set X is therefore segmented
into n clusters

X = X
(0)
1 ∪X

(0)
2 ∪ · · · ∪X(0)

n , (3.9)

and we further require X
(0)
j ∩X

(0)
j′ = ∅ for j 6= j′.2 In this way we obtain an

estimate of the map c(0)(·).
Knowing the membership of each point xi from the above segmentation, the

objective (3.6) can be rewritten as:
n∑

j=1

(
min
µj ,Σj

∑

c(0)(i)=j

‖xi − µj‖2Σj

)
. (3.10)

Notice that the solution to the minimization inside the bracket is an new set of
estimates of the mean and covariance:

µ̂
(1)
j =

1

Nj

∑

c(0)(i)=j

xi, Σ̂
(1)
j =

1

Nj − 1

∑

c(0)(i)=j

(
xi − µ̂

(1)
j

)(
xi − µ̂

(1)
j

)T
.

These new means and covariances give a new value of the objective no larger than
that given by the initial estimates

{
µ̂

(0)
j , Σ̂

(0)
j

}
.

We can further reduce the objective by re-classifying each data point xi to
its closest mean according to the new estimates

{
µ̂

(1)
j , Σ̂

(1)
j

}
. In this way, we

obtain a new segmentation X = X
(1)
1 ∪X

(1)
2 ∪ · · · ∪X(1)

n . If we keep iterating
between the above two steps, the objective will keep decreasing until its value
stabilizes to a (local) equilibrium and the segmentation no longer changes. This
minimization process is referred to as the K-means algorithm in the statistical-
learning literature. We summarize the algorithm as Algorithm 3.1.

Notice that Algorithm 3.1 can be significantly simplified if the Gaussian dis-
tributions are all isotropic, i.e., Σj = σ2

j I for some σ2
j ∈ R+, or all covariance

2If a point x ∈ X has the same minimal distance to more than one cluster, then we assign it
arbitrarily to one of them.
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Algorithm 3.1 (K-Means).
Given a set of sample points X = {xi}Ni=1, the number of clusters n, ini-
tialize the means and covariances of the clusters with a set of initial values
µ̂

(0)
j ∈ R

D, Σ̂
(0)
j ∈ R

D×D, j = 1, 2, . . . , n.
Let m = 0.

1. Segmentation: For each point xi ∈X , assign it to X
(m)
j if

j = c(i) = argmin
`=1,2,...,n

‖xi − µ̂
(m)
` ‖2

Σ
(m)
`

. (3.11)

If the above cost function is minimized by more than one mean, assign the
point arbitrarily to one of them.

2. Estimation: Obtain new estimates for the n cluster means and covariances:

µ̂
(m+1)
j =

1

Nj

∑

c(m)(i)=j

xi,

Σ̂
(m+1)
j =

1

Nj − 1

∑

c(m)(i)=j

(
xi − µ̂

(m+1)
j

)(
xi − µ̂

(m+1)
j

)T
.(3.12)

Letm← m+1, and repeat Steps 1 and 2 until the segmentation does not change.

matrices are equal to the identity matrix Σj ≡ I . In the latter case, one essen-
tially adopts the Euclidean distance between the sample points and the cluster
means. This special case is often referred to also as the “K-means” algorithm in
the literature.

3.1.2 Expectation Maximization (EM)
The K-means algorithm essentially relies on the minimax estimation paradigm
in statistics (see Appendix C) and it does not need to assume how exactly the
n component distributions are mixed. The Expectation Maximization (EM) al-
gorithm [Dempster et al., 1977a] to be introduced below, however, relies on the
maximum-likelihood estimation paradigm (see Appendix C) and it does needs an
explicit model for the mixed distribution. Instead of minimizing the modeling er-
ror in a least-distance sense, the EM algorithm estimates the model parameters
and the segmentation of the data in a maximum-likelihood (ML) sense. As we
shall soon see, the EM algorithm, though derived from a different set of assump-
tions, principles, and objectives, has an overall structure that resembles very much
that of the K-means algorithm.3

3This resemblance however should not be mistaken as excuses to confuse these two algorithms.
The solutions given by these two algorithms will be close but different in general.
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A Probabilistic Model for a Mixed Distribution

The EM algorithm is based on the assumption that the given data points {xi}Ni=1

are independent samples from a (mixed) probabilistic distribution. In the context
of clustering analysis, it is reasonable to assume that xi are samples drawn from
multiple “component” distributions and each component distribution is centered
around a mean. To model from which component distribution a sample x is actu-
ally drawn, we can associate a latent discrete random variable z ∈ R to each data
point x, such that each discrete random variable zi = j if the point xi is drawn
from the jth component, i = 1, 2, . . . , N . Then the random vector

(x, z) ∈ R
D × Z+ (3.13)

completely describes the random event that the point x is drawn from a
component distribution indicated by the value of z.

Typically, one assumes that the random variable z is subject to a multinomial
(marginal) distribution, i.e.,

p(z = j) = πj ≥ 0, s.t. π1 + π2 + · · ·+ πn = 1. (3.14)

Each component distribution is then modeled as a conditional distribution
p(x|z) of x given z. A popular choice for the component distribution is a mul-
tivariate Gaussian distribution: p(x|z = j) ∼ N (µj ,Σj), in which µj is the
mean and Σj is the covariance of the jth cluster.

The Maximum-Likelihood Estimation

In the model, the parameters θ .
= {µj ,Σj , πj}nj=1 are unknown and they need

to be inferred from the samples of x. The marginal distribution of x given the
parameters, the likelihood function, is

p(x|θ) =

n∑

z=1

p(x|z, θ)p(z|θ) =

n∑

j=1

πjp(x|z = j, θ). (3.15)

Notice that p(x|θ) is a “mixture” of n distributions p(x|z = j, θ), j = 1, 2, . . . , n
that is exactly of the form (1.7) introduced in Chapter 1.

Given N i.i.d. samples X = {xi}Ni=1 from the distribution, the optimal
estimates of the parameters θ̂ML are given by maximizing the log-likelihood
function

l(X; θ)
.
=

N∑

i=1

log p(xi|θ). (3.16)

In the statistical learning literature, this objective is often referred to as the
incomplete log-likelihood function – “incomplete” compared to the complete log-
likelihood function to be introduced later. However, maximizing the incomplete
log-likelihood with respect to the parameters θ is typically very difficult, because
this is a very high-dimensional nonlinear optimization problem. This is the moti-
vation for the expectation maximization (EM) process which utilizes the latent
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random variable z introduced earlier to attempt to simplify the maximization
process.

Derivation of the Expectation and Maximization

First notice p(x|θ) = p(x, z|θ)/p(z|x, θ) and
∑
j p(z = j|x, θ) = 1. We can

rewrite the (incomplete) log-likelihood function as

l(X; θ) =
N∑

i=1

n∑

j=1

p(zi = j|xi, θ) log
p(xi, zi = j|θ)
p(zi = j|xi, θ)

(3.17)

=

N∑

i=1

n∑

j=1

p(zi = j|xi, θ) log p(xi, zi = j|θ) (3.18)

−
N∑

i=1

n∑

j=1

p(zi = j|xi, θ) log p(zi = j|xi, θ). (3.19)

The first term (3.18) is what is called the expected complete log-likelihood
function in the machine learning literature;4 and the second term (3.19) is the
conditional entropy5 of zi given xi and θ. Hence, the maximum-likelihood esti-
mation is equivalent to maximizing the expected log-likelihood and at the same
time minimizing the conditional entropy of zi.

Given each xi, we can define a new function wij(θ)
.
= p(zi = j|xi, θ). By

replacing w(θ) = {wij(θ)} into the incomplete log-likelihood, we can view
l(X; θ) as a new function

l(X; θ)
.
= g(w(θ), θ). (3.20)

Instead of directly maximizing the l(X; θ) with respect to θ, we may maximize
g(w(θ), θ) in a “hill-climbing” style by iterating between the following two steps:

Step 1. partially maximizing g(w(θ), θ) with respect to w(θ) with the second θ
fixed;

Step 2. partially maximizing g(w(θ), θ) with respect to the second θ with w(θ)
fixed (to the value obtained from Step 1.)

Notice that at each step the value of g(w(θ), θ) does not decrease, so does that of
l(X; θ). When the iteration converges to a stationary point θ∗, it must be a (local)
extremum for the function l(X; θ). To see this, examine the equation

dl(X; θ)

dθ
=
∂g(w, θ)

∂w

∂w(θ)

∂θ
+
∂g(w, θ)

∂θ
. (3.21)

4That is, it is the expected value of the complete log-likelihood log p(x, z|θ) of the “complete”
random vector (x, z) with respect to the distribution of (z|x, θ).

5The entropy of a (discrete) random variable z is defined to be H(z)
.
=

P

j p(z = j) log p(z =

j).
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Since θ∗ must be a stationary point for each step, we have ∂g(w,θ)
∂w

∣∣∣
θ∗

= 0 and
∂g(w,θ)
∂θ

∣∣∣
θ∗

= 0. Therefore, dl(X;θ)
dθ

∣∣∣
θ∗

= 0.
As we have alluded to earlier, the main reason for choosing this alternative max-

imization is that, for the log-likelihood function of a mixture of distributions, each
of these two steps of maximizing g are much easier to compute than directly maxi-
mizing the original log-likelihood function. In fact, for Gaussian distributions, one
can often find closed-form solutions to each step.
E-Step: Expected Membership of Samples. To find the optimal ŵ = {ŵij} that
maximize g(w, θ), we need to minimize the function

max
w

g(w, θ) =

N∑

i=1

n∑

j=1

wij log p(xi, zi = j|θ)−
N∑

i=1

n∑

j=1

wij logwij (3.22)

with respect to w subject to the constraints
∑
j wij = 1 for every i. For this

purpose, we have the following statement.

Proposition 3.2 (Expected Membership). The optimal ŵ that partially minimizes
g(w, θ) is given by:

ŵij =
πjp(xi|zi = j, θ)∑n
`=1 π`p(xi|zi = `, θ)

. (3.23)

Proof. Using the Lagrange multipliers method, we differentiate the objective
function
N∑

i=1

n∑

j=1

(
wij log p(xi, zi = j|θ)−wij logwij

)
+

N∑

i=1

λi

( n∑

j=1

wij − 1
)
. (3.24)

with respect to wij and set the derivatives to zero. We obtain the necessary
conditions for extrema:

log p(xi, zi = j|θ)− logwij − 1 + λi = 0 (3.25)

for every i and j. Solving for wij from this equation, we obtain:

wij = eλi−1p(xi, zi = j|θ). (3.26)

Since
∑
j wij = 1, we have eλi−1 =

( ∑
` p(xi, zi = `|θ)

)−1. In addition,

p(xi, zi = j|θ) = p(xi|zi = j, θ)p(zi = j|θ) = πjp(xi|zi = j, θ).

We hence have the claim of the proposition.

M-Step: Maximize the Expected Complete Log-Likelihood. Now we consider
the second step in which we fix w in g(w, θ) and we maximize it with respect
to θ. This means we fix wij = p(zi = j|xi, θ) in the expression of l(X; θ). The
second term (3.19) of l(X; θ) is therefore fixed as far as this step is concerned.
Hence it is equivalent to maximizing the first term (3.18), the so-called expected
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complete log-likelihood:

L(X; θ)
.
=

N∑

i=1

n∑

j=1

wij log
(
πjp(xi|zi = j, θ)

)
. (3.27)

For many common choices of the distributions p(x|z = j, θ), we can find closed-
form solutions to the maximum of L(X; θ).

For simplicity, in the clustering analysis, we may assume that each cluster is
an isotropic normal distribution, i.e., p(x|z = j, θ) = N (µj , σ

2
j I). Minimizing

L(X; θ) is then equivalent to minimizing the function
N∑

i=1

n∑

j=1

wij

(
log πj −D log σj −

‖xi − µj‖2
σ2
j

)
, (3.28)

where we have omitted terms that depend on only the fixed wij and constants.
The goal of maximization is to find the parameters θ̂ = {(µ̂j , σ̂j , π̂j)}nj=1 that
maximize the above expression. Since

∑n
j=1 πj = 1, this is a constrained opti-

mization problem, which can be solved in closed-form using Lagrange-multiplier
method:

µ̂j =

∑N
i=1 wijxi∑N
i=1 wij

, σ̂2
j =

∑N
i=1 wij‖xi − µ̂j‖2

D
∑N
i=1 wij

, π̂j =

∑N
i=1 wij
N

. (3.29)

We summarize the above results as Algorithm 3.2.
In comparison with K-means (Algorithm 3.1), the EM algorithm assigns each

point xi, instead by a deterministic map j = c(i), “softly” to each cluster j
according to a probability wij (that are subject to

∑n
j=1 wij = 1). Subsequently,

the number of pointsNj in the jth cluster is expected to be
∑N
i=1 wij ; the ratio Nj

N

is expected as
PN

i=1 wij

N ; and the means µj in (3.12) are replaced by an expected
version in (3.31). In general, if the variances σj are significantly smaller than the
distances between the means µj , the K-means and EM algorithms give similar
clustering results.

From the above derivation, each step of the EM algorithm increases the log-
likelihood function l(X; θ). However, beware that a stationary value θ∗ that the
algorithm converges to is not necessarily the global maximum (if the global
maximum exists at all). Furthermore, for distributions as simple as a mixture of
Gaussian distributions, the global maximum may not even exist! We illustrate this
via the following example.
Example 3.3 (ML Estimate of Two Mixed Gaussians [Vapnik, 1995]). Consider a
distribution p(x), x ∈ R that is a mixture of two Gaussian (normal) distributions:

p(x, µ, σ) =
1

2σ
√

2π
exp


− (x − µ)2

2σ2

ff
+

1

2
√

2π
exp


−x2

2

ff
, (3.32)

where θ = (µ, σ) are unknown.
Then for any data X = {x1, x2, . . . , xN} and for any given constant A > 0, there

exists a small σ0 such that for µ = x1 the log-likelihood will exceed A (regardless of the
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Algorithm 3.2 (Expectation Maximization).
Given a set of sample points X = {xi}Ni=1 ⊂ R

D drawn from n (isotropic)
Gaussian clusters N (µj , σ

2
j I), j = 1, 2, . . . , n, initialize the parameters θ =

{µj , σj , πj} with a set of vectors µ̂
(0)
j ∈ R

D and scalars σ̂(0)
j , π̂

(0)
j ∈ R.

Let m = 0.

1. Expectation: Using the current estimate for the parameters θ̂(m) ={
µ̂

(m)
j , σ̂

(m)
j , π̂

(m)
j

}
, compute the estimate of wij as

w
(m)
ij = p(zi = j|xi, θ̂(m)) =

π̂
(m)
j p(xi|zi = j, θ̂(m))

∑n
`=1 π̂

(m)
` p(xi|zi = `, θ̂(m))

, (3.30)

where p(x|z = j, θ) is given in (3.43).

2. Maximization: Using the estimated w
(m)
ij , update the estimates for the

parameters µ̂j , σ̂j as:

µ̂
(m+1)
j =

∑N
i=1 w

(m)
ij xi

∑N
i=1 w

(m)
ij

,
(
σ̂

(m+1)
j

)2
=

∑N
i=1 w

(m)
ij

∥∥xi − µ̂
(m+1)
j

∥∥2

D
∑N
i=1 w

(m)
ij

,

(3.31)
and update π̂j as π̂(m+1)

j =
PN

i=1 w
(m)
ij

N .

Let m ← m + 1, and repeat Steps 1 and 2 until the update in the parameters is
small enough.

true µ, σ):

l(X; θ)
˛̨
µ=x1,σ=σ0

=

NX

i=1

ln p(xi | µ = x1, σ = σ0)

> ln

„
1

2σ0

√
2π

«
+

NX

i=2

ln

„
1

2
√

2π
exp


−x2

i

2

ff«

= − ln σ0 −
NX

i=1

x2
i

2
− N ln 2

√
2π > A.

Therefore, the maximum of the log-likelihood does not exist, and the ML objective does
not provide a solution to estimating the unknown parameters. In fact, in this case, the true
parameter corresponds to the largest (finite) local maximum of the log-likelihood.

From the simple example, we can conclude that the ML method only applies to
very restrictive set of densities.6 If we insist using it for mixtures of Gaussians, we
have to rule out the situations that the variance can be arbitrarily small, i.e., σ0 →
0. Fortunately, in practice, the EM algorithm typically tends to avoid such singular
directions and is able to converge to a local minimum that represents the true

6For instance, a class of density functions that are bounded by a common finite value from above.
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parameters if a reasonable initialization is given. However, this leads to another
potential problem: What if the distributions to be estimated are indeed close to
being singular? This is unfortunately the case with subspace-like distributions.7

Thus, singular distributions like subspaces require special treatment.
Also notice that the above K-means and EM algorithms are derived mainly

for isotropic Gaussian distributions. In practice, a cluster is rarely isotropic. For
instance, as we have seen in PCA, a cluster can be a set of points sampled from a
principal subspace. For the above reasons, in the next two sections of this chapter
(Section 3.2 and 3.3), we will extend the basic ideas of K-means and EM to the
case in which clusters are subspaces.

3.2 Problem Formulation of Subspace Segmentation
In mathematics (especially in algebraic geometry), a collection of subspaces is
formally known as a subspace arrangement:

Definition 3.4 (Subspace Arrangement). A subspace arrangement is defined as a
finite collection of n linear subspaces in RD: A .

= {S1, . . . , Sn}. The union of
the subspaces is denoted as ZA

.
= S1 ∪ S2 ∪ · · · ∪ Sn.

For simplicity, we will call both A and ZA “subspace arrangement.”
Imagine that we are given a set of sample points drawn from an arrange-

ment of unknown number of subspaces which have unknown and possi-
bly different dimensions. Our goal is to simultaneously estimate these sub-
spaces and segment the points into their corresponding subspaces. Versions
of this problem are known in the literature as subspace clustering, multiple
eigenspaces [Leonardis et al., 2002], or mixtures of principal component analyz-
ers [Tipping and Bishop, 1999a], etc. To be precise, we will first state the problem
that we will study in this book, which we refer to as “multiple-subspace segmen-
tation,” or simply as “subspace segmentation,” to be suggestive of the problem of
fitting multiple (principal) subspaces to the data.

Notice that in the foregoing problem statement, we have not yet specified the
objective for what is an “optimal” solution. We will leave the interpretation of
that open for now and will delay the definition until the context is more specific.
Although the problem seems to be stated in a purely geometric fashion, it is easy
to re-formulate it in a statistical fashion. For instance, we have assumed here that
the subspaces do not have to be orthogonal to each other. In a statistical setting,
this is essentially equivalent to assuming that these subspaces are not necessarily
uncorrelated. Within each subspace, one can also relate all the geometric and sta-
tistical notions associated with “principal components” in the classical PCA: The
orthonormal basis chosen for each subspace usually corresponds to a decompo-

7A subspace-like distribution is one that has large variance inside the subspace but very small
(close to singular) variance in directions orthogonal to the subspace.



46 Chapter 3. Iterative Methods for Multiple-Subspace Segmentation

Problem 3.1 (Multiple-Subspace Segmentation).
Given a set of sample points X = {xi ∈ R

D}Ni=1 drawn from n ≥ 1 distinct
linear subspaces Sj ⊂ R

D of dimensions dj < D, j = 1, 2, . . . , n, identify each
subspace Sj without knowing which sample points belong to which subspace.8
More specifically, by identifying the subspaces we mean the following:

1. Identifying the number of subspaces n and their dimensions dj = dim(Sj);

2. Identifying an orthonormal basis for each subspace Sj (or equivalently
S⊥
j );9

3. Clustering the N points into the subspaces to which they belong.

sition of the random variable into uncorrelated principal components conditioned
on the subspace. In Section 3.3, a detailed analysis and comparison will be given
for both points of view.

3.2.1 Projectivization of Affine Subspaces
Note that a linear subspace always passes through the origin but an affine subspace
does not. So, would the above problem statement lose any generality by restricting
it only to linear subspaces? The answer to this question is no. In fact every proper
affine subspace in R

D can be converted to a proper linear subspace in R
D+1 by

lifting every point of it through the so-called homogeneous coordinates:

Definition 3.5 (Homogeneous Coordinates). The homogeneous coordinates of a
point x = [x1, x2, . . . , xD]T ∈ R

D are defined to as [x1, x2, . . . , xD, 1]
T .

Given a set of points in an affine subspace, it is easy to prove that their
homogeneous coordinates span a linear subspace. More precisely:

Fact 3.6 (Homogeneous Representation of Affine Subspaces). The homogeneous
coordinates of points on a k-dimensional affine subspace in R

D span a (d +
1)-dimensional linear subspace in R

D+1. This representation is one-to-one.

Figure 3.1 shows an example of the homogeneous representation of three lines
in R

2. The points on these lines span three linear subspaces in R
3 which pass

through the origin.

Definition 3.7 (Central Subspace Arrangements). We call an arrangement of sub-
spaces is central if every subspace passes through the origin, i.e., every subspace
is a linear subspace.

According to this definition, the homogeneous representation of any (affine)
subspace arrangement in R

D gives a central subspace arrangement in R
D+1.

Therefore, Problem 3.1 does not loss any generality. From now on, we may as-
sume that our data set is drawn from a central subspace arrangement, in which all
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Figure 3.1. Lifting of three (affine) lines in R
2 to three linear subspaces in R

3 via the
homogeneous representation.

subspaces are linear, not affine, subspaces, unless otherwise stated. In a statistical
setting, this is equivalent to assuming that each subset of samples has zero mean.

3.2.2 Subspace Projection and Minimum Representation
The are many cases in which the given data points live in a very high dimensional
space. For instance, in many computer vision problems the dimension of the am-
bient space D is the number of pixels in an image, which is normally in the range
106. In such cases, the complexity of any subspace segmentation solution become
computationally prohibitive. It is therefore important for us to seek situations in
which the dimension of the ambient space can be significantly reduced.

Fortunately, in most practical applications, we are interested in modeling the
data by subspaces of relatively small dimensions (d � D), thus one can avoid
dealing with high-dimensional data sets by first projecting them onto a lower-
dimensional (sub)space. An example is shown in Figure 3.2, where two lines L1

and L2 in R
3 are projected onto a plane P . In this case, segmenting the two lines

in the three-dimensional space R
3 is equivalent to segmenting the two projected

lines in the two-dimensional plane P .
In general, we will distinguish between two different kinds of “projections.”

The first kind corresponds to the case in which the span of all the subspaces is
a proper subspace of the ambient space, i.e., span(∪nj=1Sj) ⊂ R

D. In this case,
one may simply apply PCA (Chapter 2) to eliminate the redundant dimensions.
The second kind corresponds to the case in which the largest dimension of the
subspaces, denoted by dmax, is strictly less than D − 1. When dmax is known,10

one may choose a (dmax+1)-dimensional subspace P such that, by projecting R
D

onto this subspace:

πP : x ∈ R
D 7→ x′ = πP (x) ∈ P, (3.33)

10For example, in 3-D motion segmentation from affine cameras, it is known that the subspaces
have dimension at most four [Costeira and Kanade, 1998, Kanatani, 2001, Vidal and Hartley, 2004].
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Figure 3.2. Samples on two 1-dimensional subspaces L1, L2 in R
3 projected onto a

2-dimensional plane P . The number and separation of the lines is preserved by the
projection.

the dimension of each original subspace Sj is preserved,11 and there is a one-to-
one correspondence between Sj and its projection – no reduction in the number
of subspaces n,12 as stated in the following theorem.

Theorem 3.8 (Segementation-Preserving Projections). If a set of vectors {xi}
all lie in n linear subspaces of dimensions {dj}nj=1 in R

D, and if πP represents a
linear projection onto a subspace P of dimensionD′, then the points {πP (xi)} lie
in at most n linear subspaces of P of dimensions {d′j ≤ dj}nj=1. Furthermore, if
D > D′ > dmax, then there is an open and dense set of projections that preserve
the separation and dimensions of the subspaces.

Thanks to Theorem 3.8, if we are given a data set X drawn from an arrange-
ment of low-dimensional subspaces in a high-dimensional space, we can first
project X onto a generic subspace of dimension D′ = dmax + 1 and then model
the data with a subspace arrangement in the projected subspace, as illustrated by
the following sequence of steps:

X ⊂ R
D πP−−−−→ X ′ ⊂ P −→ ∪nj=1πP (Sj)

π−1
P−−−−→ ∪nj=1Sj .

(3.34)

However, even though the set of (dmax +1)-dimensional subspaces P ⊂ R
D

that preserve the separation and dimension of the subspaces is an open and dense
set, it remains unclear as to what a “good” choice for P is, especially when there
is noise in the data. For simplicity, one may randomly select a few projections
and choose the one that results in the smallest fitting error. Another alternative

11This requires that P be transversal to each S⊥
j , i.e., span{P, S⊥

j } = RD for every j =

1, 2, . . . , n. Since n is finite, this transversality condition can be easily satisfied. Furthermore, the
set of positions for P which violate the transversality condition is only a zero-measure closed
set [Hirsch, 1976].

12This requires that all πP (Sj) be transversal to each other in P , which is guaranteed if we require
P to be transversal to S⊥

j ∩ S⊥
j′

for j, j′ = 1, 2, . . . , n. All P ’s which violate this condition form
again only a zero-measure set.



3.3. Subspace-Segmentation Algorithms 49

is to apply PCA regardless and project the data onto the (dmax+1)-dimensional
principal subspace.

One solution for choosing P is attributed to [Broomhead and Kirby, 2000]. The
technique was originally designed for dimension reduction of differential mani-
folds.13 We here adopt it for subspace arrangements. Instead of directly using the
original data matrix X , we gather the vectors (also called “secants”) defined by
every pair of points xi,xj ∈X

yij
.
= xi − xj ∈ R

D, (3.35)

and construct a matrix consisting of yij as columns:

Y
.
= [y12,y13, . . . ,y(N−1)N ] ∈ R

D×M , (3.36)

whereM = (N−1)N/2. Then the principal components of Y span the subspace
in which the distance (and hence the separateness) between the projected points
is preserved the most. Therefore, the optimal subspace that maximizes the sepa-
rateness of the projected points is given by the dmax+1 principal components of
Y . More precisely, if Y = UΣV T is the SVD of Y , then the optimal subspace
P is given by the first dmax+1 columns of U .

3.3 Subspace-Segmentation Algorithms
In this section, we generalize the K-means and EM algorithms to estimate
arrangements of principal subspaces and cluster points into subspaces. They can
both be viewed as certain extension of PCA to multiple principal subspaces.
Both algorithms assume that the number of subspaces n and their dimensions
dj , j = 1, 2, . . . , n are known. They estimate a basis for each subspace and the
segmentation of the data by optimizing certain objective functions, namely the
least-squares error in the geometric setting or the log-likelihood in the statistical
setting. Since the optimal solution is normally not available in closed-form, the
optimization problem is solved by iterating between the segmentation of the data
points and the estimation of the subspace bases, starting from an initial guess for
the subspace bases.

The following sections give a detailed description of both algorithms tailored
to Problem 3.1. The goal is to reveal the similarity and difference between these
two algorithms as well as their advantages and disadvantages.

3.3.1 K-Subspaces
If the number of subspaces n and their dimensions dj , j = 1, 2, . . . , n are known,
then the problem of fitting multiple subspaces to the data is to find orthogonal

13That is essentially based on Whitney’s classic proof of the fact any differential manifold can be
embedded in a Euclidean space.
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matrices Uj , j = 1, 2, . . . , n of the dimension D × dj such that

∀i ∃j such that xi = Ujyi, (3.37)

where i ∈ {1, 2, . . . , N} and j ∈ {1, 2, . . . , n}. Once the assignment map c(i) =
j is found for each point xi, yi is simply given by yi = UTc(i)xi. When xi is
at the intersection of two subspaces, the solution for c(i) and therefore yi is not
unique. In this case, we arbitrarily choose one of the possible solutions.

In case the given points are corrupted by noise, we expect that the model pa-
rameters be found in a least-squares sense by minimizing the modeling error
between xi and its closest projection onto the subspaces:

min
{Uj}

N∑

i=1

min
j

∥∥xi − UjUTj xi
∥∥2
, (3.38)

where Uj is aD×dj orthogonal matrix that represents a basis for the jth subspace
Sj , j = 1, 2, . . . , n. Unfortunately, unlike PCA, there is no constructive solution
to the above minimization problem. The main difficulty is that the foregoing ob-
jective of (3.38) is hybrid – it is a combination of minimization on the continuous
variables {Uj} and the discrete variable j. Conventional nonlinear optimization
techniques, such as gradient descent, do not directly apply to this case. Hence
special optimization schemes have to be developed. For that purpose, we need
to examine more closely the relationships between the two minimizations in the
above objective function:

Suppose that some initial estimates Û (0)
1 , Û

(0)
2 , . . . , Û

(0)
n of the subspaces are

available. Then we can easily minimize the objective (3.38) for j. That is, for each
subspace Sj defined by Û (0)

j , we obtain the subset of points X
(0)
j that are closer

to Sj than to any other subspace. The data set X is therefore segmented into n
groups

X = X
(0)
1 ∪X

(0)
2 ∪ · · · ∪X(0)

n , (3.39)

and we further require X
(0)
i ∩X

(0)
j = ∅ for i 6= j.14

Knowing the membership of each point xi from the above segmentation, the
objective (3.38) can be rewritten as:

n∑

j=1

(
min
Uj

∑

xi∈X
(0)
j

∥∥xi − UjUTj xi
∥∥2

)
. (3.40)

Notice that the minimization inside the bracket is exactly the same as the mini-
mization in (2.6). Consequently, we have solved this problem in Theorem 2.1 for
PCA. We can therefore apply PCA to each group of points

{
X

(0)
j

}
to obtain new

14If a point x ∈ X has the same minimal distance to more than one subspace, then we assign it to
an arbitrary subspace.
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estimates for the bases
{
Û

(1)
j

}
. Such estimates give a modeling error no larger

than the error given by the initial estimates
{
Û

(0)
j

}
.

We can further reduce the modeling error by re-classifying each data point xi

to its closest subspace according to the new estimates
{
Û

(1)
j

}
. In this way, we

obtain a new segmentation X = X
(1)
1 ∪X

(1)
2 ∪ · · · ∪X(1)

n . If we keep iterating
between the above two steps, the modeling error will keep decreasing until its
value stabilizes to a (local) equilibrium and the segmentation no longer changes.
This minimization process is in essence an extension of the K-means algorithm to
subspaces. We summarize the algorithm as Algorithm 3.3.

Algorithm 3.3 (K-Subspaces: K-Means for Subspace Segmentation).
Given a set of noisy sample points X = {xi}Ni=1 drawn from n subspaces with
the dimensions dj , j = 1, 2, . . . , n, initialize the bases of the subspaces with a set
of orthogonal matrices Û (0)

j ∈ R
D×dj .

Let m = 0.

1. Segmentation: For each point xi ∈X , assign it to X
(m)
j if

j = arg min
`=1,...,n

∥∥xi − Û (m)
`

(
Û

(m)
`

)T
xi

∥∥2
.

If the above cost function is minimized by more than one subspace, assign
the point arbitrarily to one of them.

2. Estimation: Apply PCA to each subset X
(m)
j using Theorem 2.1 and

obtain new estimates for the subspace bases

Û
(m+1)
j = PCA

(
X

(m)
j

)
, j = 1, 2, . . . , n.

Letm← m+1, and repeat Steps 1 and 2 until the segmentation does not change.

3.3.2 Expectation Maximization for Subspaces
To apply the EM method in Section 3.1.2 to subspaces, we need to assume a
statistical model for the data. Following the general setting in Section 3.1.2, it
is reasonable to assume that the data points X = {xi}Ni=1 are samples drawn
from multiple component distributions and each component distribution is cen-
tered around a subspace. To model from which component distribution a sample
x is actually drawn, we again associate a latent discrete random variable z ∈ R

to every data point x, where each discrete random variable zi = j if the point xi
is drawn from the jth component, i = 1, 2, . . . , N .

To model the fact that each component distribution has a principal subspace,
say spanned by the columns of an orthogonal matrix Uj ∈ R

D×dj , we may
assume that the jth component distribution is a special Gaussian distribution
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determined by the following equation:

x = Ujy +Bjs, (3.41)

where the orthogonal matrix Bj ∈ R
D×(D−dj) is the orthogonal complement to

the orthogonal matrix Uj ∈ R
D×dj , and y ∼ N (0, σ2

yI) and s ∼ N (0, σ2
j I). If

we further assume that y and s are independent random variables, then we have

Σ−1
j = σ−2

y UjU
T
j + σ−2

j BjB
T
j . (3.42)

The term Bjs models the projection error of x onto the subspace spanned by
Uj . For x to be close to the subspace, one may assume σ2

j � σ2
y . Therefore,

when σ2
y →∞, we have Σ−1

j → σ−2
j BjB

T
j . In the limiting case, one essentially

assumes a uniform distribution for y inside the subspace. The uniform assumption
suggests that we do not care much about the distribution of the data inside the
subspace – it is the subspace itself in which we are interested. Technically, this
assumption also helps eliminate additional parameters so that the ML method
may better avoid the difficulty shown in Example 3.3. In practice, this assumption
is approximately valid as long as the variance of the data inside the subspace is
significantly larger than that outside the subspace.

Therefore, in the sequel, we will adopt the limiting case as our probabilistic
model for the derivation of the EM algorithm and derive closed-form formu-
lae for the different steps of the EM algorithm. More precisely, we assume the
distributions are

p(x|z = j)
.
=

1

(2πσ2
j )

(D−dj)/2
exp

(
−

xTBjB
T
j x

2σ2
j

)
. (3.43)

In the model, the parameters θ .
= {Bj , σj , πj}nj=1 are unknowns and they need

to be inferred from the samples of x. The marginal distribution of x given the
parameters, the likelihood function, is

p(x|θ) =
n∑

z=1

p(x|z, θ)p(z|θ)

=

n∑

j=1

πj
(2πσ2

j )
(D−dj)/2

exp

(
−

xTBjB
T
j x

2σ2
j

)
. (3.44)

Then given the N samples X = {xi}, the optimal estimates of the parameters
θ̂ML are given by maximizing the log-likelihood function

l(X; θ)
.
=

N∑

i=1

log p(xi|θ) (3.45)

=

N∑

i=1

log

[ n∑

j=1

πj
(2πσ2

j )
(D−dj)/2

exp

(
−

xTi BjB
T
j xi

2σ2
j

)]
.(3.46)

Again, this is in general a difficult high-dimensional optimization problem. Thus,
we can apply the Expectation Maximization method introduced in Section 3.1.2.
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All the analysis in Section 3.1.2 directly applies to this new log-likelihood func-
tion except that in the M-Step, under the new probabilistic model, the new
expected complete log-likelihood L(X; θ) becomes

N∑

i=1

n∑

j=1

wij

(
log πj − (D − dj) log σj −

‖BTj xi‖2
2σ2

j

)
, (3.47)

where, as before, we have omitted terms that depend on only the fixed wij and
constants. The goal now is to find the parameters θ̂ = {(B̂j , σ̂j , π̂j)}nj=1 that
maximize the above expected complete log-likelihood. Since BT

j Bj = I and∑n
j=1 πj = 1, this is again a constrained optimization problem, whose solutions

are given by the following proposition.

Proposition 3.9 (Maximum of the Expected Complete Log-Likelihood). The
parameters θ̂ = {B̂j , σ̂j , π̂j}nj=1 that maximize the expected complete log-
likelihood function are: B̂j are exactly the eigenvectors associated with the
smallest D − dj eigenvalues of the weighted sample covariance matrix Σ̂j

.
=∑N

i=1 wijxix
T
i , and πj and σ2

j are

π̂j =

∑N
i=1 wij
N

, σ̂2
j =

∑N
i=1 wij‖B̂Tj xi‖2

(D − dj)
∑N
i=1 wij

. (3.48)

Proof. The part of objective function associated with the bases {Bj} can be
rewritten as

N∑

i=1

n∑

j=1

−wij
‖BTj xi‖2

2σ2
j

=

n∑

j=1

−trace
(
BTj Σ̂jBj

2σ2
j

)
, (3.49)

where Σ̂j =
∑N
i=1 wijxix

T
i . Differentiate the Lagrangian associated with Bj ,

set the derivatives to zero, and we obtain the necessary conditions for extrema:
n∑

j=1

−trace
(
BTj Σ̂jBj

2σ2
j

)
+ trace

(
Λj(B

T
j Bj − I)

)
⇒ Σ̂jBj = 2σ2

jBjΛj .

Since BTj Bj = I , the objective function for Bj becomes −∑n
j=1 trace(Λj).

Thus B̂j can be obtained as the matrix whose columns are the eigenvectors of Σ̂j
associated with the (D − dj) smallest eigenvalues.

From the Lagrangian associated with the mixing proportions {πj}, we have

min

N∑

i=1

n∑

j=1

wij log(πj) + λ
(
1−

n∑

j=1

πj

)
⇒ π̂j =

∑N
i=1 wij
N

. (3.50)

Finally, after taking the derivative of the expected log-likelihood with respect to
σj and setting it to zero, we obtain

σ̂2
j =

∑N
i=1 wij‖B̂Tj xi‖2

(D − dj)
∑N
i=1 wij

. (3.51)
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We summarize the above results as Algorithm 3.4.

Algorithm 3.4 (EM for Subspace Segmentation).
Given a set of sample points X = {xi}Ni=1 ⊂ R

D, the number of subspaces n and
the dimensions dj , initialize the parameters θ = {Bj , σj , πj} with a set of initial
orthogonal matrices B̂(0)

j ∈ R
D×(D−dj) and scalars σ̂(0)

j , π̂
(0)
j , j = 1, 2, . . . , n.

Let m = 0.

1. Expectation: Using the current estimate for the parameters θ̂(m) ={
B̂

(m)
j , σ̂

(m)
j , π̂

(m)
j

}
, compute the estimate of wij as

w
(m)
ij = p(zi = j|xi, θ̂(m)) =

π̂
(m)
j p(xi|zi = j, θ̂(m))

∑n
`=1 π̂

(m)
` p(xi|zi = `, θ̂(m))

, (3.52)

where p(x|z = j, θ) is given in (3.43).

2. Maximization: Using the estimated w(m)
ij , compute B̂(m+1)

j as the eigen-
vectors associated with the smallest D − dj eigenvalues of the matrix
Σ̂

(m)
j

.
=

∑N
i=1 w

(m)
ij xix

T
i , and update π̂j and σ̂j as:

π̂
(m+1)
j =

∑N
i=1 w

(m)
ij

N
,

(
σ̂

(m+1)
j

)2
=

∑N
i=1 w

(m)
ij

∥∥(
B̂

(m+1)
j

)T
xi

∥∥2

(D − dj)
∑N
i=1 w

(m)
ij

.

(3.53)

Let m ← m + 1, and repeat Steps 1 and 2 until the update in the parameters is
small enough.

3.3.3 Relationships between K-Subspaces and EM
As we have seen in the above, both K-subspaces and EM are algorithms that can
be used to analyze arrangements of principal subspaces and fit multiple subspaces
to a given set of data points. Both algorithms optimize their objectives via an
iterative scheme. The overall structure of the two algorithms is also very much
similar: the “Segmentation” step in K-subspaces is replaced by the “Expectation”
step in EM; and “Estimation” by “Maximization”.

In addition to the structural similarity, there are also subtle technical relation-
ships between the two steps of K-subspaces and EM. To see this, let us further
assume that in the EM algorithm, the noise has the same variance for all the sub-
spaces (i.e., σ = σ1 = · · · = σn). According to equation (3.49), the EM algorithm
updates the estimates for the subspaces in the “Maximization” step by minimizing
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the objective function:

min
{Bj}

N∑

i=1

n∑

j=1

wij
∥∥BTj xi

∥∥2
= min

{Uj}

N∑

i=1

n∑

j=1

wij
∥∥xi − UjUTj xi

∥∥2
, (3.54)

where the equality is due to the identityBjBTj = I−UjUTj . For EM, the weights
wij are computed from the “Expectation” step as the expected membership of
xi in the subspaces j according to the equation (3.23), and wij in general take
continuous values between 0 and 1. For K-subspaces, however, wij is a discrete
variable and it is computed in the “Segmentation” step as (see Algorithm 3.3):

wij =

{
1 if j = arg min`=1,...,n ‖BT` xi‖2,
0 otherwise.

(3.55)

Then the objective function (3.54) can be rewritten as:

min
{Uj}

N∑

i=1

n∑

j=1

wij
∥∥xi − UjUTj xi

∥∥2
= min

{Uj}

N∑

i=1

min
j

∥∥xi − UjUTj xi
∥∥2
, (3.56)

which is exactly the same objective function (3.38) for K-subspaces. This is also
the reason why both K-subspaces and EM rely on the eigenvalue decomposition
(or singular value decomposition) of the sample covariance matrix to estimate the
basis for each subspace.

Based on the above analysis, the only conceptual difference between the K-
subspaces and EM algorithm is: At each iteration, the K-subspaces algorithm
gives a “definite” assignment of every data point into one of the subspaces; but the
EM algorithm views the membership as a random variable and uses its expected
value to give a “probabilistic” assignment of the data point. Because of this differ-
ence, for the same set of data points, the “subspaces” found by using K-subspaces
and EM will in general be different, although normally the difference is expected
to be small. A precise quantitative characterization of the difference between the
solutions by K-subspaces and EM remains an open question. Also because of this
difference, the K-subspaces algorithm is less dependent on the correct knowledge
in the dimension of each subspace: as long as the initial subspaces may segment
the data well enough, both the basis and the dimension of each subspace can be
updated at the Estimation step. However, the EM algorithm, at least for the ver-
sion we presented above, depends explicitly on correct knowledge in both the
number of subspaces and their dimensions. In addition, both algorithms require a
good initialization so that they are more likely to converge to the optimal solution
(e.g., the global maximum of the log likelihood) when the iteration stabilizes. In
the next chapter, we will show how these difficulties can be resolved by a new
algebraic method for identifying arrangements of principal subspaces.
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3.4 Bibliographic Notes
When the data points lie on an arrangement of subspaces, the modeling problem
was initially treated as “chicken-and-egg” and tackled with iterative methods,
such as the K-means and EM algorithms. The basic ideas of K-means cluster-
ing goes back to [Lloyd, 1957, Forgy, 1965, Jancey, 1966, MacQueen, 1967]. Its
probabilistic counterpart, the EM algorithm is due to [Dempster et al., 1977b,
Neal and Hinton, 1998]. In [Tipping and Bishop, 1999a], mixtures of probabilis-
tic PCA were studied, and the maximum likelihood solution was found via expec-
tation maximization (EM). The classical K-means algorithm was also extended
to the case of subspaces, called K-subspace [Ho et al., 2003]. Some other algo-
rithms such as subspace growing and subspace selection [Leonardis et al., 2002]
were also proposed. Unfortunately, as we have alluded to above, iterative meth-
ods are sensitive to initialization, hence they may not converge to the global
optimum [Shi and Malik, 1998, Torr et al., 2001].
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Chapter 4
Algebraic Methods for
Multiple-Subspace Segmentation

In Chapter 3, we have shown that the subspace segmentation problem can be
cast as a special case of an unsupervised learning or clustering problem. We have
presented two iterative algorithms (K-means and EM) for segmenting a known
number of subspaces with known dimensions. This chapter starts to reveal the
main agenda of this book. We examine a different solution to the more general
problem of segmenting an unknown number of subspaces of unknown and pos-
sibly different dimensions. In order to make the material accessible to a larger
audience, in this chapter we focus primarily on the development of a (conceptual)
algorithm. We leave a more formal study of subspace arrangements and more rig-
orous justifications of the derivation of the algorithm to the next chapter (Chapter
B).

We first present a series of simple examples that demonstrate that the subspace-
segmentation problem can be solved non-iteratively via certain algebraic methods.
These solutions lead to a general-purpose algebro-geometric algorithm for sub-
space segmentation. We conveniently refer to the algorithm as Generalized
Principal Component Analysis (GPCA). To better isolate the difficulties in the
general problem, we will develop the algorithm in two steps. The first step is to
develop a basic GPCA algorithm by assuming a known number of subspaces; and
in the second step, we deal with an unknown number of subspaces and develop
a recursive GPCA algorithm. The algorithms in this chapter will be derived un-
der ideal noise-free conditions and assume no probabilistic model. Nevertheless,
the algebraic techniques involved are numerically well-conditioned and the al-
gorithms are designed to tolerate moderate amounts of noise. Dealing with large
amounts of noise, outliers, or even incomplete data will be the subject of Chapter
5.
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4.1 Introductory Cases of Subspace Segmentation
Notice that, to apply the K-subspaces and EM algorithms, we need to know three
things in advance: the number of subspaces, their dimensions, and initial estimates
of the bases of the subspaces. In practice, this may not be the situation and many
difficulties may arise. The optimizing process in both algorithms is essentially
a local iterative descent scheme. If the initial estimates of the bases of the sub-
spaces are far off from the global optimum, the process is likely to converge to a
local minimum. More seriously, if the number of subspaces and their dimensions
were wrong, the process might never converge or might converge to meaning-
less solutions. Furthermore, when the number of subspaces and their dimensions
are unknown, model selection becomes a much more elusive problem as we have
alluded to earlier in the introduction.

In this and next few chapters, we will systematically address these difficulties
and aim to arrive at global non-iterative solutions to subspace segmentation that
require less or none of the above initial information. Before we delve into the
most general problem, we first examine, in this section, a few important special
cases. The reason is two-fold: Firstly, many practical problems fall into these cases
already and the simplified solutions can be directly applied; and secondly, the
analysis of these special cases offers some insights into a solution to the general
case.

4.1.1 Segmenting Points on a Line
Let us begin with an extremely simple clustering problem: clustering a collection
of points {xi}Ni=1 on the real line R around a collection of cluster centers {µj}nj=1.
In spite of its simplicity, this problem shows up in various segmentation prob-
lems. For instance, in intensity-based image segmentation, one wants to separate
the pixels of an image into different regions, with each region corresponding to a
significantly different level of intensity (a one-dimensional quantity). More gener-
ally, the point clustering problem is very much at the heart of spectral clustering,
a popular technique for clustering data in spaces of any dimension. Furthermore,
as we will see throughout this book, the same basic ideas introduced through
this simple example can also be applied to clustering points from arrangements of
more complex structures such as lines, hyperplanes, subspaces, and even surfaces.

In this sequel, we introduce a not so conventional solution to the point clus-
tering problem. The new formulation that the solution is based on is neither
geometric (like K-subspaces) nor statistical (like EM). Instead, the solution is
purely algebraic.

Let x ∈ R be any of the data points. In an ideal situation in which each data
point perfectly matches one of the cluster centers, we know that there exists a
constant µj such that x = µj . This means that

(x = µ1) ∨ (x = µ2) ∨ · · · ∨ (x = µn). (4.1)
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The “∨” in the preceding equation stands for the logical connective “or.” This
problem is equivalent to say that x satisfies the following polynomial equation of
degree n in x:

pn(x)
.
= (x− µ1)(x− µ2) · · · (x− µn) =

n∑

k=0

ckx
n−k = 0. (4.2)

Since the polynomial equation pn(x) = 0 must be satisfied by every data point,
we have that

V n cn
.
=




xn1 xn−1
1 · · · x1 1

xn2 xn−1
2 · · · x2 1

...
...

...
...

xnN xn−1
N · · · xN 1







1
c1
...
cn


 = 0, (4.3)

where V n ∈ R
N×(n+1) is a matrix of embedded data points, and cn ∈ R

n+1 is
the vector of coefficients of pn(x).

In order to determine the number of groups n and then the vector of coefficients
cn from (4.3), notice that for n groups there is a unique polynomial of degree n
whose roots are the n cluster centers. Since the coefficients onf this polynomial
must satisfy equation (4.3), in order to have a unique solution we must have that
rank(V n) = n. This rank constraint on V n ∈ R

N×(n+1) enables us to determine
the number of groups n as1

n
.
= min{j : rank(V j) = j}. (4.4)

Example 4.1 (Two Clusters of Points). The intuition behind this formula is as follows.
Consider, for simplicity, the case of n = 2 groups, so that pn(x) = p2(x) = (x−µ1)(x−
µ2), with µ1 6= µ2. Then, it is clear that there is no polynomial equation of degree one,
p1(x) = x − µ, that is satisfied by all the points. Similarly, there are infinitely many
polynomial equations of degree 3 or more that are satisfied by all the points, namely any
multiple of p2(x). Thus the degree n = 2 is the only one for which there is a unique
polynomial that fits all the points.

Once the minimum polynomial pn(x) that fits all the data points is found, we
can solve the equation pn(x) = 0 for its n roots. These roots, by definition, are
the centers of the clusters. We summarize the overall solution as Algorithm 4.1.

Notice that the above algorithm is described in a purely algebraic fashion and
is more of a conceptual than practical algorithm. It does not minimizes any geo-
metric errors or maximizes any probabilistic likelihood functions. In the presence
of noises in the data, one has to implement each step of the algorithm in a nu-
merically more stable and statistically more robust way. For example, with noisy
data, the matrix V n will most likely be of full rank. In this case, the vector of

1Notice that the minimum number of points needed is N ≥ n, which is linear in the number of
groups. We will see in future chapters that this is no longer the case for more general segmentation
problems.
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Algorithm 4.1 (Algebraic Point Clustering Algorithm).
Let {xi}Ni=1 ⊂ R be a given collection of N ≥ n points clustering around an
unknown number n of cluster centers {µj}nj=1. The number of groups, the cluster
centers and the segmentation of the data can be determined as follows:

1. Number of Groups. Let V j ∈ R
N×(j+1) be a matrix containing the last

j + 1 columns of V n. Determine the number of groups as

n
.
= min{j : rank(V j) = j}. (4.5)

2. Cluster Centers. Solve for cn from V ncn = 0. Set pn(x) =∑n
k=0 ckx

n−k. Find the cluster centers {µj}nj=1 as the n roots of pn(x).

3. Segmentation. Assign point xi to cluster j = arg minl=1,...,n(xi − µl)2.

coefficients cn should be solved in a least-squares sense as the singular-vector of
V n associated with the smallest singular value. It is also possible that the pn(x)
obtained from cn may have some complex roots, because the constraint that the
polynomial must have real roots is never enforced when solving for the coef-
ficients in the least-squares sense.2 In practice, for well-separated clusters with
moderate noises, the roots normally give decent estimates of the cluster centers.

Clustering Points in a (Complex) Plane.

Algorithm 4.1 can also be applied to a set of points in the plane {xi ∈ R
2}Ni=1

that are distributed around a collection of cluster centers {µj ∈ R
2}nj=1 by inter-

preting the data points as complex numbers: {z .
= x + y

√
−1 ∈ C}. The only

difference is that now the polynomial pn(z) has complex coefficients and com-
plex roots. One can obtain the cluster centers by interpreting the complex roots as
points in R

2.

Connection of Algebraic Clustering with Spectral Clustering.

Although the problem of clustering data on a line may seem rather simple, it is
the key to one of the popular clustering algorithms: spectral clustering. In spectral
clustering, one is given a set of N data points around n centers and an N ×
N pairwise similarity matrix S.3 The points can be clustered into n groups by
clustering the entries of one or more eigenvectors of S into n values. If we let
v = [x1, x2, . . . , xN ]T be one such eigenvector, then we can use Algorithm 4.1

2However, in some specially cases, one can show that this would never occur. For example, for
x = [x1, . . . , xN ]T , if n = 2 the least-squares solution for cn is c2 = V ar[x], c1 = E[x2]E[x]−
E[x3] and c0 = E[x3]E[x] − E[x2]2 ≤ 0, hence c21 − 4c0c2 ≥ 0 and the roots of the polynomial
c0x2 + c1x + c2 are real.

3The entries sij of S measure the likelihood of two points belonging to the same cluster: sij → 1

when points i and j likely belong to the same group and sij → 0 when points i and j likely belong
to different groups.
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to automatically cluster the entries of v around n cluster centers {µj}nj=1. In the
case of two eigenvectors v1 and v2, we define a complex vector z = v1+v2

√
−1

and apply Algorithm 4.1 to the complex data points.

4.1.2 Segmenting Lines on a Plane
Let us now consider the case of clustering data points to a collection of n lines in
R

2 passing through the origin, as illustrated in Figure 4.1. Each one of the lines
can be represented as:

Lj
.
= {x = [x, y]T : bj1x+ bj2y = 0}, j = 1, 2, . . . , n. (4.6)

Given a point x = [x, y]T in one of the lines we must have that

(b11x+ b12y = 0) ∨ · · · ∨ (bn1x+ bn2y = 0). (4.7)

Therefore, even though each individual line is described with one polynomial
equation of degree one (a linear equation), an arrangement of n lines can be
described with a polynomial of degree n, namely

pn(x) = (b11x+ b12y) · · · (bn1x+ bn2y) =
n∑

k=0

ckx
n−kyk = 0. (4.8)

An example is shown in Figure 4.1.

Figure 4.1. A polynomial in two variables whose zero set is three lines in R
2.

The polynomial pn(x) allows us to algebraically eliminate the segmentation of
the data at the beginning of the model estimation, because the equation pn(x) = 0
is satisfied by every data point regardless of whether it belongs to L1, L2 or Ln.
Furthermore, even though pn(x) is nonlinear in each data point x = [x, y]T ,
pn(x) is actually linear in the vector of coefficients c = [c0, . . . , cn]

T . Therefore,
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given enough data points {xi = [xi, yi]
T }Ni=1, one can linearly fit this polynomial

to the data. Indeed, if n is known, we can obtain the coefficients of pn(x) from
solving the equation:

V ncn =




xn1 xn−1
1 y1 · · · x1y

n−1
1 yn1

xn2 xn−1
2 y2 · · · x2y

n−1
2 yn2

...
...

...
...

xnN xn−1
N yN · · · xNy

n−1
N ynN







c0
c1
...
cn


 = 0. (4.9)

Similarly to the case of points in a line, the above linear system has a unique
solution if and only if rank(V n) = n, hence the number of lines is given by

n
.
= min{j : rank(V j) = j}. (4.10)

Given the vector of coefficients cn, we are now interested in estimating the
equations of each line from the associated polynomial pn(x). We know each line
is determined by its normal vector bj = [b1j , b2j ]

T , j = 1, 2, . . . , n. For the sake
of simplicity, let us consider the case n = 2. A simple calculation shows that the
derivative of p2(x) is given by

∇p2(x) = (b21x+ b22y)b1 + (b11x+ b12y)b2. (4.11)

Therefore, if the point x belongs to L1, then (b11x + b12y) = 0 and hence
∇p2(x) ∼ b1. Similarly if x belongs to L2, then ∇p2(x) ∼ b2. This means
that given any point x, without knowing which line contains the point, we can
obtain the equation of the line passing through the point by simply evaluating the
derivative of p2(x) at x. This fact should come at no surprise and is valid for any
number of lines n. Therefore, if we are given one point in each line4 {yj ∈ Lj},
we can determine the normal vectors as bj ∼ ∇pn(yj). We summarize the overall
solution for clustering points to multiple lines as Algorithm 4.2.

Connection between Point Clustering and Line Segmentation.

The reader may have realized that, the problem of clustering points on a line is
very much related to the problem of segmenting lines in the plane. In point clus-
tering, for each data point x there exists a cluster center µj such that x− µj = 0.
By working in homogeneous coordinates, one can convert it into a line clustering
problem: for each data point x = [x, 1]T there is a line bj = [1,−µj ]T passing
through the point. Figure 4.2 shows an example of how three cluster centers are
converted into three lines via homogeneous coordinates. Indeed, notice that if we
let y = 1 in the matrix V n in (4.9), we obtain exactly the matrix V n in (4.3).
Therefore, the vector of coefficients cn is the same for both algorithms and the
two polynomials are related as pn(x, y) = ynpn(x/y). Therefore, the point clus-
tering problem can be solved either by polynomial factorization (Algorithm 4.1)
or by polynomial differentiation (Algorithm 4.2).

4We will discuss how to automatically obtain one point per subspace from the data in the next
subsection when we generalize this problem to clustering points on hyperplanes.
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Algorithm 4.2 (Algebraic Line Segmentation Algorithm)
Let {xi ∈ R

2}Ni=1 be a given collection of N ≥ n points clustering around an
unknown number n of lines {bj}nj=1. The number of lines, the normal vectors and
the segmentation of the data can be determined as follows:

1. Number of Lines. Let V j be defined as in (4.9). Determine the number of
groups as

n
.
= min{j : rank(V j) = j}. (4.12)

2. Normal Vectors. Solve for cn from V ncn = 0 and set pn(x, y) =∑n
k=0 ckx

n−kyk. Determine the normal vectors as

bj =
∇pn(yj)
‖∇pn(yj)‖

∈ R
2, j = 1, 2, . . . , n, (4.13)

where yj is a point in the jth line.

3. Segmentation. Assign point xi to line j = arg min`=1,...,n(b
T
` xi)

2.
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Figure 4.2. Using homogeneous coordinates to convert the point clustering problem into
the line segmentation problem.

4.1.3 Segmenting Hyperplanes
In this section, we consider another particular case of Problem 3.1 in which all the
subspaces are hyperplanes of equal dimension d1 = · · · = dn = d = D− 1. This
case shows up in a wide variety of segmentation problems in computer vision,
including vanishing point detection and motion segmentation. We will discuss
these applications in greater detail in later chapters.
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We start by noticing that every (D−1)-dimensional subspace Sj ⊂ R
D can be

defined in terms of a nonzero normal vector bj ∈ R
D as follows:5

Sj
.
=

{
x ∈ R

D : bTj x
.
= bj1x1 + bj2x2 + · · ·+ bjDxD = 0

}
. (4.14)

Therefore, a point x ∈ R
D lying in one of the hyperplanes Sj must satisfy the

formula:

(bT1 x = 0) ∨ (bT2 x = 0) ∨ · · · ∨ (bTnx = 0), (4.15)

which is equivalent to the following homogeneous polynomial of degree n in x

with real coefficients:

pn(x)=

n∏

j=1

(bTj x)=
∑

cn1,n2,...,nD
xn1

1 xn2
2 · · ·xnD

D =νn(x)T cn=0, (4.16)

where cn1,...,nD
∈ R represents the coefficient of monomial xn1

1 xn2
2 · · ·xnD

D , cn
is the vector of all coefficients, and νn(x) is the stack of all possible monomials.
The number of linearly independent monomials is Mn

.
=

(
D+n−1

D

)
, hence cn

and νn(x) are vectors in R
Mn .

After applying (4.16) to the given collection of N sample points {xi}Ni=1, we
obtain the following system of linear equations on the vector of coefficients cn

V n cn
.
=




νn(x1)
T

νn(x2)
T

...
νn(xN )T


 cn = 0 ∈ R

N . (4.17)

We now study under what conditions we can solve for n and cn from equa-
tion (4.17). To this end, notice that if the number of hyperplanes n was known,
we could immediately recover cn as the eigenvector of V T

nV n associated with its
smallest eigenvalue. However, since the above linear system (4.17) depends ex-
plicitly on the number of hyperplanes n, we cannot estimate cn directly without
knowing n in advance. Recall from Example B.14, the vanishing ideal I of a hy-
perplane arrangement is always principal, i.e., generated by a single polynomial
of degree n. The number of hyperplanes n then coincides with the degree of the
first non-trivial homogeneous component In of the vanishing ideal. This leads to
the following theorem.

Theorem 4.2 (Number of Hyperplanes). Assume that a collection ofN ≥Mn−1
sample points {xi}Ni=1 on n different (D − 1)-dimensional subspaces of R

D is
given. Let V j ∈ R

N×Mj be the matrix defined in (4.17), but computed with
polynomials of degree j. If the sample points are in general position and at least

5Since the subspaces Sj are all different from each other, we assume that the normal vectors
{bj}

n
j=1 are pairwise linearly independent.
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D − 1 points correspond to each hyperplane, then:

rank(V j)





= Mj j < n,
= Mj − 1 j = n,
< Mj − 1 j > n.

(4.18)

Therefore, the number n of hyperplanes is given by:

n = min{j : rank(V j) = Mj − 1}. (4.19)

In the presence of noise, one cannot directly estimate n from (4.19), because
the matrix V j is always full rank. In this case, one can use the criterion (2.14)
given in Chapter 2 to determine the rank.

Theorem 4.2 and the linear system in equation (4.17) allow us to determine
the number of hyperplanes n and the vector of coefficients cn, respectively, from
sample points {xi}Ni=1. The rest of the problem becomes now how to recover the
normal vectors {bj}nj=1 from cn. Imagine, for the time being, that we were given
a set of n points {yj}nj=1, each one lying in only one of the n hyperplanes, that is
yj ∈ Sj for j = 1, . . . , n. Now let us consider the derivative of pn(x) evaluated
at each yj . We have:

∇pn(x) =
∂pn(x)

∂x
=

∂

∂x

n∏

j=1

(bTj x) =
n∑

j=1

(bj)
∏

`6=j

(bT` x). (4.20)

Because
∏
`6=m(bT` yj) = 0 for j 6= m, one can obtain each one of the normal

vectors as

bj =
∇pn(yj)
‖∇pn(yj)‖

, j = 1, 2, . . . , n. (4.21)

Therefore, if we know one point in each one of the hyperplanes, the hyperplane
segmentation problem can be solved analytically by simply evaluating the partial
derivatives of pn(x) at each one of the points with known labels.

Consider now the case in which we do not know the membership of any of
the data points. We now show that one can obtain one point per hyperplane by
intersecting a random line with each one of the hyperplanes. To this end, consider
a random line L .

= {tv + x0, t ∈ R} with direction v and base point x0. We
can obtain one point in each hyperplane by intersecting L with the union of all
the hyperplanes, 6 Since at the intersection points we must have pn(tv+x0) = 0,
the n points {yj}nj=1 can be obtained as

yj = tjv + x0, j = 1, 2, . . . , n, (4.22)

6Except when the chosen line is parallel to one of the hyperplanes, which corresponds to a zero-
measure set of lines.
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where {tj}nj=1 are the roots of the univariate polynomial of degree n

qn(t) = pn(tv + x0) =

n∏

j=1

(
tbTj v + bTj x0

)
= 0. (4.23)

We summarize our discussion so far as Algorithm 4.3 for segmenting
hyperplanes.

Algorithm 4.3 (Algebraic Hyperplane Segmentation Algorithm).
Let {xi ∈ R

D}Ni=1 be a given collection of points clustering around an unknown
number n of planes {bj}nj=1. The number of planes, the normal vectors, and the
segmentation of the data can be determined as follows:

1. Number of Hyperplanes. Let V j be defined as in (4.17). Determine the
number of groups as

n
.
= min{j : rank(V j) = Mj − 1}. (4.24)

2. Normal Vectors. Solve for cn from V ncn = 0 and set pn(x) = cTnνn(x).
Choose x0 and v at random and compute the n roots t1, . . . , tn ∈ R of the
univariate polynomial qn(t) = pn(tv + x0). Determine the normal vectors
as

bj =
∇pn(yj)
‖∇pn(yj)‖

, j = 1, 2, . . . , n, (4.25)

where yj = x0 + tjv is a point in the jth hyperplane.

3. Segmentation. Assign point xi to hyperplane j = arg minl=1,...,n(b
T
l xi)

2.

4.2 Knowing the Number of Subspaces
In this section, we derive a general solution to the subspace-segmentation problem
(Problem 3.1) in the case in which the number of subspaces n is known. However,
unlike the special cases we saw in the previous section, the dimensions of the
subspaces can be different. In Section 4.2.1, we illustrate the basic ideas of dealing
with subspaces of different dimensions via a simple example. Through Sections
4.2.2-4.2.4, we give detailed derivation and proof for the general solution. The
final algorithm is summarized in Section 4.2.5.

4.2.1 An Introductory Example
To motivate and highlight the key ideas, in this section we study a simple example
of clustering data points lying in subspaces of different dimensions in R

3: a line



4.2. Knowing the Number of Subspaces 67

PSfrag replacements
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S2

y1

y2x

b11 = ∇p21(y1)

b12 = ∇p22(y1)
b2 = ∇p21(y2) = ∇p22(y2)

o

R
3

Figure 4.3. Data samples drawn from a union of one plane and one line (through the
origin o) in R

3. The derivatives of the two vanishing polynomials p21(x) = x1x2 and
p22(x) = x1x3 evaluated at a point y1 in the line give two normal vectors to the line.
Similarly, the derivatives at a point y2 in the plane give the normal vector to the plane.

S1 = {x : x1 = x2 = 0} and a plane S2 = {x : x3 = 0}, as shown in Figure 4.3.

We can describe the union of these two subspaces as

S1 ∪ S2 = {x : (x1 = x2 = 0) ∨ (x3 = 0)} (4.26)
= {x : (x1x3 = 0) ∧ (x2x3 = 0)}. (4.27)

Therefore, even though each individual subspace is described with polynomials
of degree one (linear equations), the union of two subspaces is described with
two polynomials of degree two, namely p21(x) = x1x3 and p22(x) = x2x3. In
general, we can represent any two subspaces of R

3 as the set of points satisfying
a set of homogeneous polynomials of the form

c1x
2
1 + c2x1x2 + c3x1x3 + c4x

2
2 + c5x2x3 + c6x

2
3 = 0. (4.28)

Although these polynomials are nonlinear in each data point [x1, x2, x3]
T , they

are actually linear in the vector of coefficients c = [c1, . . . , c6]
T . Therefore, given

enough data points, one can linearly fit these polynomials to the data.
Given the collection of polynomials that vanish on the data points, we are now

interested in estimating a basis for each subspace. In our example, let P2(x) =
[p21(x), p22(x)] and consider the derivatives of P2(x) at two representative
points of the two subspaces y1 = [0, 0, 1]T ∈ S1 and y2 = [1, 1, 0]T ∈ S2:

∇P2(x) =



x3 0
0 x3

x1 x2


 =⇒ ∇P2(y1) =




1 0
0 1
0 0


 and ∇P2(y2) =




0 0
0 0
1 1


 . (4.29)

Then the columns of ∇P2(y1) span the orthogonal complement to the first sub-
space S⊥

1 and the columns of ∇P2(y2) span the orthogonal complement to the
second subspace S⊥

2 (see Figure 4.3). Thus the dimension of the line is given
by d1 = 3 − rank(∇P2(y1)) = 1 and the dimension of the plane is given by
d2 = 3− rank(∇P2(y2)) = 2. Therefore, if we are given one point in each sub-
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space, we can obtain the subspace bases and their dimensions from the derivatives
of the polynomials at the given points.

The final question is how to choose one representative point per subspace. With
perfect data, we may choose a first point as any of the points in the data set. With
noisy data, we may first define a distance from any point in R

3 to the union of the
subspaces,7 and then choose a point in the data set that minimizes this distance.
Say we pick y2 ∈ S2 as such point. We can then compute the normal vector
b2 = [0, 0, 1]T to S2 from ∇P (y2) as above. How do we now pick a second
point in S1 but not in S2? As it turns out, this can be done by polynomial division.
We can divide the original polynomials by bT2 x to obtain new polynomials of
degree n− 1 = 1:

p11(x) =
p21(x)

bT2 x
= x1 and p12(x) =

p22(x)

bT2 x
= x2.

Since these new polynomials vanish on S1 but not on S2, we can use them to
define a new distance to S1 only,8 and then find a point y1 in S1 but not in S2 as
the point in the data set that minimizes this distance.

The next sections shows how this simple example can be systematically gener-
alized to multiple subspaces of unknown and possibly different dimensions by
polynomial fitting (Section 4.2.2), differentiation (Section 4.2.3), and division
(Section 4.2.4).

4.2.2 Fitting Polynomials to Subspaces
Now consider a subspace arrangement A = {S1, S2, . . . , Sn} with dim(Sj) =
dj , j = 1, 2, . . . , n. Let X = {xi}Ni=1 be a sufficiently large number of sample
points in general position drawn from ZA = S1 ∪ S2 ∪ · · ·Sn. As we will know
from Chapter B, the vanishing ideal I(ZA), i.e., the set of all polynomials that
vanish on ZA, is much more complicated than the special cases we studied earlier
in this chapter.

Nevertheless, since we assume to know the number of subspaces n, we only
have to consider the set of polynomials of degree n that vanish on ZA, i.e., the
homogeneous component In of I(ZA). As we will know from the next chapter,
these polynomials uniquely determine ZA.

Using the Veronese map, each polynomial in In can be written as:

pn(x) = cTnνn(x) =
∑

cn1,...,nD
xn1

1 · · ·xnD

D = 0, (4.30)

where cn1,...,nD
∈ R represents the coefficient of the monomial xn =

xn1
1 · · ·xnD

D . Although the polynomial equation is nonlinear in each data point
x, it is linear in the vector of coefficients cn. Indeed, since each polynomial
pn(x) = cTnνn(x) must be satisfied by every data point, we have cTnνn(xi) = 0

7For example, the squared algebraic distance to S1 ∪ S2 is p21(x)2 + p22(x)2 = (x2
1 + x2

2)x
2
3.

8For example, the squared algebraic distance to S1 is p11(x)2 + p12(x)2 = x2
1 + x2

2.
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for all i = 1, . . . , N . Therefore, the vector of coefficients cn must satisfy the
system of linear equations

V n(D) cn
.
=




νn(x1)
T

νn(x2)
T

...
νn(xN )T


 cn = 0 ∈ R

N , (4.31)

where V n(D) ∈ R
N×Mn(D) is called the embedded data matrix.

Clearly, the coefficient vector of every polynomial in In is in the null space
of the data matrix V n(D). For every polynomial obtained from the null space of
V n(D) to be in In, we need to have

dim(Null(V n(D))) = dim(In) .
= Dn(ZA).

Or equivalently, the rank of the matrix V n(D) needs to satisfy

rank(V n(D)) = φZA
(n) = Mn(D)−Dn(ZA) (4.32)

in order that In can be exactly recovered from the null space of V n(D). As a
result of the Algebraic Sampling Theory in Appendix A, the above rank condition
is typically satisfied with N ≥ (Mn(D) − 1) data points in general position.9 A
basis of In,

In = span{pn`(x), ` = 1, . . . ,Dn}, (4.33)

can be computed from the set of Dn singular vectors of V n(D) associated with
its Dn zero singular values.

In the presence of moderate noise, we can still estimate the coefficients of each
polynomial from the null space of V n(D) using least-squares. However, we may
not be able to directly determine the number of polynomials, because V n(D)
may be full rank. In this case, we can adopt the criterion (2.14) in Chapter 2 to
determine the correct rank (and hence the null space) of the matrix V n(D).

As discussed in Sections 2.3.1 and 2.3.2, the basic modeling assumption in
NLPCA and KPCA is that there exists an embedding of the data into a higher-
dimensional feature space F such that the features live in a linear subspace of F .
However, there is no general methodology for finding the correct embedding for
an arbitrary problem. Equation (4.31) shows that the commonly used polynomial
embedding νn is the right one to use in NLPCA and KPCA when the data lives
in an arrangement of subspaces, because the embedded data points {νn(xi)}Ni=1

indeed live in a subspace of R
Mn(D). Indeed, notice that each vector cn is simply

a normal vector to the embedded subspace, as illustrated in Figure 4.4.

9For instance, it requires at least dj points from each subspace Sj .
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Figure 4.4. The polynomial embedding maps a union of subspaces of R
D into a single sub-

space of R
Mn(D) whose normal vectors {cn} are the coefficients of the polynomials {pn}

defining the subspaces. The normal vectors to the embedded subspace {cn} are related to
the normal vectors to the original subspaces {bj} via the symmetric tensor product.

4.2.3 Subspaces from Polynomial Differentiation
Given a basis for the set of polynomials representing an arrangement of sub-
spaces, we are now interested in determining a basis and the dimension of each
subspace. In this section, we show that one can estimate the bases and the dimen-
sions by differentiating all the polynomials {pn`} obtained from the null space of
the embedded data matrix V n(D).

Consider a subspace Sj of dimension dj in the subspace arrangement. Let kj =
D − dj . Suppose that

Bj
.
= [b1, b2, . . . , bkj

] ∈ R
D×(kj)

is a set of base vectors for the orthogonal complement S⊥
j of Sj . Then the vanish-

ing ideal I(Sj) is generated by the set of linear forms {li = bTi x, i = 1, . . . , kj =
D − dj}.

Let pn(x) be any polynomial in In. Since pn ∈ I(ZA) ⊂ I(Sj) and I(Sj) is
generated by the linear forms li, pn is of the form

pn = l1h1 + l2h2 + · · ·+ lkj
hkj

(4.34)

for some polynomials h1, . . . , hkj
. The derivative of pn is

∇pn =

kj∑

i=1

hi∇li + li∇hi =

kj∑

i=1

hibi + li∇hi. (4.35)

Let yj be a point in the subspace Sj but not in any other subspaces in the arrange-
ment ZA. Then li(yj) = 0, i = 1, . . . , kj . Thus, the derivative of pn evaluated at
yj is a superposition of the vectors bi:

∇pn(yj) =

kj∑

i=1

hi(yj)bi ∈ S⊥
j . (4.36)

This fact should come at no surprise. The zero set of each polynomial pn is just
a surface in R

D, therefore its derivative at a regular point yj ∈ Sj ,∇pn(yj), gives
a vector orthogonal to the surface. Since an arrangement of subspaces is locally
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flat, i.e., in a neighborhood of yj the surface is merely the subspace Sj , then the
derivative at yj lives in the orthogonal complement S⊥

j of Sj . By evaluating the
derivatives of all the polynomials in In at the same point yj we obtain a set of
normal vectors that span the orthogonal complement of Sj . We summarize the
above facts as Theorem 4.3. Figure 4.3 illustrates the theorem for the case of a
plane and a line described in Section 4.2.1.

Theorem 4.3 (Subspace Bases and Dimensions by Polynomial Differentiation).
If the data set X is such that dim(Null(V n(D))) = dim(In) = Dn and one
generic point yj is given for each subspace Sj , then we have

S⊥
j = span

{ ∂

∂x
cTnνn(x)

∣∣∣
x=yj

, ∀cn ∈ Null(V n(D))
}
. (4.37)

Therefore, the dimensions of the subspaces are given by

dj = D − rank
(
∇Pn(yj)

)
for j = 1, 2, . . . , n, (4.38)

where Pn(x)
.
= [pn1(x), . . . , pnDn

(x)] ∈ R
1×Dn is a row of linearly in-

dependent polynomials in In, and ∇Pn(x)
.
= [∇pn1(x), . . . ,∇pnDn

(x)] ∈
R
D×Dn .

Proof. (Sketch only). The fact that the derivatives span the entire normal space
is the consequence of the general dimension theory for algebraic varieties
[Bochnak et al., 1998, Harris, 1992, Eisenbud, 1996].

Given cn, the computation of the derivative of pn(x) = cTnνn(x) can be done
algebraically:

∇pn(x) = cTn∇νn(x) = cTnEnνn−1(x),

where En ∈ R
Mn(D)×Mn−1(D) is a constant matrix containing only the expo-

nents of the Veronese map νn(x). Thus, the computation does not involve taking
derivatives of the (possibly noisy) data.

4.2.4 Point Selection via Polynomial Division
Theorem 4.3 suggests that one can obtain a basis for each S⊥

j directly from the
derivatives of the polynomials representing the union of the subspaces. However,
in order to proceed we need to have one point per subspace, i.e., we need to know
the vectors {yj}nj=1. In this section, we show how to select these n points in the
unsupervised learning scenario in which we do not know the label for any of the
data points.

In Section 4.1.3, we showed that in the case of hyperplanes, one can obtain one
point per hyperplanes by intersecting a random line L with the union of all hy-
perplanes.10 This solution, however, does not generalize to subspaces of arbitrary

10This can always be done, except when the chosen line is parallel to one of the subspaces, which
corresponds to a zero-measure set of lines.
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dimensions. For instance, in the case of data lying in a line and a plane shown
in Figure 4.3, a randomly chosen line L may not intersect the line. Furthermore,
because polynomials in the null space of V n(D) are no longer factorizable, their
zero set is no longer a union of hyperplanes, hence the points of intersection with
L may not lie in any of the subspaces.

In this section we propose an alternative algorithm for choosing one point per
subspace. The idea is that we can always choose a point yn lying in one of the
subspaces, say Sn, by checking that Pn(yn) = 0. Since we are given a set of data
points X = {xi}Ni=1 lying in the subspaces, in principle we can choose yn to be
any of the data points. However, in the presence of noise and outliers, a random
choice of yn may be far from the true subspaces. One may be tempted to choose
a point in the data set X that minimizes ‖Pn(x)‖, as we did in our introductory
example in Section 4.2.1. However, such a choice has the following problems:

1. The value ‖Pn(x)‖ is merely an algebraic error, i.e., it does not really
represent the geometric distance from x to its closest subspace. In prin-
ciple, finding the geometric distance from x to its closest subspace is a
hard problem, because we do not know the normal bases {Bj}nj=1.

2. Points x lying close to the intersection of two or more subspaces are
more likely to be chosen, because two or more factors in pn(x) =
(bT1 x) · · · (bTnx) are approximately zero, which yields a smaller value for
|pn(x)|. In fact, we can see from (4.36) that for an arbitrary x in the in-
tersection, the vector ∇pn(x) needs to be a common normal vector to the
two or more subspaces. If the subspaces have no common normal vector,
then ‖∇pn(x)‖ = 0. Thus, one should avoid choosing points close to the
intersection, because they typically give very noisy estimates of the normal
vectors.

We could avoid these two problems if we could compute the distance from
each point to the subspace passing through it. However, we cannot compute such
a distance yet because we do not know the subspace bases. The following lemma
shows that we can compute a first order approximation to such a distance from
Pn and its derivatives.
Lemma 4.4. Let x̃ be the projection of x ∈ R

D onto its closest subspace. The
Euclidean distance from x to x̃ is given by

‖x− x̃‖ = n

√
Pn(x)

(
∇Pn(x)T∇Pn(x)

)†
Pn(x)T +O

(
‖x− x̃‖2

)
,

where Pn(x) = [pn1(x), . . . , pnDn
(x)] ∈ R

1×Dn is a row vector with all the
polynomials, ∇Pn(x) = [∇pn1(x), . . . ,∇pnDn

(x)] ∈ R
D×Dn , and A† is the

Moore-Penrose inverse of A.
Proof. The projection x̃ of a point x onto the zero set of the polynomi-
als {pn`}Dn

`=1 can be obtained as the solution to the following constrained
optimization problem

min ‖x̃− x‖2, s.t. pn`(x̃) = 0, ` = 1, 2, . . . ,Dn. (4.39)
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By using Lagrange multipliers λ ∈ R
Dn , we can convert this problem into the

unconstrained optimization problem

min
x̃,λ
‖x̃− x‖2 + Pn(x̃)λ. (4.40)

From the first order conditions with respect to x̃ we have

2(x̃− x) +∇Pn(x̃)λ = 0. (4.41)

After multiplying on the left by (∇Pn(x̃))T and (x̃−x)T , respectively, we obtain

λ = 2
(
∇Pn(x̃)T∇Pn(x̃)

)†∇Pn(x̃)Tx, ‖x̃− x‖2 =
1

2
xT∇Pn(x̃)λ, (4.42)

where we have used the fact that (∇Pn(x̃))T x̃ = 0. After substituting the first
equation into the second, we obtain that the squared distance from x to its closest
subspace can be expressed as

‖x̃− x‖2 = xT∇Pn(x̃)
(
∇Pn(x̃)T∇Pn(x̃)

)†∇Pn(x̃)Tx. (4.43)

After expanding in Taylor series about x̃ = x, and noticing that∇Pn(x)Tx =
nPn(x)T we obtain

‖x̃− x‖2 ≈ n2Pn(x)
(
∇Pn(x)T∇Pn(x)

)†
Pn(x)T , (4.44)

which completes the proof.

Thanks to Lemma 4.4, we can immediately choose a candidate yn lying in
(close to) one of the subspaces and not in the intersection as

yn = arg min
x∈X:∇Pn(x)6=0

Pn(x)
(
∇Pn(x)T∇Pn(x)

)†
Pn(x)T . (4.45)

and compute a basis Bn ∈ R
D×(D−dn) for S⊥

n by applying PCA to ∇Pn(yn).
In order to find a point yn−1 lying in (close to) one of the remaining (n − 1)

subspaces but not in (far from) Sn, we could in principle choose yn−1 as in (4.45)
after removing the points in Sn from the data set X . With noisy data, however,
this depends on a threshold and is not very robust. Alternatively, we can find a
new set of polynomials {p(n−1)`(x)} defining the algebraic set ∪n−1

j=1 Sj . In the
case of hyperplanes, there is only one such polynomial, namely

pn−1(x)
.
= (b1x)(b2x) · · · (bTn−1x) =

pn(x)

bTnx
= cTn−1νn−1(x).

Therefore, we can obtain pn−1(x) by polynomial division. Notice that dividing
pn(x) by bTnx is a linear problem of the form

Rn(bn)cn−1 = cn, (4.46)

where Rn(bn) ∈ R
Mn(D)×Mn−1(D). This is because solving for the coefficients

of pn−1(x) is equivalent to solving the equations (bTnx)(cTn−1νn(x)) = cTnνn(x)
for all x ∈ R

D. These equations are obtained by equating the coefficients, and
they are linear in cn−1, because bn and cn are already known.
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Example 4.5 If n = 2 and b2 = [b1, b2, b3]
T , then the matrix R2(b2) is given by

R2(b2) =

2
4

b1 b2 b3 0 0 0
0 b1 0 b2 b3 0
0 0 b1 0 b2 b3

3
5

T

∈ R
6×3.

In the case of subspaces of arbitrary dimensions we cannot directly divide the
entries of the polynomial vector Pn(x) by bTnx for any column bn of Bn, be-
cause the polynomials {pn`(x)} may not be factorizable. Furthermore, they do
not necessarily have the common factor bTnx. The following theorem resolves
this difficulty by showing how to compute the polynomials associated with the
remaining subspaces ∪n−1

j=1 Sj .

Theorem 4.6 (Choosing one Point per Subspace by Polynomial Division). If the
data set X is such that dim(null(V n(D))) = dim(In), then the set of homoge-
neous polynomials of degree (n − 1) associated with the algebraic set ∪n−1

j=1 Sj

is given by {cTn−1vn−1(x)} where the vectors of coefficients cn−1 ∈ R
Mn−1(D)

must satisfy

V n(D)Rn(bn)cn−1 = 0, ∀ bn ∈ S⊥
n . (4.47)

Proof. We first show the necessity. That is, any polynomial of degree n − 1,
cTn−1νn−1(x), that vanishes on ∪n−1

j=1 Sj satisfies the above equation. Since a
point x in the original algebraic set ∪nj=1Sj belongs to either ∪n−1

j=1 Sj or Sn,
we have cTn−1νn−1(x) = 0 or bTnx = 0 for all bn ∈ S⊥

n . Hence pn(x)
.
=

(cTn−1νn−1(x))(bTnx) = 0, and pn(x) must be a linear combination of polyno-
mials in Pn(x). If we denote pn(x) as cTnνn(x), then the vector of coefficients
cn must be in the null space of V n(D). From cTnνn(x) = (cTn−1νn−1(x))(bTnx),
the relationship between cn and cn−1 can be written asRn(bn)cn−1 = cn. Since
V n(D)cn = 0, cn−1 needs to satisfy the following linear system of equations
V n(D)Rn(bn)cn−1 = 0.

We now show the sufficiency. That is, if cn−1 is a solution to (4.47), then
cTn−1νn−1(x) is a homogeneous polynomial of degree (n − 1) that vanishes on
∪n−1
j=1 Sj . Since cn−1 is a solution to (4.47), then for all bn ∈ S⊥

n we have that
cn = Rn(bn)cn−1 is in the null space of V n(D). Now, from the construction of
Rn(bn), we also have that cTnνn(x) = (cTn−1νn−1(x))(bTnx). Hence, for every
x ∈ ∪n−1

j=1 Sj but not in Sn, we have cTn−1νn−1(x) = 0, because there is a bn

such that bTnx 6= 0. Therefore, cTn−1νn−1(x) is a homogeneous polynomial of
degree (n− 1) that vanishes on ∪n−1

j=1 Sj .

Thanks to Theorem 4.6, we can obtain a basis {p(n−1)`(x)}Dn−1

`=1 for the
polynomials representing ∪n−1

j=1 Sj from the intersection of the null spaces of
V n(D)Rn(bn) ∈ R

N×Mn−1(D) for all bn ∈ S⊥
j . By evaluating the derivatives of

the polynomials p(n−1)` we can obtain normal vectors to Sn−1 and so on. By re-
peating these process, we can find a basis for each one of the remaining subspaces.
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The overall subspaces estimation and segmentation process involves polynomial
fitting, differentiation, and division.

4.2.5 The Basic Generalized PCA Algorithm
We summarize the results of this section with the following Generalized Princi-
pal Component Analysis (GPCA) algorithm for segmenting a known number of
subspaces of unknown and possibly different dimensions from sample data points
{xi}Ni=1.

Algorithm 4.4 (GPCA: Generalized Principal Component Analysis).

set V n(D)
.
= [νn(x1), νn(x2), . . . , νn(xN )]T ∈ R

N×Mn(D);

for j = n : 1,
solve V j(D)c = 0 to obtain a basis {cj`}Dj

`=1 of null(V j(D)), where the
number of polynomials Dj is obtained as in (4.32);

set Pj(x) = [pj1(x), . . . , pjDj
(x)] ∈ R

1×Dj , where pj`(x) =
cTj`νj(x) for ` = 1, . . . ,Dj ;

compute

yj = arg min
x∈X:∇Pj(x)6=0

Pj(x)
(
∇Pj(x)T∇Pj(x)

)†
Pj(x)T ;

Bj
.
= [bj1, bj2, . . . , bj(D−dj)] = PCA

(
∇Pj(yj)

)
;

V j−1(D) = V j(D)
[
RTj (bj1), . . . , R

T
j (bj(D−dj))

]T
;

end
for i = 1 : N ,

assign point xi to subspace Sj if j = arg min`=1,...,n ‖BT` xi‖2;

end

Avoiding Polynomial Division.

In practice, we may avoid computing Pj for j < n by using a heuristic distance
function to choose the points {yj}nj=1 as follows. Since a point in ∪n`=jS` must
satisfy ‖BTj x‖ · · · ‖BTnx‖ = 0, we can choose a point yj−1 on ∪j−1

`=1S` as:

yj−1 = arg min
x∈X:∇Pn(x)6=0

√
Pn(x)(∇Pn(x)T∇Pn(x))†Pn(x)T + δ

‖BTj x‖ · · · ‖BTnx‖+ δ
, (4.48)

where δ > 0 is a small number chosen to avoid cases in which both the numerator
and the denominator are zero (e.g., with perfect data).
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4.3 Not Knowing the Number of Subspaces
The solution to the subspace-segmentation problem proposed in Section 4.2.5
assumes prior knowledge of the number of subspaces n. In practice, however, the
number of subspaces n may not be known beforehand, hence we cannot estimate
the polynomials representing the subspaces directly, because the linear system
in (4.31) depends explicitly on n.

Earlier in Section 4.1, we have presented some special cases (e.g., arrangements
of hyperplanes) for which one can recover the number of subspaces from data. In
this section, we show that by exploiting the algebraic structure of the vanishing
ideals of subspace arrangements it is possible to simultaneously recover the num-
ber of subspaces, together with their dimensions and their bases. As usual, we first
examine some subtlety with determining the number of subspaces via two simple
examples in Section 4.3.1 and illustrate the key ideas. Section 4.3.2 considers the
case of perfect subspace arrangements in which all subspaces are of equal dimen-
sion d = d1 = · · · = dn. We derive a set of rank constraints on the data from
which one can estimate the n and d. Section 4.3.3 considers the most general case
of subspaces of different dimensions and shows that n and can be computed in a
recursive fashion by first fitting subspaces of larger dimensions and then further
segmenting these subspaces into subspaces of smaller dimensions.

4.3.1 Introductory Examples
Imagine we are given a set of points X = {xi} lying in two lines in R

3, say

S1 = {x : x2 = x3 = 0} and S2 = {x : x1 = x3 = 0}. (4.49)

If we form the matrix of embedded data points V n(D) for n = 1 and n = 2,
respectively:

V 1(3) =




...
...

x1 x2 x3

...
...


 and V 2(3) =




...
...

x2
1 x1x2 x1x3 x2

2 x2x3 x2
3

...
...


 ,

we obtain rank(V 1(3)) = 2 < 3 and rank(V 2(3)) = 2 < 6.11 Therefore, we
cannot determine the number of subspaces as the degree n such that the ma-
trix V n(D) drops rank (as we did in Section 4.1.3 for the case of hyperplanes),
because we would obtain n = 1 which is not the correct number of subspaces.

How do we determine the correct number of subspaces in this case? As dis-
cussed in Section 3.2.2, a linear projection onto a low-dimensional subspace
preserves the number and dimensions of the subspaces. In our example, if we
project the data onto the plane P = {x : x1 + x2 + x3 = 0} and then embed the

11The reader is encouraged to verify these facts numerically and do the same for the examples in
the rest of this section.
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projected data we obtain

V 1(2) =




...
...

x1 x2

...
...


 and V 2(2) =




...
...

x2
1 x1x2 x2

2
...

...


 .

In this case rank(V 1(2)) = 2 6< 2, but rank(V 2(2)) = 2 < 3. Therefore, the first
time the matrix V n(d + 1) drops rank is when n = 2 and d = 1. This suggests
that, as we will formally show in Section 4.3.2, when the subspaces are of equal
dimension one can determine d and n as the minimum values for which there are
a projection onto a d + 1-dimensional subspace such that the matrix V n(d + 1)
drops rank.

Unfortunately, the situation is not so simple for subspaces of different dimen-
sions. Imagine now that in addition to the two lines S1 and S2 we are also given
data points on a plane S3 = {x : x1 + x2 = 0} (so that the overall configuration
is similar to that shown in Figure 1.2). In this case we have rank(V 1(3)) = 3 6< 3,
rank(V 2(3)) = 5 < 6, and rank(V 3(3)) = 6 < 10. Therefore, if we try to de-
termine the number of subspaces as the degree of the embedding for which the
embedded data matrix drops rank we would obtain n = 2, which is incorrect
again. The reason for this is clear: we can either fit the data with one polynomial
of degree n = 2, which corresponds to the plane S3 and the plane P spanned by
the two lines, or we can fit the data with four polynomials of degree n = 3, which
vanish precisely on the two lines S1, S2, and the plane S3.

In cases like this, one needs to resort to a more sophisticated algebraic process
to identify the correct number of subspaces. As in the previous example, we can
first search for the minimum degree n and dimension d such that V n(d+1) drops
rank. In our example, we obtain n = 2 and d = 2. By applying the GPCA algo-
rithm to this data set we will partition it into two planes P and S3. Once the two
planes have been estimated, we can reapply the same process to each plane. The
plane P will be separated into two lines S1 and S2, as described in the previous
example, while the plane S3 will remain unchanged. This recursive process stops
when every subspace obtained can no longer be separated into lower-dimensional
subspaces. We will a more detailed description of this recursive GPCA algorithm
in Section 4.3.3.

4.3.2 Segmenting Subspaces of Equal Dimension
In this section, we derive explicit formulae for the number of subspaces n and
their dimensions {dj} in the case of subspaces of equal dimension d = d1 = d2 =
· · · = dn. Notice that this is a generalized version to the two-lines example that
we discussed in the previous section. In the literature, arrangements of subspaces
of equal dimensions, are called pure arrangements. This type of arrangements
are important for a wide range of applications, such as motion segmentation in
computer vision [?, ?, ?, ?], pattern recognition [?, ?], as well as identification of
hybrid linear systems [?, ?].
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Theorem 4.7 (Subspaces of Equal Dimension). Let {xi}Ni=1 be a given collection
ofN ≥Mn(d+1)−1 sample points lying in n different d-dimensional subspaces
of R

D. Let V j(` + 1) ∈ R
N×Mj(`+1) be the embedded data matrix defined in

(4.31), but computed with the Veronese map νj of degree j applied to the data
projected onto a generic (`+1)-dimensional subspace of R

D. If the sample points
are in general position and at least d points are drawn from each subspace, then
the dimension of the subspaces is given by:

d = min{` : ∃ j ≥ 1 such that rank(V j(`+ 1)) < Mj(`+ 1)}, (4.50)

and the number of subspaces can be obtained as:

n = min{j : rank(V j(d+ 1)) = Mj(d+ 1)− 1}. (4.51)

Proof. For simplicity, we divide the proof into the following three cases:

Case 1: d known

Imagine for a moment that d was known, and that we wanted to compute n only.
Since d is known, following our analysis in Section 3.2.2, we can first project
the data onto a (d + 1)-dimensional space P ⊂ R

D so that they become n
d-dimensional hyperplanes in P (see Theorem 3.8). Now compute the matrix
V j(d + 1) as in (4.31) by applying the Veronese map of degree j = 1, 2, . . .
to the projected data. From our analysis in Section 4.1.3, there is a unique poly-
nomial of degree n representing the union of the projected subspaces and the
coefficients of this polynomial must lie in the null space of V n(d + 1). Thus,
given N ≥ Mn(d + 1) − 1 points in general position, with at least d points in
each subspace, we have that rank(V n(d + 1)) = Mn(d + 1) − 1. Furthermore,
there cannot be a polynomial of degree less than n that is satisfied by all the data,12

hence rank(V j(d+ 1)) = Mj(d+ 1) for j < n. Consequently, if d is known, we
can compute n by first projecting the data onto a (d + 1)-dimensional space and
then obtain

n = min{j : rank(V j(d+ 1)) = Mj(d+ 1)− 1}. (4.52)

Case 2: n known

Consider now the opposite case in which n is known, but d is unknown. Let
V n(` + 1) be defined as in (4.31), but computed from the data projected onto a
generic (` + 1)-dimensional subspace of R

D. When ` < d, we have a collection
of (`+ 1)-dimensional subspaces in an (`+ 1)-dimensional space, which implies
that V n(` + 1) must be full rank. If ` = d, then from equation (4.52) we have
that rank(V n(` + 1)) = Mn(` + 1) − 1. When ` > d, then equation (4.31) has
more than one solution, thus rank(V n(`+ 1)) < Mn(`+ 1)− 1. Therefore, if n
is known, we can compute d as

d = min{` : rank(V n(`+ 1)) = Mn(`+ 1)− 1}. (4.53)

12This is guaranteed by the algebraic sampling theorem in Appendix A.
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Case 3: n and d unknown

We are left with the case in which both n and d are unknown. As before, if ` < d
then V j(`+1) is full rank for all j. When ` = d, V j(`+1) is full rank for j < n,
drops rank by one if j = n and drops rank by more than one if j > n. Thus one
can set d to be the smallest integer ` for which there exist an j such that V j(`+1)
drops rank, that is

d = min{` : ∃j ≥ 1 such that rank(V j(`+ 1)) < Mj(`+ 1)}.
Given d one can compute n as in equation (4.52).

Therefore, in principle, both n and d can be retrieved if sufficient data points
are drawn from the subspaces. The subspace-segmentation problem can be subse-
quently solved by first projecting the data onto a (d+1)-dimensional subspace and
then applying the GPCA algorithm (Algorithm 4.4) to the projected data points.

In the presence of noise, one may not be able to estimate d and n from from
equations (4.50) and (4.51), respectively, because the matrix V j(` + 1) may be
full rank for all j and `. As before, we can use the criterion (2.14) of Chapter 2
to determine the rank of V j(` + 1). However, in practice this requires to search
for up to possibly (D − 1) values for d and dN/(D − 1)e values for n. In our
experience, the rank conditions work well when either d or n are known. There
are still many open issues in the problem of finding a good search strategy and
model selection criterion for n and k when both of them are unknown. Some of
these issues will be discussed in more detail in Chapter 5

4.3.3 Segmenting Subspaces of Different Dimensions
In this section, we consider the problem of segmenting an unknown number of
subspaces of unknown and possibly different dimensions from sample points.

First of all, we notice that the simultaneous recovery of the number and dimen-
sions of the subspaces may be an ill-conditioned problem if we are not clear about
what we are looking for. For example, in the extreme cases, one may interpret the
sample set X asN 1-dimensional subspaces, with each subspace spanned by each
one of the sample points x ∈ X; or one may view the whole X as belonging to
one D-dimensional subspace, i.e., R

D itself.
Although the above two trivial solutions can be easily rejected by imposing

some conditions on the solutions,13 other more difficult ambiguities may also arise
in cases such as that of Figure 1.2 in which two lines and a plane can also be
interpreted as two planes. More generally, when the subspaces are of different
dimensions one may not be able to determine the number of subspaces directly

13To reject the N -lines solution, one can put a cap on the maximum number of groups nmax; and
to reject RD as the solution, one can simply require that the maximum dimension of every subspace
is strictly less than D.
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from the degree of the polynomials fitting the data, because the degree of the
polynomial of minimum degree that fits a collection of subspaces is always less
than or equal to the number of subspaces.

To resolve the difficulty in determining the number and dimension of sub-
spaces, notice that the algebraic set ZA = ∪nj=1Sj can be decomposed into
irreducible subsets Sj’s – an irreducible algebraic set is also called a variety. The
decomposition of Z into {Sj}nj=1 is always unique. Therefore, as long as we are
able to correctly determine from the given sample points the underlying algebraic
set ZA or the associated (radical) ideal I(ZA), in principle the number of sub-
spaces n and their dimensions {dj}nj=1 can always be uniquely determined in a
purely algebraic fashion. In Figure 1.2, for instance, the first interpretation (2 lines
and 1 plane) would be the right one and the second one (2 planes) would be in-
correct, because the two lines, which span one of the planes, is not an irreducible
algebraic set.

Having established that the problem of subspace segmentation is equivalent to
decomposing the algebraic ideal associated with the subspaces, we are left with
deriving a computable scheme to achieve the goal.

From every homogeneous component Ii of

I(ZA) = Im ⊕ Im+1 ⊕ · · · ⊕ In ⊕ · · · ,
we may compute a subspace arrangement Zi such that ZA ⊆ Zi is a subspace
embedding (see Section B.2). For each i ≥ m, we can evaluate the derivatives of
polynomials in Ii on subspace Sj and denote the collection of derivatives as

Di,j
.
= ∪x∈Sj

{∇f |x, ∀f ∈ Ii}, j = 1, 2, . . . , n. (4.54)

Obviously, we have the following relationship:

Di,j ⊆ Di+1,j ⊆ S⊥
j , ∀i ≥ m. (4.55)

Then for each Ii, we can define a new subspace arrangement as

Zi
.
= D⊥

i,1 ∪D⊥
i,2 ∪ · · · ∪D⊥

i,n. (4.56)

Notice that it is possible that Di,j = Di,j′ for different j and j′ and Zi con-
tains less than n subspaces. We summarize the above derivation as the following
theorem.

Theorem 4.8 (A Filtration of Subspace Arrangements). Let I(ZA) = Im ⊕
Im+1⊕ · · · ⊕ In⊕ · · · be the ideal of a subspace arrangement ZA. Let Zi be the
subspace arrangement defined by the derivatives of Ii, i ≥ m as above. Then we
obtain a filtration of subspace arrangements:

Zm ⊇ Zm+1 ⊇ · · · ⊇ Zn = ZA,

and each subspace of ZA is embedded in one of the subspaces of Zi.

The above theorem naturally leads to a recursive scheme that allows us to de-
termine the correct number and dimensions of the subspaces in ZA. Specifically,
we start with n = 1 and increase n until there is at least one polynomial of degree
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n fitting all the data, i.e., until the matrix V n(D) drops rank for the first time.
For such an n, we can use Algorithm 4.4 to separate the data into n subspaces.
Then we can further separate each one of these n groups of points using the same
procedure. The stopping criterion for the recursion is when all the groups cannot
be further separated or the number of groups n reaches some nmax.14

4.3.4 The Recursive GPCA Algorithm
To summarize the above discussions, in principle we can use the following algo-
rithm to recursively identify and segment subspaces in a subspace arrangement Z
from a set of samples X .

Function Recursive-GPCA(X)
n = 1;
repeat

build a data matrix V n(D)
.
= [νn(x1), . . . , νn(xN )]T ∈ R

Mn(D)×N via the
Veronese map νn of degree n;
if rank(V n(D)) < Mn(D) then

compute the basis {cn`} of the null space of V n(D);
obtain polynomials {pn`(x)

.
= cTn`νn(x)};

Y = ∅;
for j = 1 : n do

select a point xj from X \ Y ;
obtain the subspace Sj spanned by the derivatives span{∇pn`(xj)};
find the subset Xj ⊂X that belong to the subspace Sj ;
Y ← Y ∪Xj ;
Recursive-GPCA(Xj); (with Sj now as the ambient space)

end for
n← nmax;

else
n← n+ 1;

end if
until n ≥ nmax.

Figure 4.5 shows the result of apply the Recursive GPCA algorithm to a set of
points sampled from two lines and one plane. The points are corrupted by about
5% noises and the algorithm seems to tolerate them well. The appearance of a
third “ghost” line in the final solution clearly illustrates the recursive segmentation
process: points at the intersection of the two planes segmented at the highest level
get assigned to both planes depending on the distances, which are random due to
the noises.

14For example, the inequality Mn(D) ≤ N imposes a constraint on the maximum possible number
of groups nmax.
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Figure 4.5. Recursive segmentation of the data points on one plane and two lines. Initially
the points are partitioned into two planes. Then one of the planes if further partitioned into
three lines. Notice that a “ghost” line appears, because points on the intersection of the two
planes form a new line. The arrows on each subspace indicate the normal vectors.

4.4 Relationships between GPCA, K-Subspaces, and
EM

In Section 3.3.3, we have discussed the relationships between K-subspaces and
EM. In this section, we reveal their relationships with GPCA through the special
case of hyperplane arrangements. Let bj be the normal vectors to an arrangement
of hyperplanes Sj , j = 1, . . . , n, respectively.

We know from Chapter 3 that, under reasonable assumptions, both the
K-subspaces and the EM methods minimize an objective of the form

min
{bj}

N∑

i=1

n∑

j=1

wij
∥∥bTj xi

∥∥2
. (4.57)

In the case of K-subspaces, wij is a “hard” assignment of xi to the subspaces:
wij = 1 only if xi ∈ Sj and 0 otherwise. The above objective function becomes
exactly the geometric modeling error. In the case of EM, wij ∈ [0, 1] is the prob-
ability of the latent random variable zi = j given xi. Then wij plays the role as a
“soft” assignment of xi to group j.
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Following the same line of reasoning, we can replace wij with an even “softer”
assignment of membership:

wij
.
=

1

n

∏

l 6=j

∥∥bTl xi
∥∥2 ∈ R. (4.58)

Notice that, in general, the value of wij is large when xi belongs to (or is close to)
Sj , and the value is small when xi belongs to (or is close to) any other subspace.
With this choice of wij , the objective function becomes

min
{bj}

N∑

i=1

n∑

j=1

( 1

n

∏

l 6=j

∥∥bTl xi
∥∥2

)∥∥bTj xi
∥∥2

=
N∑

i=1

n∏

j=1

∥∥bTj xi
∥∥2
. (4.59)

This is exactly the objective function that all the algebraic methods are based
upon. To see this, notice that

N∑

i=1

n∏

j=1

∥∥bTj xi
∥∥2

=

N∑

i=1

pn(xi)
2 =

N∑

i=1

(
cTnνn(xi)

)2
. (4.60)

Not so surprisingly, we end up with a “least-squares like” formulation in terms
of the embedded data νn(x) and the coefficient vector cn. Notice that the above
objective function can be rewritten as

N∑

i=1

(
cTnνn(xi)

)2
=

∥∥V n(D)cn
∥∥2
. (4.61)

The least-squares solution of cn is exactly given by the eigenvector associated
with the smallest eigenvalue of the matrix V n(D).

The K-subspaces or EM methods minimizes its objective iteratively using bj
computed in the previous iteration. However, one key observation in the GPCA
algorithm is that the derivative of the vanishing polynomial pn(x) = cTnνn(x)
at the sample points provide information about the normal vectors bj . Therefore,
the GPCA algorithm does not require initialization and iteration but still achieves
a goal similar to that of K-subspaces or EM.

4.5 Bibliographic Notes
The difficulty with initialization for the iterative clustering algorithms that we
have presented in the previous chapter has motivated the recent development of
algebro-geometric approaches to subspace segmentation that do not require ini-
tialization. [Kanatani, 2001, Boult and Brown, 1991, Costeira and Kanade, 1998]
demonstrated that when the subspaces are orthogonal, of equal dimensions, and
with trivial intersection, one can use the SVD of the data to define a similarity
matrix from which the segmentation of the data can be obtained using spectral
clustering techniques. Unfortunately, this method is sensitive to noise in the data,
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as pointed out in [Kanatani, 2001, Wu et al., 2001], where various improvements
are proposed. When the intersection of the subspaces is nontrivial, the segmen-
tation of the data is usually obtained in an ad-hoc fashion again using clustering
algorithms such as K-means. A basis for each subspace is then obtained by ap-
plying PCA to each group. For the special case of two planes in R

3, a geometric
solution was developed by [Shizawa and Mase, 1991] in the context of segmenta-
tion of 2-D transparent motions. In the case of subspaces of co-dimension one, i.e.,
hyperplanes, an algebraic solution was developed by [Vidal et al., 2003b], where
the hyperplane clustering problem is shown to be equivalent to homogeneous
polynomial factorization.

The GPCA algorithm for the most general case15 was later developed in
[Vidal et al., 2004]; and the decomposition of the polynomial(s) was based on
differentiation, a numerically better-conditioned operation. The GPCA algorithm
was successfully applied to solve the motion segmentation problem in com-
puter vision [Vidal and Ma, 2004]. The generalization to arrangements of both
linear and quadratic surfaces was first studied by [?], which we will present in
Chapter 12. Robustness issues of the algorithm were addressed in the paper of
[Huang et al., 2004], and Chapter 5 will discuss them in more detail.

4.6 Exercises
Exercise 4.1 For each f = 1, . . . , F , let {xfi ∈ R

D}N
i=1 be a collection of N points

lying in n hyperplanes with normal vectors {bfj}n
j=1. Assume that x1i, x2i, . . . , xFi cor-

responds to each other, i.e., for each i = 1, . . . , N there is a j = 1, . . . , n such that for
all f = 1, . . . , F , we have b>

fjx1i = 0. Propose an extension of the GPCA algorithm that
computes the normal vectors in such a way that b1j , b2j , . . . bFj correspond to each other.

Hint: If pfn(x) = c>
f νn(x) = (b>

f1x) · · · (b>
fnx) and the ith set of points

x1i, x2i, . . . , xFi corresponds to the jth group of hyperplanes, then bfj ∼ ∇pfn(xfi).

15That is, an arbitrary number of subspaces of arbitrary dimensions.
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Chapter 5
Statistical Techniques and Robustness
Issues

The GPCA algorithms developed in the previous chapter are based on purely
(linear) algebraic techniques. In practice, these techniques can tolerate moder-
ate noise in the data or numerical error in the computation. However, they are not
designed to deal with large amount of noises or outliers in the data. In addition,
many of the statistic properties of the subspace-segmentation problem are not suf-
ficiently harnessed so as to improve the performance of the GPCA algorithm. In
this chapter, we switch the gears a little bit and show how to incorporate vari-
ous statistical techniques with the algebraic GPCA algorithm so as to improve its
numerical stability and statistical robustness.

As there are usually many different ways to improve multiple aspects of the
GPCA algorithm, it is impossible for us to examine here in detail every possible
scenario. Instead, we decide to select a few representative statistical techniques
and demonstrate how to use them to improve GPCA:

1. The vanishing polynomials estimated using the least-square fitting in the
basic GPCA are not necessarily the optimal ones for segmenting the data
points into the subspaces. In Section 5.1, we show how certain techniques
from linear discriminant analysis can help to improve the polynomials
estimated.

2. The normal vectors estimated using the derivatives of the vanishing polyno-
mials at only one point per subspace can certainly be improved if they can
be estimated collectively from all the points on the same subspace. How-
ever, we must deal with the difficulty that we do not know which points
belong to the same subspace. In Section 5.2, we show how this difficulty
can be resolved using the majority voting techniques in statistics.
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3. We have seen in the previous chapter (as well as in Appendix B) that
one can determine the number of subspaces and their dimensions from
a sufficient number of samples via purely algebraic means. However, in
practice, when the data are corrupted with noise, it becomes a rather chal-
lenging problem to determine the correct number of subspaces and their
dimensions. In Section 5.3, we show how to adopt proper model-selection
criterion for subspace arrangements.

4. Real data are often corrupted with outliers. In Section 5.4, we introduce
some robust statistical techniques that have been shown to be effective for
the subspace-segmentation problem in the presence of a significant amount
(say up to 50%) of outliers in the sample data. In particular, we examine
the influence function method, multivariate trimming, and random sample
consensus (RANSAC).

5.1 Discriminant Analysis
Just like PCA, GPCA aims to find multiple subspaces that best fit the (embedded)
data samples. It is based on the notion that we are able to correctly identify all the
polynomials that fit the data. However, from a practical viewpoint, identifying all
the polynomials simultaneously from noisy data can be a very difficult problem.
When the data is noisy, it sometimes can be very difficult even to determine the
number of polynomials from the spectrum of the matrix V n(D). In general, if
the number of polynomials were under-estimated, the resulting subspaces would
over-fit the data;1 and if the number of polynomials were over-estimated, the
resulting subspaces would under-fit the data.

Obviously, both over-fitting and under-fitting result in incorrect estimates for
the subspaces. However, do they necessarily result in equally bad segmentation
of the data? The answer is no. Between over-fitting and under-fitting, we actu-
ally would favor over-fitting. The reason is that, though over-fitting results in
subspaces that are larger than the original subspaces, but it is a zero-measure
event that any over-estimated subspace contains simultaneously more than one
original subspace. Thus, the grouping of the data points may still be correct. For
instance, consider the extreme case that we choose only one polynomial that fits
the data, then the derivatives of the polynomial, evaluated at one point per sub-
space, lead to n hyperplanes. Nevertheless, these over-fitting hyperplanes will in
general result in a correct grouping of the data points. One can verify this with the
introductory example we discussed in Section 4.2.1. Either of the two polynomi-
als p21(x) = x1x3 and p22(x) = x2x3 leads to two hyperplanes that segment the
line and the plane correctly.

However, the GPCA algorithm is not designed for finding the polynomial(s)
that are best at discriminating between noisy data samples that belong to different

1That is, the dimensions of some of the subspaces would be larger than the true ones.
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subspaces. From a statistical viewpoint, the polynomial that best fits the embed-
ded data points is not necessarily the one that best clusters the data points into
the subspaces. If the distributions of the data points are known (e.g., mixtures
of Gaussians), many techniques from discriminant analysis in statistics can offer
principled solutions to the optimal clustering of the data points. These techniques
include Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis
(QDA), and Regularized Discriminant Analysis (RDA) etc. [Hastie, 1984]. It is
beyond the scope of this book to discuss all such techniques.2 In this section, we
show how we can adopt the concepts from Fisher Linear Discriminant Analysis
(LDA)3 to improve the performance of the GPCA algorithm.

5.1.1 Fisher Linear Discriminant Analysis (LDA)
Given a set of labeled sample points {xi}Ni=1 drawn from multiple, say n, clusters,
the Fisher linear discriminant analysis aims to

Find a linear combination x̂ = cTx such that the within-cluster
variance is minimized relative to the between-cluster variance.

As discriminant analysis is primarily a supervised-learning method, it requires
that the membership of samples is known. However, as we will see in the next
section, some of the key notions of discriminant analysis can be adopted by GPCA
to improve its performance without knowing the membership.

To minimize the within-cluster variance, we would like all data samples to be
as close to their respective cluster means as possible. Thus for a given cluster j
with the mean µj ∈ R

D, we aims to minimize the following objective:

min JWj

.
=

Nj∑

i=1

‖x̂i − µ̂j‖2 =

Nj∑

i=1

‖xTi c− µTj c‖2 (5.1)

= cT
( Nj∑

i=1

(xi − µj)(xi − µj)
T
)
c
.
= cTWjc (5.2)

with {xi}Nj

i=1 belong to the jth cluster, j = 1, 2, . . . , n. We will call Wj the
within-cluster variance matrix for the jth cluster.

To best separate the n clusters from each other, we would also like the cluster
means themselves to be as far apart as possible. Let µ̄ be the mean of the n cluster

2Most of the techniques of discriminant analysis are for supervised learning anyway. They are not
directly usable in our unsupervised setting.

3Fisher LDA coincides with conventional LDA when all the clusters are Gaussian distributions
with the same covariance. Although this assumption does not strictly apply to the statistical model
of subspaces of different dimensions (given in Section 3.3.2), key ideas of Fisher LDA may still be
adopted by GPCA.
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means {µj}nj=1. Thus, we would like to maximize the variance of means:

max JB
.
=

1

n

n∑

j=1

‖µ̂j − ˆ̄µ‖2 =
1

n

n∑

j=1

‖µTj c− µ̄T c‖2 (5.3)

= cT
( 1

n

n∑

j=1

(µj − µ̄)(µj − µ̄)T
)
c
.
= cTBc. (5.4)

The matrix B defined above is called the between-cluster variance matrix for n
clusters with cluster means {µj}nj=1.

The objective of the Fisher LDA is to find the line c ∈ R
D that minimizes the

projected within-cluster variance cTWc relative to the projected between-cluster
variance cTBc. We can accomplishing this by minimizing the ratio of these two
variances, which takes the form of the Rayleigh Quotient:
Definition 5.1 (Rayleigh Quotient). For two square symmetric matrices W,B ∈
R
D×D and a vector c ∈ R

D, the Rayleigh Quotient is the ratio

R(c)
.
=

cTWc

cTBc
. (5.5)

From ∇R(c) = 0, one can show that the unit vector c that minimizes the
Rayleigh Quotient is the minimal generalized eigenvector of the matrix pair
(W,B). That is, c satisfies the equation

Wc = λBc for some λ ∈ R. (5.6)

Furthermore, if B is invertible, then c is just the eigenvector of the matrix B−1W
associated with the smallest eigenvalue λmin.

5.1.2 Fisher Discriminant Analysis for Subspaces
The basic idea of GPCA, as described in the previous chapters, is to fit the entire
data set sampled from an arrangement of subspaces with a set of polynomials
so that the subspaces are the common zero set of the polynomials. If the data
samples are drawn from an arrangement of hyperplanes, then the polynomials are
all generated by a factorable polynomial:

p(x) =
n∏

j=1

(
bTj x

)
= cT νn(x) = 0 (5.7)

with n the number of (different) hyperplanes and bj the normal vector to the jth
plane. In this case, it is very easy to find the coefficient vector c. The kernel of the
data matrix V n(D) is only one-dimensional, so the smallest singular vector will
readily yield the vector c up to a scale.

However, if the data samples are drawn from an arrangement of linear sub-
spaces, not all of which are hyperplanes in R

D, then in general the kernel of
V n(D) is multi-dimensional and the vectors c are in general linear combinations
of the coefficients of polynomials of the form (5.7).
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In the presence of noise, it is likely that p(x) 6= 0, but we would like to find the
coefficient vector c that minimizes the following least-square fitting error

min JW
.
=

N∑

i=1

|p(xi)|2 = cT
( N∑

i=1

νn(xi)νn(xi)
T
)
c (5.8)

= cT
[
V n(D)TV n(D)

]
c
.
= cTWc, (5.9)

where the matrix W will be called the within-subspace scatter matrix. The
eigenvectors of W associated with its smallest eigenvalues form a basis for the
coefficients c of all the polynomials that fit the data set with a given error thresh-
old. Nevertheless, the polynomial that minimizes JW is not necessarily the best
for separating the noisy data into their respective subspaces.

Let us examine the derivative of the polynomial at each of the data samples.
Let us assume that the data sample x1 lies exclusively in the subspace S1. Then
we have:

∇p(x1) =
( n∏

j=2

bTj x1

)
b1 = cT∇νn(x1). (5.10)

The direction of∇p(x1) in (5.10) is the same as the vector b1, and its magnitude
is given by

∥∥∇p(x1)
∥∥2

=
∣∣∣
( n∏

j=2

bTj x1

)∣∣∣
2

. (5.11)

The average of the quantity ‖∇p(x1)‖ over all x1 in S1 gives a good measure
of “distance” from S1 to

⋃n
j=2 Sj , the union of the other subspaces in the model.

We leave it as an exercise for the reader to verify for n = 2 lines in R
2, what

the value
∫

x∈S1
‖∇p(x)‖2dx is when x is a zero-mean Gaussian distribution in

S1. Thus, for the segmentation purpose, so we would like to find the coefficient
vector c that maximizes ‖∇p(x)‖2.

max JB
.
=

N∑

i=1

∥∥∇p(xi)
∥∥2

= cT
( N∑

i=1

∇νn(xi)∇νn(xi)T
)
c
.
= cTBc. (5.12)

We will call B the between-subspace scatter matrix.
The coefficient vector c that simultaneously minimizes the polynomial evalu-

ated at each of the samples while maximizing the norm of the derivative at each
point can be obtained by simply minimizing the ratio of these two metrics.

Definition 5.2 (Segmentation Polynomial). The Segmentation Polynomial p(x) =
cT νn(x) is specified by the coefficient vector c∗ such that

c∗ = arg min
c

cTWc

cTBc
. (5.13)

As before, the solution c∗ is given as the generalized eigenvector associated
with the smallest generalized eigenvalue of the matrix pair (W,B).
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This ratio is just like the Rayleigh quotient described earlier in Fisher LDA.
Let us compare the within-cluster variance matrix and the within-subspace scatter
matrix. The former measures the squared Euclidean distance between samples and
their cluster means; the latter measures the squares of the polynomial evaluated at
the samples, which can be regarded as a squared “distance” between samples and
the linear subspaces they lie on. Similarly we can compare the between-cluster
variance matrix and the between-subspace scatter matrix. The former measures
the squared Euclidean distance between cluster means; the latter measures the
squared norms of the derivative of the polynomial evaluated at the samples, which
can be regarded as a squared “distance” between one subspace to all the other
linear subspaces in the arrangement.

The minimization of the Rayleigh quotient only requires thatW andB are real,
symmetric, positive semi-definite matrices. Thus the vector c∗ that minimizes this
ratio will be the minimal generalized eigenvector of W and B. In our context, the
within-subspace scatter matrix B will always be full rank, because otherwise all
of the data samples can be fitted with polynomials of degree lower than n. As
a result, the vector c∗ is simply the eigenvector of B−1W associated with the
smallest eigenvalue.

5.1.3 Simulation Results
In the Basic GPCA Algorithm 4.4, the fitting polynomials p(x) are estimated
from eigenvectors of the matrixW = V n(D)TV n(D). We can replace the fitting
polynomials with the Segmentation Polynomials estimated from the eigenvectors
of the matrix pair B−1W . For convenience, we call the resulting algorithm as
Fisher GPCA.

To verify the improvement in performance of the GPCA algorithm, we present
below a few simulations with synthetic data. Figure 5.1 shows an example data set
that we will use in the first two experiments to evaluate the performance of Fisher
GPCA in comparison with the basic GPCA algorithm. Notice in this case that the
zero set of the Segmentation Polynomial (asymptotically) approximates a union
of three planes, which results in a correct segmentation of the three subspaces –
the two lines are contained in two of of the planes, respectively.

Comparison of the Singular-Value Spectrums

The first experiment demonstrates how the normalization of W by B−1 may
significantly improves the singular-value spectrum of W . That is, it makes the
null space of W less sensitive to the corruption of noise, which makes the es-
timation of polynomials that fit the data a better-conditioned problem. To see
this, let us consider a set of points drawn from two lines and one plane in R

3

(see Figure 5.1) – 1000 points from the plane and 200 points from each line –
with 5% Gaussian noise added. As Figure 5.2 illustrates, the generalized eigen-
values of the Rayleigh Quotient provide a much sharper “knee point” than the
singular values of the (embedded) data matrix V n(D) (or the eigenvalues of
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Figure 5.1. Left: The zero set of a Segmentation Polynomial for data samples drawn
from two lines and a plane with 5% additive Gaussian noise. Right: The set of subspaces
estimated by Fisher GPCA.

W = V n(D)TV n(D)). With the new spectrum, one can more easily estimate
the correct number of polynomials that fit the data (in this case four polynomials).

Figure 5.2. Top: Plot of the eigenvalues of the within-subspace scatter matrix W . Bottom:
Plot of the eigenvalues of the matrix B−1W derived from the Rayleigh quotient.

Fisher GPCA versus GPCA

In this experiment, we randomly generate a number of different arrangements
with one plane and two lines. The lines are chosen so as to have a random angle
larger than 30◦. The sample number of samples are drawn from the plane and the
lines as before. We then add between 1% and 7% Gaussian noise and apply both
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the basic GPCA algorithm and the Fisher GPCA to the data set, instructing them
to fit the data with three linear subspaces. This test was performed 1000 times
at each noise level, and for each test run the misclassification rate was computed
using the known a priori sample labels.

Figure 5.3 shows the result of our experiment. The average misclassification
rate is displayed as a function of the noise level. These results verify that while

Figure 5.3. Plot of average misclassification error as a function of the noise for the GPCA
algorithm and the Fisher GPCA algorithm.

the two algorithms have negligible difference in error for low noise level, as
we increase the amount of noise, the difference in performance becomes much
more dramatic. The ability of any set of subspaces to segment noisy data sam-
ples becomes limited as noise increases since samples near the intersections of
the subspaces are more likely mis-classified. Our results show that Fisher GPCA
approaches this limit.

To better understand the performance of Fisher GPCA, we can analyze the dis-
tribution of misclassification rates over the 1000 test runs for a given noise level.
In Figure 5.4, the misclassifications rates for 1000 test runs of the data set with
6% noise are sorted and displayed as a distribution. These distributions reveal that

Figure 5.4. Left: Plot of misclassification error for 1000 test runs of GPCA and Fisher
GPCA for 6% additive Gaussian noise.

both algorithms have performance types that can be grouped into one of three cat-
egories: (Class A), where the model and the segmentation are estimated correctly;
(Class B), where the segmentation is reasonable, but the model estimation is in-
correct (i.e., one or more of the subspaces has incorrect dimension); and (Class
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C), where neither the model nor the segmentation is correct. As Figure 5.4 demon-
strates, even in the presence of 6% noise, Fisher GPCA can produce a meaningful
segmentation of the noisy data samples almost 98% of the time.

Piecewise Linear Fitting Nonlinear Data

Though Fisher GPCA is designed for subspace arrangements, it can be used to
provide a piecewise linear approximation to any non-linear manifold as well. As
most real world data is not necessarily strictly piecewise linear, small nonlinear-
ity can be treated as noise (or deviation) from a (piecewise) linear model. Then
the ability of Fisher GPCA in dealing with noise and in improving the separa-
tion of clusters provide strong justification for it’s potential success in modeling
nonlinear data set.

Figure 5.5 shows an example with data samples drawn from a hemisphere in
R

3 with radius 5 in the presence of 2% Gaussian noise. We instruct Fisher GPCA
to fit this non-linear data set with 3 or 6 subspaces, respectively. The results of
the segmentation and subspaces fitted to the data set are displayed in Figure 5.5.
Notice that the segmentation results for 6 groups resemble half of a dodecahedron,
a regular polyhedron with 12 congruent planar faces. The results suggest that the
algorithm places the 6 planes almost evenly around the sphere.

Figure 5.5. Left: Samples drawn from a hemisphere in R
3 clustered into 3 and 6 groups,

respectively. Right: Planes fitted to the data by the Fisher GPCA algorithm.
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5.2 Voting Techniques
In the basic GPCA algorithm, the basis for each subspace is estimated from the
derivatives of the fitting polynomials at a single representative point. However,
if the chosen point is noisy, it may cause a large error in the estimated subspace
and subsequently the segmentation. From a statistical viewpoint, more accurate
estimates of the subspace can be obtained if we are able to use the derivatives at
many points in the same subspace. However, a fundamental difficulty here is that
we do not know which points belong to the same subspace in the first place.

There is yet another issue. In the basic GPCA algorithm, the rank of the deriv-
atives at each point is the co-dimension of the subspace to which it belongs. In
the presence of noise, it is suggested to use PCA to determine the rank. However,
the estimated rank can be wrong if the point is noisy. Furthermore, it is difficult
to find a common threshold for PCA that works for different subspaces.

For the rest of the section, we assume that we already know the correct number
of subspaces and their individual dimensions.4 We show below how to improve
the estimates of the subspaces from the derivatives of all the sample points.

5.2.1 Stacks of Bases and Counters
Suppose the subspace arrangement is a union of n subspaces: ZA = S1 ∪ S2 ∪
· · · ∪ Sn. Let us assume that the dimensions of the subspaces are d1, d2, . . . , dn
and their co-dimensions are ci = D − di, i = 1, 2, . . . , n. From the value of
the Hilbert function hI(n) (see Appendix B), we know there should be hI(n)
linearly independent polynomials of degree n that fit the arrangement. From a set
of sample data X = {xi}, we may find the set of fitting polynomials

P
.
= {p1(x), p2(x), . . . , phI(n)(x)}

from the eigenvectors associated with the hI(n) smallest eigenvalues of the matrix
W = V n(D)TV n(D).

Now suppose we pick a sample point x1 from X . The derivatives of the fitting
polynomials are

DP (x1)
.
= {∇p1(x1),∇p2(x1), . . . ,∇phI(n)(x1)}. (5.14)

If there is no noise, rank(DP (x1)) will be exactly the co-dimension of the sub-
space to which x1 belongs. However, when the data are noisy, it can be very
difficult to determine the co-dimension in this way. In principle, x1 can be in any
of subspaces. Without loss of generality, we assume that c1, c2, . . . , cn have m
distinct values c′1, c′2, . . . , c′m. As we do not know the exact dimension yet, we
can compute a set of basis candidates

Bi(x1) ∈ R
D×c′i , i = 1, 2, . . . ,m, (5.15)

4We will study in the next section the case in which the number of subspaces and their dimensions
are not known.
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as Bi(x1) collects the first c′1, c′2, . . . , c′m principal components of DP (x1).
Thus, Bi(x1) is a D × c′i orthogonal matrix. The rationale here is, as we cannot
yet decide the correct co-dimension at x1, we keep all the possibilities open.

We also create a stack of bases of dimension c′i:

Ui = {Ui(1), Ui(2), · · ·Ui(J)}, (5.16)

where each Ui(j) is a D × c′i orthogonal matrix for all j = 1, 2, . . . , J .
Correspondingly, we create another stack of numbers:

ui = {ui(1), ui(2), · · ·ui(J)}, (5.17)

where each ui(j) is an integer that counts how many sample points xk ∈ X with
Bi(xk) = Ui(j).

5.2.2 A Voting Scheme for Subspaces
With the above definitions, we now can outline a voting scheme that will select
a set of n bases of the subspaces that in a sense achieve the highest consensus
among all the sample points. For every sample point xk ∈X ,

1. we compute a set of basis candidates Bi(xk), i = 1, . . . ,m as defined in
equation (5.15);

2. for each Bi(xk), we compare it with each of the bases in the stack Ui:
(a) if Bi(xk) = Ui(j) for some j, then increase the value of ui(j) by

one;
(b) if Bi(xk) is different from any of the bases in Ui, then add Ui(J +

1) = Bi(xk) as a new basis to the stack Ui, and also add a new
counter ui(J +1) to the stack ui with the initial value ui(J +1) = 1.

In the end, the bases of the n subspaces are chosen to be the n bases in the stacks
{Ui}mi=1 that have the highest votes according to the corresponding counters in
the stacks {ui}mi=1. Once the subspaces of the highest consensus are chosen as
above, each data point is assigned to the closest subspace.

In the above scheme, if the data are noisy, in order to compare Bi(xk) with
bases in Ui, we need to set an error tolerance. This tolerance, denoted as τ , can be
a small subspace angle chosen by the user. Thus, if the subspace angle between
Bi(xk) and Ui(j) is less than τ , we increase the value of the counter ui(j) by one
and set the new value of Ui(j) to be a weighted sum:

Ui(j) ←
1

ui(j) + 1

(
ui(j)Ui(j) +Bi(xk)

)
. (5.18)

Notice that the weighted sum may no longer be an orthogonal matrix. If so, ap-
ply the Gram-Schmidt process to make Ui(j) an orthogonal matrix again. We
summarize the above process as Algorithm 5.1.

There are a few important features about the above voting scheme, in
comparison with and different from other well-known statistical methods:
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Algorithm 5.1 (Generalized Principal Component Analysis with Voting).
Given a set of samples {xk}N

k=1 in RD and a parameter for angle tolerance τ , fit n linear
subspaces with co-dimensions c1, c2, . . . , cn:

1: Let m be the number of distinct co-dimensions. Allocate u1, u2, . . . , um be m stacks
of counters and U1, U2, . . . , Um be m stacks of basis candidates.

2: Construct V n(D) = [νn(x1), . . . , νn(xN )].
3: Estimate the set of fitting polynomials P (x), and compute DP (xk) for all k.
4: for all sample xk do
5: for all 1 ≤ i ≤ m do
6: Assume xk is drawn from a subspace of co-dimension ci. Find the first ci

principal vectors Bi(xk) ∈ RD×ci of DP (xk).
7: Increase ui(j) by one if the subspace angle between Bi(xk) and Ui(j) is less

than τ and reset Ui(j) to be the weighted sum in (5.18). If the angle is always
larger than τ for all j, create a new basis candidate in Ui and a new counter in ui

with initial value one.
8: end for
9: end for

10: Choose the n highest vote(s) in {ui} with their corresponding base(s) in {Ui}.
11: Assign the samples to their closest subspaces.
12: Re-estimate the basis of each subspace from the derivatives of all the points that belong

to the same subspace.

1. K-subspaces: The K-subspaces algorithm keeps (iteratively updating) one
basis for each subspace; while the voting scheme essentially keeps multi-
ple basis candidates for the subspaces through the process. However, the
above algorithm does not have the same problem with local minima as
K-subspaces does. The weighted sum behaves as the estimation (averag-
ing) step of K-subspaces. As we have seen from experiments, the voting
algorithm has a performance very close to that of K-subspaces (or EM)
initialized by the GPCA voting algorithm.

2. RANSAC: The RANSAC method computes multiple candidate models from
multiple (down-sampled) subsets of the data and then chooses the one
which achieves the most dominant consensus; while in GPCA, none of the
n subspaces is likely to achieve a dominant consensus. This largely pre-
vents us to directly apply RANSAC to GPCA (for more discussions on
RANSAC, see Section 5.4). However, the voting scheme allows us to si-
multaneously identify the n subspaces that get the n highest votes relative
to all other possible subspaces.

5.2.3 Simulation Results
We here give a preliminary comparison of the various algorithms for segmenting
subspaces that we have studied so far. They include: The EM algorithm, the K-
subspaces algorithm, the basic GPCA algorithm, and the GPCA algorithm with
voting (as well as some combination of them).
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We randomly generated some subspace arrangements of some pre-chosen di-
mensions. For instance, (2, 2, 1) indicates an arrangement of three subspaces of
dimensions 2, 2, 1, respectively. We then randomly draw a number of samples
from them. The samples are corrupted with Gaussian noises. Here we choose the
level of noise to be 4%.5 The error is measured in terms of the percentage of sam-
ple points that are wrongfully grouped.6 All cases are averaged over 200 trials.
The performance of all the algorithms are compared in Table 5.1.

Table 5.1. The percentage of sample points mis-grouped by different algorithms. (Note:
The number of subspaces and their dimensions are given to all algorithms. The EM and K–
Subspaces algorithms are randomly initialized. But “GPCA-Voting+K-Subspaces” means
the K-Subspaces method initialized with the GPCA-Voting algorithm.)

Methods (2, 2, 1) ∈ R
3 (2, 2, 2) ∈ R

3 (4, 2, 2, 1) ∈ R
5 (4, 4, 4, 4) ∈ R

5

EM 29% 11% 53% 20%
K-Subspaces 27% 12% 57% 25%
GPCA-Basic 10.3% 10.6% 39.8% 25.3%
GPCA-Voting 6.4% 9.2% 5.7% 17%
GPCA-Voting 5.4% 8.6% 5.7% 11 %
+ K-Subspaces

5.3 Model-Selection Methods
Most subspace-segmentation algorithms (e.g., EM, K-subspaces, GPCA-voting)
assume that the number of subspaces and their dimensions are known or given. If
they are not given, the problem of fitting multiple subspaces to a data set becomes
much more elusive. For instance, sample points drawn from two lines and one
plane in R

3 can also be fit by two planes, one of which is spanned by the two
lines. In Chapter 4, we have suggested that in this case one can apply the basic
GPCA algorithm in a recursive fashion to identify all the subspaces (and their
dimensions).

However, when there is significant noise in the given data, the purely algebraic
GPCA algorithm may fail to return a meaningful solution. In fact, up till now, we
have been purposely avoiding a fundamental difficulty in our problem: it is inher-
ently ambiguous in fitting multiple subspaces for any given data set, especially
if the number of subspaces and their dimensions are not given a priori. When
the data is noisy or nonlinear, any multi-subspace model unlikely will fit the data
perfectly except for the pathological cases: 1. All points are viewed as in one

5The percentage is the variance of the Gaussian relative to the diameter of the data.
6Notice that even with perfect knowledge of the subspaces, with noise being added to a sample,

the closest subspace to the sample may change as a consequence.
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D-dimensional subspace – the ambient space; 2. Every point is viewed as in an
individual one-dimensional subspace. Furthermore, from the example of a hemi-
sphere (Figure 5.5), the more number of planes we use, the higher accuracy may
we achieve in fitting the data. Thus, a fundamental question we like to address in
this section is:

Among a class of subspace arrangements, what is the “optimal”
model that fits a given data set?

From a practical viewpoint, we also need to know under what conditions the
optimal model exists and is unique, and more importantly, how to compute it
efficiently.

In Appendix C, we have seen that in general, any model selection criterion
aims to strike a balance between the complexity of the resulting model and the
fidelity of the model to the given data. However, its exact form often depends on
the class of models of interest as well as how much information is given about the
model in advance. If we were to apply any of the model-selection criteria (or their
concepts) to subspace arrangements, at least two issues need to be addressed:

1. We need to know how to measure the model complexity of arrangements
of subspaces (possibly of different dimensions).

2. As the choice of a subspace arrangement involves both continuous parame-
ters (the subspace bases) and discrete parameters (the number of subspaces
and their dimensions), we need to know how to properly balance the model
complexity and the modeling error for subspace arrangements.

While model selection for subspace arrangements in its full generality is still an
open problem at this point, in the next two subsections, we introduce a few specific
approaches that address this problem from slightly different aspects. We hope
the basic concepts introduced below may help the reader to better appreciate the
subtlety and difficulty of the problem.

5.3.1 Minimum Effective Dimension
Definition 5.3 (Effective Dimension). Given an arrangement of n subspaces
ZA

.
= ∪nj=1Sj in R

D of dimension dj < D, and Nj sample points Xj drawn
from each subspace Sj , the effective dimension of the entire set ofN =

∑n
j=1Nj

sample points, X = ∪nj=1Xj , is defined to be:

ED(X, ZA)
.
=

1

N

( n∑

j=1

dj(D − dj) +

n∑

j=1

Njdj

)
. (5.19)

We contend that ED(X, ZA) is the “average” number of (unquantized) real
numbers that one needs to assign to X per sample point in order to specify the
configurations of the n subspaces and the relative locations of the sample points in
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the subspaces.7 In the first term of equation (5.19), dj(D−dj) is the total number
of real numbers (known as the Grassmannian coordinates8) needed to specify a
dj-dimensional subspace Sj in R

D; in the second term of (5.19),Njdj is the total
number of real numbers needed to specify the dj coordinates of the Nj sample
points in the subspace Sj . In general, if there are more than one subspace in ZA,
ED(X, ZA) can be a rational number, instead of an integer for the conventional
dimension.

Notice that in the above definition, the effective dimension of X depends on
the subspace arrangement ZA. This is because in general, there could be many
subspace structures that can fit X . For example, we could interpret the whole
data set as lying in oneD-dimensional subspace and we would obtain an effective
dimension D. On the other hand, we could interpret every point in X as lying
in a one-dimensional subspace spanned by itself. Then there will be N such one-
dimensional subspaces in total and the effective dimension, according to the above
formula, will also beD. In general, such interpretations are obviously over-fitting.
Therefore, we define the effective dimension of a given sample set X to be the
minimum one among all possible multiple-subspace models that can fit the data
set:9

MED(X)
.
= min
ZA:X⊂ZA

ED(X, ZA). (5.20)

Example 5.4 (Effective Dimension of One Plane and Two Lines). Figure 1.2 shows data
points drawn from one plane and two lines in R

3. Obviously, the points in the two lines
can also be viewed as lying in the plane that is spanned by the two lines. However, that
interpretation would result in an increase of the effective dimension since one would need
two coordinates to specify a point in a plane, as opposed to one in a line. For instance,
suppose there are fifteen points in each line; and thirty points in the plane. When we use
two planes to represent the data, the effective dimension is: 1

60
(2× 2× 3− 2× 22 + 60×

2) = 2.07; when we use one plane and two lines, the effective dimension is reduced to:
1
60

(2× 2× 3− 22 − 2× 1 + 30× 1 + 30× 2) = 1.6. In general, if the number of points
N is arbitrarily large (say approaching to infinity), depending on the distributions of points
on the lines or the plane, the effective dimension may approach arbitrarily close to either 1
or 2, the true dimensions of the subspaces.

As suggested by this intuitive example, the multiple-subspace model that leads
to the minimum effective dimension normally corresponds to a “natural” and
hence “efficient” representation of the data in the sense that it achieves the

7We here choose real numbers as the basic “units” for measuring complexity in a similar fashion
to binary numbers, “bits,” traditionally used in algorithmic complexity or coding theory.

8Notice that to represent a d-dimensional subspace in a D-dimensional space, we only need to
specify a basis of d linearly independent vectors for the subspace. We may stack these vectors as rows
of a d × D matrix. Any nonsingular linear transformation of these vectors span the same subspace.
Thus, without loss of generality, we may assume that the matrix is of the normal form [Id×d, G]

where G is a d × (D − d) matrix consisting of the so-called Grassmannian coordinates.
9The space of multiple-subspace models is topologically compact and closed, hence the minimum

effective dimension is always achievable and hence well-defined.
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best compression (or dimension reduction) among all possible multiple-subspace
models.

In practice, real data are corrupted with noise, hence we do not expect that the
optimal model fits the data perfectly. The conventional wisdom is to strike a good
balance between the complexity of the chosen model and the data fidelity (to the
model). This is the same rationale that has been adopted in all the model-selection
criteria. For instance, we may adopt the geometric-AIC (GAIC) criterion10 and
use the following objective to select the optimal multiple-subspace model:

Z∗
A = arg min

ZA:X̂⊂ZA

(
‖X − X̂‖2 + 2ε2ED(X, ZA)

)
, (5.21)

where ε2 is the noise variance of the data. However, there is one practical problem
in achieving this objective: it is computationally costly and the variance ε2 might
not be known a priori. We need to conduct a global search in the configuration
space of all subspace arrangements, which has very complicated topological and
geometric structures. This often results in a very difficult optimization problem.

To alleviate some of the difficulty, in practice, we may instead minimize the
effective dimension subject to a maximum allowable error residue. That is, among
all the multiple-subspace models that fit the data within a given error bound, we
choose the one with the smallest effective dimension. To this end, we define the
minimum effective dimension subject to an error tolerance τ as:

MED(X, τ)
.
= min
ZA: ‖X−X̂‖∞≤τ

ED(X̂, ZA), (5.22)

where X̂ is the projection of X onto the subspaces in ZA and the error norm
‖ · ‖∞ indicates the maximum norm: ‖X − X̂‖∞ = maxx∈X ‖x − x̂‖. Based
on the above definition, the effective dimension of a data set is then a notion that
depends on the error tolerance. In the extreme, if the error tolerance is arbitrarily
large, the “optimal” subspace-model for any data set can simply be the (zero-
dimensional) origin; if the error tolerance is zero instead, for data with random
noise, most sample points need to be treated as one-dimensional subspaces in R

D

and that brings the effective dimension up close to D.
In many applications, the notion of maximum allowable error tolerance is par-

ticularly relevant. For instance, in image representation and compression, the task
is often to find a linear or hybrid linear model to fit the imagery data subject to
a given peak signal to noise ratio (PSNR).11 The resulting effective dimension
directly corresponds to the number of coefficients needed to store the resulting
representation. The smaller the effective dimension is, the more compact or com-
pressed is the final representation. In Chapter 6, we will see exactly how the
minimum effective dimension principle is applied to image representation. The

10We here adopt the GAIC criterion only to convey the basic ideas. In practice, depending on the
problem and application, it is possible that other model selection criteria may give better performance.

11In this context, the noise is the different between the original image and the approximate image
(the signal).
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same principle can be applied to any situation in which one tries to fit a piecewise
linear model to a data set whose structure is nonlinear or unknown.

Unlike the geometric AIC (5.21), the MED objective is relatively easy to
achieve. For instance, the recursive GPCA algorithm in Section 4.3.3 can be
modified to minimize the effective dimension subject to an error tolerance. For
instance, we allow the recursion to proceeds only if the effective dimension would
decrease while the resulting subspaces still fit the data with the given error bound.

Figure 5.6 demonstrates such a recursive GPCA algorithm on segmenting syn-
thetic data drawn from two lines (100 points each) and one plane (400 points)
in R

3 corrupted with 5% uniform noise (Figure 5.6 top-left). Given a reasonable
error tolerance, the algorithm stops after two levels of recursion (Figure 5.6 top-
right). Note that the pink line (top-right) or group 4 (bottom-left) is a “ghost”
line at the virtual intersection of the original plane and the plane spanned by the
two lines.12 Figure 5.6 bottom-right is the plot of MED versus different error
tolerances for the same data set. As we see, the effective dimension decreases
monotonically with the increase of error tolerance.

5.3.2 Hilbert Function for Model Selection
Besides the effective dimension, there is another way to measure the “complex-
ity” of a subspace arrangement. For a single subspace, its dimension is a natural
measure of the complexity of the model. Suppose we have a collection of noisy
points X = {xi}Ni=1 drawn from some subspace in R

D. Let us collect the data
into a D×N matrix V . One popular method to determine the dimension d of the
subspace is by minimizing the so-called geometric-AIC (GAIC) criterion [?]:

GMDL(d) =

D∑

l=d+1

σ2
l + 2ε2d(N +D − d), (5.23)

where in our context σl is the lth singular value of the data matrix V and ε2 is
the noise variance of the column vectors of the data matrix.13 Notice that in the
GAIC expression, the term d(N +D−d) = d(D−d)+dN is exact the effective
dimension of the data set fit with a d-dimensional subspace in R

D.
Then given an arrangement of n subspaces in R

D, we may embed them into
a high-dimensional space via a Veronese map νn′ with n′ ≥ n. Then the image
of the arrangement is a single subspace in R

Mn′ (D) whose co-dimension is given
by the value of the Hilbert function hI(n′). In other words, the dimension of the
subspace is d = Mn′(D) − hI(n′). We may view the dimension of this embed-
ded subspace as a measure of complexity for the subspace arrangement. If so, a

12This is exactly what we would have expected since robust GPCA first segments the data into
two planes. If needed, the points on the ghost line can be merged with the plane by some simple
post-processing.

13In practice, ε2 is not necessarily known and can be hard to estimate.
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Figure 5.6. Simulation results. Top-left: sample points drawn from two lines and a plane in
R

3 with 5% uniform noise; Top-right: the process of recursive segmentation by the recur-
sive GPCA algorithm with the error tolerance τ = 0.05; Bottom-left: group assignment
for the points; Bottom-right: plot of MED versus error tolerance.

straightforward generalization of the GAIC criterion to subspace arrangements is

GMDL =

Mn′ (D)∑

l=hI(n′)+1

σ2
l + κ

(
Mn′(D)− hI(n′)

)(
N + hI(n

′)
)
, (5.24)

where κ ∈ R is a weighting parameter that plays a similar role as 2ε2 in the
original GAIC.

Estimating the Number of Hyperplanes

To see why in the above GMDL criterion we do not consider other values of
subspace dimension in R

Mn′ (D) than the ones given by the Hilbert function, let
us consider the example of determining a number of hyperplanes that fit a data in
R

5.14

14The importance of this example is that one can show the problem of segmenting multiple affine
motions in computer vision can be converted to the problem of segmenting multiple hyperplanes in
R5 [?, ?].
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Suppose our data are drawn from an arrangement of n hyperplanes but we only
know an upper bound for the number, say n′ ≥ n. We may embed the data by a
Veronese map of degree n′. Table B.2 gives the possible ranks of the data matrix
V 4(5) for n ≤ n′ = 4. Notice that rank(V 4(5)) = M4(5)−hI(4) = 70−hI(4).

c1 c2 c3 c4 hI(4) rank(V 4(5))

1 1 1 1 1 69
1 1 1 5 5 65
1 1 5 5 15 55
1 5 5 5 35 35

Table 5.2. Values of the Hilbert function of arrangements of up to four hyperplanes in R
5.

Figure B.2 shows a super-imposed plot of the singular values of V 4(5) of data
from the four arrangements without noise.

Figure 5.7. A super-imposed semi-log plot of the singular values when n = 1, 2, 3, 4.
The ranks drop at position 35, 55, 65, 69, which match the theoretical values of the Hilbert
function.

The above table suggests that if we embed the data by the Veronese map of the
same degree 4 ≥ N . By doing so, we over-fit the hyperplane arrangement. But
the image of the arrangement in the high-dimensional space is a subspace whose
dimension can only be one of the four possible values 35, 55, 65, 69, instead of
any value between 1 to 69. Therefore, if we only consider those values for the sub-
space dimension d in the GAIC criterion, then the optimal number of hyperplanes
n∗ can be determined as

n∗ = arg min
n≤4

{ M4(5)∑

l=hI(4)+1

σ2
l + κ

(
M4(5)− hI(4)

)(
N + hI(4)

)}
, (5.25)

where hI(4) is the value of the Hilbert function for n hyperplanes and n′ − n =
4− n trivial subspaces (the origin), N is the number of samples, and κ is a small
positive weighting constant. One can verify with simulations that the new GAIC
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criterion has better performance than other traditional model-selection criteria that
do not harness the information of the Hilbert function.

Estimating the Dimensions of Subspaces

In the above, we have shown through an example how one can incorporate model
selection criteria with Hilbert functions to help determine the rank of the data
matrix and subsequently determine the number of hyperplanes. However, if the
subspaces in the arrangement have different dimensions (instead of all being hy-
perplanes), we need to determine the dimension of each subspace too. Here we
assume we only know the dimensions of the subspaces up to some possibilities
but do not know the exact dimensions.15 Below, we show how one can harness
the information in the Hilbert function to help determine the correct dimensions

To better illustrate the basic ideas, we again use a simple example. Suppose that
we know our data are drawn from an arrangement of n = 4 subspaces in R

5. The
dimensions of the subspaces are either 4 or 3 (i.e., , of co-dimension 1 or 2.)

Table 5.3 shows the values of the Hilbert functions of the 5 possible classes of
subspace arrangements for the 4 subspaces.

c1 c2 c3 c4 hI(4) rank(V 4(5))

1 1 1 1 1 69
1 1 1 2 2 68
1 1 2 2 4 66
1 2 2 2 8 62
2 2 2 2 16 54

Table 5.3. Values of Hilbert function for arrangements of four subspaces in R
5 with

dimension 3 or 4 (codimension 1 or 2, respectively).

To determine the best subspace arrangement that fits and segments the noisy
data, we decompose the overall estimation process into three steps:

1. Segmentation via Over-Fitting Hyperplanes. We first obtain a segmen-
tation of the data by using a single polynomial that fit the best the (noisy)
data (e.g., the segmentation polynomial from Fisher GPCA)

2. Combinatorial Dimension Selection. Assume we know the class (i.e., row
of Table 5.3) of the subspace arrangements. There remains a combinatorial
problem of determining which segment needs to be fit with a subspace of
which dimension. For instance, if the class is the second row in Table 5.3,
we have to determine which segment has codimension 2, and there are ob-
viously four possible configurations: (2, 1, 1, 1), (1, 2, 1, 1), (1, 1, 2, 1), and
(1, 1, 1, 2).

15If the dimensions were known, one could simply apply the voting GPCA method introduced
earlier.
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For each configuration, we can apply PCA to each segment and identify
a basis for each subspace. Then a K-subspaces method can be applied to
further improve the estimates of the bases. Finally, we project the original
data points x to their respective subspaces as x̂. Select the configuration
that gives the smallest residual

∑ ‖x− x̂‖2 as the optimal solution for the
given model class.

3. Optimal Model Class Selection. It remains to determine which model
class gives the (globally) optimal subspace arrangement for the data. The
value of the Hilbert function h is used to measure the complexity of the
subspace arrangements. We adopt the GAIC criterion that we proposed
earlier, but replace modeling error

∑
σ2 with the residual of the optimal

configuration (found in Step 2) for each class:

i∗ = arg min
i

{ ∑
‖x− x̂‖2 +κ

(
M4(5)−hiI(4)

)(
N +hiI(4)

)}
, (5.26)

where hiI(4) = 69, 68, 66, 62, 54 for i = 1, 2, 3, 4, 5, respectively, n is the
number of samples, and κ is a small positive weighting parameter.

5.4 Robust Statistical Techniques
Given a set of sample points {xi}Ni=1 drawn from an arrangement of subspaces
{Si}Ni=1 in R

D, GPCA seeks to simultaneously infer the subspaces and segment
the data points to their closest subspaces. The key idea is to identify the set of
polynomials P (x) = {pn(x)} of degree n that vanish on (or fit) all the sample
data. The way to estimate the polynomials is to use the Veronese embedding νn of
degree n as a kernel map and embed the data points x into a higher-dimensional
space. The coefficients of each vanishing polynomial pn(x) is then in the left null
space of the following embedded data matrix

V n(D)
.
= [νn(x1), νn(x2), . . . , νn(xN )] ∈ R

Mn(D)×N , (5.27)

where Mn(D) is the number of monomials of degree n in D variables, and
dim(Null(V n(D))) is given by the Hilbert function of the subspace arrangement
(see Appendix B). Once the vanishing polynomials are found, the derivatives of
the polynomials DP (xi) = {∇p(xi)} at each sample point xi give the normal
vectors to the subspace to which it belongs, which further allows us to segment
points that belong to the same subspace. In the presence of noise, the voting
scheme introduced earlier can be used to significantly improve the stability of
the estimated subspace.

However, all these algorithms would not give a good estimation of the sub-
spaces if the sample data are corrupted by just a small amount of outliers. Figure
5.8 shows the performance of the GPCA algorithm with various percentages of
outliers. As we see, with only 6% outliers in the sample data, the segmentation
error can be as high as 50% for four subspaces of dimensions 4, 2, 2, 1 in R

5,
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Figure 5.8. Performance of GPCA with 6% Gaussian noise and different percents of
outliers.

Figure 5.9. A GPCA estimation result with 6% noise and 6% outliers (black stars) in 3-D
space. Left: apriori structure. Right: segmentation result.

respectively. More seriously, the estimated subspaces can be very far from the
ground truth, as illustrated in Figure 5.9.

The outliers affects the segmentation result mainly by influencing Null(V n),
and results in erroneous estimates of the coefficients of the fitting polynomials in
P . Therefore, to eliminate the effect of outliers, we are essentially seeking a robust
PCA method to estimate Null(V n) such that it is insensitive to the outliers, or to
reject the outliers before estimating Null(V n). Such a robust modification applies
to all GPCA algorithms mentioned before.

5.4.1 The Sample Influence Function
The most direct way to detect outliers is the “leave-one-out” method from the
influence function theory in statistics, which measures the change of the estimated
parameter by omitting one sample at a time from the sample set. Notice that for
the GPCA problem, we are not concerned with the changes of individual base
vectors in Null(V n), but rather the null space as a whole. The base vectors may
freely rotate in the same subspace, but their corresponding polynomials will fit the
subspaces equally well. Therefore, we define the influence function for the mth
sample to be:

I−(xm;V n) = 〈Null(V n),Null(V n(−m))〉, (5.28)

where 〈·, ·〉 is the subspace angle between two subspaces, and Null(V n(−m)) is
the null space of V n with themth column omitted. All samples then can be sorted
by their influence values, and the ones with the highest values will be rejected as
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“outliers” and will not be used for the estimation of the null space. Equation (5.28)
is also called the sample influence function in the literature of robust statistics.

5.4.2 First Order Approximation of the Sample Influence
Equation (5.28) is a precise expression in describing the influence of samples on
the estimation of the vanishing polynomials P (x). However, the complexity of
the resulting algorithm is rather high. Suppose we have N samples, then we need
conduct PCA N + 1 times in order to evaluate the influence values for the N
samples. In light of this setback, some first order approximations of the influence
values were developed at roughly the same period as the sample influence function
was proposed [?, ?], when the computational resource was scarcer than it is today.
In robust statistics, formulae that approximate an influence function are referred
to as theoretical influence functions. We here derive one for our problem.

Let {v1, . . . ,vc} be a basis for Null(V n), which is also the last c eigenvec-
tors of the covariance matrix V nV

T
n and c is the value of the Hilbert function

of the subspace arrangement of interest. Denote the embedded data vector as
ui = νn(xi). The vector u = νn(x) can be treated as a random vector with
a cumulative distribution function (c.d.f.) F . Therefore, its mean and covariance
matrix can be represented as:

ū(F ) =

∫
udF (u), Σ(F ) =

∫ (
u− ū(F )

)(
u− ū(F )

)T
dF (u). (5.29)

Now F can be perturbed by a change of the weighting ε ∈ [0, 1] of the mth
sample:

F̃m(ε) = (1− ε)F + εδm, (5.30)

where δm is the c.d.f. of a random variable that takes the value um with
probability one.

If we stack {v1, . . . ,vc} into a single vector T ∈ R
c·Mn(D), T is also a random

vector of F . When F becomes F̃ (ε), let T̃ (ε) be the value of T and vi(m) be the
value of the ith eigenvector vi after the change. Then we can define an influence
function I(um;T ) of themth sample as the first order approximation of the leave-
one-out influence value T̃m(ε)− T , that is,

I(um;T ) = lim
ε→0

T̃m(ε)− T
ε

= lim
ε→0




v1(m)−v1

ε
. . .

vc(m)−vc

ε


 ∈ R

c·Mn(D). (5.31)

Essentially, I(um;T ) is the first order approximation of T̃m(ε) − T =
I(um;T )ε+ h.o.t.(ε).

As derived in [?], the influence function I(um;vi)=̇ limε→0
vi(m)−vi

ε in
equation (5.31) has the form

I(um;vi) = −zi
c∑

h6=i

zhvh(λh − λi)−1 ∈ R
Mn(D), (5.32)
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where zh is the hth principal component of the sample um, i.e., the coordinate
value with respect to the hth eigenvector vh of the covariance matrix Σ(F ), and
λh is the hth eigenvalue of Σ(F ). A further discussion of this solution can be
found in [?].

The v’s and λ’s in the above equation are the ones with respect to Σ(F ) of
the whole data set, therefore only one PCA operation is required to compute
I(um;T ) for all samples, which dramatically reduces the algorithm complex-
ity. However, I(um;T ) is only a first-order approximation of the ideal influence
I−(xm;V n). Since it stacks all eigenvectors into a long vector, it can only mea-
sure the absolute changes of each individual vector. As we have mentioned earlier,
an arbitrary rotation of {v1, . . . ,vc} in the same space has zero influence on the
value of I−(xm;V n) in (5.28), but it has significant influence on the value of
I(um;T ).

5.4.3 Multivariate Trimming
The influence function method essentially tries to reject part of the samples (as
outliers) from the data set using the standard PCA algorithm. However, since the
principal vectors found by PCA are eigenvectors of the corresponding covariance
matrix, we can also seek a robust estimator of the covariance matrix that can
eliminate the outlier effect. One of the popular robust estimators is the multivariate
trimming (MVT) method [?] because of its computational efficiency and tolerance
of large percentage of outliers. The basic idea is that the outliers typically have
larger Mahalanobis distance with respect to the correct covariance matrix Σ.16 In
the context of PCA, the Mahalanobis distance of a sample x is approximated with
the weighted sum of all PCs

xT Σ̂−1x =

Mn(D)∑

i=1

z2
i

li
,

where Σ̂ is the empirical covariance of the data set {xk}, zi is the ith PC of the
sample x, and li is the variance of the ith PC [?].

The first step of MVT is a robust estimator of the data mean ū of the samples
{ui = νn(xi)} [?]. The user needs to specify a trimming parameter α, which
indicates the percentage of samples to be trimmed as outliers. To initialize the
covariance matrix Σ0, all samples are sorted by their Euclidean distance ||ui−ū||,
and Σ0 is calculated with the set of the firstN(1−α)% samples with the smallest
distance, denoted as U :

Σ0 =
∑

h∈U

(uh − ū)(uh − ū)T . (5.33)

16Given a positive definite matrix Σ (such as the covariance matrix), the Mahalanobis distance is
defined to be xT Σ−1x.
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In the kth iteration, the Mahalanobis distance of each sample, (ui−ū)TΣ−1
k−1(ui−

ū), is calculated, and Σk is again calculated with the set of first N(1−α)% sam-
ples with the smallest Mahalanobis distance. The iteration terminates when the
difference between Σk−1 and Σk is small enough.

To proceed with the rest of the subspace segmentation algorithm, we treat the
trimmed samples in the final iteration as outliers, and estimate P (x) from the last
c eigenvectors of the final covariance matrix.

5.4.4 Simulation Comparison
A. Simulation with Outlier Percentage Known.

We test and compare the performance of the three robust methods discussed in the
previous section. The GPCA-voting algorithm introduced earlier in this chapter is
compared to its robust version which we call Robust GPCA (RGPCA). The only
difference in the RGPCA algorithm is in Step 3 of the GPCA-voting Algorithm
??: the fitting polynomials P (x) are estimated with the robust PCA techniques
discussed earlier in this section.

Two synthetic data sets are tested for the comparison. Data set one: three sub-
spaces in R

3 of dimensions 2, 2, 1, with 400, 400, 200 sample points drawn from
the subspaces, respectively. Data set two: four subspaces in R

5 of dimensions
4, 2, 2, 1, with 600, 400, 400, 300 sample points. For each data set, we generate an
additional set of outliers with percentages ranging from 0% to 48% of the total
sample number, and the rejection rate in the algorithm is set to be the same as the
true outlier percentage. At each percentage level, the simulation is repeated for
200 times.

Figure 5.10 shows the segmentation error and subspace angle difference (in de-
gree). Notice that because of randomness, some outliers may be very close to the
subspaces and are not rejected as such; some samples might be rejected as outliers
because large noise. Thus, the segmentation error does not count the original out-
liers and the rejected samples by the algorithms, as they are not assigned to any
subspace. Figure 5.11 shows two representative experiments. Table 5.4 summa-
rizes the average running time of the Matlab codes for one trial on a dual 2.7GHz
G5 Macintosh workstation. One may wonder why the segmentation error of MTV
decreases in the plot. We believe it is due to the fact that since some random out-
liers may lie on the subspaces, the algorithm might trim out more noisy “good”
samples when the rejection rate increases.

To summarize, given a sample rejection rate that is close to the true outlier
percentage, the robust covariance estimator turns out to be the most accurate
and fastest method for solving the subspace estimation and segmentation prob-
lem. The corresponding RGPCA algorithm can tolerate as much as 50% outliers.
The sample influence method also gives reasonable results when the outliers are
less than 30%, but it is the slowest among the three. The theoretical influence
method gives slightly worse segmentation than the sample influence method at
high outlier levels, but it is much faster.
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(a) (2, 2, 1) in R
3

(b) (4, 2, 2, 1) in R
5

Figure 5.10. Performance of RGPCA. For each outlier percentage, 6% Gaussian noise is
added in for each sample, and the experiment repeats 200 times.

(a) ground truth (b) 12% outliers (c) 32% outliers

Figure 5.11. Two segmentation results (on the right) of RGPCA with the sample influence
method. The black stars are rejected samples by the algorithm.

Table 5.4. Average computing time for the arrangement (2, 2, 1) in R
3 with sample sizes

(400, 400, 200).
Outlier Percentage 0% 4% 8% 16% 24% 32% 48%

Data Size 1000 1042 1087 1190 1316 1470 1923
Sample Influence 5.4s 2.5m 2.8m 3.7m 5m 7.8m 18m

Theoretical Influence 5.4s 9s 9.2s 9.3s 9.3s 9.6s 10.8s
MVT 5.4s 5.4s 5.5s 5.6s 5.7s 5.7s 5.8s

B. Simulation with Outlier Percentage Over-Estimated.

In the above experiments, the correct outlier percentage is given to the algorithm.
However, in practice, that information is not always available and it is very diffi-
cult to estimate. Thus, we need to study the performance of the algorithms when
the percentage is under-estimated or over-estimated.
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The situation with under-estimation is relatively simple. Since in general out-
liers have larger influence, or larger Mahalanobis distance, only part of the outliers
will be rejected. After trimming out a smaller portion of the outliers, the remain-
ing outliers will randomly perturb the estimates, as illustrated at the beginning of
Section ??.

Thus, in order to obtain satisfactory estimates, we should always try to avoid
under-estimate the percentage of outliers. Nevertheless, in the over-estimation sit-
uation the performance differs for the three robust methods. Figure 5.12 shows the
segmentation results of the three methods with a fixed percentage of outliers in
the data set but with varying rejection rate assigned to the algorithms. Figure 5.13
illustrates the difference of the three methods in over-estimation.

Figure 5.12. The segmentation and angle errors of the three methods on (2, 2, 1) in R
3 with

different rejection rates. The subspaces are fixed with sizes (300, 200, 100), 6% noise and
4% outliers.

(a) sample influence (b) theoretical influence (c) MVT

Figure 5.13. A plane (400 samples) and a line (100 samples) in R
3 with 6% noise and

4% outliers. The rejection rate is 24%. The black stars are the samples rejected by the
algorithms.

For the sample influence method, when the rejection rate is greater than the
true outlier percentage, samples of larger magnitude are rejected first from the
sample set. The result of the theoretical influence method is similar to the sample
influence method, as it is the first order approximation to it. As pointed out in [?],
samples of larger magnitude are more informative of the subspaces. Hence, the
estimation performance decreases when the rejection rate increases. Nevertheless,
this is not so critical as long as there are enough good samples left on all the
subspaces. Figure 5.12 shows that the average subspace angle error for the sample
influence method is about only 5 degree for the rejection rate as high as 50%.
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The covariance estimator is a greedy algorithm minimizing the weighted sum
of all the PCs. It turns out the robust covariance estimator is dominated by the
subspaces of more samples, and the subspaces that have the less samples will be
trimmed out first. In Figure 5.12, the robust covariance method starts diverging
at 24%, which is roughly the percentage of outliers plus the samples on the 1-D
subspace.

In summary, the three robust methods work well only when the sample rejec-
tion rate is larger than the true outlier percentage but still with sufficient samples
left on the subspaces. If the data points are evenly sampled from all subspaces, or
an accurate estimate of the outlier percentage can be obtained, the MVT method is
the most efficient and accurate among the three. However, when this condition is
not met, one has to resort to either the sample influence method or its approxima-
tion, the theoretical influence method, depending on the requirement to balance
the accuracy and speed.

C. Comparison with RANSAC.

We now examine the difficulties in applying RANSAC to the estimation of multi-
ple subspaces. Let us consider the example of four subspaces in R

5 of dimensions
4, 2, 2, 1, respectively. The minimal numbers of points needed to determine each
subspace are 4, 2, 2, 1, respectively. Thus, a total of 9 subsamples is needed for a
candidate estimate of the subspaces. By repeating the subsampling process for a
sufficient number of times, RANSAC selects the model that achieves the highest
consensus among all samples. Figure 5.14 shows the segmentation error and the
subspace angle error in the estimate given by RANSAC for three subspaces of
dimension (2, 2, 1) in R

3 and four subspaces of dimension (4, 2, 2, 1) in R
5 with

the same setup as in the previous simulations.

Figure 5.14. Performance of RANSAC for two subspace models. 6% Gaussian noise is
added in for each sample, and the experiment repeats 200 times at each outlier level.

From the results, we see that RANSAC gave very accurate estimation for the
(2, 2, 1) subspace model, but failed badly for the (4, 2, 2, 1) case (even with 0%
outlier). The speed of the algorithm is also slower than RGPCA with the the-
oretical influence method and the MVT method. From a statistical viewpoint,
RANSAC is not well-conditioned in dealing with multiple subspaces of different
dimensions, because a collection of lower-dimensional subspaces can be modeled
as a higher-dimensional subspace. In our example, on one hand, the union of the
two 2-D subspaces can be confused with a 4-D subspace; and on the other hand,
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subsets of samples from the 4-D subspace can be mistakenly fit with various 1-D
or 2-D models. This type of erroneous model may also achieve high consensus.
A more thorough study reveals that in the context of multiple subspaces, such a
straightforward implementation of RANSAC scales very poorly with the number
subspaces and their dimensions.

There are also alternative ways of implementing RANSAC. For instance, one
can apply RANSAC to estimate one subspace at a time, or to reduce the com-
plexity one can apply GPCA to a subsampled set. In the first case, the maximal
consensus for each subspace can be extremely low, as its samples consist of only a
small portion of the data set. In the second case, the size of the minimal sample set
is difficult to determine, and it is not clear how many subsampled sets are needed
in order for GPCA to find a good model with a high consensus. Our analysis (not
shown in the paper due to limit of space) shows that these two approaches often
result in prohibitive complexity when the number of subspace is large and the
dimensions of the subspaces are high.

5.5 Bibliographic Notes
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Chapter 6
Image Representation, Segmentation &
Classification

In this chapter, we demonstrate why subspace arrangements can be a very use-
ful class of models for image processing and how the subspace-segmentation
techniques may facilitate many important image processing tasks, such as image
representation (compression), segmentation, and classification.

6.1 Lossy Image Representation
Researchers in image processing and computer vision have long sought for effi-
cient and sparse representations of images. Except for a few image representations
such as fractal-based approaches [?], most existing sparse image representations
use an effective linear transformation so that the energy of the (transformed)
image will be concentrated in the coefficients of a small set of bases of the
transformation. Computing such a representation is typically the first step of sub-
sequent (lossy) compression of the image.1 The result can also be used for other
purposes such as image segmentation,2 classification, and object recognition.

Most of the popular methods for obtaining a sparse representation of images
can be roughly classified into two categories.

1Which involves further quantization and entropy-coding of the so-obtained representation.
2As we will study in the next section.
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1. Fixed-Basis Linear Transformations.

Methods of the first category seek to transform all images using a pre-fixed lin-
ear transformation. Each image is then represented as a superposition of a set
of basis functions (specified by the transformation). These methods essentially
all evolved from the classical Fourier Transform. One variation of the (discrete)
Fourier Transform, the Discrete Cosine Transform (DCT), serves as the core of the
JPEG standard [?]. Due to the Gibbs’ phenomenon, DCT is poor at approximating
discontinuities in the imagery signal. Wavelets [?, ?, ?, ?] have been developed
to remedy this problem and have been shown to be optimal for representing 1-D
signals with discontinuities. JPEG-2000 adopted wavelets as its standard. How-
ever, because wavelet transforms only deal with 1-D discontinuities, they are not
well-suited to represent 2-D singularities along edges or contours. Anisotropic
bases such as wedgelets [?], curvelets [?], countourlets [?] and bandlets [?] have
been proposed explicitly to capture different 2-D discontinuities. These x-lets
have been shown to be (approximately) optimal for representing objects with
singularities along C2-smooth edges.3

However, natural images, especially images that have complex textures and
patterns, do not consist solely of discontinuities along C2-smooth edges. This is
probably the reason why these edge-based methods do not seem to outperform
(separable) wavelets on complex images. More generally, one should not expect
that a (fixed) “gold-standard” transformation would work optimally for all images
(and signals) in the world. Furthermore, conventional image (or signal) processing
methods are developed primarily for gray-scale images. For color images or other
multiple-valued images, one has to apply them to each value separately (e.g., one
color channel at a time). The strong correlation that is normally present among
the multiple values or colors is unfortunately ignored.

2. Adaptive Transformations & Hybrid Models

Methods of the second category aim to identify the optimal (or approximately
optimal) representation that is adaptive to specific statistics or structures of each
image.4 The Karhunen-Loève transform (KLT) or principal component analysis
(PCA) [?] identifies the optimal principal subspace from the statistical correlation
of the imagery data and represents the image as a superposition of the basis of the
subspace. In theory, PCA provides the optimal linear sparse representation assum-
ing that the imagery data satisfy a uni-modal distribution. However in reality, this
assumption is rarely true. Natural images typically exhibit multi-modal statistics
as they usually contain many heterogeneous regions with significantly different
geometric structures or statistical characteristics (e.g. Figure 6.2). Heterogeneous

3Here, “optimality” means that the transformation achieves the optimal asymptotic for
approximating the class of functions considered [?].

4Here, unlike in the case of prefixed transformations, “optimality” means the representation ob-
tained is the optimal one within the class of models considered, in the sense that it minimizes certain
discrepancy between the model and the data.
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data can be better-represented using a mixture of parametric models, one for each
homogeneous subset. Such a mixture of models is often referred to as a hybrid
model. Vector quantization (VQ) [?] is a special hybrid model that assumes the
imagery data are clustered around many different centers. From the dimension re-
duction point of view, VQ represents the imagery data with many 0-dimensional
(affine) subspaces. This model typically leads to an excessive number of clusters
or subspaces.5 The primal sketch model [?] is another hybrid model which rep-
resents the high entropy parts of images with Markov random fields [?, ?] and
the low entropy parts with sketches. The result is also some kind of a “sparse”
representation of the image as superposition of the random fields and sketches.
However, the primary goal of primal sketch is not to authentically represent and
approximate the original image. It is meant to capture the (stochastic) genera-
tive model that produces the image (as random samples). Therefore, this type of
models are more suited for image parsing, recognition, and synthesis than ap-
proximation and compression. In addition, finding the sketches and estimating
the parameters of the random fields are computationally expensive and there-
fore less appealing for developing efficient image representation and compression
schemes.

In this chapter, we would like to show how to combine the benefits of PCA and
VQ by representing an image with multiple (affine) subspaces – one subspace
for one image segment. The dimension and basis of each subspace are pertinent
to the characteristics of the image segment it represents. We call this a hybrid
linear model and will show that it strikes a good balance between simplicity and
expressiveness for representing natural images.

A Multi-Scale Hybrid Linear Model for Lossy Image Representation.

One other important characteristic of natural images is that they are comprised
of structures at many different (spatial) scales. Many existing frequency-domain
techniques harness this characteristic [?]. For instance, wavelets, curvelets, and
fractals have all demonstrated effectiveness in decomposing the original imagery
signal into multiple scales (or subbands). As the result of such a multi-scale
decomposition, the structures of the image at different scales (e.g., low v.s. high
frequency/entropy) become better exposed and hence can be more compactly rep-
resented. The availability of multi-scale structures also significantly reduces the
size and dimension of the problem and hence reduces the overall computational
complexity.

Therefore, in this chapter we introduce a new approach to image representation
by combining the hybrid paradigm and the multi-scale paradigm. The result is a
multi-scale hybrid linear model which is based on an extremely simple concept:
Given an image, at each scale level of its down-sample pyramid, fit the (residual)

5Be aware that compared to methods in the first category, representations in the second category
typically need additional memory to store the information about the resulting model itself, e.g., the
basis of the subspace in PCA, the cluster means in VQ.
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image by a (multiple-subspace) hybrid linear model. Compared to the single-scale
hybrid linear model, the multi-scale scheme can reduce not only the size of the
resulting representation but also the overall computational cost. Surprisingly, as
we will demonstrate, such a simple scheme is able to generate representations for
natural images that are more compact, even with the overhead needed to store
the model, than most state-of-the-art representations, including DCT, PCA, and
wavelets.

6.1.1 A Hybrid Linear Model
In this section we introduce and examine the hybrid linear model for image repre-
sentation. The relationship between hybrid linear models across different spatial
scales will be discussed in Section 6.1.2.

An image I with width W , height H , and c color channels resides in a very
high-dimensional space R

W×H×c. We may first reduce the dimension by dividing
the image into a set of non-overlapping b by b blocks.6 Each b by b block is then
stacked into a vector x ∈ R

D, where D = b2c is the dimension of the ambient
space. For example, if c = 3 and b = 2, then D = 12. In this way, the image I

is converted to a set of vectors {xi ∈ R
D}Ni=1, where N = WH/b2 is the total

number of vectors.
Borrowing ideas from existing unsupervised learning paradigms, it is tempting

to assume the imagery data {xi} are random samples from a (non-singular) prob-
ability distribution or noisy samples from a smooth manifold. As the distribution
or manifold can be very complicated, a common approach is to infer a best ap-
proximation within a simpler class of models for the distributions or manifolds.
The “optimal” model is then the one that minimizes certain distance to the true
model. Different choices of model classes and distance measures have led to many
different learning algorithms developed in machine learning, pattern recognition,
computer vision, and image processing. The most commonly adopted distance
measure, for image compression, is the Mean Square Error (MSE) between the
original image I and approximated image Î ,

ε2I =
1

WHc
‖Î − I‖2. (6.1)

Since we will be approximating the (block) vectors {xi} rather than the image
pixels, in the following derivation, it is more convenient for us to define the Mean
Square Error (MSE) per vector which is different from ε2I by a scale,

ε2 =
1

N

N∑

i=1

‖x̂i − xi‖2 =
b2

WH

N∑

i=1

‖x̂i − xi‖2 =
b2

WH
‖Î − I‖2 = (b2c)ε2I .

(6.2)

6Therefore, b needs to be a common divisor of W and H .
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The Peak Signal to Noise Ratio (PSNR) of the approximated image is defined
as,7

PSNR .
= −10 log ε2I = −10 log ε2

b2c
. (6.3)

Linear Models.

If we assume that the vectors x are drawn from an anisotropic Gaussian distrib-
ution or a linear subspace, the optimal model subject to a given PSNR can be in-
ferred by Principal Component Analysis (PCA) [Pearson, 1901, Hotelling, 1933,
Jollife, 2002] or equivalently the Karhunen-Loève Transform (KLT) [?]. The ef-
fectiveness of such a linear model relies on the assumption that, although D can
be large, all the vectors x may lie in a subspace of a much lower dimension in the
ambient space R

D. Figure 6.1 illustrates this assumption.
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Figure 6.1. In a linear model, the imagery data vectors {xi ∈ R
D} reside in an (affine)

subspace S of dimension d � D.

Let x̄ = 1
N

∑N
i=1 xi be the mean of the imagery data vectors, and X = [x1 −

x̄,x2 − x̄, ... ,xN − x̄] = UΣV T be the SVD of the mean-subtracted data
matrix X . Then all the vectors xi can be represented as a linear superposition:
xi = x̄ +

∑D
j=1 α

j
iφj , i = 1, ..., N, where {φj}Dj=1 are just the columns of the

matrix U .
The matrix Σ = diag(σ1, σ2, ... , σD) contains the ordered singular values

σ1 ≥ σ2 ≥ · · · ≥ σD. It is well known that the optimal linear representation of
xi subject to the MSE ε2 is obtained by keeping the first d (principal) components

x̂i
.
= x̄ +

d∑

k=1

αki φk, i = 1, ..., N, (6.4)

where d is chosen to be

d = min(k), s.t. 1

N

D∑

i=k+1

σ2
i ≤ ε2. (6.5)

7The peak value of the imagery data is normalized into 1.
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The model complexity of the linear model, denoted as Ω, is the total number
of coefficients needed for representing the model {αki , φk, x̄} and subsequently a
lossy approximation Î of the image I . It is given by

Ω(N, d)
.
= Nd+ d(D − d+ 1), (6.6)

where the first term is the number of coefficients {αki } to represent {x̂i − x̄}Ni=1

with respect to the basis Φ = {φk}dk=1 and the second term is the number of
Grassmannian coordinates8 needed for representing the basis Φ and the mean
vector x̄. The second term is often called overhead.9 Notice that the original set of
vectors {xi} containND coordinate entries. If Ω� ND, the new representation,
although lossy, is more compact. The search for such a compact representation is
at the heart of any (lossy) image compression method. When the image I is large
and the block size b is small, N will be much larger than D so that the overhead
will be much smaller than the first term. However, in order to compare fairly
with other methods, in the subsequent discussions and experiments, we always
count the total number of coefficients needed for the representation, including the
overhead.

Hybrid Linear Models.

The linear model is very efficient when the target manifold or distribution func-
tion is indeed unimodal. However, if the image I contains several heterogeneous
regions {Ij}nj=1, the data vectors xi can be samples from a collection of sub-
spaces of possibly different dimensions or from a mixture of multiple (Gaussian)
distributions. Figure 6.2 shows the first three principal components of the data

Figure 6.2. Left: The baboon image. Right: The coordinates of each dot are the first three
principal components of the vectors xi. There is a clear multi-modal structure in the data.

8Notice that to represent a d-dimensional subspace in a D-dimensional space, we only need to
specify a basis of d linearly independent vectors for the subspace. We may stack these vectors as rows
of a d × D matrix. Any nonsingular linear transformation of these vectors span the same subspace.
Thus, without loss of generality, we may assume that the matrix is of the normal form [Id×d, G]

where G is a d × (D − d) matrix consisting of the so-called Grassmannian coordinates.
9Notice that if one uses a pre-chosen basis such as discrete Fourier transform, discrete cosine

transform (JPEG), and wavelets (JPEG-2000), there is no such overhead.
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vector xi (as dots in R
3) of an image. Note the clear multi-modal characteristic

in the data.
Suppose that a natural image I can be segmented into n disjoint regions I =

∪nj=1Ij with Ij ∩ Ij′ = ∅ for j 6= j′. In each region Ij , we may assume the
linear model (6.4) is valid for the subset of vectors {xj,i}Nj

i=1 in Ij :

x̂j,i = x̄j +

dj∑

k=1

αki φj,k, i = 1, ..., Nj . (6.7)

Intuitively, the hybrid linear model can be illustrated by Figure 6.3.PSfrag replacements
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Figure 6.3. In hybrid linear models, the imagery data vectors {xi} reside in multiple
(affine) subspaces which may have different dimensions.

As in the linear model, the dimension dj of each subspace is determined by
a common desired MSE ε2 using equation (6.5). The model complexity, i.e.,
the total number of coefficients needed for representing the hybrid linear model
{φj,k, x̂j,i} is10

Ω = Ω(N1, d1) + · · ·+ Ω(Nn, dn) =

n∑

j=1

(
Njdj + dj(D − dj + 1)

)
. (6.8)

Notice that Ω is similar to the effective dimension (ED) of the hybrid linear rep-
resentation defined in [?]. Thus, finding a representation that minimizes Ω is the
same as minimizing the effective dimension of the imagery data set.11

Instead, if we model the union of all the vectors ∪nj=1{xj,i}
Nj

i=1 with a single
subspace (subject to the same MSE), the dimension of the subspace in general
needs to be d = min{d1 + · · · + dn, D}. It is easy to verify from the definition
(6.6) that under reasonable conditions (e.g., n is bounded from being too large),

10We also needs a very small number of binary bits to store the membership of the vectors. But
those extra bits are insignificant comparing to Ω and often can be ignored.

11In fact, the minimal Ω can also be associated to the Kolmogorov entropy or to the minimum
description length (MDL) of the imagery data.
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we have

Ω(N, d) > Ω(N1, d1) + · · ·+ Ω(Nn, dn). (6.9)

Thus, if a hybrid linear model can be identified for an image, the resulting repre-
sentation will in general be much more compressed than that with a single linear
or affine subspace. This will also be verified by experiments on real images in
Section 6.1.3.

However, such a hybrid linear model alone is not able to generate a represen-
tation that is as compact as that by other competitive methods such as wavelets.
There are at least two aspects in which the above model can be further improved.
Firstly, we need to further reduce the negative effect of overhead by incorporating
a pre-projection of the data onto a lower dimensional space. Secondly, we need to
implement the hybrid linear model in a multi-scale fashion. We will discuss the
former aspect in the remainder of this section and leave the issues with multi-scale
implementation to the next section.

Dimension Reduction via Projection.

In the complexity of the hybrid linear model (6.8), the first term is always smaller
than that of the linear model (6.6) because dj ≤ d for all j and

∑n
j=1Nj =

N . The second overhead term however can be larger than in that of the linear
model (6.6) because the bases of multiple subspaces now must be stored. We here
propose a method to further reduce the overhead by separating the estimation of
the hybrid model into two steps.

In the first step, we may project the data vectors {xi} onto a lower-dimensional
subspace (e.g., via PCA) so as to reduce the dimension of the ambient space from
D to D′. The justification for such a subspace projection has been discussed ear-
lier in Section 3.2.2. Here, the dimension D′ is chosen to achieve an MSE 1

2ε
2.

The data vectors in the lower ambient space R
D′ are denoted as {x′

i}. In the sec-
ond step, we identify a hybrid linear model for {x′

i} within the lower-dimension
ambient space R

D′ . In each subspace, we determine the dimension dj subject to
the MSE 1

2ε
2. The two steps combined achieve an overall MSE ε2, but they can

actually reduce the total model complexity to

Ω =
n∑

j=1

(
Njdj + dj(D

′−dj + 1)
)

+D(D′+1). (6.10)

This Ω will be smaller than the Ω in equation (6.8) because D′ is smaller than D.
The reduction of the ambient space will also make the identification of the hybrid
linear model (say by GPCA) much faster.

If the number of subspaces, n, is given, algorithms like GPCA or EM can al-
ways find a segmentation. The basis {φj,k} and dimension dj of each subspace are
determined by the desired MSE ε2. As n increases, the dimension of the subspaces
may decrease, but the overhead required to store the bases may increase. The op-
timal n∗ therefore can be found recursively by minimizing Ω for different n’s,
as shown in Figure 6.4. From our experience, we found that n is typically in the
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Figure 6.4. The optimal n∗ can be found by minimizing Ω with respect to n.

range from 2 to 6 for natural images, especially in a multi-scale implementation
that we will introduce next.

Algorithm 6.1 describes the pseudocode for estimating the hybrid linear model
of an image I , in which the SubspaceSegmentation(·) function is implemented
(for the experiments in this chapter) using the GPCA algorithm given in ear-
lier chapters. But it can also be implemented using EM or other subspace
segmentation methods.

Algorithm 6.1 (Hybrid Linear Model Estimation).

1: function Î = HybridLinearModel(I, ε2)

2: {xi} = StackImageIntoVectors(I);

3: {x′
i}, {φk}, {αk

i } = PCA({xi − x̄}, 1
2
ε2);

4: for each possible n do
5: {x′

j,i} = SubspaceSegmentation({x′
i}, n);

6: {x̂′
j,i}, {φj,k}, {αk

j,i} = PCA({x′
j,i − x̄′

j}, 1
2
ε2);

7: compute Ωn;

8: end for
9: Ωopt = min(Ωn);

10: Î = UnstackVectorsIntoImage({x̂′
j,i} with Ωopt);

11: output {αk
i }, {φk}, x̄, {αk

j,i}, {φj,k}, {x̄′
j} with Ωopt;

12: return Î .

Example 6.1 (A Hybrid Linear Model for the Gray-Scale Barbara Image). Figure 6.5
and Figure 6.6 show intuitively a hybrid linear model identified for the 8 × 8 blocks of
the standard 512 × 512 gray-scale Barbara image. The total number of blocks is N =
4, 096. The GPCA algorithm identifies three subspaces for these blocks (for a given error
tolerance), as shown in Figure 6.5. Figure 6.6 displays the three sets of bases for the three
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Figure 6.5. The segmentation of the 4,096 image blocks from the Barbara image. The im-
age (left) is segmented into three groups (right three). Roughly speaking, the first subspace
contains mostly image blocks with homogeneous textures; the second and third subspaces
contain blocks with textures of different spatial orientations and frequencies.

subspaces identified, respectively. It is worth noting that these bases are very consistent
with the textures of the image blocks in the respective groups.

Figure 6.6. The three sets of bases for the three subspaces (of blocks) shown in Figure
6.5, respectively. One row for one subspace and the number of base vectors (blocks) is the
dimension of the subspace.

6.1.2 Multi-Scale Hybrid Linear Models
There are at least several reasons why the above hybrid linear model needs further
improvement. Firstly, the hybrid linear model treats low frequency/entropy re-
gions of the image in the same way as the high frequency/entropy regions, which
is inefficient. Secondly, by treating all blocks the same, the hybrid linear model
fails to exploit stronger correlations that typically exist among adjacent image
blocks.12 Finally, estimating the hybrid linear model is computationally expen-
sive when the image is large. For example, we use 2 by 2 blocks, a 512 by 512
color image will have M = 65, 536 data vectors in R

12. Estimating a hybrid lin-
ear model for such a huge number of vectors is difficult (if not impossible) on a
regular PC. In this section, we introduce a multi-scale hybrid linear representation
which is able to resolve the above issues.

12For instance, if we take all the b by b blocks and scramble them arbitrarily, the scrambled image
would be fit equally well by the same hybrid linear model for the original image.
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The basic ideas of multi-scale representations such as the Laplacian pyramid
[?] have been exploited for image compression for decades (e.g., wavelets, sub-
band coding). A multi-scale method will give a more compact representation
because it encodes low frequency/entropy parts and high frequency/entropy parts
separately. The low frenquecy/entropy parts are invariant after low-pass filtering
and down-sampling, and can therefore be extracted from the much smaller down-
sampled image. Only the high frenquecy/entropy parts need to be represented at a
level of higher resolution. Furthermore, the stronger correlations among adjacent
image blocks will be captured in the down-sampled images because every four
images blocks are merged into one block in the down-sampled image. At each
level, the number of imagery data vectors is one fourth of that at one level above.
Thus, the computational cost can also be reduced.

We now introduce a multi-scale implementation of the hybrid linear model. We
use the subscript l to indicate the level in the pyramid of down-sampled images.13

The finest level (the original image) is indicated by l = 0. The larger is l, the
coarser is the down-sampled image. We denote the highest level to be l = L.

Pyramid of Down-Sampled Images.

First, the level-l image I l passes a low-pass filter F1 (averaging or Gaussian filter,
etc) and is down-sampled by 2 to get a coarser version image I l+1:

I l+1
.
= F1(I l) ↓ 2, l = 0, ..., L− 1. (6.11)

The coarsest level-L image IL is approximated by ÎL using a hybrid linear model
with the MSE ε2L. The number of coefficients needed for the approximation is ΩL.

Pyramid of Residual Images.

At all other level-l, l = 0, ..., L − 1, we do not need to approximate the down-
sampled image I l because it has been roughly approximated by the image at
level-(l + 1) upsampled by 2. We only need to approximate the residual of this
level, denoted as I ′

l:

I ′
l
.
= I l − F2(Î l+1) ↑ 2, l = 0, ..., L− 1, (6.12)

where the F2 is an interpolation filter. Each of these residual images I ′
l, l =

0, ..., L − 1 is approximated by Î
′

l using a hybrid linear model with the MSE
ε2l . The number of coefficients needed for the approximation is Ωl, for each l =
0, ..., L− 1.

Pyramid of Approximated Images.

The approximated image at the level-l is denoted as Î l:

Î l
.
= Î

′

l + F2(Î l+1) ↑ 2, l = 0, ..., L− 1. (6.13)

The Figure 6.7 shows the structure of a three-level (L = 2) approximation of the

13This is not to be confused with the subscript j used to indicate different segments of an image.
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Figure 6.7. Laplacian pyramid of the multi-scale hybrid linear model.

image I . Only the hybrid linear models for Î2, Î
′

1, and Î
′

0, which are approxima-
tion for I2, I ′

1, and I ′
0 respectively, are needed for the final representation of the

image. Figure 6.8 shows the I2, I ′
1, and I ′

0 for the baboon image.

Figure 6.8. Multi-scale representation of the Baboon image. Left: The coarsest level image
I2. Middle: The residual image I ′

1. Right: The residual image I ′
0. The data at each level

are modeled as the hybrid linear models. The contrast of the middle and right images has
been adjusted so that they are visible.

The total number of coefficients needed for the representation will be

Ω =

L∑

l=0

Ωl. (6.14)
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MSE Threshold at Different Scale Levels.

The MSE thresholds at different levels should be different but related because the
up-sampling by 2 will enlarge 1 pixel at level-(l+1) into 4 pixels at level-l. If the
MSE of the level-(l+1) is ε2l+1, the MSE of the level-l after the up-sampling will
become 4ε2l+1. So the MSE thresholds of level-(l + 1) and level-l are related as

ε2l+1 =
1

4
ε2l , l = 0, ..., L− 1. (6.15)

Usually, the user will only give the desired MSE for the approximation of original
image which is ε2. So we have

ε2l =
1

4l
ε2, l = 0, ..., L. (6.16)

Vector Energy Constraint at Each Level.

At each level-l, l = 0, ..., L − 1, not all the vectors of the residual need to be ap-
proximated. We only need to approximate the (block) vectors {xi} of the residual
image I ′

l that satisfy the following constraint:

‖x′
i‖2 > ε2l . (6.17)

In practice, the energy of most of the residual vectors is close to zero. Only a
small portion of the vectors at each level-l need to be modeled (e.g. Figure 6.9).
This property of the multi-scale scheme not only significantly reduces the overall

Figure 6.9. The segmentation of (residual) vectors at the three levels—different subspaces
are denoted by different colors. The black regions correspond to data vectors whose energy
is below the MSE threshold ε2l in equation (6.17).

representation complexity Ω but also reduces the overall computational cost as
the number of data vectors processed at each level is much less than those of
the original image. In addition, for a single hybrid linear model, when the image
size increases, the computational cost will increase in proportion to the square
of the image size. In the multi-scale model, if the image size increases, we can
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correspondingly increase the number of levels and the complexity increases only
linearly in proportion to the image size.

The overall process of estimating the multi-scale hybrid linear model can be
written as the recursive pseudocode in Algorithm 6.2.

Algorithm 6.2 (Multi-Scale Hybrid Linear Model Estimation).

1: function Î = MultiscaleModel(I, level, ε2)

2: if level < MAXLEVEL then
3: Idown = Downsample(F1(I));
4: Înextlevel = MultiscaleModel(Idown, level + 1, 1

4
ε2);

5: end if
6: if level = MAXLEVEL then
7: I ′ = I;

8: else
9: Iup = F2(Upsample(Înextlevel));

10: I ′ = I − Iup;

11: end if
12: Î ′ = HybridLinearModel(I ′, ε2);

13: return Iup + I ′.

6.1.3 Experiments and Comparisons
Comparison of Different Lossy Representations.

The first experiment is conducted on two standard images commonly used to com-
pare image compression schemes: the 480 × 320 hill image and the 512 × 512
baboon image shown in Figure 6.10. We choose these two images because they
are representative of two different types of images. The hill image contains large
low frequency/entropy regions and the baboon image contains mostly high fren-
quency/entropy regions. The size of the blocks b is chosen to be 2 and the level
of the pyramid is 3 – we will test the effect of changing these parameters in
subsequent experiments. In Figure 6.11, the results of the multi-scale hybrid
linear model are compared with several other commonly used image represen-
tations including DCT, PCA/KLT, single-scale hybrid linear model and Level-3
(Daubechies) biorthogonal 4.4 wavelets (adopted by JPEG-2000). The x-axis
of the figures is the ratio of coefficients (including the overhead) kept for the
representation, which is defined as,

η =
Ω

WHc
. (6.18)

The y-axis is the PSNR of the approximated image defined in equation (6.3). The
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Figure 6.10. Testing images: the hill image (480×320) and the baboon image (512×512).

Figure 6.11. Left: Comparison of several image representations for the hill image. Right:
Comparison for the baboon image. The multi-scale hybrid linear model achieves the best
PSNR among all the methods for both images.

multi-scale hybrid linear model achieves the best PSNR among all the methods
for both images. Figure 6.12 shows the two recovered images using the same
amount of coefficients for the hybrid linear model and the wavelets. Notice that
in the area around the whiskers of the baboon, the hybrid linear model preserves
the detail of the textures better than the wavelets. But the multiscale hybrid linear
model produces a slight block effect in the smooth regions.

We have tested the algorithms on a wide range of images. We will summarize
the observations in Section 6.1.4.

Effect of the Number of Scale Levels.

The second experiment shown in Figure 6.13 compares the multi-scale hybrid
linear representation with wavelets for different number of levels. It is conducted
on the hill and baboon image with 2 by 2 blocks. The performance increases while
the number of levels is increased from 3 to 4. But if we keep increasing the number
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Figure 6.12. Left: The baboon image recovered from the multi-scale hybrid linear model
using 7.5% coefficients of the original image. (PSNR=24.64). Right: The baboon image
recovered from wavelets using the same amount of coefficients. (PSNR=23.94).

Figure 6.13. Top: Comparison of the multi-scale hybrid linear model with wavelets for
level-3 and level-4 for the hill image. Bottom: The same comparison for the baboon image.
The performance increases while the number of levels increases from 3 to 4.

of levels to 5, the level-5 curves of both wavelets and our method (which are not
shown in the figures) coincide with the level-4 curves. The performance cannot
improve any more because the down-sampled images in the fifth level are so small
that it is hard to be further compressed. Only when the image is large, can we use
more levels of down-sampling to achieve a more compressed representation.

Effect of the Block Size.

The third experiment shown in Figure 6.14 compares the multi-scale hybrid lin-
ear models with different block sizes from 2 × 2 to 16 × 16. The dimension of
the ambient space of the data vectors x ranges from 12 to 192 accordingly. The
testing image is the baboon image and the number of down-sampling levels is 3.
For large blocks, the number of data vectors is small but the dimension of the
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Figure 6.14. Comparison of the multi-scale hybrid linear model with different block sizes:
16, 8, 4, 2. The performance increases while the size of blocks decreases.

subspaces is large. So the overhead would be large and seriously degrade the per-
formance. Also the block effect will be more obvious when the block size is large.
This experiment shows that 2 is the optimal block size, which also happens to be
compatible with the simplest down-sampling scheme.

6.1.4 Limitations
We have tested the multi-scale hybrid linear model on a wide range of images,
with some representative ones shown in Figure 6.15. From our experiments and
experience, we observe that the multi-scale hybrid linear model is more suitable
than wavelets for representing images with multiple high frequency/entropy re-
gions, such as those with sharp 2-D edges and rich of textures. Wavelets are prone
to blur sharp 2-D edges but better at representing low frequency/entropy regions.
This probably explains why the hybrid linear model performs slightly worse than
wavelets for the Lena and the monarch – the backgrounds of those two images are
out of focus so that they do not contain much high frequency/entropy content.

Another limitation of the hybrid-linear model is that it does not perform well on
gray-scale images (e.g., the Barbara image, Figure 6.5). For a gray-scale image,
the dimensionD of a 2 by 2 block is only 4. Such a low dimension is not adequate
for any further dimension reduction. If we use a larger block size, say 8 by 8, the
block effect will also degrade the performance.

Unlike pre-fixed transformations such as wavelets, our method involves iden-
tifying the subspaces and their bases. Computationally, it is more costly. With
unoptimized MATLAB codes, the overall model estimation takes 30 seconds to 3
minutes on a Pentium 4 1.8GHz PC depending on the image size and the desired
PSNR. The smaller the PSNR, the shorter the running time because the number
of blocks needed to be coded in higher levels will be less.
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Figure 6.15. A few standard testing images. From the top-left to the bottom-right: monarch
(768× 512), sail (768× 512), canyon (752× 512), tiger (480× 320), street (480× 320),
tree (512 × 768), tissue (microscopic) (1408 × 1664), Lena (512 × 512), earth (satellite)
(512× 512), urban (aerial) (512× 512), bricks (696× 648). The multi-scale hybrid linear
model out-performs wavelets except for the Lena and the monarch.

6.2 Multi-Scale Hybrid Linear Models in Wavelet
Domain

From the discussion in the previous section, we have noticed that wavelets can
achieve a better representation for smooth regions and avoid the block artifacts.
Therefore, in this section, we will combine the hybrid linear model with the
wavelet approach to build multi-scale hybrid linear models in the wavelet do-
main. For readers who are not familiar with wavelets, we recommend the books
of [?].

6.2.1 Imagery Data Vectors in Wavelet Domain
In the wavelet domain, an image is typically transformed into an octave tree of
subbands by certain separable wavelet. At each level, the LH, HL, HH subbands
contain the information about high frequency edges and the LL subband is further
decomposed into subbands at the next level. Figure 6.16 shows the octave tree
structure of a level-2 wavelet decomposition. As shown in the Figure 6.17, the
vectors {xi ∈ R

D}Mi=1 are constructed by stacking the corresponding wavelet
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Figure 6.16. The subbands of a level-2 wavelet decomposition.
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Figure 6.17. The construction of imagery data vectors in the wavelet domain. These data
vectors are assumed to reside in multiple (affine) subspaces which may have different
dimensions.

coefficients in the LH, HL, HH subbands. The dimension of the vectors isD = 3c
because there are c color channels. One of the reasons for this choice of vectors is
because for edges along the same direction, these coefficients are linearly related
and reside in a lower dimensional subspace. To see this, let us first assume that
the color along an edge is constant. If the edge is along the horizontal, vertical or
diagonal direction, there will be an edge in the coefficients in the LH, HL, or HH
subband, respectively. The other two subbands will be zero. So the dimension of
the imagery data vectors associated with such an edge will be 1. If the edge is not
exactly in one of these three directions, there will be an edge in the coefficients
of all the three subbands. For example, if the direction of the edge is between
the horizontal and diagonal, the amplitude of the coefficients in the LH and HH
subbands will be large. The coefficients in the HL subband will be insignificant
relative to the coefficients in the other two subbands. So the dimension of the
data vectors associated with this edge is approximately 2 (subject to a small error
ε2). If the color along an edge is changing, the dimension the subspace will be
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higher but generally lower than the ordinal dimension D = 3c. Notice that the
above scheme is only one of many possible ways in which one may construct
the imagery data vector in the wavelet domain. For instance, one may construct
the vector using coefficients across different scales. It remains an open question
whether such new constructions may lead to even more efficient representations
than the one presented here.

6.2.2 Estimation of Hybrid Linear Models in Wavelet Domain
In the wavelet domain, there is no need to build a down-sampling pyramid. The
multi-level wavelet decomposition already gives a multi-scale structure in the
wavelet domain. For example, Figure 6.18 shows the octave three structure of

Figure 6.18. The subbands of level-3 bior-4.4 wavelet decomposition of the baboon image.

a level-3 bior-4.4 wavelet transformation of the baboon image. At each level, we
may construct the imagery data vectors in the wavelet domain according to the
previous section. A hybrid linear model will be identified for the so-obtained vec-
tors at each level. Figure 6.19 shows the segmentation results using the hybrid
linear model at three scale levels for the baboon image.
Vector Energy Constraint at Each Level. In the nonlinear wavelet approxima-
tion, the coefficients which are below an error threshold will be ignored. Similarly
in our model, not all the vectors of the imagery data vectors need to be modeled
and approximated. We only need to approximate the (coefficient) vectors {xi}
that satisfy the following constraint:

‖xi‖2 > ε2. (6.19)

Notice that here we do not need to scale the error tolerance at different levels
because the wavelet basis is orthonormal by construction. In practice, the energy
of most of the vectors is close to zero. Only a small portion of the vectors at each
level need to be modeled (e.g. Figure 6.19).
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Figure 6.19. The segmentation of data vectors constructed from the three subbands at each
level—different subspaces are denoted by different colors. The black regions correspond
to data vectors whose energy is below the MSE threshold ε2 in equation (6.19).

The overall process of estimating the multi-scale hybrid linear model in the
wavelet domain can be summarized as the pseudocode in Algorithm 6.3.

Algorithm 6.3 (Multi-Scale Hybrid Linear Model: Wavelet Domain).

1: function Î = MultiscaleModel(I, level, ε2)

2: Ĩ = WaveletTransform(I, level);

3: for each level do
4: ˆ̃

Ilevel = HybridLinearModel(Ĩlevel, ε
2);

5: end for
6: Î = InverseWaveletTransform(ˆ̃I, level);

7: return Î.

6.2.3 Comparison with Other Lossy Representations
In this section, in order to obtain a fair comparison, the experimental setting is
the same as that of the spatial domain in the previous section. The experiment is
conducted on the same two standard images – the 480 × 320 hill image and the
512× 512 baboon image shown in Figure 6.10.

The number of levels of the model is also chosen to be 3. In Figure 6.20, the
results are compared with several other commonly used image representations
including DCT, PCA/KLT, single-scale hybrid linear model and Level-3 biorthog-
onal 4.4 wavelets (JPEG 2000) as well as the multi-scale hybrid linear model in
the spatial domain. The multi-scale hybrid linear model in the wavelet domain
achieves better PSNR than that in the spatial domain. Figure 6.21 shows the three
recovered images using the same amount of coefficients for wavelets, the hybrid
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Figure 6.20. Top: Comparison of several image representations for the hill image. Bottom:
Comparison for the baboon image. The multi-scale hybrid linear model in the wavelet
domain achieves better PSNR than that in the spatial domain.

linear model in the spatial domain, and that in the wavelet domain, respectively.
Figure 6.22 shows the visual comparison with the enlarged bottom-right cornners
of the images in Figure 6.21.

Notice that in the area around the baboon’s whiskers, the wavelets blur both
the whiskers and the subtle details in the background. The multi-scale hybrid
linear model (in the spatial domain) preserves the sharp edges around the whiskers
but generates slight block artifacts in the relatively smooth background area. The
multi-scale hybrid linear model in the wavelet domain successfully eliminates the
block artifacts, keeps the sharp edges around the whiskers, and preserves more
details than the wavelets in the background. Among the three methods, the multi-
scale hybrid linear model in the wavelet domain achieves not only the highest
PSNR, but also produces the best visual effect.

As we know from the previous section, the multi-scale hybrid linear model in
the spatial domain performs slightly worse than the wavelets for the Lena and
monarch images (Figure 6.15). Nevertheless, in the wavelet domain, the multi-
scale hybrid linear model can generate very competitive results, as shown in
Figure 6.23. The multi-scale hybrid linear model in the wavelet domain achieves
better PSNR than the wavelets for the monarch image. For the Lena image, the
comparison is mixed and merits further investigation.

6.2.4 Limitations
The above hybrid linear model (in the wavelet domain) does not produce so com-
petitive results for gray-scale images as the dimension of the vector is merely
3 and there is little room for further reduction. For gray-scale images, one may
have to choose a slightly larger window in the wavelet domain or to construct
the vector using wavelet coefficients across different scales. A thorough inves-
tigation of all the possible cases is beyond the scope of this book. The purpose
here is to demonstrate (using arguably the simplest cases) the vast potential of a
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Figure 6.21. Visual comparison of three representations for the baboon image approx-
imated with 7.5% coefficients. Top-left: The original image. Top-right: The level-3
biorthogonal 4.4 wavelets (PSNR=23.94). Bottom-left: The level-3 multi-scale hybrid lin-
ear model in the spatial domain (PSNR=24.64). Bottom-right: The level-3 multi-scale
hybrid linear model in the wavelet domain (PSNR=24.88).

new spectrum of image representations suggested by combining subspace meth-
ods with conventional image representation/approximation schemes. The quest
for the more efficient and more compact representations for natural images with-
out doubt will continue as long as the nature of natural images remains a mystery
and the mathematical models that we use to represent and approximate images
improve.

6.3 Image Segmentation

6.3.1 Hybrid Linear Models for Image Segmentation
Notice that for the purpose of image representation, we normally divide the image
I into non-overlapping blocks (see the beginning of Section 6.1.1). The hybrid
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Figure 6.22. Enlarged bottom-right corner of the images in Figure 6.21. Top-left: The
original image. Top-right: The level-3 biorthogonal 4.4 wavelets. Bottom-left: The level-3
multi-scale hybrid linear model in the spatial domain. Bottom-right: the level-3 multi-scale
hybrid linear model in the wavelet domain.

linear model fit to the block vectors {xi} essentially gives some kind of a seg-
mentation of the image – pixels that belong to blocks in the same subspace are
grouped into one segment. However, such a segmentation of the image has some
undesirable features. If we choose a very large block size, then there will be se-
vere “block effect” in the resulting segmentation, as all b2 pixels of each block
are always assigned into the same segment (see Figure 6.5). If we choose a small
block size to reduce the block effect, then the block might not contain sufficient
neighboring pixels that allow us to reliably extract the local texture.14 Thus, the
resulting segmentation will very much be determined primarily by the color of
the pixels (in each small block) but not the texture.

One way to resolve the above problems is to choose a block of a reasonable
size around each pixel and view the block as a (vector-valued) “label” or “feature”

14Notice that a smaller block size is ok for compression as long as it can reduce the overhead and
subsequently improve the overall compression ratio.
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Figure 6.23. Top: Comparison of multi-scale hybrid linear model in the wavelet domain
with wavelets for the Lena image. Bottom: Comparison of multi-scale hybrid linear model
in the wavelet domain with wavelets for the Monarch image. The multi-scale hybrid linear
model in the wavelet domain achieves better PSNR than wavelets for a wide range of PSNR
for these two images.

attached to the pixel. In many existing image segmentation methods, the feature
(vector) is chosen instead to be the outputs of the block passing through a (pre-
fixed) bank of filters (e.g., the Garbor filters). That is, the feature is the block
transformed by a set of pre-fixed linear transformations. Subsequently, the image
is segmented by grouping pixels that have “similar” features.

From the lessons that we have learned from image representation in the previ-
ous section, we observe that the hybrid linear model may be adopted to facilitate
this approach of image segmentation in several aspects. Firstly, we can fit directly
a hybrid linear model to the un-transformed and un-processed block vectors, with-
out the need of choosing beforehand which filter bank to use. Secondly, the hybrid
linear model essentially chooses the linear transformations (or filters) adaptively
for different images and different image segments. Thirdly, once the hybrid linear
model is identified, there is no further need of introducing a similarity measure for
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the features. Feature vectors (and hence pixels) that belong to the same subspace
are naturally grouped into the same image segment.

6.3.2 Dimension and Size Reduction
Mathematically, identifying such a hybrid linear model for image segmentation is
equivalently to that for image representation. However, two things have changed
from image representation and make image segmentation a computationally much
more challenging problem. First, the number of feature vectors (or blocks) is now
always the same as the number of pixels: N = WH , which is larger than that
(N = WH/b2) in the case of image representation. For a typical 512 × 512
image, we have N = 31, 744. Second, the block size b now can be much larger
that in the case of image representation. Thus, the dimension of the block vector
D = b2c is much higher. For instance, if we choose b = 10 and c = 3, then
D = 300. It is impossible to implement the GPCA algorithm on a regular PC
for 31, 744 vectors in R

300, even if we are looking for up to only four or five
subspaces.15

Dimension Reduction via Projection.

To reduce dimension of the data, we rely on the assumption (or belief) that “the
feature vectors lie on very low-dimensional subspaces in the high-dimensional
ambient space R

D.” Then based on our discussion in Section 3.2.2, we can project
the data into a lower-dimensional space while still being able to preserve the sep-
aration of the subspaces. Principal component analysis (PCA) can be recruited for
this purpose as the energy of the feature vectors is mostly preserved by their first
few principal components. From our experience, in practice it typically suffice to
keep up to ten principal components. Symbolically, the process is represented by
the following steps:

{xi} ⊂ R
D x′

i=π(xi)−−−−−−→ {x′
i} ⊂ R

D′ GPCA−−−−→ {x′
i} ⊂ ∪nj=1S

′
j ⊂ R

D′

,

where D′ � D and i = 1, . . . , N = WH .

Data Size Reduction via Down-Sampling.

Notice that the number of feature vectors N = WH might be too large for all
the data to be processed together since a regular PC has trouble in performing
singular value decomposition (SVD) for tens of thousands of vectors.16 Thus, we
have to down sample the data set and identify a hybrid linear model for only a
subset of the data. The exact down-sampling scheme can be determined by the
user. One can use periodic down-sampling (e.g., every other pixel) or random
down-sampling. From our experience, we found periodic down-sampling often

15The dimension of the Veronese embedding of degree 5 will be in the order of 1010.
16With the increase of memory and speed of modern computers, we hope this step will soon become

unnecessary.
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gives visually better segmentation results. The size of the down-sampled subset
can be determined by the memory and speed of the computer the user has. Once
the hybrid linear model is obtained, we may assign the remaining vectors to their
closest subspaces. Of course, in practice, one may run the process on multiple
subsets of the data and choose the one which gives the smallest fitting error for
all the data. This is very much in the same spirit as the random sample consensus
(RANSAC) method. Symbolically, the process is represented by the following
steps:

{xi}
sample−−−−−→ {xi′} GPCA−−−−→ {xi′} ⊂ ∪nj=1Sj

min d(xi,Sj)−−−−−−−−→ {xi} ⊂ ∪nj=1Sj ,

where {xi′} is a (down-sampled) subset of {xi}.

6.3.3 Experiments
Figure 6.24 shows the results of applying the above schemes to the segmentation
of some images from the Berkeley image database. A 20 × 20 × 3 “feature”
vector is associated with each pixel that corresponds to the color values in a
20 × 20 block. We first apply PCA to project all the feature vectors onto a 6-
dimensional subspace. We then apply the GPCA algorithm to further identify
subspace-structures of the features in this 6-dimensional space and to segment
the pixels to each subspace. The algorithm happens to find three segments for all
the images shown below. Different choices in the error tolerance, window size,
and color space (HSV or RGB) may affect the segmentation results. Empirically,
we find that HSV gives visually better segments for most images.

6.4 Image Classification
Notice that images of similar scenes (e.g., landscape, or urban areas, or wild life,
etc.) often contain similar textures and characteristics. It is then interesting to see
what would be the underlying hybrid linear model for images of each category.

For the example below, we select two groups of eight gray-scale images from
the Berkeley segmentation data set [Martin et al., 2001] shown in Figure 6.25.
One group contains common natural scenes, and the other contains more struc-
tured urban scenes. We randomly sample 100 blocks of 8 by 8 windows from
each image,17 stack them into 64-dimensional vectors, and apply our algorithm to
obtain a hybrid linear model.

For this example, we preset the desired subspace number as 3, and the algorithm
identifies the bases for the subspaces for each group. Figure 6.26 shows all base
vectors as 8 by 8 windows. Visually, one can see that these vectors capture the
essential difference between natural scenes and urban scenes.

17The window size and the number of blocks is limited by the computer memory.



144 Chapter 6. Image Representation, Segmentation & Classification

4 3 4

4 3 4

4 3 5

Figure 6.24. Image segmentation results obtained from the hybrid linear model. The di-
mension of the subspace (in homogeneous coordinates) associated with each segment is
marked by the number to its right.

Figure 6.25. Top: natural scenes. Down: Urban scenes.

Unlike most of our other examples, such hybrid linear models are “learned”
in a supervised fashion as the training images are classified by humans. The so-
obtained hybrid linear models can potentially be used to classify new images of
natural or urban scenes into one of the two categories.

In principle, we can also treat each image as a single point (in a very high-
dimensional space) and fit a hybrid linear model to an ensemble of images. Then
different subspaces of the model lead to a segmentation of the images into dif-
ferent categories. Images in the same category form a single linear subspace. We
have seen such an example for face images in Chapter 1 (Figure 1.6).
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(a) Bases for images of natural scenes (b) Bases for images of urban scenes

Figure 6.26. Base vectors of the identified subspaces for each category of images.

6.5 Bibliographic Notes
Image Representation and Compression.

There is a vast amount of literature on finding adaptive bases (or transforms) for
signals. Adaptive wavelet transform and adapted wavelet packets have been ex-
tensively studied [?, ?, ?, ?, ?, ?, ?]. The idea is to search for an optimal transform
from a limited (although large) set of possible transforms. Another approach is to
find some universal optimal transform based on the signals [?, ?, ?, ?]. Spatially
adapted bases have also been developed such as [?, ?, ?].

The notion of hybrid linear model for image representation is also closely re-
lated to the sparse component analysis. In [?], the authors have identified a set of
non-orthogonal base vectors for natural images such that the representation of the
image is sparse (i.e., only a few components are needed to represent each image
block). In the work of [?, ?, ?, ?, ?, ?, ?, ?, ?], the main goal is to find a mixture
of models such that the signals can be decomposed into multiple models and the
overall representation of the signals is sparse.

Image Segmentation.

Image segmentation based on local color and texture information extracted from
various filter banks has been studied extensively in the computer vision literature
(see e.g., [?, ?, ?]). In this chapter, we directly used the unfiltered pixel values of
the image. Our segmentation is a byproduct of the global fitting of a hybrid linear
model for the entire image. Since the image compression standard JPEG-2000
and the video compression standard MPEG-4 have started to incorporate texture
segmentation [?], we expect that the method introduced in this chapter will be
useful for developing new image processing techniques that can be beneficial to
these new standards.
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Chapter 7
2-D Motion Segmentation from Image
Partial Derivatives

In the previous chapter, we studied how to use hybrid (linear) models to represent
(static) images. The multiple (linear) components of a hybrid model were used
to effectively account for the multi-modal characteristics of naturals images, e.g.,
different textures. GPCA offers an efficient solution to the estimation of such a
model from the image. In the next chapters, we will show how to apply the same
techniques to the study of videos and in particular, how to model and extract
multi-modal characteristics of the dynamics of a video sequence.

To understand the dynamics of a video sequence, we need to model how every
pixel moves from one image to the next. One of the fundamental difficulties in
modeling the motion of all the pixels is that pixels in different regions of the im-
age may move differently from one region to another (which we will articulate
soon). Therefore, quantitatively, we may need multiple parametric models to de-
scribe the motions of different regions. Sometimes the models needed for different
regions may even belong to different classes of models. The problem of determin-
ing which models to use for different motions is further compounded with the fact
that we normally do not know which pixels correspond to which motion model.

This is a challenging problem in the study of any dynamical visual data, whose
mathematical nature depends largely on the type of image measurements (image
derivatives, optical flows, point correspondences), camera models (orthographic,
spherical, perspective), and motion models (translational, rigid, affine) that one
adopts to describe such measurements.

Depending on whether one is interested in understanding the motion in the 2-
D image, or the motion in 3-D space, the motion estimation and segmentation
problem can be divided into two main categories. 2-D motion segmentation refers
to the estimation of the 2-D motion field in the image plane (optical flow), while
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3-D motion segmentation refers to the estimation of the 3-D motion (rotation and
translation) of multiple rigidly moving objects relative to the camera.

When the scene is static, i.e., when either the camera or the 3-D world undergo
a single 3-D motion, one can model the 2-D motion of the scene as a mixture of 2-
D motion models such as translational, affine or projective. Even though a single
3-D motion is present, multiple 2-D motion models arise because of perspective
effects, depth discontinuities, occlusions, transparent motions, etc. In this case,
the task of 2-D motion segmentation is to estimate these models from the image
data. When the scene is dynamic, i.e., when both the camera and multiple objects
move, one can still model the scene with a mixture of 2-D motion models. Some
of these models are due to independent 3-D motions, e.g., when the motion of
an object relative to the camera can be well approximated by the affine motion
model. Others are due to perspective effects and/or depth discontinuities, e.g.,
when some of the 3-D motions are broken into different 2-D motions. The task of
3-D motion segmentation is to obtain a collection of 3-D motion models, in spite
of perspective effects and/or depth discontinuities.

Figure 7.1. 2-D motion segmentation of the flower-garden sequence from
http://www-bcs.mit.edu/people/jyawang/demos.

7.1 An Algebraic Approach to Motion Segmentation
In the next two chapters, we present an algebraic framework for segmenting 2-
D motion models from spatial-temporal image derivatives (Chapter 7) and 3-D
motion models from point correspondences (Chapter 8). The key to this algebraic
approach is to view the estimation of multiple motion models as the estimation
of a single, though more complex, multibody motion model that is then factored
into the original models. This is achieved by (1) algebraically eliminating the
data segmentation problem, (2) fitting a single multibody motion model to all the
image measurements, and (3) segmenting the multibody motion model into its
individual components. More specifically, the approach proceeds as follows:

1. Eliminate Data Segmentation: Find algebraic equations that are satisfied by
all the image measurements, regardless of the motion model associated with
each measurement. For instance, if the ith motion model is defined by an
algebraic equation of the form fj(x,Mj) = 0, where x is a measurement,
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Mj represents the parameters of the jth motion model and j = 1, . . . , n,
then an algebraic equation that is satisfied by all the data is

g(x,M) = f1(x,M1) · f2(x,M2) · · · fn(x,Mn) = 0. (7.1)

This equation represents a single multibody motion model whose parame-
tersM encode those of the original motion models {Mj}nj=1.

2. Multibody Motion Estimation: Estimate the parametersM of the multibody
motion model from the given image measurements. For the motion models
we will consider, M will correspond to the coefficients of a polynomial
pn of degree n. We will show that the number of motions n and the co-
efficientsM can be obtained linearly after properly embedding the image
measurements into a higher-dimensional space.

3. Motion Segmentation: Recover the parameters of the original motion
models from the parameters of the multibody motion modelM, that is,

M → {Mj}nj=1. (7.2)

We will show that the type of motion model can be determined from the
rank of a matrix formed from the partial derivatives of pn, while the indi-
vidual motion parametersMj can be computed from the first and second
derivatives of pn evaluated at a collection of n image measurements which
can be obtained automatically from the data.

In this chapter, we concentrate on the problem of segmenting 2-D translational
and 2-D affine motion models directly from the spatial-temporal image deriva-
tives. In the case of 2-D translational motions, the resulting motion models are
linear, hence the above framework reduces to GPCA. In the case of 2-D affine
motions the resulting motion models are bilinear, hence the above framework is a
particular case of QSA. In the case in which both 2-D translational and 2-D affine
motion models are present, we develop new techniques that combine GPCA and
QSA to simultaneously recover the type of motion, the motion parameters, and
the segmentation of the image measurements.

7.2 The Multibody Brightness Constancy Constraint
Consider a motion sequence taken by a moving camera observing an unknown
number m of independently and rigidly moving objects. The 3-D motion of each
object relative to the camera induces a 2-D motion field in the image plane called
optical flow. Because of perspective effects, depth discontinuities, occlusions,
transparent motions, etc., each 3-D motion induces one or more 2-D motions.
Therefore, we assume that the optical flow of the scene is generated from an
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unknown number n ≥ m of 2-D motion models {Mj}nj=1 of the form

u(x) =





u1(x) if x ∈ R1,

u2(x) if x ∈ R2,
...

un(x) if x ∈ Rn,

(7.3)

where u(x) = [u, v, 1]> ∈ P
2 is the optical flow of pixel x = [x1, x2, 1]

> ∈ P
2,

andRj ⊂ P
2 is the region of the image where the ith motion model holds.

Assume now that each one of the surfaces in the scene is Lambertian. That is, if
I(x(t), t) is the brightness of pixel x at time t, then I(x(t), t) = I(x(t0), t0). In
other words, the brightness of any 3-D point in any of the surfaces does not change
as the surfaces and the camera move. Then, the optical flow uj(x) at x ∈ Rj can
be related to the spatial-temporal image derivatives y(x) = [Ix1

, Ix2
, It]

> ∈ R
3

at x by the well-known brightness constancy constraint (BCC) [Ma et al., 2003]

BCC(x,y) = y>uj(x) = Ix1
u + Ix2

v + It = 0. (7.4)

Thus, if (x,y) is an image measurement associated with any of the n motion
models, then there exists a motion modelMj whose optical flow uj(x) is such
that y>uj(x) = 0. Therefore, the following multibody brightness constancy
constraint (MBCC) must be satisfied by every pixel in the image

MBCC(x,y) =
n∏

j=1

(y>uj(x)) = 0. (7.5)

Notice that the MBCC clearly resembles the mathematical nature of the product
polynomial (4.16) introduced in Section 4.1.3 for segmenting hyperplanes. In fact,
if the optical flow u(x) is a piecewise constant function of x, meaning that the op-
tical flow of the ith region does not depend the coordinates of x, i.e., uj(x) = uj ,
then according to (7.5) the image partial derivatives y ∈ R

3 can be seen as data
points lying on a union of planes in R

3, Hj = {y ∈ R
3 : y>uj = 0}, with nor-

mal vectors {uj}nj=1. Furthermore, if the optical flow u(x) is a piecewise affine
function of x, meaning that uj(x) = Ajx, where Aj ∈ R

3×3, then it follows
from (7.5) that the data (x,y) lives in the union of n quadratic surfaces. These
two observations establish a clear connection between the segmentation of 2-D
translational models and hyperplane segmentation, and between the segmentation
of 2-D affine motion models and the segmentation of quadratic surfaces.

In the following sections, we explore these connections further and show that
the MBBC allows us to solve the 2-D motion segmentation problem in closed
form for the class of 2-D translational and 2-D affine motion models. More
specifically, we will consider the following problem:

For the sake of simplicity, we divide our analysis into three parts. In Section 7.3
we consider the particular case of purely translational motions, i.e., n = nt and
na = 0, and show that Problem 7.1 can be solved as a direct application of GPCA.
In Section 7.4 we consider the particular case of purely affine motion models, i.e.,
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Problem 7.1 (2-D Motion Segmentation from Image Partial Derivatives)
Given the spatial-temporal partial derivatives {(I jx1

, Ijx2
, Ijt )}Nj=1 of a motion se-

quence generated from nt 2-D translational and na 2-D affine motion models
{Mj}na+nt

j=1 , estimate the number of motion models (na, nt), the optical flow
u(x) at each pixel x, the type of motion model at each pixel, and the motion pa-
rameters of the n = na+nt models, without knowing which image measurements
correspond to which motion model.

n = na and nt = 0, and show that Problem 7.1 can be solved by considering the
first order partial derivatives of the MBCC. In Section 7.5 we consider the most
general case of both 2-D translational and 2-D affine motion models, , and show
that Problem 7.1 can be solved by considering both first and second order partial
derivatives of the MBCC.

Before proceeding further, we state a general property of the MBCC that will
be used extensively in the remainder of the chapter.
Theorem 7.1 (Computing Optical Flow from the MBCC). Let (x,y) be an image
measurement associated to only one of the n = na+nt motion models, i.e., there
is a unique k = 1, . . . , n such that y>uk(x) = 0. Then the optical flow of a pixel
x is given by

u(x) =
∂MBCC(x,y)

∂y

/(
e>3
∂MBCC(x,y)

∂y

)
, (7.6)

where e3 = [0, 0, 1]>.
Proof. The partial derivative of the MBCC is given by

∂MBCC(x,y)

∂y
=

n∑

j=1

uj(x)
∏

`6=i

(y>u`(x)). (7.7)

Since there is a unique k = 1, . . . , n such that y>uk(x) = 0, we have that∏
`6=i(y

>u`(x)) = 0 for all i 6= k. After replacing this in (7.7), we obtain that
the partial derivative of the MBCC with respect to y is proportional to uk(x).
Since the last entry of u(x) is one, the result follows.

The importance of Theorem 7.1 is that it allows us to estimate the optical flow
at a pixel x without knowing either the type or the parameters of the motion model
associated with x. This offers an important advantage over existing methods for
computing optical flow (see Section 7.8 for a brief review) which use the single
body BCC on a local neighborhood of each pixel.
Remark 7.2. Notice that there are some pixels for which the optical flow cannot
be computed as stated in Theorem 7.1. If a pixel x is such that its image mea-
surement y happens to satisfy y>uj(x) = y>uk(x) = 0 for j 6= k, then the
MBCC has a repeated factor, hence its derivative is zero, and we cannot compute
u(x) as before. These cases occur when the image measurements satisfy certain
polynomial equations, thus they violate the non-degeneracy assumption.
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7.3 Segmentation of 2-D Translational Motion Models

7.3.1 The Multibody Optical Flow
For the sake of simplicity, let us first assume that the 2-D motion of the scene is
generated only from 2-D translational motions, i.e., n = nt and na = 0. In this
case, the optical flow u(x) = [u, v, 1]> ∈ P

2 at pixel x = [x1, x2, 1]
> ∈ P

2 can
be described by the equations

u(x1, x2) = u1, (7.8)
v(x1, x2) = u2, (7.9)

where u1 and u2 are the so-called translational motion parameters. Since the op-
tical flow of the ith region, u(x) = uj , does not depend on the pixel coordinates
x, the MBCC takes the form of a homogeneous polynomial of degree n in y

MBCC(x,y) =

n∏

j=1

(y>uj) = νn(y)>U = 0, (7.10)

where νn : R
3 → R

Mn(3) is the Veronese map of degree n defined in Sec-
tion 4.2.2 and the multibody optical flow U ∈ R

Mn(3) is the vector of coefficients
of the MBCC.

7.3.2 Computing the 2-D Translational Model Parameters
Thanks to the MBCC, the problem of segmenting 2-D translational motions is
equivalent to the hyperplane segmentation problem described in Section 4.1.3.
The points on the hyperplanes are the image partial derivatives y ∈ R

3 and the
normal vectors to the hyperplanes are the optical flows {uj}nj=1. Therefore, we
can estimate the number of 2-D translational models and the parameters of the 2-
D translational models by using the GPCA algorithm for hyperplanes (Algorithm
4.3), with minor modifications to account for the fact that the third entry of each
uj is one. This leads to the following solution to Problem 7.1 in the case of 2-D
translational motions.

1. Given N ≥ Mn(3) − 1 image measurements {yj}Nj=1 in general con-
figuration on the n hyperplanes, one can write the MBCC for all the
measurements as the following relationship between the number of motions
n and the multibody optical flow U

V U
nU

.
=

[
νn(y1) νn(y2) · · · νn(yN )

]> U = 0. (7.11)

From this relationship, one can compute the number of motions as

n = min{j : rank(V U
j ) = Mj(3)− 1} (7.12)

where V U
j ∈ R

N×Mj(3) is the matrix in (7.11), but computed with the
Veronese map νj of degree i ≥ 1. Given n, one can solve for U uniquely
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from the linear system (7.11) by enforcing the last entry of U to be one.
This additional equation results from the fact that the last entry of each uj
is one.

2. Given U and n, as per Theorem 7.1 one can compute the optical flow u(x)
at each pixel x without knowing which motion model is associated with
each pixel from the partial derivative of the MBCC with respect to y as

u(x) =
∂MBCC(x,y)

∂y

/(
e>3
∂MBCC(x,y)

∂y

)
. (7.13)

3. Solve for the n 2-D translational motion models {uj}nj=1 by choosing one
pixel per motion model {xj}nj=1 and then setting uj = u(xj), where u(x)
is computed as in (7.6). Pixel xj for j = n, n − 1, . . . , 1 is chosen so that
y(xj) has a minimizes the distance dj to the itth motion model, where

d2
n(x,y) =

|MBCC(x,y)|2

‖∂MBCC(x,y)
∂y

‖2
and d2

j−1(x,y) =
d2
j (x,y)

|y>u(xj)|2

‖u(xj)‖2

. (7.14)

Recall that for any surface f(y) = 0, a first order approximation to the
geometric distance to the surface is given by |f(y)|/‖∇f(y)‖. Notice that
in choosing the points there is no optimization involved. We just need to
evaluate the distance functions at each pixel and choose the one giving the
minimum distance. Notice also that the distance functions are slightly dif-
ferent from the ones in Chapter 4, because we must enforce the additional
constraint that the last entry of each uj is one.

7.4 Segmentation of 2-D Affine Motion Models
Assume now that the 2-D motion of the scene is generated only from 2-D affine
motions, i.e., n = na and nt = 0. In this case, the optical flow u(x) =
[u, v, 1]> ∈ P

2 at pixel x = [x1, x2, 1]
> ∈ P

2 can be described by the equations

u(x1, x2) = a11x1 + a12x2 + a13, (7.15)
v(x1, x2) = a21x1 + a22x2 + a23, (7.16)

where a11, . . . , a23 are the so-called affine motion parameters. By combining
equations (7.15) and (7.16) we see that the BCC for the affine model case takes
the following form

y>Ax =
[
Ix1

Ix2
It

]


a11 a12 a13

a21 a22 a23

0 0 1






x1

x2

1


 = 0, (7.17)

We shall refer to the above constraint as the affine constraint.

Remark 7.3. Notice that when a11 = a21 = a12 = a22 = 0, the affine motion
model reduces to the translational motion model u = [a13, a23, 1]

> discussed
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in the previous subsection, and the affine constraint y>Ax = 0 reduces to the
brightness constancy constraint y>u = 0.

Unlike the 2-D translational model, in the case of 2-D affine motions the opti-
cal flow associated with the ith region, ui(x) = Aix, does depend on the pixel
coordinates. Therefore, the MBCC (7.5) takes the form of a bi-homogeneous
polynomial of degree n in (x,y)

MBCC(x,y)
.
=

n∏

j=1

(y>Ajx) = 0, (7.18)

i.e., a homogeneous polynomial of degree n in either x or y. We call this con-
straint the multibody affine constraint, since it is a natural generalization of the
affine constraint valid for n = 1.

7.4.1 The Multibody Affine Matrix
The multibody affine constraint converts Problem 7.1 into one of solving for the
number of affine motions n and the affine motion parameters {Aj}nj=1 from the
polynomial equation (7.18). In principle, this problem is equivalent to segmenting
data (x,y) living on a collection of n quadratic surfaces, thus we could solve the
2-D affine motion segmentation problem using the QSA algorithm described in
Chapter 12. However, note that y>Ajx = 0 is not a general quadratic surface, but
rather a bilinear surface. Therefore, we propose to exploit this additional structure
in order to obtain a motion segmentation algorithm which is simpler and more
efficient than QSA.

To this end, notice that if we expand the polynomial in (7.18) as a sum of all
the possible monomials of degree n in x and y, then we can write the MBCC as
a bilinear expression in (νn(x), νn(y)) as stated by the following result.

Theorem 7.4 (The Bilinear Multibody Affine Constraint). The multibody affine
constraint (7.18) can be written in bilinear form as

νn(y)>Aνn(x) = 0, (7.19)

where each entry of A ∈ R
Mn(3)×Mn(3) is multilinear on the matrices {Aj}nj=1.

Proof. Let uj = Ajx ∈ R
3, for j = 1, . . . , n. Then, the multibody affine

constraint is a homogeneous polynomial of degree n in y = [y1, y2, y3]
>, i.e.,

MBCC(x,y) =

n∏

j=1

(y>uj) =
∑

cn1,n2,n3
yn1
1 yn2

2 yn3
3 = νn(y)>cn,

where cn ∈ R
Mn(3) is the vector of coefficients. From the properties of polyno-

mial multiplication, each entry of cn, cn1,n2,n3
, must be a symmetric multilinear

function of (u1, . . . ,un), i.e., it is linear in each uj and cn1,n2,n3
(u1, . . . ,un) =

cn1,n2,n3
(uσ(1), . . . ,uσ(n)) for all σ ∈ Sn, where Sn is the permutation group
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of n elements. Since each uj is linear in x, then each cn1,n2,n3
must be a homoge-

neous polynomial of degree n in x, i.e., cn1,n2,n3
= a>

n1,n2,n3
νn(x), where each

entry of an1,n2,n3
∈ R

Mn(3) is a symmetric multilinear function of the entries of
the Aj’s. Letting

A .
= [an,0,0 , an−1,1,0 , . . . , a0,0,n]

> ∈ R
Mn(3)×Mn(3),

we obtain MBCC(x,y) = νn(y)>Aνn(x) = 0.

We call the matrix A the multibody affine matrix since it is a natural general-
ization of the affine matrix to the case of multiple affine motion models. Since
equation (7.19) clearly resembles the bilinear form of the affine constraint for
a single affine motion, we will refer to both equations (7.18) and (7.19) as the
multibody affine constraint from now on.

7.4.2 Computing the Number of 2-D Affine Motion Models
Since the multibody affine constraint (7.19) is valid for each (xj ,yj), one can
write the MBCC for all the measurements as the following relationship between
the number of motions and the stack of the columns of A, vec(A)

V A
n a =

[
νn(x1)⊗ νn(y1) · · · νn(xN )⊗ νn(yN )

]> vec(A) = 0. (7.20)

In order to determine n andA, we assume that a large enough number of image
measurements are given and that such measurements are non-degenerate, i.e., they
do not satisfy any homogeneous polynomial of degree less than or equal to n
other than the MBCC. This assumption is analogous to the standard assumption
in structure from motion that image measurements should not be images of 3-D
points lying in a critical surface. Under this non-degeneracy assumption we have
that

1. There is no polynomial of degree i less than n that is satisfied by every data
point and so the data matrix of degree i, V A

j , is of full column rank;

2. There is only one polynomial of degree n that is satisfied by all the data,
and so V A

n is of rank Mn(3)
2 − 1 respectively;

3. There are two or more polynomials of degree i > n, namely any multiple
of the MBCC, that are satisfied by all the data points, hence the null space
of V A

j is at least two-dimensional.

This analysis imposes a rank constraints on V A
n which allows us to determine

the number of affine motion models from the given image intensities as stated by
the following theorem.

Theorem 7.5 (Number of 2-D Affine Motion Models). Let V A
j ∈ R

N×(Mj(3)
2)

be the matrix in (7.20), but computed with the Veronese map νj of degree i ≥
1. If rank(Aj) ≥ 2 for all j = 1, . . . , n, and a large enough set of N image
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measurements in general configuration is given, then

rank(V A
j )





> Mj(3)
2 − 1, if i < n,

= Mj(3)
2 − 1, if i = n,

< Mj(3)
2 − 1, if i > n.

(7.21)

Therefore, the number of affine motions n is given by

n
.
= min{j : rank(V A

j ) = Mj(3)
2 − 1}. (7.22)

Proof. Since each affine matrix Aj satisfies rank(Aj) ≥ 2, the polynomial pj =
y>Ajx is irreducible over the real field R. Let Zj be the set of (x,y) that satisfy
y>Ajx = 0. Then due to the irreducibility of pj , any polynomial p in x and y

that vanishes on the entire set Zj must be of the form p = pjh, where h is some
polynomial. Therefore, if A1, . . . , An are different, a polynomial that vanishes on
the set ∪nj=1Zj must be of the form p = p1p2 · · · pnh for some h. Therefore, the
only polynomial of minimal degree that vanishes on the same set is

p = p1p2 · · · pn =
(
x>

2 F1x1

) (
x>

2 F2x1

)
· · ·

(
x>

2 Fnx1

)
. (7.23)

Since the rows of V A
n are of the form (νn(x)⊗νn(y))> and the entries of νn(x)⊗

νn(y) are exactly the independent monomials of p (as we will show shortly), this
implies that if a large enough number of image pairs in general configuration is
given, then:

1. There is no polynomial of degree 2i < 2n whose coefficients are in the null
space of V A

j , i.e., rank(V A
j ) = M2

j > M2
j − 1 for i < n.

2. There is a unique polynomial of degree 2n, namely p, whose coefficients
are in the null space of V A

n , i.e., rank(V A
n ) = M2

n − 1.

3. There is more than one polynomial of degree 2i > 2n (one for each inde-
pendent choice of the 2(i − n)-degree polynomial h in p = p1p2 · · · pnh)
with coefficients in the null space of V A

j , i.e., rank(V A
j ) < M2

j − 1 for
j > n.

The rest of the proof is to show that the entries of νn(x) ⊗ νn(y) are exactly
the independent monomials in the polynomial p, which we do by induction. Since
the claim is obvious for n = 1, we assume that it is true for n and prove it
for n + 1. Let x = [x1, x2, x3]

> and y = [y1, y2, y3]
>. Then the entries of

νn(x)⊗νn(y) are of the form (ym1
1 ym2

2 ym3
3 )(xn1

1 xn2
2 xn3

3 ) withm1+m2+m3 =

n1+n2+n3 = n, while the entries of x⊗y are of the form (yi11 y
i2
2 y

i3
3 )(xj11 x

j2
2 x

j3
3 )

with i1+i2+i3 = j1+j2+j3 = 1. Thus a basis for the product of these monomials
is given by the entries of νn+1(x)⊗ νn+1(y).

Once n is known, we can solve for A uniquely from the linear system (7.20)
by enforcing the (Mn(3),Mn(3)) entry of A to be one. This additional equation
results from the fact that the (3, 3) entry of each Aj is one.
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7.4.3 Computing the 2-D Affine Motion Model Parameters
In this section, we exploit the geometric properties of A to obtain the following
purely geometric solution for computing {Aj}nj=1.

1. Compute derivatives of the MBCC with respect to x to obtain linear
combinations of the rows of each Aj .

2. Obtain the rows of each Aj up to a scale factor from the cross products of
these linear combinations.

3. Solve linearly for the unknown scales the rows of Aj from the optical flow.

For step 1, note that if the image measurement (x,y) comes from the ith
motion model, i.e., if y>Ajx = 0, then

∂MBCC(x,y)

∂x
∼ y>Aj . (7.24)

That is, the derivatives of the MBCC with respect to x give linear combinations
of the rows of the affine model at x. Now, since the optical flow u = [u, v, 1]> at
pixel x is can be computed as in 7.6, we can define the vectors ỹ1 = [1, 0,−u]>

and ỹ2 = [0, 1,−v]>. Although these vectors are not actual image measurements,
they do satisfy ỹ>

1 u = ỹ>
2 u = 0. Hence we can use them to obtain the following

linear combination of the rows of the affine model Aj at (x,y)

gj1 ∼ aj1 − ue3 and gj2 ∼ aj2 − ve3, (7.25)

from the derivatives of the MBCC at (x, ỹ1) and (x, ỹ2), respectively.
For step 2, notice that since the 3-rd row ofAj is e>3 , we can obtain two vectors

bj1 and bj2 that are orthogonal to aj1 and aj2, respectively, as bj1 = gj1× e3 ∼
aj1×e3 and bj2 = gj2×e3 ∼ aj1×e3. Although the pairs (bj1, e1) and (bj2, e2)

are not actual image measurements, they do satisfy e>1 Ajbj1 = a>
j1bj1 = 0 and

e>2 Ajbj2 = a>
j2bj2 = 0. Therefore we can immediately compute the rows of Aj

up to a scale factor as

a>
j1 ∼ ã>

j1 =
∂MBCC(x,y)

∂x

∣∣∣∣
(x,y)=(bj1,e1)

, (7.26)

a>
j2 ∼ ã>

j2 =
∂MBCC(x,y)

∂x

∣∣∣∣
(x,y)=(bj2,e2)

. (7.27)

For step 3, we know the rows of Aj up to scale, i.e., aj1 = λj1ãj1 and aj2 =

λj2ãj2, and the optical u flow at pixel x, i.e., u = Ajx. Therefore, u = λj1ã
>
j1x

and v = λj2ã
>
j2x, and so the unknown scales are automatically given by

λj1 = u/(ã>
j1x) and λj2 = v/(ã>

j2x). (7.28)

By applying steps 1-3 to all N pixels in the image, we can effectively compute
one affine matrix A for each pixel, without yet knowing the segmentation of the
image measurements. Since in our model we only have n � N different affine
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matrices, we only need to apply steps 1-3 to n pixels corresponding to each one of
the n models. We can automatically choose the n pixels at which to perform the
computation using the same methodology proposed for 2-D translational motions.
Once the {Aj}nj=1 are calculated we can cluster the data as

i = arg min
`=1,...,n

|yTj A`xj |2
‖A`xj‖2

, (7.29)

and then refine the affine motion model parameters by solving the linear equation
y>Ajx = 0 for each separate cluster.

7.5 Segmentation of Motions Models of Different Type
Consider now the most challenging case in which the 2-D motion of the scene
is generated from nt 2-D translational motion models {uj}nt

j=1 and from na 2-
D affine motion models {Aj}na

j=1. Then, the MBCC (7.5) takes the form of a
bi-homogeneous polynomial of degree na in x and na + nt in y

MBCC(x,y) =

nt∏

j=1

(y>uj)

na∏

j=1

(y>Ajx) = 0. (7.30)

Thanks to the MBCC, the problem of segmenting both 2-D translational and 2-
D affine motion models is mathematically equivalent to segmenting data lying on
a collection of both linear and quadratic surfaces. If we knew the type of motion
model associated with each pixel (translational or affine), we could immediately
separate the data into two groups and then apply the algorithms for 2-D trans-
lational and 2-D affine motions developed in the previous two sections to each
one of the groups. Since in practice we do not know the type of motion asso-
ciated with each pixel, one alternative is to use the QSA algorithm described in
Chapter 12 for clustering both linear and quadratic surfaces. However, the fact
that y>Ajx = 0 is not a general quadratic surface, but rather a bilinear surface,
gives us some additional algebraic structure which we can exploit to solve the 2-D
motion segmentation problem more efficiently.

In the following subsections, we present an algebraic algorithm for segmenting
2-D translational and 2-D affine motion models. We first derive a rank constraint
on the image measurements from which one can compute the number of transla-
tional and affine motion models using a simple one-dimensional search. We then
demonstrate that a sub-matrix of the Hessian of the MBCC encodes information
about the type of motion models: The matrix is rank-1 for 2-D translational mod-
els and rank-3 for 2-D affine models. Once the type of motion model has been
identified, we show that the parameters of each motion model can be obtained by
directly applying a subset of the algorithms described in the previous sections.
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7.5.1 The Multibody Motion Matrix
Let U ∈ R

Mnt
(3) be the multibody optical flow associated with {uj}nt

j=1, A ∈
R
Mna (3)×Mna (3) be the multibody affine matrix associated with {Aj}na

j=1, and
aTm1,m2,m3

be the (m1,m2,m3)th row of A. We can write the MBCC as

MBCC(x,y) = (νnt
(y)>U)(νna

(y)>Aνna
(x))

=
∑

n

yn1
1 yn2

2 yn3
3 Un1,n2,n3

∑

m

ym1
1 ym2

2 ym3
3 aTm1,m2,m3

νna
(x)

=
∑

m

∑

n

yn1+m1
1 yn2+m2

2 yn3+m3
3 Un1,n2,n3

aTm1,m2,m3
νna

(x)

=
∑

k

yk11 yk22 yk33 mT
k1,k2,k3νna

(x) = νna+nt
(y)>Mνna

(x) = 0,

where mT
k1,k2,k3

=
∑
n Un1,n2,n3

a>
k1−n1,k2−n2,k3−n3

is the (k1, k2, k3)th row of
M ∈ R

Mna+nt
×Mna . The matrixM is called the multibody motion matrix and

contains information about all the motion models {uj}nt

j=1 and {Aj}na

j=1. Note
that when na = 0, M is equivalent to the multibody optical flow U and when
nt = 0,M is equivalent to the multibody affine matrix A.

In order to computeM, note that the MBCC holds at every image measurement
{(xj ,yj)}Nj=1. Therefore, if the number of translational and affine motions are
known, we can computeM by solving the linear system,

V na,nt
m = 0, (7.31)

where the jth row of V na,nt
∈ R

N×Mna+nt
Mna is given as νna

(xj) ⊗
(νna+nt

(yj))
> and m is the stack of the columns of M. The scale of M is

obtained by enforcing the additional constraintM(Mna+nt
,Mna

) = 1, because
uj(3) = Aj(3, 3) = 1 for all j = 1, . . . , nt and j = 1, . . . , na.

7.5.2 Computing the Number of 2-D Motion Models
Note that in order to solve forM from the linear system V na,nt

m = 0 we need
to know the number of translational and affine models, nt and na, respectively.
In order to determine the number of models, we assume that the image measure-
ments are non-degenerate, i.e., they do not satisfy any homogeneous polynomial
in (x,y) of degree less than na in x or less than nt + na in y. This assumption
is analogous to the standard assumption in structure from motion that image mea-
surements should not live in a critical surface. Under this assumption we have the
following result:

Theorem 7.6 (Number of Translational and Affine Models). Let V n′
a,n

′
t
∈

R
N×Mn′

t
+n′

a
Mn′

a be the matrix in (7.31), but computed with the Veronese map
of degree n′

a in x and n′
a + n′

t ≥ 1 in y. If rank(Aj) ≥ 2 for all j = 1, . . . , na,
and a large enough set of image measurements in general configuration is given,
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then the number of affine and translational motions are, respectively, given by

na = arg min
n′

a

{n′
a : ∃n′

t ≥ 0 : V n′
a,n

′
t

drops rank by 1},

nt = arg min
n′

t

{n′
t : V na,n′

t
drops rank by 1}. (7.32)

Proof. From the non-degeneracy assumption we have that

1. If n′
a < na or n′

t + n′
a < nt + na, there is no polynomial of degree n′

a in
x or of degree n′

a + n′
t in y fitting the data, hence V n′

a,n
′
t

is of full column
rank.

2. If n′
t + n′

a = nt + na and n′
t ≤ nt, there is exactly one polynomial fitting

the data, namely νn′
t+n

′
a
(y)>Mνn′

a
(x), thus V n′

a,n
′
t

drops rank by 1. This
is true for all n′

t ≤ nt, given n′
t+n′

a = nt+na, because each translational
motion model can also be interpreted as an affine motion model.

3. If n′
t + n′

a > nt + na and n′
a ≥ na, there are two or more polynomials

of degree n′
a in x and n′

a + n′
t in y that fit the data, namely any multiple of

the MBCC. Therefore, the null space of V n′
a,n

′
t

is at least two-dimensional
and V n′

a,n
′
t

drops rank by more than 1.

From the above cases, we conclude that there are multiple values of (n′
a, n

′
t) for

which the matrix V n′
a,n

′
t

drops rank exactly by 1, i.e., whenever n′
t+n

′
a = nt+na

and n′
t ≤ nt. Therefore the correct number of motions (na, nt) can be obtained

as in (7.32).

As a consequence of the theorem, we can immediately devise a strategy to
search for the correct number of motions. We know that the correct number of
motions (na, nt) occurs for the minimum value of n′

a such that n′
t+n

′
a = nt+na

and V n′
a,n

′
t

drops rank by 1. Thus we can initially set (n′
a, n

′
t) = (0, 1) and if

V n′
a,n

′
t

does not drop rank we can increase n′
a while keeping n′

a + n′
t constant

until V n′
a,nt

drops rank. If V n′
a,n

′
t

does not drop rank for this value of n′
a + n′

t,
we increase n′

a + n′
t by one, reset n′

a = 0 and repeat the process until V n′
a,n

′
t

drops rank by 1 for the first time. This process will stop at the true (na, nt).
Figure 7.2 illustrates our method for searching for the number of motions

(na, nt) in the particular case of na = 3 affine motions and nt = 2 transla-
tional motions. In this case, we search for the correct (na, nt) in the following
order (0, 1), (1, 0), (0, 2), (1, 1), (2, 0), (0, 3), · · · , (0, 5), (1, 4), (2, 3),(3, 2).

Notice that the proposed search strategy will give the correct number of motions
with perfect data, but will fail with noisy data, because the matrix V n′

a,n
′
t

will be
full rank for all (n′

a, n
′
t). Inspired by the criterion (2.14) for determining the rank

of a noisy matrix given in Chapter 2, we find (na, nt) as the pair that minimizes
the cost function

σ2
Mn′

t
+n′

a
Mn′

a

(V n′
a,n

′
t
)

∑Mn′
t
+n′

a
Mn′

a
−1

j=1 σ2
j (V n′

a,n
′
t
)

+ κ1(n
′
a + n′

t) + κ2n
′
a. (7.33)
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Figure 7.2. Plot of the possible pairs of (n′
a, n′

t) that give a unique solution for the MBCC.
The actual pair is (3, 2).

In (7.33) σj(L) is the jth singular value of L, and κ1 and κ2 are parameters
that penalize increasing the complexity of the multibody motion modelM, either
by increasing the number of affine motions, or by increasing the total number
of motions. As before, this two-dimensional optimization problem is reduced to
a one-dimensional search by evaluating the cost function for values of (n′

a, n
′
t)

chosen in the order (0, 1), (1, 0), (0, 2), (1, 1), (2, 0), (0, 3), · · · .

7.5.3 Computing the Type of 2-D Motion at Each Pixel
Given the number of motion models (na, nt) and the multibody motion model
M, we now show how to determine the type of motion model associated with
each pixel: 2-D translational or 2-D affine. As it turns out, this can be done in a
remarkably simple way by looking at the rank of the matrix

H(x,y) =
∂MBCC(x,y)

∂y∂x
∈ R

3×3. (7.34)

For the sake of simplicity, consider a scene whose optical flow at every
pixel can be modeled by one translational and one affine motion model, u and
A, respectively. In this case, the MBCC can be written as MBCC(x,y) =
(y>u)(y>Ax), hence

H(x,y) = uy>A+ (y>u)A. (7.35)

Therefore, if an image measurement comes from the translational motion model
only, i.e., if y>

j u = 0, then

H(xj ,yj) = u(y>
j A) =⇒ rank(H(xj ,yj)) = 1. (7.36)

Similarly, if the image measurement comes from the affine motion model, i.e., if
y>
j Axj = 0, then

H(xj ,yj) = u(y>
j A) + (y>

j u)A⇒ rank(H(xj ,yj)) = 3. (7.37)
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This simple observation for the case na = nt = 1 generalizes to any value of
na and nt as stated in the following theorem.

Theorem 7.7 (Identification of the Motion Type). LetM∈ R
Mna+nt

(3)×Mna (3)

be the multibody motion model associated with nt 2-D translational motions
{uj}nt

j=1 and na 2-D affine motions {Aj}nj=1. The type of motion model
associated with an image measurement (x,y) can be found as follows

1. 2-D translational if rank(H(x,y)) = 1.

2. 2-D affine if rank(H(x,y)) = 3.

Thanks to Theorem 7.7, we can automatically determine the type of motion
model associated with each image measurements. In the case of noisy image data,
we can use equation (2.14) to determine the rank of a matrix. As simpler method
applicable in this particular case is to declare a model to be 2-D affine if

3

√
|det(H(xj ,yj))|

trace(H(xj ,yj))
> ε. (7.38)

We have found a threshold of ε = 0.03 to work well in all our experiments.

7.5.4 Computing the 2-D Motion Model Parameters
Given the number and types of motion models, and the multibody motion model
M, we now show how to compute the individual 2-D translational {uj}nt

j=1 and
2-D affine {Aj}na

j=1 motion models. One possible method is to simply separate the
data into two groups, 2-D translational data and 2-D affine data, and then solve
separately for the 2-D translational and 2-D affine motion models by using the
algorithms in the previous two sections. This amounts to solving for the multibody
optical flow U from (7.11) and the multibody affine matrix A from (7.20), and
then applying polynomial differentiation to obtain {uj}nt

j=1 from U and {Aj}na

j=1

from A.
However, at this point we already have the multibody motion M which is a

matrix representation for U ⊗ A + A ⊗ U . Therefore, having to recompute U
and A would be extra unnecessary computation. In this subsection we show that
the one can directly compute {uj}nt

j=1 and {Aj}na

j=1 from the derivatives of the
MBCC defined by the multibody motion modelM.

To this end, recall from Theorem 7.1 that one can compute the optical flow at
each pixel x from the partial derivative of the MBCC with respect of y at (x,y).
Therefore, we can immediately obtain the 2-D translational motions {uj}nt

j=1 by
applying steps 2 and 3 of the algorithm in Section 7.3 to the pixels obeying a 2-D
translational motion model, as determined in the previous subsection.

In an entirely analogous fashion, recall from Section 7.4 that in the case of 2-D
affine motion models the computation of the affine matrices {Aj}na

j=1 relies on the
fact that the derivatives of the MBCC with respect to x give a linear combination
of the rows of Aj , where Aj is the affine model associated with x (see equation
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(7.24)). It is obvious from equation (7.30) that the vector of partial derivatives of
the MBCC with respect to x is not affected by 2-D translational motions, because
2-D translational motions do not depend on x. Therefore, we can immediately
obtain the 2-D affine motions {Aj}na

j=1 by applying steps 1-3 of the algorithm in
Section 7.4.3 to the pixels obeying a 2-D affine motion model, as determined in
the previous subsection.

7.6 Algorithm Summary
We can summarize the discussions in sections 7.3-7.5 in the form of Algorithm
7.1. The algorithm outlines the steps to calculate the multibody motion parameters
and the individual motion models and then segment the motion of the scene.

Notice that the minimum number of image measurements needed in order to
compute the multibody motion modelM is N ≥ Mna+nt

(3)Mnt
(3) − 1. Table

7.1 gives numeric values of the minimum N as a function of the number of affine
and translational models. Notice that in most cases less than 800 pixels are needed,
which is feasible even with a 100× 100 image.

Table 7.1. Minimum number of measurements as a function of the number of models.
(na, nt) 0 1 2 3 4 5
0 2 5 9 14 20
1 6 15 27 42 60 81
2 24 48 78 114 156 204
3 64 114 174 244 324 414
4 139 229 334 454 589 739

7.7 Experimental Results
In this section, we evaluate the performance of Algorithm 7.1 for the 2-D affine
motion models, as a function of the level of noise and the number of motion
models using synthetically generated data. We compare the performance of the
following algorithms

1. Factorization: given A, this algorithm solves for the affine motion pa-
rameters by bi-homogeneous polynomial factorization of the MBCC as
described in [Vidal and Sastry, 2002].

2. Differentiation: given A, this algorithm solves for the affine motion para-
meters by polynomial differentiation of the MBCC as described in Section
7.4.

3. Complex differentiation: given the optical flow computed by the differen-
tiation algorithm, this algorithm transforms the two equations (7.15) and
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Algorithm 7.1 (2-D Motion Segmentation from Image Derivatives).
GivenN image measurements {(xj ,yj)}Nj=1 of a scene undergoing nt 2-D trans-
lational and na 2-D affine motion models, recover the number of motion models
(na, nt), the optical flow u(x) at each pixel x, the type of motion model at each
pixel, the parameters {Mj}nj=1 of the n = na+nt motion models, and the model
object associated with each image measurement as follows:

1. Number of motion models: Apply the Veronese map of various degrees
to the data {(xj ,yj)}Nj=1 to form the embedded data matrix V M

n′
a,n

′
t

and
compute the number of motions (na, nt) as in (7.33).

2. Multibody motion model: ComputeM from the singular vector of V M
na,nt

associated with its smallest singular value and let

MBCC(x,y) = νna+nt
(y)>Mνna

(x).

3. Optical flow: Compute the optical flow at each pixel as:

u(xj) =
∂MBCC(xj ,yj)

∂yj

/(
e>3
∂MBCC(xj ,yj)

∂yj

)
.

4. Motion type. Assign point (xj ,yj) to the 2-D translational group Gt if
rank(H(xj ,yj))=1 and to the 2-D affine groupGa if rank(H(xj ,yj))=3.

5. Motion segmentation:
for j = nt : 1

Select one representative optical flow (xj ,uj = u(xj)) per
translational motion model according to (7.14).

end
for j = na : 1

Select one representative optical flow (xj ,uj = u(xj)) per affine
motion model according to (7.14);

ỹj1 = [1, 0,−uj ]>; ỹj2 = [0, 1,−vj ]>;

bj1 = e3 ×
∂MBCC
∂y

(x,ỹj1); bj2 = e3 ×
∂MBCC
∂y

(xi, ỹj2);

ãj1 =
∂MBCC
∂x

(e1, bj1); ãj2 =
∂MBCC
∂x

(e2, bj2);

Aj =
[

(e>1 uj)ãj1

ã>
j1xj

(e>2 uj)ãj1

ã>
j2xj

e3
]>

.

end

6. Feature segmentation: Assign (xj ,yj) to group arg min`
|y>

j u`(xj)|
2

‖u`(xj)‖2 .

7. Refining the motion model parameters: Given the clustering of the image
measurements into n groups, refine the motion model parameters for each
separate cluster by from all the points belonging to that particular cluster.



164 Chapter 7. 2-D Motion Segmentation from Image Partial Derivatives

(7.16) into a single equation in the complex domain. Taking the product of
these equations for each one of the n models leads to a complex multibody
affine model, Ac ∈ C

Mn(3), from which the individual affine models are
obtained by polynomial differentiation, similarly to the 2-D translational
case described in Section 7.3.

4. K-means: starting from an initial set of affine matrices, this algorithm alter-
nates between assigning points to clusters using the distance in (7.29) and
computing (linearly) the affine models for each motion class.

5. K-means + Differentiation: we use our differentiation algorithm to initialize
the K-means algorithm so that it has good estimates of the affine matrices
to start with rather than choosing the initial values randomly.

We then present experimental results for various indoor and outdoor sequences
for both, the translational and affine motion models. For the real sequences, we
obtain the image derivatives at each frame using derivative of Gaussian filters of
order 6 and then apply Algorithm 7.1 to each frame.

7.7.1 Simulation Results
We first test the algorithm on synthetic data. We randomly pick n = 2 collections
of N = 200 pixel coordinates and apply a different (randomly chosen) affine
motion model to each collection of pixels to generate their optical flow. From the
optical flow associated with each pixel, we randomly choose a vector y of spa-
tial and temporal image derivatives satisfying the brightness constancy constraint
(7.4). The coordinates of y are constrained to be in [−1, 1] to simulate image
intensities in the [0, 1] range. Zero-mean Gaussian noise with standard deviation
σ ∈ [0, 0.05] is added to the partial derivatives y. We run 1000 trials for each
noise level. For each trial the error between the true affine motions {Aj}nj=1 and
the estimates {Âj}nj=1 is computed as

Affine error =
1

n

n∑

j=1

‖Aj − Âj‖
‖Aj‖

(%). (7.39)

Figure 7.3 plots the mean error and the mean percentage of correctly classi-
fied pixels as a function of σ, by using the polynomial differentiation approach.
In all trials the number of motions was correctly estimated from equation (7.33)
as n = 2.1 Notice that K-means randomly initialized usually converges to a lo-
cal minima. The average number of iterations is 20. The factorization algorithm
performs better than K-means for a small level of noise, but its performance de-
teriorates quickly as noise increases. The differentiation algorithm’s estimates are
within 6% of the true affine motions, with a percentage of correct classification of
over 90%, even for a noise level of 5% in the image derivatives. The best results

1We use κ = 10−6 to determine the number of motions.
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Figure 7.3. Error in the estimation of the affine model parameters and percentage of
correctly classified points as a function of noise.

are obtained by using the differentiation algorithm to initialize K-means. Then the
error reduces to about 2%, the average number of iterations reduces to 5, and the
percentage of correctly classified points increases to 95%.

7.7.2 2-D Translational Motions
Figure 7.4 shows segmentation results for a 240 × 320 sequence of a car leav-
ing a parking lot. The top row shows the pixels associated with the camera’s
downward motion and the bottom row shows the pixels associated with the car’s
right-downward motion. In each row, pixels that do not correspond to the group
are colored black. Figure 7.5 shows another example on the segmentation of a
240× 320 sequence of a person’s head rotating from right to left in front of a lab
background. The top row shows the pixels associated with the camera’s fronto-
parallel motion and the bottom row shows the pixels associated with the head
motion. In each row, pixels that do not corresponding to the group are colored
red.

Figure 7.4. Segmentation of 4 frames from the car-parking lot sequence. Top: pixels
associated with the camera motion. Bottom: pixels associated with the car motion.
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The results in Figure 7.4 and 7.5, were obtained by applying Algorithm 7.1
directly to all the image data, without any pre or post processing. Therefore, many
pixels can be potentially misclassified, such as pixels in low textured regions,
e.g., parts of the body of each car, the road, the wall in the lab, as well as pixels
in highly specular regions where the BCC is not satisfied. In addition, nearby
pixels need not belong to the same group, because motion is the only cue used for
segmentation.

Figure 7.5. Segmentation of 4 frames from the head-lab sequence. Top: pixels associated
with the camera motion. Bottom: pixels associated with the head motion.

The segmentation results are encouraging. Although we are using a simple mix-
ture of two 2-D translational motion models, i.e., the optical flow is assumed to
be piecewise constant, most of the pixels corresponding to the moving car or the
moving head are correctly segmented from those of the moving background. Most
of the errors occur precisely at regions with low texture, such as the road in Fig-
ure 7.4 and the black sweater and white wall regions in Figure 7.5. Overall, about
85% of the image pixels are correctly classified with respect to ground truth man-
ual segmentation. These results can be used as an initial segmentation for any
more computationally intense nonlinear iterative refinement scheme.

7.7.3 2-D Affine Motions
Figure 7.6 shows an aerial view of a robot rotating and translating on the ground.
The camera is fronto-parallel to the ground and undergoing both rotational and
translational motion. Notice that various regions in the image correspond to pieces
of the robots made of aluminum, which are highly specular and have little texture.
Nevertheless, the algorithm correctly classifies about 85% of the pixels in the
image with respect to ground truth manual segmentation.

7.7.4 2-D Translational and 2-D Affine Motions
Figure 7.7 shows segmentation results for a 240 × 320 sequence of a car leaving
a parking lot. The sequence has 2 motions, the camera’s downward motion which
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Figure 7.6. Segmenting four frames from robot sequence.

can be modeled as an affine motion and the car’s right-downward motion which
can be modeled as a translation. The first and second columns in the figure show
the segmentation obtained assuming that the scene has 2 translations and 2 affine
motions, respectively. The third column is the segmentation obtained assuming
that the scene has 1 translation and 1 affine motion. In each image, pixels that do
not correspond to the group are colored black. Notice that when both the motion
models are assumed to be translational, the segmentation of the car is noisy, and
when both the motion models are assumed to be affine, a portion of the parking
lot gets segmented along with the car.

Figure 7.8 shows another example of segmentation of a 240 × 320 sequence
of a person’s head rotating from right to left in front of a lab background. This
sequence too has 2 motions, the camera’s fronto-parallel motion which can be
modeled as a translation and the motion of the head which can be modeled as an
affine motion. The first and second columns in the figure show the segmentation
obtained assuming that the scene has 2 translations and 2 affine motions respec-
tively. The third column is the segmentation obtained assuming that the scene has
1 translation and 1 affine motion. In each row, pixels that do not correspond to the
group are colored red. We see that using motion models of different type helps
segment the head more cleanly as compared to using motion models of the same
type.

Figure 7.9 shows the the segmentation results of a 240 × 320 sequence of
a helicopter landing. The sequence has 1 translational motion corresponding to
the hovering motion of the helicopter and an affine motion corresponding to the
fronto-parallel motion of the camera. The first column indicates pixels belonging
to the motion of the camera and the second column indicates pixels belonging to
the motion of the helicopter. In each image, pixels that do not correspond to the
group are colored black. The results show that we obtain a very good segmenta-
tion of the helicopter, in spite of the fact that it constitutes a very small part of the
image.

While applying Algorithm 7.1 to the sequences in Figure 7.9, we pre-
assigned the type of motion model to the pixels corresponding to areas with low
texture(i.e., pixels corresponding to the sky) from the prior knowledge of the type
of motion model that they should obey. The idea behind this is that the matrix



168 Chapter 7. 2-D Motion Segmentation from Image Partial Derivatives

nt = 2, na = 0 nt = 0, na = 2 nt = 1, na = 1

Figure 7.7. Segmenting 4 frames from the car-parking lot sequence.

H(x,y) at such pixels would have rank 0 and this would result in their misclas-
sification as translational points. However, we would like to emphasize that the
results show that Algorithm 7.1 does give good segmentation results in the other
areas having texture variation.
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nt = 2, na = 0 nt = 0, na = 2 nt = 1, na = 1

Figure 7.8. Segmenting 4 frames from the head-lab sequence.

7.8 Bibliographic Notes
Classical approaches to 2-D motion segmentation separate the image flow into
different regions by looking for flow discontinuities [Spoerri and Ullman, 1987,
Black and Anandan, 1991], fit a mixture of parametric models through successive
computation of dominant motions [Irani et al., 1992] or use a layered represen-
tation of the motion field [Darrel and Pentland, 1991]. The problem has also
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Figure 7.9. Segmenting 4 frames from a helicopter landing sequence. Left: pixels
associated with the camera motion. Right: pixels associated with the helicopters motion

been formalized in a maximum likelihood framework [Jepson and Black, 1993,
Ayer and Sawhney, 1995, Weiss, 1996, Weiss, 1997, Torr et al., 2001] in which
the estimation of the motion models and their regions of support is done by
alternating between the segmentation of the image measurements and the es-
timation of the motion parameters using the Expectation Maximization (EM)
algorithm. EM-like approaches provide robust motion estimates by combining
information over large regions in the image. However, their convergence to the
optimal solution strongly depends on correct initialization [Shi and Malik, 1998,
Torr et al., 2001]. Existing initialization techniques estimate a 2-D motion repre-
sentation from local patches and cluster this representation using normalized cuts
[Shi and Malik, 1998], or K-means [Wang and Adelson, 1993]. The drawback of
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these approaches is that they are based on a local computation of 2-D motion,
which is subject to the aperture problem and to the estimation of a single model
across motion boundaries. Some of these problems can be partially solved by
incorporating multiple frames and a local process that forces the clusters to be
connected [Ke and Kanade, 2002]. The only existing algebraic solution to 2-D
motion segmentation is based on bi-homogeneous polynomial factorization and
can be found in [Vidal and Sastry, 2002].

Classical approaches to 2-D motion segmentation are based on separat-
ing the image flow into different regions by looking for flow discontinuities
[Spoerri and Ullman, 1987]. Due to the aperture problem, such techniques have
trouble dealing with noisy flow estimates, especially in regions with low texture.
Black and Anandan [Black and Anandan, 1991] deal with this problem by us-
ing some regularity constraints to interpolate the flow field. However, since the
location of motion discontinuities and occlusion boundaries is unknown, these
techniques often have the problem of smoothing across motion boundaries.

Alternative approaches model the scene as a mixture of 2-D paramet-
ric motion models, such as translational, affine or projective. Irani et al.
[Irani et al., 1992] propose to estimate such motion models through successive
computation of dominant motions. That is, they use all the image data to first
extract one motion model (the dominant motion) using a least squares tech-
nique. Then, they subdivide the misaligned regions by computing the next
dominant motion and so on. Although this technique can be improved by
using robust M-estimators [Black and Anandan, 1996] and intensity informa-
tion [Ayer et al., 1994], it has the disadvantage of erroneously assigning data to
models, especially when there is no such a dominant motion in the scene. It also
fails in the presence of transparent motions.

To deal with this difficulties, Darrell and Pentland [Darrel and Pentland, 1991]
proposed a new representation, the so-called layered representation, based on
multiple motion models with different layers of support. They compute a trans-
lational model for each layer using robust M-estimation. Then they update the
regions of support based on the current estimation of the motion models. The
number of layers is obtained by minimizing a minimum description length
(MDL)–like function.

The layered representation has also been formalized as a maximum likeli-
hood estimation problem by modeling the scene as a mixture of probabilistic
motion models [Jepson and Black, 1993, Ayer and Sawhney, 1995, Weiss, 1996,
Weiss, 1997, Torr et al., 2001]. The estimation of the models and their regions
of support is usually done using an iterative process, the so-called Expectation
Maximization (EM) algorithm, that alternates between the segmentation of the
image measurements (E-step) and the estimation of the motion model parameters
(M-step). Jepson and Black [Jepson and Black, 1993] assume that the number of
models is known and estimate the motion parameters using least squares. Ayer and
Sawhney [Ayer and Sawhney, 1995] use MDL to determine the number of models
and robust M-estimation to estimate the motion parameters. Weiss [Weiss, 1996]
incorporates spatial constraints in the E-step via a mean field approximation of
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a Markov random field (MRF). The number of models is automatically esti-
mated by initializing the algorithm with more models than will be needed and
then decreasing the number of models whenever two models are similar. Weiss
[Weiss, 1997] and Torr et al. [Torr et al., 2001] noticed that the assumption of
a parametric motion model (translational, affine or projective) is too restrictive
for scenes which are non planar. [Weiss, 1997] proposes a non-parametric mix-
ture model based on a probability distribution that favors smooth motion fields.
[Torr et al., 2001] proposes a parametric model that includes some 3-D informa-
tion by associating a disparity with each pixel, similar to the plane+parallax model
[Irani and Anandan, 1999]. The model is initialized using a Bayesian version of
RANSAC.

While EM-like approaches have the advantage of providing robust motion
estimates by combining information over large regions in the image, they
suffer from the disadvantage that then convergence to the optimal solution
strongly depends on correct initialization [Shi and Malik, 1998, Torr et al., 2001].
To deal with the initialization problem, various techniques have been proposed.
[Wang and Adelson, 1993] divides the image in small patches and estimates an
affine motion model for each patch using the optical flow of the patch. The pa-
rameters of the affine models are then clustered using the K-means algorithm
and the regions of support of each motion model are computed by comparing the
optical flow at each pixel with that generated by the “clustered” affine motion
models. The drawbacks of this algorithm is that it is based on a local computation
of optical flow which is subject to the aperture problem and to the estimation of
a single affine model across motion boundaries. Some of these problems can be
partially solved by incorporating multiple frames and a local process that forces
the clusters to be connected [Ke and Kanade, 2002].

Alternative approaches are based on first clustering the image data by us-
ing local features that incorporate spatial and temporal motion information.
Once the segmentation of the pixels has been obtained, one can estimate a
motion model for each cluster using, for example, the so-called direct meth-
ods [Irani and Anandan, 1999]. Shi and Malik [Shi and Malik, 1998] proposed
the so-called motion profile as a measure of the probability distribution of the
image velocity at a given pixel. Such a motion profile is used to build a similarity
matrix from which pixels are clustered in two groups using the normalized cuts
(Ncut) algorithm. Each group is then further partitioned using recursive Ncuts.
The drawback of this approach are that it is unclear when to stop subdividing
the clusters and that the two-way partitioning is inappropriate in the presence of
multiple motions, especially when no dominant motion is present.
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7.9 Exercises
Exercise 7.1 Show that in the case of n = 2 affine motions A1 = [bij ] ∈ R

3×3 and
A2 = [cij ] ∈ R

3×3, the multibody affine motion A ∈ R
6×6 is given by:

A =

2
6666664

b11c11 A12 b11c13 + b13c11 b12c12 b12c13 + b13c12 b13c13

A21 A22 A23 A24 A25 A26

0 0 b11 + c11 0 b12 + c12 b13 + c13

b21c21 A42 b21c23 + b23c21 b22c22 b22c23 + b23c22 b23c23

0 0 b21 + c21 0 b22 + c22 b23 + c23

0 0 0 0 0 1

3
7777775

,

where
A12 = b11c12 + b12c11, A42 = b21c22 + b22c21,
A22 = b11c22 + b21c12 + b12c21 + b22c11, A21 = b11c21 + b21c11,
A23 = b11c23 + b21c13 + b13c21 + b23c11, A24 = b12c22 + b22c12,
A25 = b12c23 + b22c13 + b13c22 + b23c12, A26 = b13c23 + b23c13.

Exercise 7.2 Let {Aj}n
j=1 be a collection of n 2-D affine motion models, and recall that

the entries (3,1) and (3,2) of each affine matrix Aj are zero.

1. Show that the entries (n1, n2, n3), (m1, m2, m3) of the multibody affine matrix A,
with 0 ≤ m3 < n3 ≤ n, are zero as well.

2. Show that the number of zeros in the multibody affine matrix is given by

Zn
.
= n(n + 1)(n + 2)(3n + 5)/24.

3. Let V A
n ∈ R

N×Mn(3)2 and a ∈ R
Mn(3)2 be defined as in (7.20). Show that by

enforcing the fact that Zn entries of A are zero one can solve for the entries of the
multibody affine matrix A from

Ṽ
A
n ã = 0, (7.40)

where ã ∈ R
Mn(3)2−Zn is the same as a, but with the zero entries removed,

and Ṽ
A
n ∈ R

N×(Mn(3)2−Zn) is the same as V A
n ∈ R

N×Mn(3)2 , but with the
corresponding Zn columns removed.

4. Show that the number of affine motions n can also be computed as

n
.
= min{j : rank(Ṽ

A
j ) = Mj(3)2 − 1}. (7.41)

Proof. Since the entries (1, 3) and (2, 3) of Aj are zero, the monomials of y>Ajx in-
volving y3 must also involve x3. Therefore, the coefficients of monomials in MBCC(x, y)
which are multiples of yi

3x
j
3 with 0 ≤ j < i ≤ n must be zero. Since the number of

monomials which are multiples of yi
3x

j
3 is the number of polynomials of degree (n − i)

in (y1, y2), (n − i + 1), times the number of polynomials of degree (n − j) in (x1, x2),
(n − j + 1), then Zn =

Pn

i=1

Pi−1
j=0(n − i + 1)(n − j + 1).

Exercise 7.3 Let {uj}nt
j=1 and {Aj}na

j=1 be a collection of na 2-D affine motion and nt

2-D translational motion models, and recall that the entries (3,1) and (3,2) of each affine
matrix Aj are zero. If na > 0, show that Zna,nt entries of the multibody motion matrix
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M are zero. Find the number and location of such zero entries. Let V n and m be defined
as in 7.31. Show that one can solve for M from

Ṽ na,ntm̃ = 0, (7.42)

where m̃ ∈ R
Mnt+na Mna−Zna,nt is the same as m, but with the Zna,nt zero entries

removed, and Ṽ na,nt ∈ R
N×(Mna+nt

Mna−Zna,nt
) is the same as V na,nt , but with the

corresponding Zna,nt columns removed.
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Chapter 8
3-D Motion Segmentation from Point
Correspondences

A classic problem in visual motion analysis is to estimate a motion model for
a set of 2-D feature points as they move in a video sequence. When the scene
is static, i.e., when either the camera or a single object move, the problem of
fitting a 3-D model compatible with the structure and motion of the scene is
well understood [Hartley and Zisserman, 2000, Ma et al., 2003]. For instance, it
is well-known that two perspective views of a scene are related by the epipo-
lar constraint [Longuet-Higgins, 1981] and that multiple views are related by
the multilinear constraints [Heyden and Åström, 1997]. These constraints can be
used to estimate a motion model for the scene using linear techniques such as the
eight-point algorithm and its generalizations.

However, these techniques can not deal with dynamic scenes in which both the
camera and an unknown number of objects with unknown 3-D structure move in-
dependently. In principle, one could model such scenes with a collection of 2-D
motion models and segment them using the 2-D motion segmentation techniques
developed in the previous chapter. However, because of depth discontinuities, per-
spective effects, etc, 2-D techniques would tend to interpret a single 3-D motion
as multiple 2-D motions, which would result in over segmentation of the scene.

In this chapter, we develop techniques for segmentation of 3-D motion models.
In particular, we consider the segmentation of three types of models of increasing
complexity: linear, bilinear and trilinear. The segmentation of linear models shows
up in motion segmentation from multiple affine views, and can be solved using
the GPCA algorithm presented in Chapter 4. The segmentation of bilinear and
trilinear models shows up in motion segmentation from point correspondences in
two and three perspective views, respectively, and will require the development
of extensions of GPCA to certain classes of bilinear and trilinear surfaces.
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8.1 The Motion Estimation Problem
Before delving into the details of segmentation of multiple 3-D motion mod-
els, we present a brief overview of the classical 3-D motion estimation problem
from point correspondences. Sections 8.1.2 and 8.1.3 review the two-view
geometry of non-planar and planar scenes, respectively, and Section 8.1.4 re-
views the three view geometry of non-planar scenes. We refer the readers to
[Hartley and Zisserman, 2000, Ma et al., 2003] for further details.

8.1.1 Rigid-Body Motions and Camera Projection Models
Consider a video sequence taken by a moving camera observing a static scene. We
assume that the camera is moving rigidly, so that its pose at frame f = 1, . . . , F
can be expressed as (Rf , Tf ) ∈ SE(3), whereRf ∈ SO(3) is the camera rotation
and Tf ∈ R

3 is the camera translation. Without loss of generality, we assume that
the first camera frame coincides with the world frame, so that (R1, T1) = (I,0).

Consider a generic point p, with coordinates X1 = (X1, Y1, Z1)
> ∈ R

3 rel-
ative to the world reference frame. As illustrated in Figure 8.1, the coordinates
Xf = (Xf , Yf , Zf )

> of the same point p relative to the f th camera frame are
given the rigid-body transformation (Rf , Tf ) of X1:

Xf = RfX1 + Tf ∈ R
3. (8.1)

Adopting the pinhole camera model shown in Figure 8.2 with focal length d(f),
the point p with coordinates Xf is projected onto the image plane at the point



xf
yf
1


 =

1

Zf



d(f) 0 0

0 d(f) 0
0 0 1






Xf

Yf
Zf


 . (8.2)

The projection model (8.2) is specified relative to a very particular reference
frame centered at the optical center with one axis aligned with the optical axis. In
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Figure 8.1. A rigid-body motion between a moving frame C and a world frame W .
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Figure 8.2. Frontal pinhole imaging model: the image of a 3-D point p is the point x at the
intersection of the ray going through the optical center o and the image plane at a distance
d(f) in front of the optical center.

practice, when one captures digital images the measurements are obtained in pixel
coordinates, which are related to the image coordinates by the transformation

xf
.
=



sx sθ ox
0 sy oy
0 0 1






xf
yf
1


 , (8.3)

where (sx, sy) is a scale factor, sθ is a skew factor and (ox, oy) is a translation so
that the origin is in the upper-left corner of the image.

Combining the camera motion model (8.1), the camera projection model (8.2)
and the camera calibration model (8.3), leads to the following camera model:

λfxf =



sx sθ ox
0 sy oy
0 0 1






d(f) 0 0

0 d(f) 0
0 0 1




︸ ︷︷ ︸
Kf∈R3×3

[
Rf Tf

]



X1

Y1

Z1

1


 , (8.4)

where λf = Zf and Kf are, respectively, the depth of the point and the camera
calibration matrix in the f th frame. When Kf = I , we say that the camera is
calibrated. We call the 3× 4 matrix Πf = Kf [Rf Tf ] the projection matrix.

8.1.2 The Fundamental Matrix
Let x1 and x2 be images of point p in the first and second frames of a video
sequence consisting of F = 2 frames. As illustrated in Figure 8.3, the vectors
X2, T2 and R2X1 must be coplanar, hence their triple product must be zero, i.e.,

X2 · (T2 ×R2X1) = 0 ⇐⇒ X>
2 T̂2R2X1 = 0. (8.5)

where T̂2 ∈so(3) is a skew-symmetric matrix generating the cross product by T2.
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Figure 8.3. Epipolar geometry: Two projections x1, x2 ∈ R
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vantage points. The relative Euclidean transformation between the two vantage points is
given by (R, T ) ∈ SE(3). The intersections of the line (o1, o2) with each image plane
are called epipoles and are denoted as e1 and e2. The intersections of the plane (o1, o2, p)
with the two image planes are called epipolar lines and are denoted `1 and `2.

It follows from equation (8.4) that λ1x1 = K1X1 and λ2x2 = K2X2. There-
fore, the following epipolar constraint [Longuet-Higgins, 1981] must be satisfied
by the relative camera motion (R2, T2) and the image pair (x1,x2)

x>
2 K

−>
2 T̂2R2K

−1
1 x1 = 0 ⇐⇒ x>

2 Fx1 = 0. (8.6)

The matrix F = K−>
2 T̂2R2K

−1
1 ∈ R

3×3 is called the fundamental matrix and is
defined up to an indeterminate scale. By construction, F is a rank-2 matrix having
e1 = R>

2 K1T2 and e2 = K2T2 as its right and left null spaces. The vectors e1

and e2 are known as the epipoles in the first and second view, respectively.
Since there are 9 unknowns in the fundamental matrix F (up to a scale), one

can linearly solve for F from the epipolar constraint (8.6) from N ≥ 8 point
correspondences {(x1i,x2i)}Ni=1 in general configuration. Given some additional
knowledge about the camera calibration K1 and K2, one can solve for the camera
motion (R2, T2) from F using the eight-point algorithm [Longuet-Higgins, 1981].

8.1.3 The Homography Matrix
The motion estimation scheme described in the previous subsection assumes
that the displacement of the camera between the two views is nonzero, i.e.,
T2 6= 0, otherwise the fundamental matrix F = K−>

2 T̂2R2K
−1
1 would be

zero. Furthermore, it also requires that the 3-D points be in general configu-
ration, otherwise one cannot uniquely recover F from the epipolar constraint
[Hartley and Zisserman, 2000]. The latter case occurs, for example, when the 3-D
points lie in a plane N>X1 = d, where N ∈ S

2 is the normal to the plane and
d is the distance from the plane to the origin of the first view. It follows from the
equations X2 = R2X1 + T2, N>X1 = d, λ1x1 = K1X1 and λ2x2 = K2X2
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that the following homography constraint holds

X2 =

(
R2 +

1

d
T2N

>

)
X1 =⇒ x2∼K2

(
R2 +

1

d
T2N

>

)
K−1

1 x1 (8.7)

The matrix H = K2(R2 + 1
dTN>)K−1

1 is called the homography matrix and
is, in general, defined up to an indeterminate scale. Notice that the homography
constraint x2 ∼ Hx1 also holds for non-planar scenes undergoing pure rotation.
In this case we simply have H = K2R2K

−1
1 . Since there are 9 unknowns in

the homographt matrix H (up to a scale), one can linearly solve for H from the
homography constraint (8.7) fromN ≥ 8 point correspondences {(x1i,x2i)}Ni=1.
Given some additional knowledge about the camera calibration K1 and K2, one
can solve for the camera motion (R2, T2) from F using linear methods.

8.1.4 The Trifocal Tensor
Let x1 ↔ x2 ↔ x3 be a point correspondence in three perspective views with
3× 4 camera matrices

Π1 = [K1 0], Π2 = [K2R2 e2] and Π3 = [K3R3 e3], (8.8)

where e2 ∈ P
2 and e3 ∈ P

2 are the epipoles in the 2nd and 3rd views, re-
spectively. Let `2 be any line passing through x2, i.e., `>2 x2 = 0, and `3

be any line passing through x3, i.e., `>3 x3 = 0. Then, the multiple view
matrix [Ma et al., 2004]

[
`>2 K2R2x1 `>2 e2

`>3 K3R3x1 `>3 e3

]
∈ R

2×2 (8.9)

must have rank 1, hence its determinant must be zero, i.e.,

`>2 (K2R2x1e
>
3 − e2x

>
1 R

>
3 K

>
3 )`3 = 0. (8.10)

This is the well-known point-line-line trilinear constraint among the three
views [Hartley and Zisserman, 2000], which we will denote as

T (x1, `2, `3) =
∑

p,q,r

Tpqrx1p`2q`3r = 0 (8.11)

where T ∈ R
3×3×3 is the so-called trifocal tensor.

Computing the trifocal tensor

Since there are 27 unknowns in the trifocal tensor T (up to a scale factor), one
can linearly solve for T from the trilinear constraint (8.11) given at least 26
point-line-line correspondences. However, if we are given point-point-point cor-
respondences, then for each point in the 2nd view x2, we can obtain two lines `21

and `22 passing through x2, and similarly for the 3rd view. Therefore, each point
correspondence gives 22 = 4 linearly independent equations on T and we only
need 7 point correspondences to linearly estimate T .
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Computing epipoles, epipolar lines and camera matrices

Given the trifocal tensor T , it is well known how to compute the epipolar lines in
the 2nd and 3rd views of a point x1 in the 1st view [Hartley and Zisserman, 2000].
Specifically, notice from (8.11) that the matrix

(K2R2x1e
>
3 − e2x

>
1 R

>
3 K

>
3 ) ∈ R

3×3 (8.12)

has rank 2. In fact its left null-space is `2(x1) = e2 × K2R2x1 and its right
null-space is `3(x1) = e3 ×K3R3x1, i.e., the epipolar lines of x1 in the second
and third views, respectively.

The epipoles in the second and third views e2 and e3 must lie in the epipolar
lines in the second and third views, {`2(x1i)}Ni=1 and {`3(x1i)}Ni=1, respectively.
Thus we can obtain the epipoles from

e>
2 [`2(x11), . . . , `2(x1N )] = 0 and e>

3 [`3(x11), . . . , `3(x1N )] = 0. (8.13)

Clearly, we only need 2 epipolar lines to determine the epipoles, hence we do not
need to compute the epipolar lines for all points in the first view. However, it is
better to use more than two lines in the presence of noise.

Finally, given T , e2 and e3, one can solve for the camera matrices Π1, Π2 and
Π3 using linear techniques [Hartley and Zisserman, 2000].

8.2 The Motion Segmentation Problem
Consider a moving camera with pose g0(t) ∈ SE(3) at time t observing a scene
containing n moving objects with poses {gj(t) ∈ SE(3)}nj=1 at time t. The mo-
tion of object j relative to the camera between the zeroth and f th frame is given
by (Rfj , Tfj) = gj(f)g0(f)−1g0(0)gj(0)

−1 ∈ SE(3). Let {Xi ∈ R
3}Ni=1 be a

collection of points in 3-D space lying in the n moving objects. The projection of
a point Xi lying in the jth object onto the f th camera frame is given by

xfi = πf (RjfXi + Tjf ), (8.14)

where πf : R
3 7→ I is the camera projection model (orthographic, perspective,

etc.). In this chapter, we will consider the following problem.

Problem 8.1 (3D Motion Segmentation from Point Correspondences)
Given N image points {xfi}f=1,...,F

i=1,...,N taken from F views of a motion sequence
related by a collection of n 3-D motion models, estimate the number of motion
models n and their parameters {Mj}nj=1 without knowing which measurements
correspond to which motion model.

In some cases, the camera model is such that the 3-D motion models are linear
on the image measurements, thus Problem 8.1 is a direct application of GPCA. In
other cases, the motion models are more complex, e.g., bilinear or trilinear. We
develop extensions of GPCA to deal with such classes of segmentation problems.
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8.3 Segmentation of Linear Motion Models
In this section, we consider the 3-D motion segmentation problem (Problem 8.1)
in cases in which the projection model is such that the resulting 3-D motion
model is linear in the image measurements. In particular, we consider the seg-
mentation of rigid-body motions from point correspondences in multiple affine
views and show that the motion segmentation problem boils down to segmenting
low-dimensional subspaces of a high-dimensional space.

8.3.1 The Affine Motion Subspaces
Let {xfi ∈ R

2}f=1,...,F
i=1,...,N be the images of N 3-D points {X i ∈ P

3}Ni=1 seen
by a rigidly moving camera in F frames. Under the affine projection model,
which generalizes orthographic, weak perspective, and paraperspective projection
[Hartley and Zisserman, 2000], the images satisfy the equation

xfi = AfXi, (8.15)

where Af = Kf

[
1 0 0
0 1 0

]
[Rf Tf ] ∈ R

2×4 is the so-called affine camera
matrix at frame f and depends on the pose of the camera relative to the world
(Rf , Tf ) ∈ SE(3) and the internal camera calibration parameters Kf ∈ SL(2).

When the set of points {X i}Ni=1 all correspond to a single rigidly moving ob-
ject, we can stack of all the image measurements {xfi} into a 2F ×N matrix W ,
which can be decomposed into a motion matrix M and structure matrix S as

W = MS



x11 · · · x1N

...
...

xF1 · · · xFN




2F×N

=



A1

...
AF




2F×4

[
X1 · · · XN

]
4×N

. (8.16)

It follows from equation (8.16) that rank(W ) ≤ 4. In addition, notice that the
two rows of each Af are linear combinations of the first two rows of a rotation
matrixRf , hence rank(W ) ≥ rank(Af ) ≥ 2. Therefore, the 2-D point trajectories
of 3-D points lying in a single rigidly moving object (the columns of the data
matrix W ) live in a subspace of R

2F of dimension d = 2, 3 or 4.1

8.3.2 Segmentation of Motion Affine Subspaces
Consider now the case in which the set of points {X i}Ni=1 corresponds to n rigid
objects moving independently. It follows from our analysis in the previous section
that, if we knew the segmentation of the feature points, then we could write the

1This rank constraint was derived in [Tomasi and Kanade, 1992], and was used to propose the first
multi-frame algorithm for estimating the motion of an affine camera observing a static scene.
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measurement matrix as W = [W1,W2, · · · ,Wn], where the columns of Wj ∈
R

2F×Nj are the Nj measurements associated with the jth moving object, so that∑n
j=1Nj = N . It also follows from our analysis in the previous section that each

measurement matrix Wj satisfies

Wj = MjSj j = 1, . . . , n, (8.17)

where Mj ∈ R
2F×4 and Sj ∈ R

4×Ni are, respectively, the motion and structure
matrices associated with the jth moving object.

In reality, the segmentation of the feature points is unknown, and so the mea-
surement matrix is given by W = [W1,W2, · · · ,Wn]P , where P ∈ R

N×N is
an unknown permutation matrix. Nevertheless, the columns of W still live in a
union of n motion subspaces {Sj ⊂ R

2F }nj=1 of dimensions dj ∈ {2, 3, 4} for
j = 1, . . . , n. Therefore, 3-D motion segmentation from point correspondences in
multiple affine views is equivalent to segmenting subspaces of R

2F of dimensions
d1, . . . , dn ≤ dmax = 4. As discussed in Chapter 4, we can solve this problem
by applying GPCA to the 2F -dimensional point trajectories projected onto a sub-
space of R

2F of dimension D = dmax + 1 = 5. That is, if W = UΣV > is the
SVD of the data matrix, then we can solve the motion segmentation problem by
applying GPCA (Algorithm 4.4) to the first 5 columns of V >.

Segmentation of Independent Motion Subspaces

It is worth noting that, under certain additional assumptions, the motion seg-
mentation problem can be solved using a simpler algorithm that depends only
on the SVD of the data matrix W = UΣV >. For example, when the motion
subspaces are fully dimensional, i.e., dim(Sj) = 4, and fully independent, i.e.,
dim(Sj ∪ Sk) = dim(Sj) + dim(Sj) or equivalently Sj ∩ Sk = {0}, one can
apply the Costeira and Kanade (CK) algorithm [Costeira and Kanade, 1998] to
segment the motion subspaces. The CK algorithm is based on thresholding the
entries of the so-called shape interaction matrix

Q = V V >, (8.18)

which has the property that [Kanatani, 2001]

Qij = 0 if i and j correspond to different motions. (8.19)

This property has been the basis for most existing motion segmentation al-
gorithms, such as [Costeira and Kanade, 1998, Kanatani, 2001, Kanatani, 2002,
Kanatani and Matsunaga, 2002b, Wu et al., 2001].

In many applications, however, the motions need not be fully dimensional. In
ground robot navigation, for example, the motion of each robot relative to the
camera is constrained to be planar, which reduces the dimension of the motion
subspaces to d = 3. In addition, the motion subspaces may be partially depen-
dent, i.e., max{dim(Sj),dim(Sk)} < dim(Sj ∪ Sk) < dim(Sj) + dim(Sk) or
equivalently Sj ∩ Sk 6= {0}, Sj ∩ Sk 6= Sj and Sj ∩ Sk 6= Sk, which hap-
pens for instance when two objects move with the same rotation but different
translation relative to the camera. As reported in [Zelnik-Manor and Irani, 2003,



8.4. Segmentation of Bilinear Motion Models 183

Kanatani and Sugaya, 2003, Vidal and Hartley, 2004], most existing motion seg-
mentation algorithms show poor performance in the presence of degenerate or
partially dependent motions, because they cannot deal with intersecting motion
subspaces. The GPCA algorithm discussed in Chapter 4 does not impose any re-
striction on either the intersection or the dimensionality of the subspaces, hence
it can deal with all the spectrum of affine motions: from two-dimensional and
partially dependent to four-dimensional and fully independent.

8.4 Segmentation of Bilinear Motion Models
In this section, we consider the 3-D motion segmentation problem (Problem 8.1)
in cases in which the projection model is such that the resulting 3-D motion model
is bilinear in the image measurements. In particular, we consider the segmentation
of rigid-body motions from point correspondences in two perspective views of
nonplanar (Section 8.4.1) and planar (Section 8.4.2) scenes. In both cases, we
show that the motion segmentation problem can be solved using extensions of
GPCA to certain classes of bilinear surfaces.

8.4.1 Segmentation of Fundamental Matrices
In this subsection, we consider the problem of segmenting n 3-D rigid-body mo-
tions {(Rj , Tj) ∈ SE(3)}nj=1 from point correspondences in two perspective
views. We assume that the 3-D scene is nonplanar and that the individual trans-
lations Ti are all nonzero. In this case, the motion of the objects relative to the
camera between the two views can be modeled as a mixture of fundamental ma-
trices {Fj}nj=1. In order for the problem to be well posed, we assume that the
fundamental matrices are different from each other (up to a scale factor).

The multibody epipolar constraint and the multibody fundamental matrix

As shown in Section 8.1.2, if (x1,x2) is an image pair associated with any the
n moving objects, then exists a fundamental matrix Fj such that x>

2 Fjx1 = 0.
Therefore, the following multibody epipolar constraint must be satisfied by the
number of independent motions n, the fundamental matrices {Fj}nj=1 and the
image pair (x1,x2), regardless of which motion is associated with the image pair

pn(x1,x2)
.
=

n∏

j=1

(
x>

2 Fjx1

)
= 0. (8.20)

The multibody epipolar constraint (8.20) and the multibody brightness con-
stancy constraint (MBCC) for affine motions (7.18) are both bi-homogeneous
polynomials of degree n that factor as a product of n bilinear forms. Therefore, as
shown in Theorem 7.4, the multibody epipolar constraint can be written in bilinear
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form as
n∏

j=1

(
x>

2 Fjx1

)
= νn(x2)

>Fνn(x1) = 0. (8.21)

We call the matrix F ∈ R
Mn(3)×Mn(3) the multibody fundamental matrix as it is

a natural generalization of the fundamental matrix to the case of multiple moving
objects. Also, since equation (8.21) clearly resembles the bilinear form of the
epipolar constraint for a single rigid-body motion, we will refer to both equations
(8.20) and (8.21) as the multibody epipolar constraint from now on.

Although the multibody fundamental matrixF seems a complicated mixture of
all the individual fundamental matrices F1, . . . , Fn, it is still possible to recover
all the individual fundamental matrices fromF , under some mild conditions (e.g.,
the Fj’s are different). The rest of the section is devoted to providing a construc-
tive proof for this. We first show how to recover n and F from data, and then
show how to recover {Fj}nj=1 from F .

Estimating the number of motions n and the multibody fundamental matrix F
Both the MBCC for affine motions (7.19) and the multibody epipolar con-
straint (8.21) are bilinear expressions on the embedded image measurements
and linear expressions on the multibody motion parameters. Therefore, given
N ≥ Mn(3)

2 − 1 ∼ O(n4) generic point correspondences {(x1i,x2i)}Ni=1, we
can solve for the stack of the columns of the multibody fundamental matrix F ,
vec(F) ∈ R

Mn(3)2 , from the linear system (see equation (7.20))

V F
n vec(F)

.
=

[
νn(x11)⊗ νn(x21), · · · , νn(x1N )⊗ νn(x2N )

]> vec(F) = 0,
(8.22)

and for the number of independent motions n from (see Theorem 7.5)

n
.
= min{j : rank(V F

j ) = Mj(3)
2 − 1}. (8.23)

Factorization of the multibody fundamental matrix

Given the multibody fundamental matrix F and the number of independent
motions n, we now show how to recover the fundamental matrices and the seg-
mentation of the image points. We first show that the gradients of the multibody
epipolar constraint at the point correspondences lie in a collection of hyperplanes
in R

3 whose normal vectors are the n epipoles. Therefore, one can apply GPCA
to these gradients in order to obtain the epipoles as well as the segmentation of
the data. Once the data has been segmented, computing a fundamental matrix for
each group is a linear problem.

1. Given an image pair (x1,x2) associated with the jth motion, its epipolar
line in the second view (see Figure 8.3) is defined as `j

.
= Fjx1 ∈ P

2. Since
x>

2 Fjx1 = 0, we can compute `j as the partial derivative of the multibody
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epipolar constraint with respect to x2 evaluated at (x1,x2), because

∂

∂x2

(
νn(x2)

>Fνn(x1)
)

=

n∑

j=1

∏

k 6=j

(x>
2 Fkx1)(Fjx1) (8.24)

=
∏

k 6=j

(x>
2 Fkx1)(Fjx1) ∼ `j . (8.25)

Therefore, given a set of point correspondences {(x1i,x2i)}Ni=1, we can
compute its associated set of epipolar lines {`i}Ni=1 as the gradient of the
multibody epipolar constraint at the correspondences.

2. Given an epipolar line ` associated with the jth motion, there exists an epi-
pole ej such that e>

j ` = e>
j Fjx1 = 0, because ej is the left null space

of Fj . Therefore, the set of N epipolar lines can be interpreted as a set
of points in R

3 lying in n hyperplanes with normal vectors {ej}nj=1. We
can apply the GPCA algorithm (Algorithm 4.4) to estimate the n epipoles
{ej}nj=1 up to a scale factor. If the n epipoles are different,2 we can immedi-
ately segment the data into n groups by assigning the image pair (x1i,x2i)
to group j if

j = arg min
k=1,...n

(e>
k `i)

2 (8.26)

3. Once the data has been clustered, solving for the fundamental matrix Fj
from the epipolar constraint x>

2 Fjx1 = 0 is a linear problem of the form
(see equation (8.22))

[
w1jx11 ⊗ x21, w2j · · · , wNjx1N ⊗ x2N

]> vec(Fi) = 0, (8.27)

where wij = 1 if the ith point belongs to the jth group, and wij = 0
otherwise.

Algorithm 8.1 summarizes the algorithm for segmenting n fundamental matri-
ces. Table 8.1 gives the minimum number of point correspondences required by
the algorithm as a function of the number of motions.

8.4.2 Segmentation of Homography Matrices
The motion segmentation scheme described in the previous subsection assumes
that the displacement of each object between the two views relative to the camera
is nonzero, i.e., T 6= 0, otherwise the individual fundamental matrices F = T̂R
would be zero. Furthermore, it also requires that the 3-D points be in general con-
figuration, otherwise one cannot uniquely recover each fundamental matrix from

2This is not a strong assumption. If two individual fundamental matrices share the same (left)
epipoles, one can consider the right epipoles (in the first image frame) instead, because it is ex-
tremely rare that two motions give rise to the same left and right epipoles. In fact, this happens only
when the rotation axes of the two motions are equal to each other and parallel to the translation
direction [Vidal et al., 2005].
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Algorithm 8.1 (Segmentation of Fundamental Matrices).
Given two perspective views {(x1i,x2i)}Ni=1 of a set ofN 3-D points undergoing
n different rigid-body motions, recover the number of independent motions n,
the fundamental matrix Fj associated with each motion, and the motion model
associated with each image pair as follows:

1. Number of motions. Form the embedded data matrix of degree j ≥ 1,
V F
j ∈ R

N×Mj(3)
2 , as in (8.22). Compute the number of independent

motions n from (8.23) or else from

n = arg min
j≥1

σ2
Mj(3)2

(V F
j )

∑Mj(3)2−1
k=1 σ2

k(V
F
j )

+ µMj(3)
2. (8.28)

2. Multibody fundamental matrix. Compute the multibody fundamental
matrix F as the least-squares solution to the linear system V F

n vec(F) = 0

in (8.22), where V F
n is computed using the Veronese map νn of degree n.

3. Epipolar lines. Compute the epipolar lines {`i}Ni=1 in the second view
associated with each image pair {(x1i,x2i)}Ni=1 as the gradient of the
multibody epipolar constraint with respect to x2 evaluated at each image
pair.

4. Epipoles. Apply GPCA to the epipolar lines {`i}Ni=1 to obtain the
individual epipoles {ej}nj=1.

5. Feature segmentation. Assign image pair (x1i,x2i) to motion j =
arg mink=1,...n(e

T
k `i)

2.

6. Fundamental matrices. Obtain the individual fundamental matrices
{Fj}nj=1 by applying the eight-point algorithm to each group.

its epipolar constraint. The latter case occurs, for example, in the case of planar
structures, i.e., when the 3-D points lie in a plane [Hartley and Zisserman, 2000].

Both in the case of purely rotating objects (relative to the camera) or in the case
of a planar 3-D structure, the motion (R, T ) between the two views x1 ∈ P

2 and
x2 ∈ P

2 is described by a homography matrix H ∈ R
3×3. If N ∈ R

3 is the
(unit) normal to the plane and d is the distance from the plane to the origin, the
homography matrix H = R+ 1

dTN
> is such that [Hartley and Zisserman, 2000]

x2 ∼ Hx1 =



h11 h12 h13

h21 h22 h23

h31 h32 h33


 x1. (8.29)

When the camera calibrationK ∈ R
3×3 is also unknown, the homography matrix

is written as H = K(R+ 1
dTN

>)K−1.
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The multibody homography

Consider now a scene that can be modeled with n different homographies
{Hj}nj=1. Note that the n homographies do not necessarily correspond to n dif-
ferent rigid-body motions, as one rigidly moving object could consists of two or
more planes whose motion is described by two or more homographies. Therefore,
the n homographies can represent anything from 1 up to n rigid-body motions.

It is evident from the form of equation (8.29) that in order to eliminate the
segmentation of the data we cannot take the product of all the equations, as we
did with the epipolar constraints, because in this case we have two linearly inde-
pendent equations per image pair. In Chapter 4 we dealt with this issue by using
multiple polynomials to represent multiple subspaces of co-dimension more than
one. In the case of homographies, one can avoid using multiple polynomials by
exploiting properties of the cross product in R

3, as we show now.
We start by noticing that if ` is a line passing through x2, i.e., ` is such that

`>x2 = 0, then it follows from (8.29) that there is a motion i such that `>Hjx1 =
0. Therefore, the following multibody homography constraint must hold

pn(x1, `) =
n∏

j=1

(`>Hjx1) = νn(`)
>Hνn(x1) = 0. (8.30)

We call the matrixH ∈ R
Mn(3)×Mn(3) the multibody homography. Notice that

H plays the analogous role of the multibody affine matrix A, or the multibody
fundamental matrix F .

Computing the number of homographies n and the multibody homography H
In order to compute n and H from a given a set of point P correspondences
{(x1p,x2p)}Pp=1, notice that given an image pair (x1,x2), we can generate two
linearly independent lines `1 and `2 passing through x2. This may lead us to
conclude that each correspondence gives two linearly independent constraints on
the entries ofH. In reality, each correspondence gives n+ 1 constraints onH.

To see this, notice that equation (8.30) must hold for any line passing through
x2. Since the family of lines α`1 + `2 passes through x2 for all α ∈ R, we have

q(α) =

n∏

j=1

((α`1 + `2)
>Hjx1) = νn(α`1 + `2)

>Hνn(x1) = 0. (8.31)

One can show that (see Exercise 8.2)

νn(α`1 + `2) =
n∑

j=0

αifj(`1, `2), (8.32)

where fj(`1, `2) ∈ R
Mn(3) a polynomial of degree i in `1 and (n − i) in `2 for

j = 0, . . . , n. Therefore, q(α) is a polynomial of degree n in α such that q(α) = 0
for all α, and so each one of its n+ 1 coefficients must be zero, i.e.,

fj(`1, `2)
>Hνn(x1) = 0, j = 0, . . . , n. (8.33)
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This gives n + 1 constraints per point correspondence on the entries of H.
Therefore, given P ≥ Mn(3)3−1

n+1 ∼ O(n3) generic point correspondences
{(x1p,x2p)}Pp=1, we can solve for the stack of the columns of the multibody
homography H, h ∈ R

Mn(3)2 , from the linear system

V H
n h = 0, (8.34)

where the ith row of V H
n ∈ R

P (n+1)×Mn(3)2 is given by νn(x1)⊗ fj(`1, `2).
Finally, similarly to (7.22) and (8.23), the number of homographies is given by

n
.
= min{j : rank(V H

j ) = Mj(3)
2 − 1}. (8.35)

Factorization of the multibody homography

Once H is known, computing the homographies {Hj}nj=1 is equivalent to fac-
torizing the multibody homography constraint (8.30) into a product of n bilinear
factors. In general, solving such a factorization problem is difficult, unless some
structure about the matricesHj is known. In the case of fundamental matrices dis-
cussed in Section 8.4.1, we exploited the fact that epipoles are the left null spaces
of the fundamental matrices. In the case of affine matrices discussed in Section
7.4, we exploited the fact that the 3rd row of each affine matrix is known.

Unfortunately, homographies are usually full rank and none of their rows are
known. Hence, the factorization of H is more challenging than the factorization
of the multibody affine matrix A or the multibody fundamental matrix F . In fact,
we will show that the factorization of H requires a combination of the methods
for factorizing A and F , according to the following four steps:

1. Compute derivatives of pn(x1, `) with respect to x1 to obtain linear
combinations of the rows of each Hj .

2. Obtain three vectors orthogonal to the three pairs of rows of each Hj by
solving three hyperplane clustering problems.

3. Obtain the rows of each Hj up to a scale factor from the cross products of
these vectors.

4. Solve linearly for the unknown scales of the rows of Hj from the
homography constraint.

For step 1, notice from (7.24) that if the image pair (x1,x2) is associated
with the ith motion and ` is any line passing through x2, then the derivative of
pn(x1, `) with respect to x1 at (x1, `) gives `>Hj . Thus, by properly choosing `

we can get different linear combinations of the rows of Hj = [hj1 hj2 hj3]
>. If

we choose `12 = (y2,−x2, 0), `23 = (0, 1,−y2) and `31 = (1, 0,−x2) as three
lines passing through x2 = (x2, y2, 1), we can compute the vectors

g12 ∼ y2hj1 − x2hj2, g23 ∼ hj2 − y2hj3 and g31 ∼ hj1 − x1hj3 (8.36)

from the derivatives of pn at (x1, `12), (x1, `23) and (x1, `31), respectively.
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For step 2, notice that g12 lives in the plane spanned by hj1 and hj2, whose
normal vector is b12j = hj1 × hj2. Therefore, if we evaluate g12 at all the given
point correspondences, we obtain a set of N vectors {g12i}Ni=1 lying in a union
of n planes with normal vectors {b12j}nj=1. Similarly, the vectors {g23i}Ni=1 and
{g31i}Ni=1 lie in a union of n planes with normal vectors {b23j = hj2 × hj3}nj=1

and {b31j = hj3 × hj1}nj=1, respectively. In principle we can obtain the vectors
{b12j}nj=1, {b23j}nj=1 and {b31j}nj=1 by applying the GPCA algorithm (Algo-
rithm 4.4) to each one of the three sets of points {g12i}, {g23i} and {g31i}
separately. However, if we do so we would not know which b12j correspond to
which b13j . Exercise 4.1 shows how to resolve this difficulty by exploiting the
fact that the correspondences among the data points {g12i}, {g23i} and {g31i} are
known, because these three vectors are computed as a triplet associated with the
same point correspondence (x1i,x2i). The main idea is to compute three polyno-
mials p12, p23 and p31 fitting the points {g12i}, {g23i} and {g31i}, respectively,
and then obtain the normal vector for the jth group from the gradients of these
polynomials. In order for the normal vectors b12i, b23i and b31i to correspond,
we can choose the points at which the gradients by minimizing the sum of the
squared distances to all hyperplanes, i.e., we compute the normal vectors as

b12j ∼ ∇p12(g12ij ), b23j ∼ ∇p23(g23ij ) and b31j ∼ ∇p31(g31ij ), (8.37)

where

ij = arg min
j=1,...,N

|p12(g12j)|

‖∇p12(g12j)‖∏k=n
i+1 |bT12kg12j |

+

|p23(g23j)|

‖∇p23(g23j)‖∏k=n
i+1 |bT23kg23j |

+

|p31(g31j)|

‖∇p31(g31j)‖∏k=n
i+1 |b>

31kg31j |
(8.38)

For step 3, given b12 = hi1 × hi2, b23 = hi2 × hi3 and b31 = hi3 × hi1, we
can immediately obtain the rows of Hj up to a scale factor as

hi1 ∼ h̃i1
.
= b12 × b31,hi2 ∼ h̃i2

.
= b23 × b12,hi3 ∼ h̃i3

.
= b31 × b23. (8.39)

For step 4, we know that x2 ∼ Hjx1. Therefore, we can obtain the n
homograhies as

Hj =
[

x2

h̃
>

j1x1

h̃j1
y2

h̃
>

j2x1

h̃j2
1

h̃
>

j3x1

h̃j3
]>

j = 1, . . . , n. (8.40)

Algorithm 8.2 summarizes the algorithm for segmenting homography matrices.
Table 8.1 gives the minimum number of point correspondences required by the
algorithm as a function of the number of motions.

8.5 Segmentation of Trilinear Motion Models
In this section, we consider the problem of segmenting n 3-D rigid-body motions
{(Rj , Tj) ∈ SE(3)}nj=1 from point correspondences in three perspective views.
As shown in Section 8.1.4, in this case the motion of the each object relative to
the camera among the three views can be modeled as a mixture of trifocal tensors
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Algorithm 8.2 (Segmentation of Homography Matrices).
Given two perspective views {(x1i,x2i)}Ni=1 of a set of N 3-D points whose mo-
tion can be modeled with n homography matrices {Hj}nj=1, recover the number
of independent motions n, the homography matrix {Hj}nj=1 associated with each
motion, and the motion model associated with each image pair as follows:

1. Number of motions. Compute two lines (`21i, `22i) passing through x2i.
Form the embedded data matrix of degree j ≥ 1, V H

i ∈ R
N(j+1)×Mn(3),

as in (8.34). Compute the number of motions from (8.35), or else from

n = arg min
j≥1

σ2
Mj(3)2

(V H
j )

∑Mj(3)2−1
k=1 σ2

k(V
H
j )

+ µMj(3)
2. (8.41)

2. Multibody homography matrix. Compute the multibody homography
matrixH as the least-squares solution to the linear system V H

n vec(H) = 0

in (8.34), and let

pn(x1, `) = νn(`)
>Hνn(x1).

3. Homography matrices.
(a) For all i = 1, . . . , N , let `12i = (y2i,−x2i, 0)

>, `23i = (0, 1, y2i)
>

and `31i = (1, 0,−x2i)
> be three lines passing through x2i =

(x2i, y2i, 1)
>. Compute a linear combination of rows 1 & 2, 2 & 3,

and 3 & 1 of the homography matrix at each point correspondence as

g12i=
∂pn
∂x1

(x1i, `12i); g23i=
∂pn
∂x1

(x1i, `23i); g31i=
∂pn
∂x1

(x1i, `31i)

(b) Solve for the coefficients cjk of the polynomials p12(g) = c>12νn(g),
p23(g) = c>23νn(g) and p31(g) = c>31νn(g), from the linear system

[νn(gjk1), νn(gjk2), . . . , νn(gjkN )]>cjk = 0

(c) Compute the homography matrices from the cross products of the gra-
dients of p12, p23 and p31 as follows:
for j = n : 1

ij = arg min
j=1,...,N

|p12(g12j)|

‖∇p12(g12j)‖
Qk=n

j+1 |b>
12kg12j |

+

|p23(g23j)|

‖∇p23(g23j)‖
Qk=n

j+1 |bT
23kg23j |

+

|p31(g31j)|

‖∇p31(g31j)‖
Qk=n

j+1 |b>
31kg31j |

;

b12j = ∇p12(g12ij
); b23j = ∇p23(g23ij

); b31j = ∇p31(g31ij
);

Hj =

»
x2ij

(b12j×b31j)

det([b12j b31j x1ij
])

y2ij
(b23j×b12j)

det([b23j b12j x1ij
])

(b31j×b23j)

det([b31j b23j x1ij
])

–>

.

end
4. Feature segmentation. Assign the image pair (x1i,x2i) to group j if j =

arg mink=1,...,n ‖x2 − Hkx1

e>3 Hkx1
‖2.
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{Tj ∈ R
3×3×3}nj=1 relating a point, a line and a line in the first, second and third

views. To avoid degenerate situations, we assume that the 3-D scene is nonplanar
and that the trifocal tensors are different from each other (up to a scale factor).

8.5.1 The Multibody Trifocal Tensor
The multibody trilinear constraint and the multibody trifocal tensor

Let x1 ↔ x2 ↔ x3 be an arbitrary point correspondence. Then, there exists a
trifocal tensor Tj that relates the point in the first view x1 = (x11, x12, x13)

>, a
line in the second view `2 = (`21, `22, `23)

> passing through x2 and a line in the
third view `3 = (`31, `32, `33)

> passing through x3 via the trilinear constraint:

Tj(x1, `2, `3) =
∑

p,q,r

Tj,pqrx1p`2q`3r = 0. (8.42)

Therefore, regardless of which motion is associated with the correspondence, the
following constraint must be satisfied by the number of independent motions n,
the trifocal tensors {Tj}nj=1 and the point-line-line correspondence x1↔ `2↔ `3

n∏

j=1

Tj(x1, `2, `3) = 0. (8.43)

This multibody constraint is a homogeneous polynomial of degree n in each of
x1, `2 or `3. Thus, we can write it as a sum of monomials of degree n in each of
x1, `2 and `3. By collecting the coefficients of these monomial in a 3-dimensional
tensor T ∈ R

Mn(3)×Mn(3)×Mn(3), we can write the constraint (8.43) as

T (νn(x1), νn(`2), νn(`3)) = 0. (8.44)

We call the array T the multibody trifocal tensor and equation (8.44) the multi-
body trilinear constraint, as they are natural generalizations of the trifocal tensor
and the trilinear constraint, respectively, valid for n = 1.

Computing the number of motions and the multibody trifocal tensor

Notice that, although (8.44) has degree n in the entries of x1, `2 and `3, it is in
fact linear in the entries of νn(x), νn(`2) and νn(`3). Hence, given a point-line-
line correspondence x1 ↔ `2 ↔ `3, we can compute the entries of the vectors
νn(x), νn(`2) and νn(`3) and use the multibody trilinear constraint (8.44) to
obtain a linear relationship in the entries of T . Therefore, we may estimate T
linearly from Mn(3)

3 − 1 ∼ O(n6) point-line-line correspondences. That is 26
correspondences for one motion, 215 for two motions, 999 for three motions, etc.

Fortunately, as in the case of n = 1 motion, one may significantly re-
duce the data requirements by working with point-point-point correspondences
x1 ↔ x2 ↔ x3. Since each point in the second view x2 gives two independent
lines `21 and `22 passing through it and each point in the third view x3 gives two
independent lines `31 and `32 passing through it, a naive calculation would give
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22 = 4 constraints per point-point-point correspondence. However, due to the al-
gebraic properties of the Veronese map, each correspondence provides in general
(n+ 1)2 independent constraints on the multibody trifocal tensor.

To see this, remember from Section 8.1.4 that the trilinear constraint is satisfied
by all lines `2 = α`21 + `22 and `3 = β`31 + `32 passing through x2 and x3,
respectively. Therefore, for all α ∈ R and β ∈ R we must have

n∏

j=1

Tj(x1, α`21 + `22, β`31 + `32) = 0. (8.45)

The above equation, viewed as a function of α, is a polynomial of degree n,
hence its n+ 1 coefficients must be zero. Each coefficient is in turn a polynomial
of degree n in β, whose n + 1 coefficients must be zero. Therefore, each point-
point-point correspondence gives (n + 1)2 constraints on the multibody trifocal
tensor T , and we need only (Mn(3)

3 − 1)/(n + 1)2 ∼ O(n4) point-point-point
correspondences to estimate T . That is 7, 24 and 63 correspondences for one, two
and three motions, respectively. This reduction on the number of required cor-
respondences represents a significant improvement, not only with respect to the
case of point-line-line correspondences, as explained above, but also with respect
to the case of two perspective views. As discussed in Section 8.4.1, one needs
Mn(3)

2 − 1 point-point correspondences for linearly estimating the multibody
fundamental matrix F , i.e., 8, 35 and 99 correspondences for one, two and three
motions, respectively, as shown in Table 8.1.

Given a correspondence x1 ↔ x2 ↔ x3, we generate the (n + 1)2 linear
equations in the entries of T by choosing `21, `22, `31 and `32 passing through
x2 and x3, respectively, and then computing the coefficient of αiβj in (8.45). As
shown in Exercise 8.3, these (n+ 1)2 coefficients are given by

T (νn(x1),fj(`21, `22), fk(`31, `32))

=
(
νn(x1)⊗ fj(`21, `22)⊗ fk(`31, `32)

)>vec(T ), j, k = 1, . . . , n,

where vec(T ) ∈ R
Mn(3)3 is the stack of all the entries of T and fj is defined in

(8.32). Therefore, we can solve for T from the linear system

V T
n vec(T ) = 0, (8.46)

where the rows of the matrix V T
n ∈ R

P (n+1)2×Mn(3)3 are of the form νn(x1i)⊗
fj(`21i, `22i)⊗ fk(`31i, `32i), for j, k = 1, . . . , n and i = 1, . . . , N .

Finally, similarly to (7.22), (8.23) and (8.35), the number of trifocal tensors can
be computed from

n
.
= min{j : rank(V T

j ) = Mj(3)
3 − 1}. (8.47)
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8.5.2 Segmentation of Trifocal Tensors
Computing the epipolar lines

Given the trifocal tensor T , it is well known how to compute the epipolar lines
`2(x1) and `3(x1) in the 2nd and 3rd views associated with a point x1 in the 1st
view. For example, as shown in Section 8.1.4, the epipolar line in the second view
`2(x1) must satisfy the relationship

∀`3 ∈ R
3 T (x1, `2(x1), `3) = 0. (8.48)

In the case of multiple motions, we are faced with the more challenging prob-
lem of computing the epipolar lines `2(x1) and `3(x1) without knowing the
individual trifocal tensors {Tj}nj=1 or the segmentation of the correspondences.
The question is then how to compute such epipolar lines from the multibody tri-
focal tensor T . To this end, notice that with each point in the first view x1 we
can associate n epipolar lines corresponding to the n motions between the 1st and
2nd views. If `2(x1) is an epipolar line of x1 according to the jth motion, then
from equation (8.48) we have that for all `3 ∈ R

3, Tj(x1, `2(x1), `3) = 0. This
implies that

∀`3 ∈ R
3

n∏

j=1

Tj(x1, `2(x1), `3) = T (νn(x1), νn(`2(x1)), νn(`3) = 0. (8.49)

As this equation holds for any of the n epipolar lines, the question of determin-
ing the epipolar line of a point x1 is not well posed as such, because the epipolar
line depends on which of the n motions the point x1 belongs to, which cannot
be determined without additional information. We therefore pose the question a
little differently, and suppose that we know the point x2 in the second view cor-
responding to x1. Since the epipolar line `2(x1) must of course pass through x2,
we can parameterize it as

`2(x1) = α`21 + `22, (8.50)

where, as before, `21 and `22 are two different lines passing through x2.
Replacing (8.50) in equation (8.49) gives

∀`3 ∈ R
3 T (νn(x1), νn(α`21 + `22), νn(`3)) = 0. (8.51)

As `3 ranges over all of R
3, this gives a total of up to Mn(3) linearly independent

equations. Each one of such equations is a polynomial of degree n in α. These
polynomials must have a common root α∗ for which all the polynomials vanish.
The epipolar line of x1 in the second view is then `2(x1) = α∗`21 + `22. The
epipolar line of x1 in the third view can be obtained in an analogous fashion.

We may apply this process to allN correspondences {x1i ↔ x2i ↔ x3i}Ni=1 to
obtain the set of all N epipolar lines in the second and third views, {`2(x1i)}Ni=1

and {`3(x1i)}Ni=1, according to their individual motion models. Notice, again,
that this is done from the multibody trifocal tensor T only, without knowing the
individual trifocal tensors or the segmentation of the correspondences.
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Computing the epipoles

As shown in Section 8.1.4, in the case of one rigid-body motion, the epipoles in
the second and third views, e2 and e3, can be computed from the epipolar lines
in the second and third views, {`2(x1i)}Ni=1 and {`3(x1i)}Ni=1, respectively, by
solving the linear systems

e>
2 [`2(x11), . . . , `2(x1N )] = 0

> and e>
3 [`3(x11), . . . , `3(x1N )] = 0

>. (8.52)

In the case of n motions there exist n epipole pairs, {(e2j , e3j)}nj=1, where
e2j and e3j are epipoles in the second and third views corresponding to the jth
motion. Given a set of correspondences {x2i ↔ x3i ↔ x3i}we may compute the
multibody trifocal tensor T and determine the epipolar lines `2(x1i) and `3(x1i)
associated with each correspondence by the method described in the previous
subsection. Then, for each pair of epipolar lines

(
`2(x1i), `3(x1i)

)
there exists

an epipole pair (e2j , e3j) such that

e>
2j`2(x1i) = 0 and e>

3j`3(x1i) = 0. (8.53)

Therefore, the problem of finding the epipole pairs {(e2j , e3j)}nj=1 is equivalent
to one of segmenting two sets of points lying in two collections of hyperplanes
whose normal vectors are the epipole pairs.

Exercise 4.1 provides a solution to this problem based on a simple extension of
the GPCA (Algorithm 4.4). The first step is to fit two polynomials,

p2(`2) =

n∏

j=1

(e>
2j`2) = c>2 νn(`2) = 0,

p3(`3) =

n∏

j=1

(e>
3j`3) = c>3 νn(`3) = 0,

(8.54)

to the epipolar lines {`2(x1i)}Ni=1 and {`3(x1i)}Ni=1, respectively. Similarly to
(8.52), we may find the coefficients of p2 and p3 by solving the linear systems

c>2 [νn(`2(x11)), · · · , νn(`2(x1N ))] = 0
>,

c>3 [νn(`3(x11)), · · · , νn(`3(x1N ))] = 0
>.

(8.55)

The second step is to compute the epipoles as the gradients of these polynomials
at a collection of n pairs of epipolar lines {(`2j , `3j)}nj=1 passing through each
one of the epipole pairs, i.e.,

e2j ∼ ∇p2(`2j) and e3j ∼ ∇p3(`3j), j = 1, . . . , n. (8.56)

The pairs of epipolar lines {(`2j , `3j)}nj=1 are chosen as the n pairs of epipolar
lines in {(`2(x1i), `3(x1i))}Ni=1 that minimize a certain distance to their respec-
tive epipoles. More specifically, for j = n, . . . , 2, 1 set `2j = `2(x1ij ) and
`2j = `2(x1ij ), where

ij = arg min
i=1,...,N

p2(`2(x1i))
2

‖∇p2(`2(x1i))‖2∏n
k=j+1(e

>
2k`2(x1i))2

+

p3(`3(x1i))
2

‖∇p3(`2(x1i))‖2∏n
k=j+1(e

>
3k`2(x1i))2

. (8.57)
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Computing the trifocal tensors

Once the n epipole pairs {e2j , e3j)}nj=1 have been computed, we can segment
the data into n groups by assigning the image pair (x1i,x2i) to group j if

j = arg min
k=1,...n

(e>
2k`2(x1i))

2 + (e>
3k`3(x1i))

2 (8.58)

provided that the n epipoles pairs are different. Given the segmentation of the cor-
respondences, one may obtain trifocal tensors, fundamental matrices and camera
matrices using the algebraic methods described in Section 8.1.4.

Algorithm summary

Algorithm 8.3 summarizes the main steps of the algorithm for segmenting tri-
focal tensors described in this section. Table 8.1 gives the minimum number of
point correspondences required by the algorithm as a function of the number of
motions.

Table 8.1. Number of correspondences required to linearly solve for the different multibody
motion models.

Correspondence 1 2 3 4
Multibody fundamental matrix F point-point 8 35 99
Multibody homography matrixH point-point 4 12 25
Multibody trifocal tensor T point-point-point 7 24 63
Multibody trifocal tensor T point-line-line 26 215 999

8.6 Experimental Results

8.6.1 Segmentation of Affine Motion Subspaces
We tested the GPCA algorithm on three different sequences shown in Figure 8.4.
The data for these sequences consist of point correspondences in multiple views,
which are available at http://www.suri.it.okayama-u.ac.jp/data.html. Sequence A
consists of 30 frames of an outdoor sequence taken by a moving camera tracking
a car moving in front of a parking lot. Sequence B consists of 17 frames of an
outdoor sequence taken by a moving camera tracking a car moving in front of a
building. Sequence C consists of 100 frames of an indoor sequence taken by a
moving camera tracking a person moving his head.

For all sequences, we first projected the point trajectories onto a 5-dimensional
subspace of R

2F , where F is the number of frames in the sequence. We assumed
that the motion subspaces are 4-dimensional, so that the motion segmentation
problem is reduced to segmenting 4-dimensional hyperplanes in R

5. The number
of motions is correctly estimated from (4.19) as n = 2. We used the criterion
(2.14) with κ ∈ [2, 20] 10−7 to determine the rank of the embedded data matrix.
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Algorithm 8.3 (Segmentation of Trifocal Tensors).
Given a set of points {(x1i,x2i,x3i)}Ni=1 corresponding to N points undergoing
n different rigid-body motions relative to a moving perspective camera, recover
the number of independent motions n, the trifocal tensors {Tj}nj=1 associated
with each motion, and the motion associated with each correspondence as follows:

1. Number of motions. Compute two lines (`21i, `22i) passing through x2i,
and two lines (`31i, `32i) passing through x3i. Form the embedded data
matrix of degree j = 1, . . . , n, V T

j ∈ R
N(j+1)2×Mj(3)

3 , as defined in
(8.46). Compute the number of independent motions n from

n = arg min
j≥1

σ2
Mj(3)3

(V T
j )

∑Mj(3)3−1
k=1 σ2

k(V
T
j )

+ µMj(3)
3. (8.59)

2. Multibody trifocal tensor. Compute the multibody trifocal tensor T as the
least-squares solution to the linear system V T

n vec(T ) = 0 in (8.46).

3. Epipolar lines. For all i = 1, . . . , N , compute the epipolar lines of x1i in
the second and third views, `2(x1i) and `3(x1i), as follows

(a) Let qk(α) =
∑n
j=0 T (νn(x1i), fj(`21i, `22i), ek)α

j , for all k =
1, . . . ,Mn(3). Compute the common root α∗ of these Mn(3) polyno-
mials as the value of α that minimizes q(α) =

∑Mn(3)
k=1 qk(α)2. The

epipolar line of x1i in the second view is `2(x1i) = α∗`21i + `22i.
(b) Compute the epipolar line of x1i in the third view as `3(x1i) =

β∗`31i + `32i, where β∗ is the common roots of the polynomials
qk(β) =

∑n
j=0 T (νn(x1i), ek, fj(`31i, `32i))β

j .

4. Epipoles. Given a set of epipolar lines {(`2(x1i), `3(x1i))}Ni=1,
(a) Compute the multibody epipoles c2 ∈ R

Mn(3) and c3 ∈ R
Mn(3)

from (8.55), and let p2(`2) = c>2 νn(`2) and p3(`3) = c>3 νn(`3).
(b) Compute the epipole pairs from the gradients of p2 and p3 as follows:

for j = n : 1

ij = arg min
i=1,...,N

|p2(`2(x1i))|
‖∇p2(`2(x1i))‖∏n

k=j+1 |e>
2k`2(x1i)|

+

|p3(`3(x1i))|
‖∇p3(`2(x1i))‖∏n

k=j+1 |e>
3k`2(x1i)|

;

e2j ∼ ∇p2(`2(x1ij )) and e3j ∼ ∇p3(`3(x1ij )).

end
5. Feature segmentation. Assign point correspondence (x1i,x2i,x3i) to

motion j = arg mink=1,...n(e
>
2k`2(x1i))

2 + (e>
3k`3(x1i))

2.

6. Trifocal tensors. Obtain the individual trifocal tensors {Tj}nj=1 from the
trilinear constraint for each group.
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Figure 8.4. Segmenting the point correspondences of sequences A (left), B (center) and C
(right) in [Kanatani and Sugaya, 2003] by clustering subspaces in R

5. First row: first frame
of the sequence with point correspondences superimposed. Second row: last frame of the
sequence with point correspondences superimposed.

As shown in Table 8.2, GPCA gives a percentage of correct classification
of 100.0% for all three sequences. The table also shows results reported in
[Kanatani and Sugaya, 2003] from existing multiframe algorithms for motion seg-
mentation. The only algorithm having a comparable performance to GPCA is
Kanatani’s multi-stage optimization algorithm, which is based on solving a se-
ries of EM-like iterative optimization problems, at the expense of a significant
increase in computation.

Table 8.2. Classification rates given by various subspace segmentation algorithms for
sequences A, B, C in [Kanatani and Sugaya, 2003].

Sequence A B C
Number of points 136 63 73
Number of frames 30 17 100
Costeira-Kanade 60.3% 71.3% 58.8%
Ichimura 92.6% 80.1% 68.3%
Kanatani: subspace separation 59.3% 99.5% 98.9%
Kanatani: affine subspace separation 81.8% 99.7% 67.5%
Kanatani: multi-stage optimization 100.0% 100.0% 100.0%
GPCA 100.0% 100.0% 100.0%
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8.6.2 Segmentation of Fundamental Matrices
We first test Algorithm 8.1 on synthetic data. We randomly pick n = 2 collections
of N = 100n feature points and apply a different (randomly chosen) rigid body
motion (Ri, Ti) ∈ SE(3), with Ri ∈ SO(3) the rotation and Ti ∈ R

3 the trans-
lation. We add zero-mean Gaussian noise with standard deviation (std) from 0 to
1 pixels to the images x1 and x2. The image size is 1000 × 1000 pixels. We run
1000 trials for each noise level. For each trial, the classification error is computed
as the percentage of misclassified points, and the error between the true motions
{(Ri, Ti)}ni=1 and their estimates {(R̂i, T̂i)}ni=1 are computed as

Rotation error =
1

n

n∑

i=1

acos
( trace(RiR̂Ti )− 1

2

)
(degrees).

Translation error =
1

n

n∑

i=1

acos
( TTi T̂i

‖Ti‖‖T̂i‖

)
(degrees).

Figure 8.5 plots the mean classification error (%), the rotation error (degrees)
and the translation error (degrees) as a function of noise. In all trials the number
of motions was correctly estimated from equation (8.23) as n = 2.3 The mean
classification error is less than 7% using an assignment based on epipoles and
epipolar lines, and can be reduced to about 3.25% using an assignment based on
the Sampson error. The rotation error is less than 0.38◦ and the translation error
is less than 0.83◦.
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Figure 8.5. Percentage of misclassification and error in the estimation of rotation and
translation (in degrees) as a function of the level of noise for n = 2 moving objects.

We also tested the proposed approach by segmenting a real sequence in which a
moving camera observes a can moving in front of a static background consisting
of a T-shirt and a book. We manually extracted a total of N = 170 correspon-

3We use κ = 5 × 10−3 in equation (2.14) for computing the number of motions.
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dences: 70 for the can and 100 for the background. For comparison purposes, we
estimated the ground truth motion (Ri, Ti) by applying the eight-point algorithm
to manually segmented correspondences.

Figure 8.6 shows the first frame of the sequence as well as the relative displace-
ment of the correspondences between the two frames. We applied Algorithm 8.1
to estimate the number of motions as n = 2.4 We obtained a misclassification
error of 5.88% when the clustering is obtained using epipolar lines and epipoles
only. We used this segmentation to obtain the motion parameters for each group.
The error in rotation was 0.07◦ for the background and 4.12◦ for the can. The
error in translation was 0.21◦ for the background and 4.51◦ for the can. Given the
motion parameters for each group, we re-clustered the features using the Sampson
error (??). The misclassification error reduced to 0%.

(a) First frame of the sequence
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(b) 2-D displacement between two frames
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(c) Segmentation based on epipolar lines
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1

2

(d) Segmentation based on Sampson error

Figure 8.6. Segmenting two frames of a video sequence with two different rigid-body mo-
tions – the can and the background. (a) First frame of the sequence. (b) 2-D displacements
of the 170 correspondences from the first view (’o’) to the second (’→’). (c) Segmentation
of the 170 correspondences using epipoles and epipolar lines. (d) Segmentation of the 170
correspondences using Sampson distance.

4We use κ = 5 × 10−3 in equation (2.14) for computing the number of motions.
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8.6.3 Segmentation of Homography Matrices
We applied Algorithm 8.2 to segment two frames of a 2048 × 1536 video se-
quence, shown in Figure 8.7(a)-(b), with two moving objects – a cube and a
checkerboard. Notice that although there are only two rigid-body motions, the
scene contains three different homographies, each one associated with each one
of the three visible planar structures. Furthermore, notice that the top side of the
cube and the checkerboard have approximately the same normals. We manually
tracked a total of N = 147 features: 98 in the cube (49 in each of the two visible
sides) and 49 in the checkerboard. We applied Algorithm 8.2 to segment the im-
age data and obtained a 97% of correct classification, as shown in Figure 8.7(c).

(a) First frame (b) Second frame

0 49 98 147

1

2

3

Feature point index

G
ro

up
 in

de
x

(c) Feature segmentation

Figure 8.7. Segmenting two different rigid-body motions, a cube and a plane, according to
three different homography models corresponding to the three planes in the scene.

We then added zero-mean Gaussian noise with standard deviation between 0
and 1 pixels to the features, after rectifying the features in the second view in
order to simulate the noise free case. Figure 8.7(c) shows the mean percentage of
correct classification for 1000 trials per level of noise. The percentage of correct
classification of our algorithm is between 80% and 100%, which gives a very good
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initial estimate for any of the existing iterative/optimization/EM based motion
segmentation schemes.
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Figure 8.8. Percentage of correct classification as a function of noise synthetically added
to the point correspondences of the scene in Figure 8.7.

8.7 Bibliographical Notes
3-D motion estimation and segmentation has been an active topic of research
in the computer vision community over the past few years. Earlier work
[Feng and Perona, 1998] solves this problem by first clustering the features cor-
responding to the same motion using e.g., K-means or spectral clustering, and
then estimating a single motion model for each group. This can also be done in
a probabilistic framework [Torr, 1998] in which a maximum-likelihood estimate
of the parameters of each motion model is sought by alternating between feature
clustering and single-body motion estimation using the Expectation Maximiza-
tion (EM) algorithm. However, the convergence of EM to the global maximum
depends strongly on initialization [Torr et al., 2001].

In order to deal with the initialization problem of EM-like approaches,
recent work has concentrated on the study of the geometry of dynamic
scenes, including the analysis of multiple points moving linearly with constant
speed [Han and Kanade, 2000, Shashua and Levin, 2001] or in a conic section
[Avidan and Shashua, 2000], multiple points moving in a plane [Sturm, 2002],
multiple translating planes [Wolf and Shashua, 2001a], self-calibration from mul-
tiple motions [Fitzgibbon and Zisserman, 2000, Han and Kanade, 2001], multiple
moving objects seen by an affine camera [Boult and Brown, 1991, Costeira and Kanade, 1998,
Kanatani, 2001, Wu et al., 2001, Kanatani and Matsunaga, 2002b, Zelnik-Manor and Irani, 2003,
Kanatani and Sugaya, 2003, Vidal and Hartley, 2004], and two-object segmen-
tation from two perspective views [Wolf and Shashua, 2001b]. The case of
multiple moving objects seen by two perspective views was recently studied in
[Vidal et al., 2002b, Vidal and Sastry, 2003, Vidal and Ma, 2004, Vidal et al., 2005],
and has been extended to three perspective views via the so-called multibody tri-
focal tensor [Hartley and Vidal, 2004]. Such works have been the basis for the
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material presented in this chapter. Recent extensions omnidirectional cameras can
be found in [Shakernia et al., 2003, ?].

8.8 Exercises
Exercise 8.1 Motion Segmentation from Optical Flow in Multiple Perspective Views.
Let Ωf = (ω1f , ω2f , ω3f )> and Vf = (v1f , v2f , v3f )> be, respectively, the rotational
and translational velocities of one of the moving objects relative to the camera at frame
f = 1, . . . , F . Under the perspective projection model, the projection of point X i =
(Xi, Yi, Zi, 1)

> ∈ P
3 on the zeroth frame is (xi, yi)

> = (Xi, Yi)
>/Zi, and its optical

flow ufp ∈ R
2 in the f th frame relative to the zeroth is:

ufp =

»
xiyi −(1 + x2

i ) −yi 1/Zi 0 xi/Zi

(1 + y2
i ) −xiyi xi 0 1/Zi yi/Zi

–»
Ωf

Vf

–
.

Given measurements for the optical flow {ufp} of P pixels in F frames, we can stack
all the image measurements into a 2F × P matrix W

W =

2
64

u11 · · · u1P

...
...

uF1 · · · uFP

3
75

2F×P

(8.60)

that can be factored into its motion and structure components as W = MS>, where

M =

2
666664

ω11 ω21 −ω31 0 0 v11 v31 0
−ω21 0 0 ω11 ω31 v21 0 v31

...
...

ω1F ω2F −ω3F 0 0 v1F v3F 0
−ω2F 0 0 ω1F ω3F v2F 0 v3F

3
777775

2F×8

S =

2
664

x1y1 z1−x2
1 y1 y2

1−z1 x1
1

λ1

x1
λ1

y1
λ1

...
...

xNyN zN −x2
N yN y2

N −zN xN
1

λN

xN

λN

yN

λN

3
775

N×8

.

(8.61)

Therefore, rank(W ) ≤ 8, hence the vector containing the optical flow of a point between
the zeroth and the f th frame for f = 1, . . . , F lives in a subspace of R

2F of dimension at
most 8. This rank constraint, among others, was derived in [Irani, 1999] and was used to
derive a multi-frame algorithm for the estimation of the optical flow of a moving camera
observing a static scene.

Exercise 8.2 Show that for all `1, `2 ∈ R
3 and α ∈ R

νn(α`1 + `2) =
nX

i=0

αifi(`1, `2), (8.62)

where fi(`1, `2) ∈ R
Mn(3) is a bi-homogeneous polynomial of degree i in `1 and (n− i)

in `2 for i = 0, . . . , n.
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Exercise 8.3 Show that
T (νn(x1), νn(α`21 + `22), νn(β`31 + `32))

= T (νn(x1),
nX

i=0

αifi(`21, `22),
nX

j=0

βjfj(`31, `32))

=

nX

i=0

nX

j=0

αiβjT (νn(x1), fi(`21, `22), fj(`31, `32))

(8.63)

Exercise 8.4 We interpret the second image x2 ∈ P
2 as a point in CP by considering the

first two coordinates in x2 as a complex number and appending a one to it. However, we
still think of x1 as a point in P

2. With this interpretation, we can rewrite (??) as

x2 ∼ Hx1
.
=

»
h11 + h21

√
−1 h12 + h22

√
−1 h13 + h23

√
−1

h31 h32 h33

–
x1, (8.64)

where H ∈ C
2×3 now represents a complex homography5. Let w2 be the vector in CP

perpendicular to x2, i.e., if x2 =(z, 1) then w2 = (1,−z). Then we can rewrite (8.64) as
the following complex bilinear constraint

w
>
2 Hx1 = 0, (8.65)

which we call the complex homography constraint. We can therefore interpret the motion
segmentation problem as one in which we are given image data {xj

1 ∈P
2}N

j=1 and {wj
2∈

CP}N
j=1 generated by a collection of n complex homographies {Hi ∈ C

2×3}n
i=1. Then

each image pair (x1, w2) has to satisfy the multibody homography constraint
nY

i=1

(w>
2 Hix1) = νn(w2)

>Hνn(x1) = 0, (8.66)

regardless of which one of the n complex homographies is associated with the image
pair. We call the matrix H ∈ C

Mn(2)×Mn(3) the multibody homography. Now, since the
multibody homography constraint (8.66) is linear in the multibody homography H, we can
linearly solve for H from (8.66) given N ≥ Mn(2)Mn(3) − (Mn(3) + 1)/2 ∼ O(n3)
image pairs in general position6 with at least 4 pairs per moving object.

Given the multibody homography H ∈ C
Mn(2)×Mn(3), the rest of the problem is to re-

cover the individual homographies {Hi}n
i=1. In the case of fundamental matrices discussed

in Section ??, the key for solving the problem was the fact that fundamental matrices are of
rank 2, hence one can cluster epipolar lines based on the epipoles. In principle, we cannot
do the same with real homographies Hi ∈ R

3×3, because in general they are full rank.
However, if we work with complex homographies Hi ∈ C

2×3 they automatically have a
right null space which we call the complex epipole ei ∈ C

3. Then, similarly to (8.24), we
can associate a complex epipolar line

`
j ∼ ∂νn(w2)

>Hνn(x1)

∂x1

˛̨
˛̨
(x1,w2)=(x

j
1,w

j
2)

∈ CP
2 (8.67)

5Strictly speaking, we embed each real homography matrix into an affine complex matrix.
6The multibody homography constraint gives two equations per image pair, and there are

(Mn(2) − 1)Mn(3) complex entries in H and Mn(3) real entries (the last row).
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with each image pair (xj
1, w

j
2). Given this set of N ≥ Mn(3) − 1 complex epipolar

lines {`j}N
j=1, with at least 2 lines per moving object, we can apply Algorithm ?? with

K = 3 and Π = I to estimate the n complex epipoles {ei ∈ C
3}n

i=1 up to a scale
factor, as in equation (8.52). Therefore, if the n complex epipoles are different, we can
cluster the original image measurements by assigning image pair (xj

1, x
j
2) to group i if

i = arg mink=1,...,n |e>
k `j |2. Once the image pairs have been clustered, the estimation of

each homography, either real or complex, becomes a simple linear problem.

Remark 8.1 (Direct extraction of homographies from H). There is yet another way to
obtain individual Hi from H without segmenting the image pairs first. Once the complex
epipoles ei are known, one can compute the following linear combination of the rows of
Hi (up to scale) from the derivatives of the multibody homography constraint at ei

w
>Hi ∼ ∂νn(w)>Hνn(x)

∂x

˛̨
˛̨
x=ei

∈ CP
2, ∀w ∈ C

2. (8.68)

In particular, if we take w = [1, 0]> and w = [0, 1]> we obtain the first and second
row of Hi (up to scale), respectively. By choosing additional w’s one obtains more linear
combinations from which the rows of Hi can be linearly and uniquely determined.

Remark 8.2 (Independent homographies). The above solution assumes that the complex
epipoles are different (up to a scale factor). We take this assumption as our definition of
independent homographies, even though it is more restrictive than saying than the real
homographies Hi ∈ R

3×3 are different (up to a scale factor). However, one can show
that, under mild conditions, e.g., the third rows of each Hi are different, the null spaces of
the complex homographies are indeed different for different real homographies.7

Remark 8.3 (One rigid-body motion versus multiple ones). A homography is generally
of the form H = R + Tπ> where π is the plane normal. If the homographies come from
different planes (different π) undergoing the same rigid-body motion, the proposed scheme
would work just fine since different normal vectors π will cause the complex epipoles to be
different. However, if multiple planes with the same normal vector π = [0, 0, 1]> undergo
pure translational motions of the form Ti = [Txi, Tyi, Tzi]

>, then all the complex epipoles
are equal to ei = [

√
−1,−1, 0]>. To avoid this problem, one can complexify the first

and third rows of H instead of the first two. The new complex epipoles are ei =[Txi +
Tzi

√
−1, Tyi,−1]>, which are different for different translations.

Exercise 8.5 In this section, we demonstrate that one can estimate the individual trifocal
tensors without first clustering the image correspondences. The key is to look at second
order derivatives of the multibody trilinear constraint. Therefore, we contend that all the
geometric information about the multiple motions is already encoded in the multibody
trifocal tensor.

Let x be an arbitrary point in P
2 (not necessarily a point in the first view). Since the

ith epipole e′
i is known, we can compute two lines `′i1 and `′i2 passing through e′

i and
apply Algorithm ?? to compute the epipolar line of x in the second view `′

ix according
to the ith motion. In a completely analogous fashion, we can compute the epipolar line

7The set of complex homographies that share the same null space is a five-dimensional subset
(hence a zero-measure subset) of all real homography matrices. Furthermore, one can complexify any
other two rows of H instead of the first two. As long as two homography matrices are different, one
of the complexifications will give different complex epipoles.
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of x in the third view `′′ix from two lines passing through e′′
i . Given (`′ix, `′′ix), a simple

calculation shows that the slices of the trifocal tensor Ti can be expressed in terms of the
second derivative of the multibody epipolar constraint, as follows:

∂2(exè′è′′T )

∂`′∂`′′

˛̨
˛̨
˛
(x,`′

ix
,`′′

ix
)

= Mix ∼ xTi ∈ R
3×3. (8.69)

Thanks to (8.69), we can immediately outline an algorithm for computing the individual
trifocal tensors.
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Chapter 10
Switched ARX Systems

Hybrid systems are mathematical models that are used to describe continu-
ous processes that occasionally exhibit discontinuous behaviors due to sudden
changes of dynamics. For instance, the continuous trajectory of a bouncing ball
results from alternating between a free fall and an elastic contact with the ground.
However, hybrid systems can also be used to describe a complex process or time
series that does not itself exhibit discontinuous behaviors, by approximating the
process or series with a simpler class of dynamical models. For example, a non-
linear dynamical system can be approximated by switching among a set of linear
systems, each approximating the nonlinear system in a subset of its state space.
As another example, a video sequence can be segmented to different scenes by
fitting a piecewise linear dynamical model to the entire sequence.

In recent years, there has been significant interest and progress in the study of
the analysis, stability, and control of hybrid systems. Knowing the system parame-
ters, many successful theories have been developed to characterize the behaviors
of hybrid systems under different switching mechanisms. However, in practice,
the parameters and the switching mechanism of a hybrid system are often not
known or derivable from first principles. We are faced with the task of identifying
the system from its input and output measurements.

In this chapter, we show how to apply the GPCA method to the problem of
identifying a class of discrete-time hybrid systems known as hybrid Auto Regres-
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sive eXogenous (ARX) systems.1 We know from classic identification theory of
linear systems that the configuration space of the input/output data generated by
a single ARX system, say

yt =

na∑

j=1

ajyt−j +

nc∑

j=1

cjut−j + wt, yt, ut, wt ∈ R, (10.1)

is a linear subspace. The problem of identifying the system is equivalent to iden-
tifying this subspace from a finite number of samples on the subspace (as we will
review briefly in Section 10.2). Unfortunately, for a hybrid system that switches
among multiple ARX systems, as shown in Figure 10.1, when the orders of the
constituent systems are different, depending on the switching sequence λt, the
configuration space of the hybrid ARX system might not simply be a union of
the configuration spaces of the constituent ARX systems. Therefore, the prob-
lem of identifying the hybrid ARX system is not a trivial subspace segmentation
problem.

System 1

System n

System 2

PSfrag replacementsut ytλt

Figure 10.1. The input/output diagram of a hybrid system switching among n constituent
systems. The identification problem requires to infer what is in the black box (including
the n systems and the switching mechanism λt) from its input ut and output yt.

In this chapter, we show how to incorporate some special (algebraic and dynam-
ical) structures of a hybrid ARX system so that the identification problem can still
be solved by a special version of the GPCA method. In particular, we will show
that a hybrid ARX system can still be correctly identified from a special polyno-
mial p that fits the input/output data of the hybrid ARX system – the last nonzero
term of p has the lowest degree-lexicographic order in the ideal a of polynomials.
This polynomial is unique, factorable, and independent of the switching sequence.
The non-repeated factors of this polynomial correspond to the constituent ARX
systems, hence the number of systems is given by the number of non-repeated
factors (Section 10.3).

Although the analysis and algorithm will be developed primarily in a noise-
free algebraic setting, the GPCA-based identification algorithm is numerically

1ARX systems are an extremely popular class of dynamical models that are widely used in control,
signal processing, communications, and economics. In image/video processing, they can be used to
model videos of dynamical scenes.
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stable and works with moderate noises. Simulation and experimental results show
that the algorithm performs extremely well for both synthetic and real data, in
comparison with the existing iterative (e.g., EM-based) identification algorithms
(Section 10.4).

10.1 Problem Statement
Now let us consider a hybrid ARX system – a system that switches among mul-
tiple, say n, ARX systems of the type (10.1). Mathematically, such a system can
be described as

yt =

na(λt)∑

j=1

aj(λt)yt−j +

nc(λt)∑

j=1

cj(λt)ut−j ( + wt), (10.2)

where ut ∈ R is the input, yt ∈ R is the output, λt ∈ {1, 2, . . . , n} is the discrete
state, and na(i), nc(i), {aj(i)}na(i)

j=1 and {cj(i)}nc(i)
j=1 are, respectively, the orders

and the system parameters of the ith ARX system for i = 1, . . . , n. The last term
wt is zero for a deterministic ARX system and a white-noise random process for
a stochastic system. The purpose of this paper is to provide an analytic solution to
the deterministic case, which approximates the stochastic case when wt is small.

The discrete state λt, also called the mode of the system, can evolve due to a
variety of mechanisms. In the least restrictive case, {λt} is a deterministic but
unknown sequence that can take a finite number of possible values, which we can
assume to coincide with a collection of integers:

λ : t ∈ Z 7→ λt ∈ {1, 2, . . . , n}.
One can further restrict the set of switching sequences by assuming that λt is a
realization of an irreducible Markov chain, governed by transition probabilities

π(i, j)
.
= P (λt+1 = j|λt = i).

In this case, the system (10.2) is often called a “Jump-Markov Linear System”
(JMLS). Alternatively, one can assume that λt is a piecewise constant function of
the “continuous states” of the system (10.2),

λ : (yt−1, . . . , yt−na
) ∈ R

na 7→ λt ∈ {1, 2, . . . , n}.
In this case, the system (10.2) is often called a “PieceWise ARX” (PWARX)
system.

In this chapter we will consider the first scenario, so that our results also apply
to other switching mechanisms if that information becomes available. Therefore,
our method does not depend on any particular switching mechanism. Once the
switching sequence has been identified, the switching mechanism can be further
retrieved.

The following problem summarizes the goal of this chapter. In the sequel
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Problem 10.1 (Identification of Hybrid Auto Regressive eXogenous Systems).
Given input/output data {ut, yt}Tt=0 generated by an HARX system such as (10.2),
identify the number of constituent systems n, the orders of each ARX system
{na(i), nc(i)}ni=1, the system parameters {aj(i)}na(i)

j=1 and {cj(i)}nc(i)
j=1 , and the

discrete states {λt}.

we characterize a set of (sufficient) conditions that allow one to solve the above
problem as well as develop an efficient algorithm for it.

10.2 Identification of a Single ARX System
For the sake of completeness and comparison, let us first review some classic
results for the identification of a single discrete-time ARX system

yt = a1yt−1 + · · ·+ ana
yt−na

+ c1ut−1 + · · ·+ cnc
ut−nc

. (10.3)

The transfer function Ĥ(z)
.
= ŷ(z)/û(z) of the system (10.3) is given by:

Ĥ(z) = zmax(na−nc,0)H̃(z)

=
zmax(na−nc,0)(znc−1c1 + znc−2c2 + · · ·+ cnc

)

zmax(nc−na,0)(zna − zna−1a1 − zna−2a2 − · · · − ana
)
.(10.4)

From the theory of signals and systems, given the infinite sequences of the input
{yt} and the output {ut}, we can compute their Z-transform ŷ(z) and û(z), re-
spectively. Then we can identify the parameters of the ARX model by directly
computing Ĥ(z) as ŷ(z)/û(z).2 This requires the ARX model to be identifiable,
i.e., H̃(z) must have no pole-zero cancellation,3 and û(z) to have no zero in
common with a pole of Ĥ(z) and vice versa.

Alternatively, we may identify the system via the identification of a subspace
associated with the input/output data. Let us define D .

= na + nc + 1 and the
vector of regressors to be:

xt
.
=

[
yt, yt−1, . . . , yt−na

, ut−1, ut−2, . . . , ut−nc

]T ∈ R
D. (10.5)

Thus, for all time t, the so-defined xt is orthogonal to the vector that consists of
the parameters of the ARX system:

b
.
=

[
1,−a1,−a2, . . . ,−ana

,−c1,−c2, . . . ,−cnc

]T ∈ R
D. (10.6)

2Notice that this scheme is not practical since it requires one to obtain the typically infinitely-long
output sequence {yt}.

3That is, the polynomials zmax(nc−na,0)(zna − zna−1a1 − zna−2a2 − · · · − ana ) and
znc−1c1 + znc−2c2 + · · · + cnc are co-prime.
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That is, ∀t xt and b satisfy the equation bTxt = 0. In other words, b is the normal
vector to the hyperplane spanned by (the rows of) the following data matrix:

L(na, nc)
.
= [xmax(na,nc), . . . ,xt−1,xt,xt+1, . . .]

T ∈ R
∞×D. (10.7)

When the model orders na, nc are known, we can readily solve for the model
parameters b from the null space of L(na, nc) via SVD.

In practice, however, the model orders may be unknown, and only upper bounds
n̄a and n̄c may be available. Thus, the vector of regressors xt is

xt
.
=

[
yt, yt−1, yt−2, . . . , yt−n̄a

, ut−1, ut−2, . . . , ut−n̄c

]T ∈ R
D, (10.8)

where D = n̄a + n̄c + 1. Obviously, the following vector

b
.
=

[
1,−a1, . . . ,−ana

,01×(n̄a−na),−c1, . . . ,−cnc
,01×(n̄c−nc)

]T (10.9)

satisfies the equation xTt b = 0 for all t. Notice that here the vector b is the one in
(10.6) with additional n̄a − na and n̄c − nc zeros filled in after the terms −ana

and −cnc
, respectively.

Let us define the data matrix L(n̄a, n̄c) in the same way as in equation (10.7).
Because of the redundant embedding (10.8), the vector b is no longer the only one
in the null space of L. It is easy to verify that all the following vectors are also in
the null space of L:

b1 =
[
01, 1,−a1, . . . ,−ana

,0n̄a−na−1,01,−c1, . . . ,−cnc
,0n̄c−nc−1

]T
,

b2 =
[
02, 1,−a1, . . . ,−ana

,0n̄a−na−2,02,−c1, . . . ,−cnc
,0n̄c−nc−2

]T
,

...
... (10.10)

Therefore, the data {xt} span a low-dimensional linear subspace S in the ambient
space R

D.4 Each of the vectors defined above uniquely determines the original
system (10.3), including its order and coefficients. However, a vector in the null
space of L is in general a linear combination of all such vectors and it is not
necessarily one of the above. Thus, in order to identify the original system from
the data matrix L, we need to seek a vector in its null space that has certain desired
structure.

Notice that the last n̄c − nc entries of b in (10.9) are zero, hence the last non-
zero entry of b has the lowest order – in terms of the ordering of the entries of xt
– among all vectors that are in the null space of L. Therefore, we can obtain the
first n̄a + nc + 1 entries of b from the null space of the submatrix of L defined
by its first n̄a +nc + 1 columns. Since nc is unknown, we can incrementally take
the first j = 1, 2, . . . columns of the matrix L from the left to the right:

L1 .
= L( : , 1 : 1), L2 .

= L( : , 1 : 2), . . . , Lj
.
= L( : , 1 : j), (10.11)

4Only when the initial conditions {yt0−1, . . . , yt0−n̄a} are arbitrary do the data span a
hyperplane in RD with b as the only normal vector.
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until the rank of the submatrix Lj stops increasing for the first time for some
j = m.5

Remark 10.1 (Identifying b and m in the Stochastic Case). In the stochastic
case (i.e., wt 6= 0), the ultimate goal is to minimize the (squared) modeling error∑
t w

2
t =

∑
t(b

Txt)
2, which corresponds to the maximum-likelihood estimate

when wt is white-noise. Then the optimal solution b∗ can be found in a least-
square sense as the singular vector that corresponds to the smallest singular value
of Lm. However, in the noisy case, we cannot directly estimate m from the rank
of Lj since it might be full rank for all j. Based on model selection techniques, m
can be estimated from a noisy Lj as

m = argmin
j=1,...,D

{ σ2
j (L

j)
∑j−1
k=1 σ

2
k(L

j)
+ κ · j

}
, (10.12)

where σk(Lj) is the kth singular value of Lj and κ ∈ R is a parameter weighting
the two terms. The above criterion minimizes a cost function that consists of a data
fitting term and a model complexity term. The data fitting term measures how well
the data is approximated by the model – in this case how close the matrix Lj is
to dropping rank. The model complexity term penalizes choosing models of high
complexity – in this case choosing a large rank.

There is, however, a much more direct way of dealing with the case of unknown
orders. The following lemma shows that the system orders na and nc together
with the system parameters b can all be simultaneously and uniquely computed
from the data.

Lemma 10.2 (Identifying the Orders of an ARX System). Suppose we are given
data generated by an identifiable ARX model whose input û(z) shares no poles or
zeros with the zeros or poles, respectively, of the model transfer function Ĥ(z). If
n̄a + n̄c + 1 ≤ na + nc + 1, then

rank
(
L(n̄a, n̄c)

)
=

{
n̄a + n̄c if and only if n̄a = na and n̄c = nc,

n̄a + n̄c + 1 otherwise.
(10.13)

Therefore the systems orders can be computed as:

(na, nc) = arg min
(n̄a,n̄c)∈Z2

{n̄a + n̄c : rank(L(n̄a, n̄c)) = n̄a + n̄c}. (10.14)

The parameter vector b is the unique vector in the null space of L(na, nc).

Proof. Suppose rank
(
L(n̄a, n̄c)

)
≤ n̄a + n̄c and b′ = [1, b′1, b

′
2, . . . , b

′
n̄a+n̄c

] ∈
R
n̄a+n̄c+1 is a nonzero vector such that Lb′ = 0. Consider the Z-transform of

5If nc was known, then we would have m = n̄a + nc + 1.
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Lb′ = 0:

ŷ(z) + b′1z
−1ŷ(z) + · · ·+ b′n̄a

z−n̄a ŷ(z)

+ b′n̄a+1z
−1û(z) + · · ·+ b′n̄a+n̄c

z−n̄a−n̄c û(z) = 0.

Since û(z) does not have any of the poles or zeros of the transfer function Ĥ(z)
in (10.4), the ratio ŷ(z)/û(z) derived from the above equation should be a ratio-
nal function whose numerator and denominator contain those of Ĥ(z) as factors,
respectively. Since n̄a+ n̄c ≤ na+nc, this happens only if n̄a = na and n̄c = nc
and the vector b′ is exactly the same as b in (10.6).

Remark 10.3 (Identifying na, nc in the Stochastic Case). In the stochastic case
(i.e., wt 6= 0), we cannot directly estimate na, nc from the rank of L(n̄a, n̄c) since
it might be full rank for all n̄a, n̄c. From model selection methods, na, nc can be
estimated from a noisy L as

(na, nc) = arg min
(n̄a,n̄c)∈Z2

{ σ2
n̄a+n̄c+1(L(n̄a, n̄c))∑n̄a+n̄c

k=1 σ2
k(L(n̄a, n̄c))

+ κ · (n̄a + n̄c)
}
, (10.15)

where σk(L) is the kth singular value of L and κ ∈ R is a parameter weighting
the two terms – the first for the model fitting error and the second for the model
complexity.

In principle, the above lemma allows us to identify the precise orders na, nc
and the vector b of the ARX system from the (infinite) sequences of input {ut}
and output {yt}. In practice, we are usually given a finite input/output sequence.
In such cases, we need to assume that the sequence of regressors is sufficiently
exciting, i.e., the T × (na + nc + 1) submatrix

L
.
= [xmax(na,nc), . . . ,xmax(na,nc)+T−1]

T

has the same rank na + nc as the “full” L matrix defined in (10.7). Then, the
maximum-likelihood estimate for b ∈ R

na+nc+1 can be identified as the singular
vector that corresponds to the smallest singular value of L.

This condition for sufficient exciting for finite data can also be expressed in
terms of only the input sequence. As shown in [Anderson and Johnson, 1982],
the regressors are sufficiently exciting if the input sequence {ut} is, i.e., if the
following vectors

ut
.
= [ut, ut−1, . . . , ut−na−nc+1]

T ∈ R
na+nc , na + nc − 1 ≤ t ≤ T,

span an (na + nc)-dimensional subspace.

10.3 Identification of Hybrid ARX Systems
From our discussion in the previous section, we know that the regressors gener-
ated by an identifiable ARX system with sufficiently exciting input live in a linear
subspace in R

D where D = n̄a + n̄c + 1 and n̄a, n̄c are upper bounds on the
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orders of the system. The problem of identifying the ARX system becomes one
of seeking a vector in the orthogonal complement to this subspace that has cer-
tain desired structure. We show in this section how to generalize these concepts
to the more challenging problem of identifying a hybrid ARX system (Problem
10.1). Most of our development will focus on the case of single-input single-
output (SISO) systems. However, we will discuss at the end of this section how
our approach can be easily extended to multiple-input multiple-output (MIMO)
systems.

Consider an input/output sequence {ut, yt} generated by a hybrid ARX system
switching among a set of n ARX systems with parameters {bi}ni=1 and possibly
different orders {na(i), nc(i)}ni=1. We assume that the HARX system is identifi-
able, i.e., for all i = 1, . . . , n, the rational function H̃i(z) associated with the ith
ARX model has no zero-pole cancellation and the configuration subspaces of all
the ARX models do not contain one another.6 In general, we also assume that we
do not know the exact orders of the systems but know only certain upper bounds
of them, i.e.,

n̄a ≥ max{na(1), . . . , na(n)}, n̄c ≥ max{nc(1), . . . , nc(n)}.

Very often we do not know the exact number of systems involved either but know
only an upper bound of it, i.e., n̄ ≥ n.7 In this section, we study how to identify
the hybrid ARX system despite these uncertainties.

10.3.1 The Hybrid Decoupling Polynomial
One of the difficulties in identifying hybrid ARX systems is that we do not know
the switching sequence λt, hence we cannot directly apply the subspace identifi-
cation technique described in the previous section to each of the n ARX systems.
As we will soon see, in fact both the number of subspaces and their dimen-
sions depend not only on the number of systems and their orders but also on
the switching sequence. This motivates us to look for relationships between the
data {xt ∈ R

D} and the system parameters {bi ∈ R
D} that do not depend on

the switching sequence. To this end, recall that for every t there exists a state
λt = i ∈ {1, 2, . . . , n} such that bTi xt = 0. Therefore, the following polynomial
equation must be satisfied by the system parameters and the input/output data for
any switching sequence and mechanism (JMLS or PWARX):

pn(xt)
.
=

n∏

i=1

(
bTi xt

)
= 0. (10.16)

6One way to ensure this is to assume that for all i 6= j = 1, . . . , n, H̃i(z) and H̃j(z) do not
have all their zeros and poles in common. That is, there is no ARX system that can simulate another
ARX system with a smaller order. However, this is not necessary because two ARX systems can have
different configuration spaces even if one system’s zeros and poles are a subset of the other’s.

7This is the case when a particular switching sequence visits only a subset of all the discrete states.
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We call this polynomial equation the hybrid decoupling polynomial (HDP). In the
absence of knowledge about the switching mechanism, the HDP encodes all the
information about the system parameters that we can obtain from the input/output
data.

The HDP eliminates the discrete state by taking the product of the equations
defining each one of the ARX systems. While taking the product is not the only
way of algebraically eliminating the discrete state, this leads to an algebraic equa-
tion with a very nice algebraic structure. The HDP is simply a homogeneous
multivariate polynomial of degree n in D variables

pn(z)
.
=

n∏

i=1

(
bTi z

)
= 0, (10.17)

which can be written linearly in terms of its coefficients as

pn(z)
.
=

∑
hn1,...,nD

zn1
1 · · · znD

D = hTnνn(z) = 0. (10.18)

In equation (10.18), hn1,...,nD
∈ R is the coefficient of the monomial

zn1
1 zn2

2 · · · znD

D . Obviously, the vector hn = (hn1,...,nD
) encodes the parame-

ters of all the constituent ARX systems. We will show in the sequel how this
vector can be correctly recovered from the data and how the parameters of each
individual ARX system can be further retrieved from it.

10.3.2 Identifying the Hybrid Decoupling Polynomial
Let us assume for now that we know the number of systems n. We will show later
how to relax this assumption. Since the HDP (10.16) – (10.18) is satisfied by all
the data points {xt}Tt=1, we can use it to derive the following linear system on the
vector hn:

Ln(n̄a, n̄c) hn
.
=




νn(xmax{n̄a,n̄c})
T

νn(xmax{n̄a,n̄c}+1)
T

...
νn(xmax{n̄a,n̄c}+T−1)

T


 hn = 0T×1, (10.19)

where Ln(n̄a, n̄c) ∈ R
T×Mn(D) is the matrix of the input/output data embedded

via the Veronese map.

Definition 10.4 (Sufficiently Exciting Switching and Input Sequences). A switch-
ing and input sequence {λt, ut} is called sufficiently exciting for a hybrid ARX
system, if the data points {xt} generated by {λt, ut} are sufficient to determine
the union of the subspaces associated with the constituent ARX systems as an
algebraic variety, in the sense of Theorem A.10 of Appendix A.

Given the data matrix Ln(n̄a, n̄c) from a sufficiently exciting switching and
input sequence, we would like to retrieve the coefficient vector hn from its null
space. There are two potential difficulties. First, since the maximum orders n̄a, n̄c



218 Chapter 10. Switched ARX Systems

may not be tight for every constituent ARX system, the null space of Ln(n̄a, n̄c)
may be more than one-dimensional, as we have known from a single ARX system.
Second, even if we know the discrete state for each time, the structure of the data
associated with each state is not exactly the same as that of the ARX system
itself: Suppose we switch to the ith system at time t0, then we have bTi xt0 = 0.
However, the vectors b given in equation (10.10) are no longer orthogonal to xt0
even if the embedding is redundant for the ith system. In a sense, the regressor at a
switching time usually lives in a subspace whose dimension is higher than that of
the subspace associated with the ARX model generating the regressor. Therefore,
the configuration space of the data {xt} of an HARX system will not exactly
be the union of all the subspaces associated with the constituent ARX systems.
Let us denote the former as an algebraic variety Z ′ and the latter as Z. Then in
general, we have Z ′ ⊇ Z.

In order to retrieve hn uniquely from the data matrix Ln, we need to utilize its
additional structure.

Lemma 10.5 (Structure of the Hybrid Decoupling Polynomial). The monomial
associated with the last non-zero entry of the coefficient vector hn of the hybrid
decoupling polynomial pn(z) = hTnνn(z) has the lowest degree-lexicographic
order in all the polynomials in a(Z) ∩ Sn.8

Proof. Any polynomial of degree n in the ideal a(Z) is a superposition of the
polynomials

∏n
i=1(b

T
σ(i)z) where bσ(i) is a normal vector to the subspace as-

sociated with the ith ARX system.9 Notice that hn is the symmetric tensor of
b1, b2, . . . , bn defined in (10.9). For the ith ARX system, the last non-zero en-
try of the vector bi always has the lowest degree-lexicographic order among
all normal vectors that are orthogonal to the regressors z = xt associated to
the ith system. Therefore, the last non-zero entry of hn must have the lowest
degree-lexicographic order.

Theorem 10.6 (Identifying the Hybrid Decoupling Polynomial). Suppose that
{ut, yt}Tt=0 are the input/output data generated by an identifiable HARX system.
Let Ljn ∈ R

T×j be the first j columns of the embedded data matrix Ln(n̄a, n̄c),
and let

m
.
= min

{
j : rank

(
Ljn

)
= j − 1

}
. (10.20)

If T is sufficiently large and the input and switching sequences are sufficiently
exciting, then the coefficient vector hn of the hybrid decoupling polynomial is
given by

hn =
[(

hmn
)T
, 01×(Mn(D)−m)

]T ∈ R
Mn(D), (10.21)

8The set of (homogeneous) polynomial of degree n.
9This is easily verifiable from the fact that the derivatives of the polynomials in a(Z) are exactly

the normal vectors of the subspaces.



10.3. Identification of Hybrid ARX Systems 219

where hmn ∈ R
m is the unique vector that satisfies

Lmn hmn = 0 and hmn (1) = 1. (10.22)

Proof. Let Z to be the union of the subspaces associated with the n constituent
ARX systems. Since the input and switching sequence is sufficiently exciting in
the sense of Definition 10.4, according to Theorem A.10 of Appendix A, any
polynomial of degree less than and equal to n that vanishes on all the data points
must be in the set a(Z) ∩ Sn.10

From our discussion before the theorem, the configuration space Z ′ of the data
{xt} associated with the hybrid ARX system is in general a superset of Z. The
ideal a′(Z ′) of polynomials that vanish on the configuration space Z ′ is then a
sub-ideal of the ideal a(Z) associated with the union of the subspaces. Further-
more, regardless of the switching sequence, the hybrid decoupling polynomial
pn(z) is always in a′∩Sn ⊆ a∩Sn. According to Lemma 10.5, the last non-zero
term of pn(z) has the lowest degree-lexicographic order among all polynomi-
als of degree n in a, so does it in a′. Since every solution Lnh̃ = 0 gives a
polynomial p̃n(z) = h̃

T

nνn(z) ∈ a ∩ Sn of degree n that vanishes on all data
points, the last non-zero entry of hn given by (10.21) obviously has the lowest
degree-lexicographic order. Therefore, we have pn(z) = hTnνn(z).

In fact to compute the coefficients hn of the hybrid decoupling polynomial, we
can do better than checking the rank of the submatrix Ljn for every j = 1, 2, . . ..
The following corollary provides one alternative scheme.

Corollary 10.7 (Zero Coefficients of the Decoupling Polynomial). Consider a
set of vectors bi ∈ R

D, i = 1, . . . , n. Suppose that one of the bi has a maximal
number of zeros on its right, and without loss of generality, assume it is

b1 = [b11, b12, . . . , b1n1
, 0, . . . , 0]T , with b1n1

6= 0.

The multivariate polynomial pn(z)
.
= (bT1 z)(bT2 z) · · · (bTnz) has zero coeffi-

cients for all the monomials of νn
(
[zn1+1, zn1+2, . . . , zD]

)
; but the coefficients

cannot all be zeros for the monomials of νn
(
[zn1

, zn1+1, . . . , zD]
)
.

This corollary allows us to narrow down the range for m (where Ljn first drops
rank) because m must fall between two consecutive values of the following:

1, Mn(D)−Mn(D−1), Mn(D)−Mn(D−2), . . . , Mn(D)− 1.

Remark 10.8 (Sub-Optimality in the Stochastic Case). In the stochastic case
(i.e., wt 6= 0), we can still solve for hmn in (10.22) in a least-squares sense as
the singular vector of Lmn associated with its smallest singular value, using a
similar model selection criterion for m as in Remark 10.1. However, unlike the
single system case, the so-found hn no longer minimizes the sum of least-square
errors

∑
t w

2
t =

∑
t(b

T
λt

xt)
2. Instead, it minimizes (in a least-square sense) a

10Sn is the set of polynomials of degree up to n.
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“weighted version” of this objective:
∑

t

αt(b
T
λt

xt)
2 .

=
∑

t

∏

i6=λt

(bTi xt)
2(bTλt

xt)
2, (10.23)

where the weight αt is conveniently chosen to be
∏
i6=λt

(bTi xt)
2. Such a “soft-

ening” of the objective function allows a global algebraic solution. It offers a
sub-optimal approximation for the original stochastic objective when the variance
of wt is small. One can use the solution as the initialization for any other (lo-
cal) nonlinear optimization scheme (such as Expectation Maximization) to further
minimize the original stochastic objective.

Notice that in the above theorem, we have assumed that the switching sequence
is such that all the ARX systems are sufficiently visited. What if only a subset of
the n systems are sufficiently visited? Furthermore, in practice, we sometimes do
not even know the correct number of systems involved and only know an upper
bound for it. The question is whether the above theorem still applies when the
degree n we choose for the Veronese embedding is strictly larger than the actually
number of systems. This is answered by the following corollary whose proof is
straightforward.

Corollary 10.9 (Identifying the Number of ARX Systems). Let {ut, yt}Tt=0 be the
input/output data generated by an HARX system with n < n̄ discrete states. If T is
sufficiently large and the input and switching sequences are sufficiently exciting,
then the vector hn̄ found by Theorem 10.6 is the symmetric tensor product

hn̄ = Sym
(
b1 ⊗ b2 · · · ⊗ bn ⊗ e1 ⊗ · · · ⊗ e1︸ ︷︷ ︸

n̄−n

)
, (10.24)

where e1
.
= [1, 0, . . . , 0]T ∈ R

D, i.e., hn̄ is the coefficients of the polynomial:

pn̄(z) = hTn̄νn̄(z) =
(
bT1 z

)(
bT2 z

)
· · ·

(
bTnz

)
zn̄−n1 . (10.25)

Therefore, even if we may over-estimate the number of constituent systems or
the switching sequence does not visit all the systems, the solution given by Theo-
rem 10.6 will simply treat the nonexistent (or not visited) systems as if they had
zero order11 and the information about the rest of the systems will be conveniently
recovered.

10.3.3 Identifying System Parameters and Discrete States
Theorem 10.6 allows us to determine the hybrid decoupling polynomial pn(z) =
hTnνn(z), from input/output data {ut, yt}Tt=0. The rest of the problem is to recover
the system parameters {bi}ni=1 from hn. To this end, recall from Chapter 4 that

11That is, the coefficient vector b = e1 corresponds to the “system” yt = 0 with na = nc = 0,
which is a trivial ARX system.
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given hn one can recover the model parameters by looking at the partial derivative
of pn(z) given in (10.17)

Dpn(z)
.
=
∂pn(z)

∂z
=

n∑

i=1

∏

`6=i

(bT` z)bi. (10.26)

If z belongs to the hyperplane Hi = {z : bTi z = 0}, then, since the 1st entry of
bi by definition is equal to one, after replacing bTi z = 0 into (10.26) we obtain

bi =
Dpn(z)

eT1 Dpn(z)

∣∣∣∣
z∈Hi

∈ R
D, (10.27)

where e1 = [1, 0, . . . , 0]T ∈ R
D. Therefore, we can estimate the system parame-

ters directly from the derivatives of pn(z) at a collection of n points {zi ∈ Hi}ni=1

lying on the n hyperplanes, respectively.
In order to find the set of points {zi ∈ Hi}ni=1, let us consider a line with

base point z0 and direction v, L = {z0 + αv, α ∈ R}. If z0 6= 0, z0 is not
parallel to v, and bTi v 6= 0, then the line L in general intersects the n hyperplanes
∪ni=1Hi = {z : pn(z) = 0} at n distinct points

zi = z0 + αiv ∈ Hi ∩ L, i = 1, . . . , n, (10.28)

where {αi} are the roots of the univariate polynomial

qn(α) = pn(z0 + αv). (10.29)

We are left with choosing the parameters x0 and v for the line L. The base point
x0 can be chosen as any nonzero vector in R

D. Given z0, the direction v must be
chosen not parallel to z0 and such that bTi v 6= 0, for all i = 1, . . . , n. Since the
latter constraint is equivalent to pn(v) 6= 0, and pn is known, we can immediately
choose v even though we do not know the system parameters {bi}ni=1.

Be aware that if we have chosen for the Veronese embedding a number
n̄ that is strictly larger than n, the polynomial pn̄(z) will be of the form(
bT1 z

)(
bT2 z

)
· · ·

(
bTnz

)
zn̄−n1 . Then the line L will have only n + 1 intersections

with the n hyperplanes H1, . . . ,Hn and the hyperplane H0
.
= {z : eT1 z = z1 =

0}. The intersection z0 = H0∩L has a multiplicity of n̄−n; and Dpn̄(z0) ∼ e1

if n̄ − n = 1 or Dpn̄(z0) = 0 if n̄ − n > 1. We have essentially proven the
following theorem.

Theorem 10.10 (Identifying the Constituent System Parameters). Given the in-
put/output data {ut, yt}Tt=0 generated by an HARX system with n discrete states,
the system parameters {bi}ni=1 can be computed from the the hybrid decoupling
polynomial pn̄(z) = hTn̄νn̄(z) for any n̄ ≥ n as follows:

1. Choose z0 6=0 and v such that v 6=γz0 and pn̄(v) 6=0.

2. Solve for the n̄ roots {αi}n̄i=1 of qn̄(α) = pn̄(z0 + αv) = 0.
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3. For all the roots zi = z0+αiv with z1 6= 0, compute the system parameters
{bi}ni=1 as

bi =
Dpn̄(zi)

eT1 Dpn̄(zi)
∈ R

D, i = 1, 2, . . . , n. (10.30)

Remark 10.11 (Alternative Ways of Identifying {bi}ni=1 from Noisy Data). In
the presence of noise, we can still estimate the normal vectors {bi}ni=1 as in The-
orem 10.10. However, the quality of the estimates will depend on the choice of
the parameters z0 and v. In this case, one can choose multiple (z0,v) satis-
fying the above conditions, obtain the system parameters for each choice, and
let {bi}ni=1 be the parameters that better reconstruct hn. Alternatively, one can
directly choose {zi}ni=1 from points in the data set that fit the decoupling polyno-
mial in an optimal way. That allows us to bypass the problem of solving the (real)
roots of the real polynomial qn̄(α).

Once the system parameters {bi}ni=1 are recovered, we can then reconstruct the
orders na(i), nc(i) of each constituent ARX system as well as the discrete state
trajectory {λt} from the input/output data {xt}Tt=0. Notice that for each time t
there exists a generally unique i such that bTi xt = 0. Therefore, the discrete state
λt can be easily identified as:

λt = argmin
i=1,...,n

(
bTi xt

)2
. (10.31)

There will be ambiguity in the value of λt only if xt happens to be at (or close
to) the intersection of more than one subspace associated to the constituent ARX
systems. However, the set of all such points is a zero measure set of the variety
Z ⊆ {z : pn(z) = 0}.

10.3.4 The Basic Algorithm and its Extensions
Based on the results that we have derived so far, we summarize the main steps
for solving the identification of an HARX system (Problem 10.1) as the following
Algorithm 10.1. Notice that the algorithm is different from the general-purpose
GPCA algorithm given in Chapter 4. By utilizing the structure in the system
parameters {bi} and subsequently in their symmetric tensor product hn, the algo-
rithm guarantees that the so found polynomial pn is the desired hybrid decoupling
polynomial.

Different Embedding Orders.

The order of stacking {yt} and {ut} in the vector xt in (10.8) is more efficient for
the algorithm when na(i) are approximately the same for all the constituent sys-
tems and nc(i) are much smaller than na(i). However, if na(i) are rather different
for different systems and nc(i) and na(i) are roughly the same, the following
ordering in time t

xt
.
=

[
yt, yt−1, ut−1, yt−2, ut−2, . . . , yt−n̄a

, ut−n̄a

]T ∈ R
D (10.32)
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Algorithm 10.1 (Identification of an SISO HARX System).
Given the input/output data {yt, ut} from a sufficiently excited hybrid ARX sys-
tem, and the upper bound on the number n̄ and maximum orders (n̄a, n̄c) of its
constituent ARX systems:

1. Veronese Embedding. Construct the data matrix Ln̄(n̄a, n̄c) via the
Veronese map based on the given number n̄ of systems and the maximum
orders (n̄a, n̄c).

2. Hybrid Decoupling Polynomial. Compute the coefficients of the polyno-
mial pn̄(z)

.
= hTn̄νn̄(z) =

∏n
i=1

(
bTi z

)
zn̄−n1 = 0 from the data matrix

Ln̄ according to Theorem 10.6 and Corollary 10.9. In the stochastic case,
comply with Remarks 10.1 and 10.8.

3. Constituent System Parameters. Retrieve the parameters {bi}ni=1 of each
constituent ARX system from pn̄(z) according to Theorem 10.10. In the
noisy case, comply with Remark 10.11.

4. Key System Parameters. The correct number of system n is the number
of bi 6= e1; The correct orders na(i), nc(i) are determined from such bi
according to their definition (10.9); The discrete state λt for each time t is
given by equation (10.31).

results in less non-zero leading coefficients in hn. Thus the above algorithm be-
comes more efficient. Nevertheless, if all the systems have the same na = nc,
both embeddings have the same efficiency.

Inferring the Switching Mechanisms.

Once the system parameters and the discrete state have been identified, the
problem of estimating the switching mechanisms, e.g., the partition of the state
space for PWARX or the parameters of the jump Markov process for JMLS, be-
comes a simpler problem. We refer interested readers to [Bemporad et al., 2003,
Ferrari-Trecate et al., 2003] for specific algorithms.

10.4 Simulations and Experiments
In this section we evaluate the performance of the proposed algorithm with respect
to the model orders and the amount of noise. We also present experiments on real
data from a component placement process in a pick-and-place machine.
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10.4.1 Error in the Estimation of the Model Parameters
Consider the PWARX system taken from [Niessen and A.Juloski, 2004]

yt =

{
0.5ut−1 + 0.5 + wt−1 if ut−1 ∈ [−2.5, 0],

−ut−1 + 2 + wt−1 if ut−1 ∈ (0, 2.5].
(10.33)

The input sequence ut consists of 100 points, 80% uniformly distributed in
[−2.5, 2.5] and 20% uniformly distributed in [0.85, 1.15]. The noise is wt

i.i.d.∼
N (0, 0.005). The error between the estimated parameters b̂ and the true
parameters b is defined as

error = max
i=1,...,m.

min
j=1,...,n.

∥∥b̂i − bj
∥∥

∥∥[0(D−1)×1 ID−1]bj
∥∥ .

We applied our algorithm with known parameters n = 2, na = 0
and nc = 1. Our algorithm gives an estimate for the ARX model pa-
rameters of [0.5047, 0.5102]T and [−0.9646, 1.9496]T , which corresponds to
an error of 0.0276. Table 10.1 compares our results with those reported in
[Niessen and A.Juloski, 2004] for the algorithms of [Ferrari-Trecate et al., 2003]
and [Bemporad et al., 2003]. Notice that our algorithm provides a purely al-
gebraic solution to the problem which does not perform iterative refinement.
Nevertheless it provides a comparable error with the other algorithms which are
based on iterative refinement.

Table 10.1. Comparison of error in the estimation of the model parameters.
Algorithms Errors

Ferrari-Trecate et. al. 0.0045
Bemporad et. al. 0.0334
Algorithm 10.1 0.0276

10.4.2 Error as a Function of the Model Orders
Consider the PWAR system taken from [Niessen and A.Juloski, 2004]

yt =

{
2yt−1 + 0ut−1 + 10 + wt if yt−1 ∈ [−10, 0],

−1.5yt−1 + 0ut−1 + 10 + wt if yt−1 ∈ (0, 10],
(10.34)

with initial condition y0 = −10, input ut
i.i.d.∼ U(−10, 10) and noise wt

i.i.d.∼
N (0, 0.01).
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We applied our algorithm12 with known number of models n = 2, but unknown
model orders (na, nc). We evaluated the performance of our algorithm as a func-
tion of the orders (na, nc). We used a fixed value for (na, nc) and search for the
polynomial in the null space ofLn(na, nc) with the smallest degree-lexicographic
order. We repeated the experiment for multiple values of na = 1, . . . , 4 and
nc = 1, . . . , 10, to evaluate the effectiveness of equation (10.12) at finding the
“correct” null space of Ln(na, nc). Figure 10.2 shows the results for κ = 10−5.
Notice that for all the range of values of na and nc, the algorithm gives an error
that is very close to the theoretical bound of 0.01 (the noise variance).
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Figure 10.2. Mean sum of squares error for various orders of the ARX models.

For the correct system orders na = 1 and nc = 0, the estimates of
the ARX model parameters from our algorithm are [1.9878, 0, 10.0161]T and
[−1.4810, 0, 10.0052]T , which have an error of 0.0020. These results are sig-
nificantly better than those reported in [Niessen and A.Juloski, 2004] for the
Ferrari-Trecate and Bemporad’s algorithms.

10.4.3 Error as a Function of Noise
Consider the PWAR model taken from [Niessen and A.Juloski, 2004]

yt =

{
2ut−1 + 10 + wt if ut−1 ∈ [−10, 0],

−1.5ut−1 + 10 + wt if ut−1 ∈ (0, 10],
(10.35)

with input ut
i.i.d.∼ U(−10, 10) and noise wt

i.i.d.∼ N (0, σ2
η). We run our algorithm

with n = 2, na = 0 and nc = 1 for 10 different values of ση and compute
the mean and the variance of the error in the estimated model parameters, as
shown in Figure 10.3. The algorithm estimates the parameters with an error of
less than 3.7% for the levels of noise considered. Again, the errors provided by the

12Since here the system is an affine ARX model with a constant input, we need to slightly modify
our algorithm by using the homogeneous representation for the regressor xt, i.e., appending an entry
of “1.”
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Figure 10.3. Means (left) and variances (right) of the error in the estimation of the model
parameters for different levels of noise. Blue curves are for the purely algebraic Algorithm
10.1; Green curves are for the EM algorithm initialized with the solutions from Algorithm
10.1.

purely algebraic algorithm (Algorithm 10.1) without any iterative refinement are
comparable to those of the Ferrari-Trecate and Bemporad’s algorithms reported
in [Niessen and A.Juloski, 2004] which are about 2 ∼ 3%. Furthermore, if we
use the solutions offered by our algebraic algorithm to initialize other iterative
refinement algorithms such as the Expectation and Maximization (EM) algorithm,
then the error is reduced significantly to about 1% (see Figure 10.3 left).

10.4.4 Experimental Results on Test Datasets
We applied our algorithm with n = na = nc = 2 to four datasets of T = 60, 000
measurements from a component placement process in a pick-and-place machine
[Juloski et al., 2004]. 13

Since the methods of [Ferrari-Trecate et al., 2003] and [Bemporad et al., 2003]
cannot handle large datasets, for comparison purposes we first report results on
a down-sampled dataset of 750 points.14 The 750 points are separated in two
overlapping groups of points. The first 500 points are used for identification, and
the last 500 points are used for validation. Table 10.2 shows the average sum of
squared residuals (SSR) – one step ahead prediction errors, and the average sum
of squared simulation errors (SSE) obtained by our method for all four datasets,
as well as the SSE of Ferrari-Trecate’s and Bemporad’s algorithm for the first
dataset as reported in [Niessen and A.Juloski, 2004]. Figure 10.4 shows the true
and simulated outputs for dataset 1.

We now report the results of our algorithm tested on the entire datasets. We split
the 60,000 measurements in two groups of 30,000 points each. The first 30,000
are used for identification and the last 30,000 for simulation. Table 10.3 shows
the average sum of squared residual error (SSR) and the average sum of squared

13We thank Prof. A. Juloski for providing us with the datasets
14We take one out of every 80 samples.
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Table 10.2. Training and simulation errors for down-sampled datasets.
Dataset n na nc GPCA SSR SSE F-T SSE Bem. SSE

1 2 2 2 0.0803 0.1195 1.98 2.15
2 2 2 2 0.4765 0.4678 N/A N/A
3 2 2 2 0.6692 0.7368 N/A N/A
4 2 2 2 3.1004 3.8430 N/A N/A

0 50 100 150 200 250 300 350 400 450 500
−5

0

5

10

15

20

25

30
ysim
yid

250 300 350 400 450 500 550 600 650 700 750
−5

0

5

10

15

20

25

30
ysim
yid

Figure 10.4. Training and simulation sequences for down-sampled dataset 1.

simulation error (SSE) obtained by our method for all four datasets. Figure 10.5
shows the true and simulated outputs for dataset 1.

Overall, the algorithm demonstrates a very good performance in all four
datasets. The running time of a MATLAB implementation of our algorithm is
0.15 second for the 500 data points and 0.841 second for 30, 000 data points.

Table 10.3. Training and simulation errors for complete datasets.
Dataset n na nc SSR SSE

1 with all points 2 2 2 4.9696 · 10−6 5.3426 · 10−6

2 with all points 2 2 2 9.2464 · 10−6 7.9081 · 10−6

3 with all points 2 2 2 2.3010 · 10−5 2.5290 · 10−5

4 with all points 2 2 2 7.5906 · 10−6 9.6362 · 10−6

10.5 Bibliographic Notes
Work on identification (and filtering) of hybrid systems first appeared in the sev-
enties; a review of the state of the art as of 1982 can be found in [Tugnait, 1982].
After a decade-long hiatus, the problem has recently been enjoying consider-
able interest [Bemporad et al., 2000, Ezzine and Haddad, 1989, Sun et al., 2002,
Szigeti, 1992, Vidal et al., 2002a, Vidal et al., 2003a]. Much related work has also
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Figure 10.5. Training and simulation sequences for complete datasets – the simulated and
the identified sequences overlap almost exactly.

appeared in the machine-learning community [Billio et al., 1999, Blake et al., 1999,
Doucet et al., 2000, Ghahramani and Hinton, 1998, Murphy, 1998, Pavlovic et al., 1999].

When the model parameters and the switching mechanism are known,
the identification problem reduces to the design of observers for the hybrid
state [Alessandri and Coletta, 2001, Balluchi et al., 2002, Ferrari-Trecate et al., 2002,
Vecchio and Murray, 2004], together with the study of observability conditions
under which hybrid observers operate correctly [Babaali and Egerstedt, 2004,
Bemporad et al., 2000, Collins and Schuppen, 2004, Vidal et al., 2002a, Vidal et al., 2003a,
Hwang et al., 2003, Santis et al., 2003].

When the model parameters and the switching mechanism are both un-
known, the identification problem becomes much more challenging. Existing
work has concentrated on the class of piecewise affine and piecewise ARX
systems, i.e., models in which the regressor space is partitioned into poly-
hedra with affine or ARX submodels for each polyhedron. For instance,
[Ferrari-Trecate et al., 2003] assumes that the number of systems is known, and
proposes an identification algorithm that combines clustering, regression and clas-
sification techniques; [Bemporad et al., 2001] solves for the model parameters
and the partition of the state space using mixed-integer linear and quadratic pro-
gramming; [Bemporad et al., 2003] uses a greedy approach for partitioning a set
of infeasible inequalities into a minimum number of feasible subsystems, and
then iterates between assigning data points to models and computing the model
parameters.
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Chapter 12
Extensions to Arrangements of
Nonlinear Surfaces

In the previous chapter, we have studied how to model data with subspace arrange-
ments and fit piecewise linear models to the data. In practice, data may not
always be perfectly piecewise linear, and the piecewise linear models can only
approximate the data to certain extent. In many applications, we may actually
have information about the form of nonlinearity in the data (e.g., the data lies on
quadratic surfaces or certain nonlinear manifolds). It just seems wiser to exploit
such nonlinearity than throw the information away. In this chapter, we will ex-
tend the GPCA techniques to incorporate nonlinear models, especially quadratic
ones.1 As in the previous chapter, our focus will be on the algebraic and geometric
aspect of the problem. Although the proposed methods are numerically stable and
tolerate moderate noises in the data, we will leave noise analysis and robustness
issues to the next chapter.

12.1 Arrangements of Quadratic Surfaces
In this section, we extend the pool of models to arrangements of both linear sub-
spaces and quadratic surfaces possibly of different dimensions.2 As GPCA, we
like to simultaneously segment the data into multiple groups and determine a
linear or quadratic model for each group. Specifically, we show how the basic al-

1For readers who are not interested in nonlinear models, they can simply skip this chapter without
losing any continuity.

2Linear subspaces can be viewed as degenerate quadratic surfaces.
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gebraic techniques that we developed in the previous chapters for GPCA can be
extended to this case. To distinguish with GPCA, we refer to the new method as
generalized principal surface analysis (GPSA).

In GPCA, we have seen that the derivatives of the fitting polynomials play a cru-
cial role in segmenting the data and determining the local dimension. As we will
see in this section, to segment and extract quadratic models, one needs to study
the properties of both the derivatives and Hessians, the second-order derivatives,
of the fitting polynomials. These properties lead to a rich spectrum of algebraic
signatures for the data points which allow us to effectively segment them into
different linear or quadratic models.

12.1.1 Problem Formulation
Notice that a quadratic surface is in general described by a quadratic equation of
the form:

yTBy + 2cTy + d = 0, (12.1)

where B is a symmetric matrix. Define the homogeneous coordinates of y as
x
.
= [ y

1 ] and we can rewrite the above equation as

xTAx
.
= [yT , 1]

[
B c
cT d

] [
y

1

]
= 0. (12.2)

Therefore, using the homogeneous representation, we can always represent a
quadratic surface by a homogeneous quadratic equation (in a space of one
dimension higher).

Under this notation, we define the subject of interest for this section. A
“quadratic surface” of dimension dq in R

D is defined to be3

Sq
.
= {x : xTAix = 0, i = 1, . . . , D − dq}, (12.3)

whereAi ∈ R
D×D, i = 1, . . . , D−dq are a set of linearly independent symmetric

matrices (i.e., for any Ai, it cannot be expressed as the linear combination of
other matrices Aj’s).4 To avoid degenerate cases, we further require that Ai are
not semi-definite.5 The superscript “q” indicates “quadratic.” For convenience, we
denote the codimension as rq .

= D − dq .
As before, we represent a dl-dimensional (1 ≤ dl ≤ D) linear subspace by

Sl
.
= {x : BTx = 0, B ∈ R

D×(D−dl)}.

3Note that our notion of “quadratic surfaces” is more general than the traditional definition. A
quadratic surface here will be an algebraic surface that satisfies a set of quadratic equations. Such a
surface, strictly speaking, could be an algebraic surface of order higher than two.

4The representation of Sq by Ai’s is not unique since it can also be described by any other set
of linearly independent symmetric matrices A′

1, A′
2, . . . , A′

D−dq whose span is the same as that of
Ai’s.

5If A is either positive or negative semi-definite, then we have A = BBT or A = −BBT for
some B. Then xT Ax = xT BBT x = ‖BT x‖2 = 0 defines a linear subspace.
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The superscript “l” indicates “linear.” We denote the codimension as rl .= D−dl.
We then formulate the problem of segmenting arrangements of linear subspaces

and quadratic surfaces as the following:

Problem 12.1 (Segmentation of Linear Subspaces and Quadratic Surfaces).
Let X = {xi} ⊂ R

D be the homogeneous coordinates of a set of N data points
that are sampled from m unknown quadratic varieties Sq1 , . . . , Sqm of dimensions
dqi (i = 1, . . . ,m) and n linear varieties Sl1, . . . , Sln with dimensions dlj (j =
1, . . . , n). Assume that the ith quadratic surface is defined by D − dqi symmetric
matricesAik (k = 1, . . . , D−dqi ). Similarly, the jth linear subspace is defined by
a matrix Bj =

[
bj1, . . . , bj(D−dl

j
)

]
∈ R

D×(D−dl
j). From the samples, we want

to

1. determine the number of varieties m and n and segment the data points in
X into the m+ n subspaces and surfaces;

2. identify, for each subspace and surface, the corresponding matrix (matrices)
Ai or Bi.

12.1.2 Properties of the Fitting Polynomials
As in GPCA, we first fit all the data points in X with high order polynomial(s).
For any data point x ∈ X , since x ∈ (∪mi=1S

q
i ) ∪

(
∪nj=1S

l
j

)
, x satisfies a

polynomial equation of the form:

p(x) = f(x) · g(x) = 0, (12.4)

where f(x) =
∏m
i=1 xTAik(i)x for some k(i) ∈ {1, . . . , rqi } and g(x) =∏n

j=1 bTjk(j)x for some k(j) ∈ {1, . . . , rlj}. Then p(x) is a (2m+n)-degree
homogeneous polynomial in the entries of x, and it is one of the polynomials of
the lowest degree that can fit all the data points in X [Harris, 1992, ?]. The null
space of the data matrix L2m+n (obtained via the Veronese map of order 2m+n)
contains s vectors c1, . . . , cs. We then have s polynomial(s) pi(x) = νT2m+n(x)ci
(i = 1, . . . , s) that fit all the data points in X . In general, these polynomials may
not be factorable, and instead they are linear combinations of the factorable ones
in (12.4).

Given the polynomials pi(x) (i = 1, . . . , s) and the data set X , we need to
extract the information about the subspaces and surfaces so that we can segment
the data set. Ideally, this can be solved by factoring the polynomials pi(x) into
its irreducible factors. However, as we have discussed above, the polynomials
obtained from the null space of the Veronese data matrix Lmay not be factorable.
As in the GPCA, although it is the factors that we are after, it turns out that we do
not have to perform the algebraic factorization per se.
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We can avoid the difficulty with the factorization by utilizing the relationship
between the polynomials pi(x) and the given data set X . In particular, we need
to understand certain algebraic signatures that one can derive from pi(x) at every
data point. These signatures are associated with the first and second order deriv-
atives of pi(x). We list below some of the relevant properties of the derivatives.
They can all be verified by applying the fact that pi(x) is a linear combination of
the factorable polynomials in (12.4).

Proposition 12.1 (Derivatives of the Fitting Polynomials). Let pi(x) be a
polynomial that fits X . Then the derivatives of pi(x) at x ∈X are given by:

If x belongs to a quadratic surface Sq defined byAj , j = 1, . . . , rq(= D−dq),
then

∇pi(x) =

rq∑

j=1

2αij(x)Ajx ∈ R
D, (12.5)

Hpi
(x) =

rq∑

j=1

[
2αij(x)Aj+Ajx∇Tαij

(x)+∇αij
(x)(Ajx)T

]
∈ R

D×D,(12.6)

where αij(x) are scalar functions of x that contain polynomial factors from other
surfaces or subspaces.

If x belongs to a linear subspace Sl defined by bj , j = 1, . . . , rl(= D − dl).
Then

∇pi
(x) =

rl∑

j=1

βij(x)bj ∈ R
D, (12.7)

Hpi
(x) =

rl∑

j=1

[
bj∇Tβij

(x) +∇βij
(x)bTj

]
∈ R

D×D, (12.8)

where βij(x) are scalar functions of x which contains polynomial factors from
other subspaces and surfaces.

If x is on the intersection of more than one subspace or surface, then

∇p(x) = 0 ∈ R
D. (12.9)

Proposition 12.2 (Surface Normals from the Derivatives). Let x ∈ X be a gen-
eral point in a d-dimensional subspace or surface S but not at any intersection.
Then the matrix ∇p(x) = [∇p1(x), . . . ,∇ps

(x)] ∈ R
D×s has rank r = D − d.

Let the singular value decomposition (SVD) of ∇p(x) be ∇p(x) = UΣV T with
U and V being orthogonal matrices and Σ a diagonal matrix. The first r columns
of U gives a set of orthonormal vectors n1(x), . . . ,nr(x) to S at x.

Proof. Let t(x) ∈ R
D be any tangent vector to S at x and let γ(u) : R → R

D

be any curve in S such that γ(0) = x and γ ′(0) = t(x). Then for any fitting
polynomial pi(x), we have

pi(γ(u)) = 0, ∀u ∈ R.
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Differentiate the above equation with respect to u and evaluate the derivative at
u = 0. We obtain

∇Tpi
(x)t(x) = 0.

That is, the derivative of every fitting polynomial is orthogonal to all tangent
vectors. The rest of the proposition then follows.

This proposition allows one to compute the normal vectors to the surface from
the fitting polynomials. As we have already seen in the case of GPCA, the normal
vectors are already sufficient to segment linear subspaces since they are invariant
for each subspace. However, this is no longer true for a quadratic surface and
additional information from higher-order derivatives is needed in this case.

Examining the Hessian (12.6) associated to a quadratic surface, we notice that
the first term is indeed the Hessian of the factor for the surface itself, but the
second and third terms depend on derivatives of factors for other subspaces and
surfaces in the arrangement. This prevents us from directly using the Hessians to
segment the data to different surfaces.

One solution to resolve this difficulty is to use, instead of the Hessian, the
“contraction” of the Hessian by the tangent vectors to the surface.6

Definition 12.3 (Contraction of Hessians). Let T (x)
.
= [t1, . . . , td] ∈ R

D×d be a
matrix whose columns are orthonormal tangent vectors to a subspace or a surface
at a point x. Then for every fitting polynomial pi(x), the contraction of Hpi

(x)
by T (x) is defined to be the symmetric matrix

Ci(x)
.
= T (x)THpi

(x)T (x) ∈ R
d×d. (12.10)

Based on the above definition and Proposition 12.1, we have

Proposition 12.4 (Properties of Contractions). Given an arrangement of linear
subspaces and quadratic surfaces, if a point x is on a quadratic surface defined
by Aj (j = 1, . . . , r), then

Ci(x) =

r∑

j=1

2αij(x)T (x)TAjT (x) ∈ R
d×d (12.11)

for some scalars αij(x) ∈ R. If x is on a linear subspace, then

Ci(x) ≡ 0. (12.12)

Proof. If x is on the quadratic surface, xTAjx = 0, j = 1, . . . , r. Its directional
derivative along any tangent vector t at x is also zero: tTAjx = 0, j = 1, . . . , r.
When we contract Hpi

(x) with the tangent vectors, all the cross terms vanish,
except for the ones in (12.11). The linear case is easy since in the expression
(12.8) bj are by definition the normal vectors to the subspace and their inner
product with any tangent vector is zero.

6Notice that, the tangent vectors to the surface at the point are readily available as the orthogonal
complement of the normal vectors.
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Corollary 12.5 (Contrations on a Quadratic Hyper-Surface). If there is a (D−1)-
dimensional quadratic surface in the arrangement and it is defined by a symmetric
matrix A, then, for a point x on it, we have

Ci(x) = 2αi(x)T (x)TAT (x) ∈ R
(D−1)×(D−1) (12.13)

for some scalar αi(x) ∈ R.

We summarize the properties of the derivatives, Hessians, and contractions of
points on an arrangement of subspaces and surfaces in Table 12.1.

Location of x ∇p(x) C(x)

S ∩ S′ 0 N/A
Sl rank(∇p(x)) = D − dl 0
Sq rank(∇p(x)) = D − dq ∑

2αj(x)TTAjT

Table 12.1. Properties of the derivatives and contractions for points at different locations
in the arrangement.

12.1.3 Generalized Principal Surface Analysis (GPSA)
As we see from the analysis above, the derivatives and contractions at each data
point depend on its location in the arrangement. Therefore, we can potentially use
the derivatives and contractions to determine the membership of the point. We
have used the derivatives for exactly the same purpose in the case of GPCA. We
now examine how the contractions may help with the case of GPSA.

Linear Subspaces versus Quadratic Surfaces

According to Proposition 12.4, the contractions of points in the linear subspaces
are always zero. Therefore, in principle, we can clearly separate points that belong
to the linear subspaces from points that belong to the quadratic surfaces. That is,
we can easily perform the following segmentation:

X = X l ∪Xq, s.t. X l ⊆ ∪Sl, Xq ⊆ ∪Sq. (12.14)

We can further apply GPCA to segment X l into different linear subspaces; that
leaves us with only the question how to segment Xq into different quadratic
surfaces.

Quadratic Surfaces of Different Dimensions

If the quadratic surfaces have different dimensions, the problem is also relatively
simple (at least in principle): one can segment the points into surfaces of different
dimensions by examining the rank of the first order derivatives ∇p(x) at each
point x. Therefore, the only case left is the case with an arrangement of quadratic
surfaces of the same dimension.
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Quadratic Surfaces of the Same Dimension

Without loss of generality, let x1,x2 ∈ Xq be two (linearly independent) points
on an arrangement of d-dimensional quadratic surfaces. Let T (x1) and T (x2) be
the two tangent spaces at x1 and x2, respectively. Their intersection T (x1,x2)

.
=

T (x1) ∩ T (x2) is in general a (2d−D)-dimensional subspace in R
D, assuming

2d > D. Every t ∈ T (x1,x2) is a tangent to the surface at both points. We define
the “mutual contractions” for x1,x2 ∈ Xq to be the contractions of Hessians at
x1 and x2 with T (x1,x2):

C̄i(x1,x2)
.
= T (x1,x2)

THpi
(x1)T (x1,x2) ∈ R

(2d−D)×(2d−D),

C̄i(x2,x1)
.
= T (x1,x2)

THpi
(x2)T (x1,x2) ∈ R

(2d−D)×(2d−D),

for i = 1, . . . , s. Notice that both C̄i(x1,x2) and C̄i(x2,x1) are symmetric ma-
trices. Since the space of all n×n symmetric matrices has dimension n(n+1)/2,
we define M .

= (2d − D)(2d − D + 1)/2. Then we have the following rela-
tionships between the subspaces spanned by the two sets of mutual contractions
matrices:

Theorem 12.6 (Mutual Contraction Subspace). Suppose M > D − d and D <
2d. If x1,x2 ∈Xq both belong to the same quadratic surface, then we have

span
{
C̄1(x1,x2), . . . , C̄

s(x1,x2)
}

= span
{
C̄1(x2,x1), . . . , C̄

s(x2,x1)
}
,

(12.15)
which is a proper subspace in R

M . We call it the mutual contraction subspace
between x1 and x2.

Proof. Suppose the quadratic surface is defined by the set of symmetric matrices
Aj , j = 1, . . . , D− d. Similar to the proof of Proposition 12.4, one can show that
both sets of matrices span the same subspace as the following D − d matrices:

T (x1,x2)
TAjT (x1,x2), j = 1, . . . , D − d. (12.16)

By the assumption M > D − d, the subspace is proper.

Be aware that the mutual contraction subspaces, unlike the normal vectors for
linear subspaces, are not globally invariant on the quadratic surfaces. They may
change for different choices in the pair (x1,x2). Nevertheless, they give very
effective necessary conditions for segmenting the data points: two points belong
to the same quadratic surface only if their mutual contraction subspaces are the
same. We summarize our above discussions as Algorithm 12.1.

Like the GPCA algorithm, the GPSA algorithm assumes noise-free data, but it
is designed in such a way that it can handle moderate noises.7 When the noise level
is high, it might be very difficult to robustly estimate all the fitting polynomials.
A simple but not necessarily the best solution is to put a heuristic threshold on

7For instance, the algorithm does not rely on noise-sensitive operations such as polynomial
factorication.
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Algorithm 12.1 (Generalized Principal Surface Analysis).
Given a large enough set of data points X in R

D sampled from an arrangement
of linear subspaces and quadratic surfaces with the dimensions of the quadratic
surfaces satisfying 2d > D and M > D − d:

• Find a set of homogeneous polynomials p1(x), . . . , ps(x) of the lowest
degree that fit the data X .

• Separate the X into three groups using the criteria in Table 12.1. X in:
points on the intersections; X l: points on linear subspaces; and Xq: points
on quadratic varieties.

• Segment X l into n linear subspaces via GPCA and identify the subspaces.

• Segment Xq, based on the rank of ∇p(x), into t groups Xd1 , . . . ,Xdt

with Xdi containing data points from di-dimensional quadratic surfaces.

• for i = 1 : t

– Segment Xdi into mi quadratic surfaces based on Theorem 12.6.
– Identify the parameters of the mi quadratic surfaces.

• end

the eigenvalues of the data matrix V n(D) to determine its null space. We leave a
more detailed discussion on the robustness issues to Chapter 5.

Example 12.7 We illustrate the above algorithm using a numerical example. Assume we
have data points sampled from two surfaces – a paraboloid S1 and a plane S2 in R

3:

S1 : x
T Ax = x2+y2− zw = 0, A =

»
1 0 0 0
0 1 0 0
0 0 0 −0.5
0 0 −0.5 0

–
; S2 : b

T
x = y = 0, b =

»
0
1
0
0

–
,

where the homogeneous coordinates are x = [x, y, z, w]T with w = 1. Thus a third order
polynomial p(x) = x2y + y3 − yzw = 0 can fit all the data points in X . The gradient
and Hessian at each point are:

∇p(x) = [2xy, x2 + 3y2 − zw,−yw,−yz]T , Hp(x) =

"
2y 2x 0 0
2x 6y −w −z
0 −w 0 −y
0 −z −y 0

#
. (12.17)

As shown in Table 12.2, we examine four points. Point x1 is on both surfaces, x2 is on
the plane S2 only, and x3, x4 are both on the quadratic surface S1 only. The values of
the gradients and contraction matrices are consistent with those in Table 12.1. Note that
the first two columns of the T (x) matrix for x3 are also the tangent vectors for S1 at x4.
Therefore the top-left 2×2 submatrices of C(x) for x3 and x4 are their mutual contraction
matrices C̄(x3, x4) and C̄(x4, x3), respectively. The two matrices are linearly dependent,
which agrees with Theorem 12.6.
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Points Locations ∇p(x) Hp(x) T (x) C(x)

x1 =

[
1
0
1
1

]
S1 ∩ S2

[
0
0
0
0

] [
0 2 0 0
2 0 −1 −1
0 −1 0 0
0 −1 0 0

]
N/A N/A

x2 =

[
0
1
0
1

]
S2 − S1

[
0
1
0
0

] [
2 0 0 0
0 2 −1 0
0 −1 0 −1
0 0 −1 0

] [
1 0 0
0 0 0
0 1 0
0 0 1

] [
0 0 0
0 0 0
0 0 0

]

x3 =

[
0
1
1
1

]
S1 − S2

[
0
2
−1
−1

] [
2 0 0 0
0 6 −1 −1
0 −1 0 −1
0 −1 −1 0

] [
1 0 0
0 0 0.5
0 1 0
0 −1 1

] [
2 0 0
0 2 −1
0 −1 0.5

]

x4 =

[
0
−1
1
1

]
S1 − S2

[
0
2
1
1

] [−2 0 0 0
0 −6 −1 −1
0 −1 0 1
0 −1 1 0

] [
1 0 0
0 0 0.5
0 1 0
0 −1 −1

] [
−2 0 0
0 −2 −1
0 −1 −0.5

]

Table 12.2. Result of evaluating the derivatives, Hessians, tangents, and contractions of the
fitting polynomial at four points.

12.1.4 Variations to the Basic GPSA Algorithm
We here address how the basic GPSA algorithm should be improved or modified
in case some of the conditions for the algorithm vary.

Segmentation Polynomials

In the special case when all the quadratic surfaces are hyper-surfaces (which are
often the only quadratic surfaces considered in practice), each surface is defined
by a single symmetric matrixA and there is only one fitting polynomial p for Xq .
According to Theorem 12.6, we have:

Corollary 12.8 (Mutual Contractions on a Quadratic Hyper-Surface). If all the
quadratic surfaces are of D− 1 dimension, for two points x1 and x2 to be on the
same quadratic surface Sq , we must have

C̄(x1,x2) ∼ C̄(x2,x1) ∈ R
(D−2)×(D−2), (12.18)

where ∼ means “equal up to a nonzero scalar.”

Notice that the notion of “segmentation polynomials” that we have introduced
in Section ?? also applies to the case with quadratic surfaces. This can be very
useful in handling noises in the data: Instead of identifying the entire set of poly-
nomials that fit the data, we can use only one polynomial and segment the data
correctly to different hypersubspaces or hypersurfaces, based on the criteria for
the hypersurface case d = D − 1. Therefore, Corollary 12.8 in fact applies to
quadratic surfaces of any dimension. The only case in which it does not offer ef-
fective constraints on the mutual contraction is when D = 3 since D−2 = 1. We
study this special case below.

Special Case: D = 3, d = 2

According to Corollary 12.8, the GPSA algorithm does not work for only one
special case: (homogeneous) 2-dimensional quadratic surfaces in R

3. Because
D − 2 = 1, the mutual contractions C̄(x1,x2) become scalars. Therefore some
additional algebraic signatures are needed in order to separate points on quadratic
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surfaces in R
3. Given a point x on a quadratic surface defined by the symmetric

matrixA ∈ R
3×3, we want to solve the 6 unknown entries ofA. From Proposition

12.2 and Corollary 12.5, we have the equations:

2α(x)n(x)TAx = n(x)T∇p(x) ∈ R,

2α(x)T (x)TAT (x) = C(x) ∈ R
2×2,

where x,n(x),∇p(x), T (x) and C(x) are all known. The second equation is
symmetric and it only gives three scalar equations. Let As ∈ R

6 be the vector of
the stacked unknown entries of A. Since the scalar α(x) ∈ R is also unknown,
we can rewrite the above two equations in As as the following relationship

M(x)As ∼ V (x), M(x) ∈ R
4×6, V (x) ∈ R

4, (12.19)

where M(x), V (x) depend only on x,n(x),∇p(x), T (x) and C(x). Let
V (x)⊥ ∈ R

4×3 be the orthogonal complementary of V (x) ∈ R
4, i.e.,(

V (x)⊥
)T
V (x) = 0. Eliminating the unknown scale, we end up with three

scalar equations given by:

F (x)As
.
=

(
V (x)⊥

)T
M(x)As = 0 ∈ R

3. (12.20)

This leads to the following proposition.

Proposition 12.9 (Hyper-Surfaces in R
3). Given two points x1 and x2 from the

same 2-dimensional (homogeneous) quadratic surface in R
3, let F (x1), F (x2) ∈

R
3×6 be the two matrices defined in (12.20) for x1 and x2, respectively. Then

det
[
F (x1)
F (x2)

]
= 0, and

[
F (x1)
F (x2)

]
As = 0. (12.21)

Proposition 12.9 gives an additional equation, other than the relation (12.15),
that allows us to determine whether two points belong to the same quadratic sur-
face in R

3. In addition, we can solve the matrix A using the above equation if two
such points on the surface are given.

Degenerate Quadratic Surfaces

The above GPSA algorithm does not consider degenerate quadratic surfaces that
lie in a proper subspace of R

D. For example, a circle (1-dimensional) in the
3-dimensional space lies on a plane. For such degenerate quadratic surfaces, a
simple solution is to first identify their supporting plane as linear subspaces, say
by GPCA. Once such subspaces are identified, one can recursively apply GPSA
to the data points that belong to each subspace and identify further the quadratic
structures of those points.

Resolving Ambiguity in Mutual Contractions

Given a data point x1 in a quadratic surface Sq, we denote the set of all the data
points x2 that have the same mutual contraction with x1 as Xx1 ⊆Xq . Then all
the data points on Sq will be included in Xx1 . However, since Theorem 12.6 is
only a necessary condition for two points to be on the same quadratic surface, it
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is possible that in some ambiguous configurations Xx1 also contains data points
from other quadratic surfaces.8 Fortunately, such ambiguity can be easily detected
and resolved. Given a point x2 ∈Xx1 , we can calculate Xx2 . It can be conceived
that Xx1 and Xx2 should be similar only if both x1 and x2 are on the same Sq .
Therefore we can verify if x2 is on the same surface with x1 by checking if the
following ratio:

w12 .
=
|Xx1 ∩Xx2 |
|Xx1 ∪Xx2 | (12.22)

is higher than some threshold. In this way, we can single out all the points in the
same surface as x1. The remaining data points can be similarly segmented.

12.1.5 Experiments on Synthetic Data
Segmentation with Ambiguity

Figure 12.1 shows the results for segmenting 1000 data points drawn from a
paraboloid and a sphere. Most of the data points are correctly segmented. The mis-
classified ones are those close to the intersection of the two surfaces. Given two
points x1 = [1, 0, 0, 1]T on the sphere and x2 = [0, 0, 0, 1]T on the paraboloid,
the contraction matrices with respect to the common tangent vectors at x1 and x2

are C(x1) ∼ C(x2) ∼ [ 1 0
0 1 ], that satisfies Theorem 12.6. This is the ambiguity

we have discussed in Section 12.1.4, and it has been successfully resolved in the
experiment using the criterion (12.22). The two surfaces are correctly retrieved
from the segmented data points.

Segmentation with Noises

Figure 12.2 shows the results for segmenting 1000 data points drawn from two
ellipsoids contaminated by Gaussian noise with a standard deviation σ = 0.2. Al-
though the algorithm is developed assuming the noise-free case, in practice it can
tolerate a moderate amount of noises in the data. It can provide a decent initial-
ization for other iterative optimization schemes such as EM. In this experiment,
we perform a simple postprocessing by reassigning the data points based on the
recovered surfaces.

8Suppose there exists an Â such that Âs, the vector obtained by stacking Â, is in the null space of
T T ⊗ T T . If A1 = A2 + Â then T T A1T = T T A2T + T T ÂT = T T A2T . Thus even though
the two data samples are from two different surfaces, they will have the same contraction by T (up to
a scalar)! However in the noiseless case the set of Â is a zero-measure set, and even with noise the
probability remains small.
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Figure 12.1. The paraboloid x2 + y2 − z = 0 and the sphere x2 + y2 + z2 = 1. Left: The
1000 data points with the first 500 drawn from the paraboloid. Middle: The segmentation
results. The x-axis is the indices of the points and the y-axis is the group number. Right:
The recovered quadratic surfaces.
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Figure 12.2. Left: The 1000 data points drawn from two ellipsoids in R
3. Middle: The

segmentation results. Right: The recovered quadratic surfaces.

12.2 Other Nonlinear Extensions
Yi notes: More general manifolds... But I don’t know what you guys have in
mind.

12.3 Bibliographic Notes
Many different methods have been developed to model data points sampled
from nonlinear manifolds. In [Scholkopf et al., 1998], a set of nonlinear map-
pings called kernels are introduced. A kernel maps the original data points
into another space in which the manifold is linear. PCA is then applied to the
mapped data points in the new space. ISOMAP [Tenenbaum et al., 2000] and
LLE [Roweis and L.Saul, 2000] utilize the local information of the data set to
infer the global properties of the manifold. To fit data points into multiple models,
[Tipping and Bishop, 1999a] developed probabilistic PCA to model data points
with multiple Gaussian distributions using EM. [?] presented a scalable subspace
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clustering algorithm by performing clustering for all subspaces of dimensions.
K-subspaces [Ho et al., 2003] is an extension of the K-means for fitting multiple
linear models. [Leonardis et al., 2002] developed a subspace selection method for
multiple subspaces. The non-iterative linear GPCA algorithm is first proposed in
[Vidal et al., 2003b]. A recursive linear GPCA algorithm has been developed in
[Huang et al., 2004].
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Appendix A
Basic Facts from Algebraic Geometry

“Algebra is but written geometry; geometry is but drawn algebra.”
– Sophie Germain

As a centuries-old practice in science and engineering, people often fit poly-
nomials to a given set of data points. In this book, we often use the zero-set of
(multivariate) polynomials to model a given data set. In mathematics, polynomi-
als and their zero sets are studied under the topic of Algebraic Geometry, with
Hilbert’s Nullstellensatz establishing the basic link between Algebra (polynomi-
als) and Geometry (the zero set of polynomials, a geometric object). In order to
make this book more self-contained, in this appendix we briefly review some of
the basic notions and facts that are frequently used in this book. For a more sys-
tematic introduction to this topic, the reader may refer to the classic texts of Lang
[Lang, 1993] and Esenbud [?].

A.1 Polynomial Ring
Consider the D-dimensional vector space over a field R (of characteristic 0), de-
noted as RD, where R normally is the field of real numbers R or the field of
complex numbers C.

Let R[x] = R[x1, x2, . . . , xD] be the set of all polynomials of D variables
x1, x2, . . . , xD. Then R[x] has the algebraic properties of a commutative ring
with the two operations “summation” and “multiplication” of polynomials. The
elements of R are called scalars which represent the constant polynomials of
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degree 0. A monomial is a product of the variables; its degree is the number of
the variables (counting repeats). A monomial of degree n takes the general form
xn = xn1

1 xn2
2 · · ·xnD

D with 0 ≤ nj ≤ n and n1 + n2 + · · ·+ nD = n. There are
a total of

Mn(D)
.
= (D+n−1

n ) =
(
D+n−1
D−1

)

different degree-n monomials.

Definition A.1 (Veronese Map). For given n and D, the Veronese map of degree
n, denoted as νn : RD → RMn(D), is defined as:

νn : [x1, . . . , xD]T 7→ [. . . ,xn, . . .]T , (A.1)

where xn are degree-n monomials of the form xn1
1 xn2

2 · · ·xnD

D with n =
(n1, n2, . . . , nD) chosen in the degree-lexicographic order.

Example A.2 (The Veronese Map of Degree 2 in 3 Variables). If x = [x1, x2, x3]
T ∈

R3, the Veronese map of degree 2 is given by:

ν2(x) = [x2
1, x1x2, x1x3, x

2
2, x2x3, x

2
3]

T ∈ R6.

In the context of Kernel methods (Chapter 2), the Veronese map is usually
referred to as the polynomial embedding and the ambient space RMn(D) is called
the feature space.

A term is a scalar multiplies a monomial and every polynomial can be written
as a finite sum of nonzero terms. A polynomial p(x) is said to be homogeneous
if the monomials in all its terms have the same degree. Sometimes, people also
use the word form to mean a homogeneous polynomial. Thus, every homoge-
neous polynomial p(x) of degree n can then be written as a superposition of the
monomials:

p(x) = cTnνn(x) =
∑

cn1,...,nD
xn1

1 · · ·xnD

D , (A.2)

where cn1,...,nD
∈ R are the coefficients associated with the monomials xn =

xn1
1 · · ·xnD

D .
In this book, we are primarily interested in the algebra of homogeneous poly-

nomials with D variables.1 Because of that, we view RD as a projective space
– the set of one-dimensional subspaces (meaning lines through the origin). Any
such a one-dimensional subspace, say a line L, can be represented by a point
(a1, a2, . . . , an) 6= (0, 0, . . . , 0) on the line. The result is a projective (D−1)-
space over R which can be regarded as the D-tuples (a1, a2, . . . , an) of elements
of R, modulo the equivalence relation (a1, a2, . . . , an) ∼ (ba1, ba2, . . . , ban) for
all b 6= 0 in R.

1For algebra of polynomials defined on RD as an affine space, the reader may refer to
[Lang, 1993].



A.2. Ideals and Algebraic Sets 247

If p(x1, x2, . . . , xD) is a homogeneous polynomial of degree n, then for b ∈ R
we have

p(ba1, ba2, . . . , ban) = bnp(a1, a2, . . . , an). (A.3)

Therefore, whether p(a1, a2, . . . , an) = 0 or not on a line L does not depend on
the representative point chosen on the line L.

We may view R[x] as a graded ring which has a direct sum

R[x] =

∞⊕

i=0

Ri = R0 ⊕R1 ⊕ · · · ⊕Rn ⊕ · · · . (A.4)

In particular, R0 = R is the set of nonzero scalars (that represent constants). It
is convention to define the degree of zero 0 to be infinite. R1 is the set of all
homogeneous polynomials of degree one, i.e., the set of 1-forms,

R1
.
=

{
b1x1 + b2x2 + · · ·+ bDxD : [b1, b2, . . . , bD]T ∈ RD

}
. (A.5)

Obviously, the dimension ofR1 as a vector space is alsoD.R1 can also be viewed
as the dual space (RD)∗ of RD. For convenience, we also define the following
two sets

R(m)
.
=

m⊕

i=0

Ri = R0 ⊕R1 ⊕ · · · ⊕Rm,

R(m) .
=

∞⊕

i=m

Ri = Rm ⊕Rm+1 ⊕ · · · ,

which are the set of polynomials of degree up to degree m and those of degree
higher and equal to m.

A.2 Ideals and Algebraic Sets
Definition A.3 (Ideal). An ideal in the (commutative) polynomial ring R[x] is an
additive subgroup I (with respect to the summation of polynomials) such that if
p(x) ∈ I and q(x) ∈ R[x], then p(x)q(x) ∈ I .

From the definition, it is easy to verify that if I, J are two ideals of R[x], they
intersection K = I ∩ J is also an ideal. However, the product

IJ
.
= {f(x)g(x),∀f(x) ∈ I, g(x) ∈ J}

is not necessarily an ideal. The previously defined set R(m) is an ideal for every
m. In particular, R(1) is the so-called irrelevant ideal, sometimes written as R+.

An ideal is said to be generated by a subset G ⊂ I if every element p(x) ∈ I
can be written in the form

p(x) =

k∑

i=1

qi(x)gi(x), with qi(x) ∈ R[x] and gi(x) ∈ G. (A.6)
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We write (G) for the ideal generated by a subset G ⊂ R[x]; if G contains only
finite number of elements {g1, . . . , gk}, we usually write (g1, . . . , gk) in place
of (G). An ideal I is principal if it can be generated by one element (i.e., I =
p(x)R[x] for some polynomial p(x)).

An ideal I of the (commutative) polynomial ring R[x] is prime if I 6 R[x] and
if p(x), q(x) ∈ R[x] and p(x)q(x) ∈ I implies that p(x) ∈ I or q(x) ∈ I .
Equivalently, if I is prime and for any ideals J,K with JK ⊆ I we have J ⊆ I
or K ⊆ I .

A polynomial p(x) is said to be prime or irreducible if p(x) generates a prime
ideal. Equivalently, if p(x) is irreducible if p(x) is not a nonzero scalar and
whenever p(x) = f(x)g(x), then one of f(x) and g(x) is a nonzero scalar.

Definition A.4 (Homogeneous Ideal). A homogeneous ideal of R[x] is an ideal
that is generated by homogeneous polynomials.

Note that the sum of two homogeneous polynomials of different degrees
is no longer a homogeneous polynomial. Thus, a homogeneous ideal contains
nonhomogeneous polynomials too.

Definition A.5 (Algebraic Set). Given a set of homogeneous polynomials J ⊂
R[x], we may define a corresponding (projective) algebraic set Z(J) as a subset
of RD to be

Z(J)
.
= {(a1, a2, . . . , an) ∈ RD|f(a1, a2, . . . , an) = 0,∀f ∈ J}. (A.7)

If we view algebraic sets as the closed sets of RD, this assigns a topology to
the space RD, which is called the Zariski topology.2

IfX = Z(J) is an algebraic set, an algebraic subset Y ⊂ X is a set of the form
Y = Z(K) (where K is a set of homogeneous polynomials) that happens to be
contained in X . A nonempty algebraic set is said to be irreducible if it is not the
union of two nonempty smaller algebraic subsets. We call irreducible algebraic
sets as algebraic varieties. For instance, any subspace of RD is an irreducible
algebraic variety because its vanishing ideal is generated by linear forms.

There is an inverse construction of algebraic sets. Given any subset X ⊆ RD,
we define the ideal of X to be the set of all polynomials that vanish on X:

I(X)
.
= {f(x) ∈ R[x]|f(a1, a2, . . . , an) = 0,∀(a1, a2, . . . , an) ∈ X}. (A.8)

One can easily verify that I(X) is an ideal. If we identify two polynomial func-
tions if they agree at all the points of X , we get the coordinate ring A(X) of X
as the quotient R[x]/I(X).

Now, consider a set of homogeneous polynomials J ⊂ R[x] (which is not
necessarily an ideal) and a subset X ⊂ RD (which is not necessarily an algebraic
set.

Proposition A.6. The following facts are true:

2This is because the intersection of any algebraic sets is an algebraic set; and the union of finitely
many algebraic sets is also an algebraic set.



A.3. Algebra and Geometry: Hilbert’s Nullstellensatz 249

1. I(Z(J)) is the smallest ideal that contains J;

2. Z(I(X)) is the smallest algebraic set that contains X .

Proposition A.7. If X is an algebraic set and I = Z(X) is the ideal of X , then
X is irreducible if and only if I is a prime ideal.

Proof. IfX is irreducible and f(x)g(x) ∈ I , sinceZ({I, f(x)})∪Z({I, g(x)}) =
X , then either X = Z({I, f(x)}) or X = Z({I, g(x)}). That is, either f(x) or
g(x) vanishes on X and is in I . Conversely, suppose X = X1 ∪X2. If both X1

and X2 are algebraic sets strictly smaller than X , then there exist polynomials
f1(x) and f2(x) that vanish on X1 and X2 respectively, but not on X . Since the
product f1(x)f2(x) vanishes on X , we have f1(x)f2(x) ∈ I but neither f1(x)
or f2(x) is in I . So I is not prime.

A.3 Algebra and Geometry: Hilbert’s Nullstellensatz
In this book, we often use an algebraic set to model a given set of data points
and the (ideal of) polynomials that vanish on the set provide a natural parametric
model for the data. One question that is of particular importance in this context is:
Is there an one-to-one correspondence between ideals and algebraic sets? This is
in general not true as the ideals I = (f 2(x)) and J = (f(x)) both vanish on the
same algebraic set as the zero-set of the polynomial f(x). Fortunately, this turns
out to be essentially the only case that prevents the one-to-one correspondence
between ideals and algebraic sets.

Definition A.8 (Radical Ideal). Given a (homogeneous) ideal I of R[x], the
(homogeneous) radical ideal of I is defined to be

rad(I)
.
= {f(x) ∈ R[x]|f(x)m ∈ I for some integer m}. (A.9)

Please let it to the reader to verify that rad(I) is indeed an ideal and furthermore,
if I is homogeneous, so is rad(I).

Hilbert proved in 1893 the following important theorem that establishes one of
the fundamental results in algebraic geometry:

Theorem A.9 (Nullstellensatz). Let R be an algebraically closed field (e.g., R =
C). If I ⊂ R[x] is an (homogeneous) ideal, then

I(Z(I)) = rad(I). (A.10)

Thus, the correspondences I 7→ Z(I) and X 7→ I(X) induce a one-to-one
correspondence between the collection of (projective) algebraic sets of RD and
(homogeneous) radical ideals of R[x].
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One may find up to five different proofs for this theorem in [?].3 The impor-
tance of Nullstellensatz cannot be exaggerated. It is a natural extension of Gauss’
fundamental theorem of algebra4 to polynomials with multiple variables. One of
the remarkable consequences of Nullstellensatz is that it identifies a geometric
object (algebraic sets) with an algebraic object (radical ideals).

In our context, we often assume our data points are drawn from an algebraic
set and use the set of vanishing polynomials as a parametric model for the data.
Hilbert’s Nullstellensatz guarantees such a model for the data is well-defined and
unique. To some extent, when we fit vanishing polynomials to the data, we are
essentially inferring the underlying algebraic set. In the next section, we will dis-
cuss how to extend Hilbert’s Nullstellensatz to the practical situation in which we
only have finitely many sample points from an algebraic set.

A.4 Algebraic Sampling Theory
In this book, we often face a common mathematical problem: We need to identify
a (projective) algebraic set Z ⊆ RD from a finite, though maybe very large, num-
ber of sample points in Z. In general, the variety Z is not necessarily irreducible5

and the ideal I(Z) is not necessarily prime.
From an algebraic viewpoint, it is impossible to recover a continuous variety Z

from a finite number of discrete sample points, regardless how many. To see this,
the set of all polynomials that vanish on one (projective) point z is a submaximal
ideal6 m in the (homogeneous) polynomial ring R[z]. The set of polynomials that
vanish on a set of sample points {z1, z2, . . . , zi} ⊆ Z is the intersection

ai
.
= m1 ∩m2 ∩ · · · ∩mi, (A.11)

which is a radical ideal that is typically much larger than I(Z).
Thus, some additional assumptions must be imposed on the algebraic set in

order to make the problem of inferring I(Z) from the samples well-defined. Typi-
cally, we assume that the ideal I(Z) of the algebraic set Z in question is generated
by a set of (homogeneous) polynomials whose degrees are bounded by a relatively
small n. That is,

I(Z)
.
=

(
f1, f2, . . . , fs

)
s.t. ∀j deg(fj) ≤ n,

Z(I)
.
=

{
z ∈ RD | fi(z) = 0, i = 1, 2, . . . , s

}
.

3Strictly speaking, for homogeneous ideals, for the one-to-one correspondence to be exact, one
should only consider proper radical ideals.

4Every degree-n polynomial in one variable has exactly n roots in an algebraically closed field
such as C (counting repeats).

5For instance, it is often the case that Z is the union of many subspaces or algebraic surfaces.
6The ideal of a point in the affine space is a maximal ideal; and the ideal of a point in the projective

space is conventionally called a submaximal ideal. They both are “maximal” in the sense that they
cannot be a subideal of any other homogeneous ideal of the polynomial ring.
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We are interested in how to retrieve I(Z) uniquely from a set of sample points
{z1, z2, . . . , zi} ⊆ Z. In general, I(Z) is always a proper subideal of ai, regard-
less how large i is. However, the information about I(Z) can still be retrieved
from ai in the following sense.

Theorem A.10 (Sampling of a Low-Degree Algebraic Set). Consider a (con-
tinuous) set Z ⊆ RD whose ideal I(Z) is generated by polynomials in R(n).
For almost all7 sequences {z1, z2, . . .} ⊆ Z∞, there exists a large enough N
such that I(Z) =

(
aN ∩ R(n)

)
. In particular, if I(Z) ∩ R(n) = ∅, so will be

aN ∩R(n) = ∅ for a large enough N .

Proof. Let a0 = R[x] be the graded ring of all homogeneous polynomials:

a0
.
= R[x] = R0 ⊕R1 ⊕ · · · ⊕Rn ⊕ · · · .

Define A0 = (a0 ∩ R(n)), the ideal generated by polynomials in a0 = R[x] of
degree less than or equal to n. Since 1 ∈ R[x]∩R(n) is the generator of this ideal,
we have A0 = R[x].

IfA0 6= a (i.e.,Z 6= ∅), pickN1 = 1 point z0 ∈ Z. Then 1(z0) 6= 0. Let aN1
=

a1 be the submaximal ideal that vanishes on z0 and we define A1 = (a1 ∩R(n)).
Notice that the degree of the generators of A1 is 1, strictly higher than that of A0.

Since R[x] is finitely generated (i.e., is a Noetherian ring [Lang, 1993]), so is
A1. Notice that I(Z) is a subideal of A1. Let {a1, a2, . . . , ar} be the minimal set
of generators for the quotient ideal A1/I(Z) in the coordinate ring R[x]/I(Z)
of Z. If A1/I(Z) 6= 0 (i.e., A1 6= I(Z)), define φ : Zr → R, a map from the
r-product of Z to R, by

φ(z1, . . . , zr)
.
= det




a1(z1) a2(z1) · · · ar(z1)
a1(z2) a2(z2) · · · ar(z2)

...
...

. . .
...

a1(zr) a2(zr) · · · ar(zr)


 ∈ R. (A.12)

We contend that φ is nonzero on an open set ofZr. For any fixed set of r−1 points
z2, . . . , zr ∈ Z, the polynomial ψ(z)

.
= φ(z, z2, . . . , zr) is a superposition

of the generators a1(z), a2(z), . . . , ar(z). If φ ≡ 0 on Zr, then ψ = w1a1 +
w2a2 + · · · + wrar = 0 in A1/I(Z) for some nonzero w1, w2, . . . , wr ∈ R.
This contradicts the minimality of the generators.8 Thus, φ = 0 only on a closed,
hence zero-measure, set of Zr. Now, in addition to z0, we pick r new points
z1, z2, . . . , zr in general position on Z such that φ 6= 0. That gives us a total of
N2 = N1 + r = 1 + r points on Z, for which we may continue to construct in a
similar fashion aN2

and A2.
Thus, inductively, let aNi+1

be the new ideal that vanishes on all the Ni+1
.
=

Ni + ri points chosen so far and let Ai+1 =
(
aNi+1

∩ R(n)

)
. By the choice

7“Almost all” means “except for only a zero-measure set.”
8If w1, w2, . . . , wr are all zeros, simply apply the same arguments to a subset of the generators

a1, a2, . . . , ar .
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of the points, any linear combination of the generators a1, . . . , ari
for Ai/I(Z)

cannot be in Ai+1/I(Z) (otherwise we must have φ = 0 on the chosen ri points).
Nevertheless, since Ai+1/I(Z) ⊂ Ai/I(Z) = (a1, . . . , ari

), the generators of
Ai+1 must be of the form:

b = a1h1 + a2h2 + · · ·+ ari
hri

, (A.13)

where hj ∈ R[x], j = 1, . . . , ri. One of the polynomials hj must be of deg(hj) ≥
1. Otherwise, the polynomial

∑
j=1 aj · hj ∈ Ai+1/I(Z) with nonzero hj ∈ R

vanishes on the newly chosen ri points, which contradicts φ 6= 0. That is, if
Ai/I(Z) 6= 0 (i.e.,Ai 6= I(Z)), the lowest degree of the generators ofAi+1/I(Z)
must be strictly higher than that of Ai/I(Z).9

Since Ai is always generated by polynomials (of the maximal degree n) in the
finite-dimensional (vector) space R(n), the following descending sequence

A0 ⊇ A1 ⊇ A2 ⊇ · · · ⊇ Ai ⊇ Ai+1 ⊇ · · · (A.14)

must stabilize after i > n (i.e., it is an Artinian sequence [Lang, 1993]), and
furthermore An+1 = An+2 = I(Z).

We point out that in the above proof, no clear bound on the total number N of
points needed is given because the number ri at each inductive step depends on the
particular sequence {zj} and the algebraic set Z and can be very hard to estimate
when Z is not irreducible.10 Nevertheless, the above theorem guarantees that,
even if a sequence of sample points of Z can be initially ineffective for identifying
the algebraic set, the above sequence of ideals Ai will eventually stabilize to the
desired ideal I(Z) as long as the remainder of the sequence is sufficiently random.

Example A.11 (A Hyperplane in R
3). Consider a plane P = {z ∈ R3 : f(z) =

az1 + bz2 + cz3 = 0}. Given any two points in general position in the plane P , f(x) =
ax1 + bx2 + cx3 will be the only (homogeneous) polynomial of degree 1 that fits the two
points. In terms of the language introduced before, we have I(P ) =

`
a2 ∩ R(1)

´
.

Example A.12 (Zero Polynomial). When Z = RD , the only polynomial vanishes on Z
is the zero polynomial, i.e., I(Z) = (0). Since the zero polynomial is regarded to be of
infinite degree, we have (aN ∩ R(n)) = ∅ for any given n and a large enough N(n).

The above theorem can be viewed as a first step towards an algebraic analogy to
the well-known Nyquist-Shannon sampling theory in signal processing.11 Here a
signal is replaced by an algebraic set and the frequency bandwidth is replaced by
the bound on the degree of polynomials. It has been widely practiced in engineer-
ing that a curve or surface described by polynomial equations can be recovered

9If it happens so that Ai+1 = I(Z), the statement still holds since the generator for Ai+1/I(Z)
is 0, which has infinite degree.

10However, loose bounds can be easily obtained from the dimension of R(n) as a vector space. In
fact, in the algorithm, we implicitly used the dimension Mn(K) of Rn as a bound for N .

11Which stipulates that a continuous signal with a limited frequency bandwidth Ω can be uniquely
determined from a sequence of discrete samples with a sampling rate higher than 2Ω.
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from a sufficient number of sample points in general configuration, a procedure
often loosely referred to as “polynomial fitting.” However, the algebraic basis for
this is often not clarified and the conditions for the uniqueness of the solution are
usually not well characterized or specified. This problem certainly merits further
investigation in the future.

A.5 Decomposition of Ideals and Algebraic Sets
Modeling a data set as an algebraic set does not stop at obtaining its vanishing
ideal (and polynomials). The ultimate goal is to extract all the internal geometric
or algebraic structures of the algebraic set. For instance, if an algebraic set consists
of multiple subspaces – the so-called subspace arrangement, we need to know how
to derive from its vanishing ideal the number of subspaces, their dimensions, and
a basis of each subspace.

Thus, given an algebraic setX or equivalently its vanishing ideal I(X), we like
to decompose or segment it into a union of subsets each of which can no longer be
further decomposed. As we have introduced earlier, an algebraic set that cannot
be decomposed into smaller algebraic sets is called irreducible. As one of the
fundamental finiteness theorem of algebraic geometry, we have:

Theorem A.13. An algebraic set can have only finitely many irreducible
components. That is, for some n,

X = X1 ∪X2 ∪ · · · ∪Xn, (A.15)

where X1, X2, . . . , Xn are irreducible algebraic varieties.

Proof. The proof is essentially based on the fact that the polynomial ring R[x] is
Noetherian (i.e., finitely generated), and there are only finitely many prime ideals
containing I(X) that are minimal with respect to inclusion (See [?]).

The vanishing ideal I(Xi) of each irreducible algebraic variety X i must be a
prime ideal that is minimal over the radical ideal I(X) – there is no prime subideal
of I(Xi) that includes I(X). The ideal I(X) is precisely the intersection of all
the minimal prime ideals:

I(X) = I(X1) ∩ I(X2) ∩ · · · ∩ I(Xn). (A.16)

This intersection is called a minimal primary decomposition of the radical ideal
I(X). Thus the primary decomposition of a radical ideal is closely related to
the notion of “segmenting” or “decomposing” an algebraic set into multiple irre-
ducible algebraic varieties: If we know how to decompose the ideal, we can easily
find the irreducible algebraic variety corresponding to each primary component.
To a large extent, Generalized Principal Component Analysis introduced in Chap-
ter 4 studies how to decompose the vanishing ideal of a subspace arrangement
and hence segment the subspace arrangement into individual subspaces (which
are irreducible).



254 Appendix A. Basic Facts from Algebraic Geometry

A.6 Hilbert Function, Polynomial, and Series
Finally, we introduce an important invariants of algebraic sets, given by the so-
called Hilbert function. Knowing the values of Hilbert function can be very useful
in the identification of subspace arrangements, especially the number of subspaces
and their dimensions.

Given a (projective) algebraic set Z and its vanishing ideal I(Z), We can grade
the ideal by polynomial degree as

I(Z) = I0(Z)⊕ I1(Z)⊕ · · · ⊕ Ii(Z)⊕ · · · . (A.17)

The Hilbert function of Z is defined to be

hI(i)
.
= dim(Ii(Z)). (A.18)

Notice that hI(i) is exactly the number of linearly independent polynomials of
degree i that vanish on Z. In this book, we also refer to hI as the Hilbert function
of the algebraic set Z.12

The Hilbert series, also known as the Poincaré series, of the ideal I is defined
to be the power series13

H(I, t)
.
=

∞∑

i=0

hI(i)t
i = hI(0) + hI(1)t+ hI(2)t

2 + · · · . (A.19)

Thus, given H(I, t), we know all the values of the Hilbert function hI from its
coefficients.
Example A.14 (Hilbert Series of the Polynomial Ring). The Hilbert series of the
polynomial ring R[x] = R[x1, x2, . . . , xD] is

H(R[x], t) =

∞X

i=0

dim(Ri)t
i =

∞X

i=0

`
D+i−1

i

´
ti =

1

(1 − t)D
. (A.20)

One can easily verify the correctness of the formula with the special case D = 1. Obvi-
ously, the coefficients of the Hilbert series of any ideal (as a subset of R[x]) are bounded
by those of H(R[x], t) and hence the Hilbert series converges.

Example A.15 (Hilbert Series of a Subspace). The above formula can be easily general-
ized to the vanishing ideal of a subspace S of dimension d in R

D . Let the co-dimension of
the subspace be c = D − d. We have

H(I(S), t) =

„
1

(1 − t)c
− 1

«
·

„
1

(1 − t)D−c

«
=

1 − (1 − t)c

(1 − t)D
. (A.21)

12In the literature, however, the Hilbert function of an algebraic set Z is sometimes defined to be
the dimension of the homogeneous components of the coordinate ring A(Z)

.
= R[x]/I(Z) of Z,

which is the codimension of Ii(Z) as a subspace in Ri.
13In general, the Hilbert series can be defined for any finitely-generated graded module E =

L∞
i=1 Ei using any Euler-Poincaré Z-valued function hE(·) as H(E, t)

.
=

P∞
i=0 hE(i)ti

[Lang, 1993]. We here for E = I choose hI(i) = dim(Ii).
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The following theorem, also due to Hilbert, reveals that the values of the Hilbert
function of an ideal have some remarkable properties:

Theorem A.16 (Hilbert). Let I(Z) be the vanishing ideal of an algebraic set Z
over R[x1, . . . , xD], then the values of its Hilbert function hI(i) agree, for large
i, with those of a polynomial of degree ≤ D. This polynomial, denoted as HI(i),
is called the Hilbert polynomial of I(Z).

Then in the above example, for the polynomial ring, the Hilbert function itself
is obviously a polynomial in i

HR(i) = hR(i) =
(
D+i−1

i

)
=

1

(D − 1)!
(D + i− 1)(D + i− 2) · · · (i+ 1).

However, for a general ideal I (of an algebraic set), it is not necessarily true
that all values of its Hilbert function hI agree with those of its Hilbert polynomial
HI . They might agree only when i is large enough. Thus, for a given algebraic set
(or ideal), it would be interesting to know how large i needs to be in order for the
Hilbert function to coincide with a polynomial. As we will see in Appendix B, for
subspace arrangements, there is a very elegant answer to this question. One can
even derive closed-form formulae for the Hilbert polynomials. These results are
very important and useful for Generalized Principal Component Analysis, both
conceptually and computationally.
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Appendix B
Algebraic Properties of Subspace
Arrangements

In this book, the main problem that we study is how to segment a collection of
data points drawn from a subspace arrangement A = {S1, S2, . . . , Sn}, formally
introduced in Chapter ??.1 ZA = S1 ∪ S2 ∪ · · · ∪ Sn is the union of all the
subspaces. ZA can be naturally described as the zero set of a set of polynomials,
which makes it an algebraic set. The solution to the above problem typically relies
on inferring the subspace arrangement ZA from the data points. Thus, knowing
the algebraic properties of ZA may significantly facilitate this task.

Although subspace arrangements seem to be a very simple class of algebraic
sets, a full characterization of their algebraic properties is a surprisingly difficult,
if not impossible, task. Subspace arrangements have been a centuries-old subject
that still actively interweaves many mathematical fields: algebraic geometry and
topology, combinatorics and complexity theory, graph and lattice theory, etc. Al-
though the results are extremely rich and deep, in fact only a few special classes
of subspace arrangements have been well characterized.

In this appendix, we examine some important concepts and properties of
subspace arrangements that are closely related to the subspace-segmentation
problem. The purpose of this appendix is two-fold: 1. to provide a rigorous jus-
tification for the GPCA algorithms derived in the book, especially Chapter 4; 2.
to introduce important properties of subspace arrangements, which may suggest
potential improvements of the algorithms. For readers who are interested only in

1Unless stated otherwise, the subspace arrangement considered will always be a central
arrangement, as in Definition 3.7.
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the basic GPCA algorithms and their applications, this appendix can be skipped
at first read.

B.1 Ideals of Subspace Arrangements
Vanishing Ideal of a Subspace.

A d-dimensional subspace S can be defined by k = D − d linearly independent
linear forms {l1, . . . , lk}:

S
.
= {x ∈ RD : li(x) = 0, i = 1, . . . , k = D − d}, (B.1)

where li is of the form li(x) = ai1x1 + ai2x2 + · · · aiDxD with aij ∈ R. Let S∗

denote the space of all linear forms that vanish on S, then dim(S∗)
.
= k = D−d.

The subspace S is also called the zero set of S∗, i.e., points in the ambient space
that vanish on all polynomials in S∗, which is denoted as Z(S∗). We define

I(S)
.
= {p ∈ R[x] : p(x) = 0,∀x ∈ S}. (B.2)

Clearly, I(S) is an ideal generated by linear forms in S∗, and it contains poly-
nomials of all degrees that vanish on the subspace S. Every polynomial p(x) in
I(S) can be written as a superposition:

p = l1h1 + l2h2 + · · ·+ lkhk (B.3)

for some polynomials h1, . . . , hk ∈ R[x]. Furthermore, I(S) is a prime ideal.2

Vanishing Ideal of a Subspace Arrangement.

Given a subspace arrangement ZA = S1 ∪ S2 ∪ · · · ∪ Sn, it vanishing ideal is

I(ZA) = I(S1) ∩ · · · ∩ I(Sn). (B.4)

The ideal I(ZA) can be graded by the degree of the polynomial

I(ZA) = Im(ZA)⊕ Im+1(ZA)⊕ · · · ⊕ Ii(ZA)⊕ · · · . (B.5)

Each Ii(ZA) is a vector space that consists of forms of degree i in I(ZA), and
m ≥ 1 is the least degree of the polynomials in I(ZA). Notice that forms that
vanish on ZA may have degrees strictly less than n. One example is an arrange-
ment of two lines and one plane in R

3. Since any two lines lie on a plane, the
arrangement can be embedded into a hyperplane arrangement of two planes, and
there exist forms of second degree that vanish on the union of the three subspaces.
The dimension of Ii(ZA) is known as the Hilbert function hI(i) of ZA.

Example B.1 (Boolean Arrangement). The Boolean arrangement is the collection of co-
ordinate hyperplanes Hj

.
= {x : xj = 0}, 1 ≤ j ≤ D. The vanishing ideal of the Boolean

arrangement is generated by a single polynomial p(x) = x1x2 · · ·xD of degree D.

2It is a prime ideal because for any product p1p2 ∈ I(S), either p1 ∈ I(S) or p2 ∈ I(S).



258 Appendix B. Algebraic Properties of Subspace Arrangements

Example B.2 (Braid Arrangement). The Braid arrangement is the collection of hyper-
planes Hjk

.
= {x : xj − xk = 0}, 1 ≤ j 6= k ≤ D. Similarly, the vanishing ideal the

Braid arrangement is generated by a single polynomial p(x) =
Q

1≤j<k≤D(xj − xk).

Theorem B.3 (Regularity of Subspace Arrangements). The vanishing ideal
I(ZA) of a subspace arrangement ZA = S1 ∪ S2 ∪ · · · ∪ Sn is n-regular. This
implies that I(Z) has a set of generators with degree ≤ n.

Proof. For the concept of n-regularity and the proof of the above statement,
please refer to [?].

Due to the above theorem, the subspace arrangement ZA is uniquely deter-
mined as the zero set of all polynomials of degree up to n in its vanishing ideal,
i.e., as the zero set of polynomials in

ZA = Z(I(n)),

where I(n)
.
= I0 ⊕ · · · ⊕ In.

Product Ideal of a Subspace Arrangement

Let J(ZA) be the ideal generated by the products of linear forms

{l1 · l2 · · · ln, ∀lj ∈ S∗
j , j = 1, . . . , n}.

Or equivalently, we can define J(ZA) to be the product of the n ideals
I(S1), I(S2), . . . , I(Sn):

J(ZA)
.
= I(S1) · I(S2) · · · I(Sn).

Then, the product ideal J(ZA) is a subideal of I(ZA). Nevertheless, the two
ideals share the same zero set:

ZA = Z(J) = Z(I). (B.6)

By definition I is the largest ideal that vanishes on ZA. I is in fact the radical
ideal of the product ideal J , i.e., I = rad(J). We may also grade the ideal J(ZA)
by the degree

J(ZA) = Jn(ZA)⊕ Jn+1(ZA)⊕ · · · ⊕ Ii(ZA)⊕ · · · . (B.7)

Notice that, unlike I , the lowest degree of polynomials in J always starts from
n, the number of subspaces. The Hilbert function of J is denoted as hJ(i) =
dim(Ji(ZA)). As we will soon see, the Hilbert functions (or polynomials, or se-
ries) of the product ideal J and the vanishing ideal I have very interesting and
important relationships.

B.2 Subspace Embedding and PL-Generated Ideals
Let ZA be a central subspace arrangement ZA = S1 ∪ S2 ∪ · · · ∪ Sn. Let ZA′ =
S′

1 ∪ S′
2 ∪ · · ·S′

n′ be another (central) subspace arrangement. If we have ZA ⊆
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ZA′ , then it is necessary that for all Sj ⊂ ZA there exists S′
j′ ⊂ ZA′ such that

Sj ⊆ S′
j′ . If so, we call

ZA ⊆ ZA′

a subspace embedding. Beware that it is possible n′ < n for a subspace embed-
ding as more than one subspace Sj of ZA may belong to the same subspace Sj′ of
ZA′ . The subspace arrangements in Theorem 4.8 are examples of subspace em-
bedding. If ZA′ happens to be a hyperplane arrangement, we call the embedding
a hyperplane embedding.

Is the zero-set of each homogeneous component of I(ZA), in particular
Im(ZA), a subspace embedding of ZA? Unfortunately, this is not true as counter
examples can be easily constructed.

Example B.4 (Five Lines in R
3). Consider five points in P

2 (or equivalently, five lines
in R

3) The Veronese embedding of order two of a point x = [x1, x2, x3] ∈ R
3

is [x2
1, x1x2, x1x3, x

2
2, x2x3, x

2
3] ∈ R

6. For five points in general position, the matrix
V 2 = [ν2(x1), . . . ν2(x5)] is of rank 5. Let cT be the only vector in the left null space of
V 2: cT V 2 = 0. Then p(x) = cT ν2(x) is in general an irreducible quadratic polynomial.
Thus, the zero-set of I2(ZA) = p(x) is not a subspace arrangement but an (irreducible)
cone in R

3.

Nevertheless, the following statement allows us to retrieve a subspace embed-
ding from any polynomials in the vanishing ideal I(ZA).

Theorem B.5 (Hyperplane Embedding via Differentiation). For every polynomial
p in the vanishing ideal I(ZA) of a subspace arrangementZA = S1∪S2∪· · ·∪Sn
and n points {xj ∈ Sj}nj=1 in general position, the union of the hyperplanes
∪nj=1Hj = {x : Dp(xj)

Tx = 0} is a hyperplane embedding of the subspace
arrangement.

Proof. The proof is based on the simple fact that the derivative (gradient)∇f(x)
of any smooth function f(x) is orthogonal to (the tangent space of) its level set
f(x) = c.

In the above statement, if we replace p with a collection of polynomials in the
vanishing ideal, their derivatives give a subspace embedding in a similar fashion
as the hyperplane embedding. When the collection contains all the generators of
the vanishing ideal, the subspace embedding becomes tight – the resulting sub-
space arrangement coincides with the original one. This property has been used
in the development of GPCA algorithms in Chapter 4.

Another concept that is closely related to subspace embedding is a pl-generated
ideal.

Definition B.6 (pl-Generated Ideals). An ideal is said to be pl-generated if it is
generated by products of linear forms.

If the ideal of a subspace arrangement ZA is pl-generated, then the zero-set of
every generator gives a hyperplane embedding of ZA.
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Example B.7 (Hyperplane Arrangements). If ZA is a hyperplane arrangement, I(ZA)
is always pl-generated as it is generated by a single polynomial of the form:3

p(x) = (bT
1 x)(bT

2 x) · · · (bT
n x), (B.8)

where bi ∈ RD are the normal vectors to the hyperplanes.

Obviously, the vanishing ideal I(S) of a single subspace S is always pl-
generated. The following example shows that this is also true for an arrangement
of two subspaces.

Example B.8 (Two Subspaces [?]). Let us show that for an arrangement ZA of two sub-
spaces, I(ZA) is always pl-generated. Let ZA = S1 ∪ S2 and define U∗ .

= S∗
1 ∩ S∗

2 and
V ∗ .

= S∗
1 \ U∗, W ∗ .

= S∗
2 \ U∗. Let (u1, . . . , uk) be a basis for U∗, (v1, . . . , vl) a basis

for V ∗, and (w1, . . . , wm) a basis for W ∗. Then obviously I(ZA) = I(S1) ∩ I(S2) is
generated by (u1, . . . , uk, v1w1, v1w2, . . . , vlwm).

Now consider an arrangement of n subspaces: ZA = S1 ∪ S2 ∪ · · ·Sn. By its
definition, the product ideal J(ZA) is always pl-generated. Now, is the vanishing
ideal I(ZA) always pl-generated? Unfortunately, this is not true. Below are some
counterexamples.

Example B.9 (Lines in R
3 [?]). For a central arrangement ZA of r lines in general position

in R
3, I(ZA) is not pl-generated when r = 5 or r > 6. Example B.4 gives a proof for the

case with r = 5.

Example B.10 (Planes in R
4 [?]). For a central arrangement ZA of r planes in general

position in R
4, I(ZA) is not pl-generated for all r > 2.

However, can each homogeneous component Ii(ZA) be “pl-generated” when i
is large enough? For instance, can it be that In = Jn = S∗

1 · S∗
2 · · ·S∗

n? This is in
general not true for an arbitrary arrangement and below is a counterexample.

Example B.11 (Three Subspaces in R
5 – due to R. Fossum). Consider R[x] =

R[x1, . . . , x5] and an arrangement ZA of three three-dimensional subspaces in R
5 whose

vanishing ideals are given by, respectively:

I(S1) = (x1, x2), I(S2) = (x3, x4), I(S3) = ((x1 + x3), (x2 + x4)).

Denote their intersection as I = I(S1) ∩ I(S2) ∩ I(S3). The intersection contains the
element

x1x4 − x2x3 = (x1 + x3)x4 − (x2 + x4)x3 = x1(x2 + x4) − x2(x1 + x3).

Then any element (x1x4 − x2x3)l(x1, . . . , x5) with l a linear form is in I3(ZA), the
homogeneous component of elements of degree three. In particular, (x1x4 − x2x3)x5 is
in I3(ZA). However, it is easy to check that this element cannot be written in the form

X

i

(aix1 + bix2)(cix2 + dix4)(ei(x1 + x3) + fi(x2 + x4))

for any ai, bi, ci, di, ei, fi ∈ R. Thus, I3(ZA) is not spanned by S∗
1 · S∗

2 · S∗
3 .

3In algebra, an ideal which is generated by a single generator is called a principal ideal.
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However, notice that the subspaces in the above example are not in “general
position” – their intersections are not of the minimum possible dimension. Could
In = Jn = S∗

1 · S∗
2 · · ·S∗

n be instead true for n subspaces if they are in general
position? The answer is yes. In fact, we can say more than that. As we will see in
the next section, from the Hilbert functions of I and J , we actually have

Ii = Ji, ∀i ≥ n

if S1, S2, . . . , Sn are “transversal” (i.e., all intersections are of minimum possible
dimension). In other words, Ji could differ from Ii only for i < n.

B.3 Hilbert Function of Subspace Arrangements
In this section, we study for subspace arrangements the Hilbert function defined in
Section A.6. We first discuss a few reasons why in the context of generalized prin-
cipal component analysis, it is very important to know the values of the Hilbert
function for the vanishing ideal I or the product ideal J of subspace arrangements.
We then examine the values of the Hilbert function for a few concrete examples.
Finally, we give a complete characterization of the Hilbert function, Hilbert poly-
nomial, and Hilbert series of a general subspace arrangement. In particular, we
give a closed-form formula for the Hilbert polynomial of the vanishing ideal and
product ideal of the subspace arrangement.

B.3.1 Hilbert Function and GPCA
In general, for a subspace arrangementZA = S1∪S2∪· · ·∪Sn in general position,
the values of the Hilbert function hI(i) of its vanishing ideal I(ZA) are invariant
under a continuous change of the positions of the subspaces. They depend only on
the dimensions of the subspaces d1, d2, . . . , dn or their co-dimensions ci = D −
di, i = 1, . . . , n. Thus, Hilbert function gives a rich set of invariants of subspace
arrangements. In the context of GPCA, such invariants can help to determine the
type of the subspace arrangement, such as the number of subspaces and their
individual dimensions from a given set of (possibly noisy) sample points.

To see this, consider a sufficiently large number of sample points in general
position are drawn from the subspaces X = {xi}Ni=1 ⊂ ZA, let the embedded
data matrix (via the Veronese map of degree i) to be

V i
.
= [νi(x1), νi(x2), . . . , νi(xN )]T . (B.9)

According to the Algebraic Sampling Theorem of Appendix A, the dimension of
Null(V i) is exactly the number of linearly independent polynomials of degree i
that vanish on ZA. That is, the following relation holds

dim(Null(V i)) = hI(i) (B.10)
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or equivalently,

rank(V i) = dim(Ri)− hI(i). (B.11)

Thus, if we know the Hilbert function for different subspace arrangements in ad-
vance, we can determine from the rank of the data matrix from which subspace
arrangement the sample data points are drawn. The following example illustrates
the basic idea.
Example B.12 (Three Subspaces in R

3). Suppose that we only know our data are drawn
from an arrangement of three subspaces in R

3. There are in total four different types of such
arrangements, shown in Figure B.1. The values of their corresponding Hilbert function are
listed in Table B.1. Given a sufficiently large number N of sample points from one of the

��

(a) (1, 1, 1)

	


(b) (1, 1, 2)

��

(c) (1, 2, 2)


�

(d) (2, 2, 2)

Figure B.1. Four configurations of three subspaces in R
3. The numbers are the

co-dimensions (c1, c2, c3) of the subspaces.

c1 c2 c3 hI(ZA)(1) hI(ZA)(2) hI(ZA)(3)

1 1 1 0 0 1
1 1 2 0 0 2
1 2 2 0 1 4
2 2 2 0 3 7

Table B.1. Hilbert functions of the four arrangements (assuming the subspaces are in
general position).

above subspace arrangements, the rank of the embedded data matrix V 3 ∈ R
N×10 can be,

instead of any value between 1 and 10, only 10 − hI(3) = 9, 8, 6, 3, which correspond
to the only four possible configurations of three subspaces in R

3: three planes, two planes
and one line, one plane and two lines, or three lines, respectively, as shown in Figure B.1.

This suggests that, given the dimensions of individual subspaces, we may know the rank
of the embedded data matrix. Conversely, given the rank of the embedded data matrix,
we can determine to a large extent the possible dimensions of the individual subspaces.
Therefore, knowing the values of the Hilbert function will help us to at least rule out in
advance impossible rank values for the embedded data matrix or the impossible subspace
dimensions. This is particularly useful when the data is corrupted by noise so that there is
ambiguity in determining the rank of the embedded data matrix or the dimensions of the
subspaces.

The next example illustrates how the values of Hilbert function can help
determine the correct number of subspaces.
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Example B.13 (Over-Fit Hyperplane Arrangements in R
5). Consider a dataset sampled

from a number of hyperplanes in general position in R
5. Suppose we only know that the

number of the hyperplanes is at most 4, and we embed the data via the degree-4 Veronese
map anyway. Table B.2 gives the possible values of the Hilbert function for an arrangement
of 4, 3, 2, 1 hyperplanes in R

5, respectively. Here we use the convention that an empty set
has co-dimension 5 in R

5.

c1 c2 c3 c4 hI(ZA)(4) rank(V 4)

1 1 1 1 1 69
1 1 1 5 5 65
1 1 5 5 15 55
1 5 5 5 35 35

Table B.2. Values of Hilbert function of (codimension-1) hyperplane arrangements in R
5.

The first row shows that if the number of hyperplanes is exactly equal to the degree of
the Veronese map, then hI(4) = 1, i.e., the data matrix V 4 has a rank-1 null space. The
following rows show the values of hI(4) when the number of hyperplanes is n = 3, 2, 1,
respectively. If the rank of the matrix V 4 matches any of these values, we know exactly
the number of hyperplanes in the arrangement. Figure B.2 shows a super-imposed plot of
the singular values of V 4 for samples points drawn from n = 1, 2, 3, 4 hyperplanes in R

5,
respectively.

Figure B.2. A super-imposed semi-log plot of the singular values of the embedded data ma-
trix V 4 for n = 1, 2, 3, 4 hyperplanes in R

5, respectively. The rank drops at 35, 55, 65, 69,
which confirm the theoretical values of the Hilbert function.

Thus, in general, knowing the values of hI(i) even for i > n may significantly help
determine the correct number of subspaces in case the degree i of the Veronese map used
for constructing the data matrix V i is strictly higher than the number n of non-trivial
subspaces in the arrangement.
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The above examples show merely a few cases in which the values of Hilbert
function may facilitate solving the GPCA problem. In Chapter [?], we will see
how Hilbert function can help to significantly improve the performance of GPCA.
It now remains as a question how to compute the values of Hilbert function for
arbitrary subspace arrangements.

Mathematically, we are interested in finding closed-form formulae, if exist at
all, for the Hilbert function (or Hilbert polynomial, or Hilbert series) of the sub-
space arrangements. As we will soon show, if the subspace arrangements are
transversal (i.e., any intersection of subset of the subspaces has the smallest pos-
sible dimension), we are able to show that the Hilbert function (of both I and
J) agrees with the Hilbert polynomial (of both I and J) with i ≥ n; and a
closed-form formula for the Hilbert polynomial is known (and will be given later).
However, no general formula is known for the Hilbert function (or series) of I ,
especially for the values hI(i) with i < n. For those values, one can still compute
them in advance numerically based on the identity

hI(i) = dim(Null(V i)) (B.12)

from a sufficient set of samples on the subspace arrangements. The values for
each type of arrangements need to be computed only once, and the results can
be stored in a table such as Table B.1 for each ambient space dimension D and
number of subspaces n. We may later query these tables to retrieve information
about the subspace arrangements and exploit relations among these values for
different practical purposes.

However, computing the values of hI numerically can be very expensive, es-
pecially when the dimension of the space (or the subspaces) is high. In order to
densely sample the high-dimensional subspaces, the number of samples grows
exponentially with the number of subspaces and their dimensions. Actually the
MATLAB package that we are using runs out of the memory limit of 2GB for
computing the table for the case D = 12 and n = 6.

Fortunately, for most applications in image processing, or computer vision, or
systems identification, it is typically sufficient to know the values of hI(i) up to
n = 10 and D = 12. For instance, for most images, the first D = 12 principal
components already keep up to 99% of the total energy of the image, which is
more than sufficient for any subsequent representation or compression purposes.
Furthermore, if one chooses to use two by two blocks to represent a color image,
then each block becomes one data point of dimension 2×2×3 = 12. The number
of segments sought for an image is typically less than ten. In system identification,
the dimensions of the subspaces correspond to the orders of the systems and they
are typically less than 10.

B.3.2 Special Cases of Hilbert Functions
Before we study the Hilbert function for general subspace arrangements in the
next section, we here give a few special cases for which we have computed certain
values of the Hilbert function.
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Example B.14 (Hyperplane Arrangements). Consider ZA = S1 ∪S2 ∪ . . .∪Sn ⊂ R
D

with each Si a hyperplane. The subspaces Si are of co-dimension 1, i.e., c1 = c2 = · · · =
cn = 1. Then we have hI(n) = 1, which is consistent with the fact there is exactly one
(factorable) polynomial of degree n that fits n hyperplanes. Furthermore, hI(i) = 0 for all
i < n and

hI(n + i) =
`

D+i−1
i

´
, ∀i ≥ 1.

We can generalize the case of hyperplanes to the following example.

Example B.15 (Subspaces Whose Duals Have No Intersection). Consider a subspace
arrangement ZA = S1 ∪ S2 ∪ . . . ∪ Sn ⊂ R

D with S∗
i ∩ S∗

j = 0 for all i 6= j. In
other words, if the co-dimensions of S1, S2, . . . , Sn are c1, c2, . . . , cn, respectively, we
have c1 + c2 + · · · + cn ≤ D. Notice that hyperplane arrangements are a special case
here. Generalizing the result in Example A.15, one can easily show that the Hilbert series
of I(ZA) (and J(ZA)) is

H(I(ZA), t) = H(J(ZA), t) = f(t)
.
=

Qn

i=1

`
1 − (1 − t)ci

´

(1 − t)D
. (B.13)

The values of the Hilbert function hI(i) can be easily computed from the coefficients of
the function f(t) associated with ti.

However, if the dual subspaces S∗
i do have non-trivial intersections, the com-

putation of Hilbert series and function becomes much more complicated. Below
we give some special examples and leave the general study to the next section.
Example B.16 (Hilbert Function of Two Subspaces). We here derive a closed-form
formula of hI(2) for an arrangement of n = 2 subspaces ZA = S1 ∪ S2 in general
position (see also Example B.8). Suppose their co-dimensions are c1 and c2, respectively.
In R1 ∼ R

D , the intersection of their dual subspaces S∗
1 and S∗

2 has the dimension

c
.
= max{c1 + c2 − D, 0}. (B.14)

Then we have

hI(2) = c · (c + 1)/2 + c · (c1 − c) + c · (c2 − c) + (c1 − c) · (c2 − c)

= c1 · c2 − c · (c − 1)/2. (B.15)

Unfortunately, even for an arrangement of three subspaces, there is no known formula for
hI(3).

Example B.17 (Three Subspaces in R
5). Consider an arrangement of three subspaces

ZA = S1 ∪ S2 ∪ S3 ⊂ R
5 in general position. After a change of coordinates, we may

assume S∗
1 = span{x1, x2, x3}, S∗

2 = span{x1, x4, x5}, and S∗
3 = span{x2, x3, x4, x5}.

The value of hI(3) in this case is equal to dim(S∗
1 · S∗

2 · S∗
3 ). Firstly, we compute S∗

1 · S∗
2

and obtain a basis for it:

S∗
1 · S∗

2 = span{x2
1, x1x4, x1x5, x2x1, x2x4, x2x5, x3x1, x3x4, x3x5}.

From this, it is then easy to compute the basis for S∗
1 · S∗

2 · S∗
3 :

S∗
1 · S∗

2 · S∗
3 = span{x2

1x2, x1x2x4, x1x2x5, x1x
2
2, x

2
2x4, x

2
2x5, x1x2x3, x2x3x4,

x2x3x5, x
2
1x3, x1x3x4, x1x3x5, x1x

2
3, x

2
3x4, x

2
3x5, x

2
1x4, x1x

2
4,

x1x4x5, x2x
2
4, x2x4x5, x3x

2
4, x3x4x5, x

2
1x5, x1x

2
5, x2x

2
5, x3x

2
5}.
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Thus, we have hI(3) = 26.

Example B.18 (Five Subspaces in R
3). Consider an arrangement of five subspaces

S1, . . . , S5 in R
3 of co-dimensions c1, . . . , c5, respectively. We want to compute the value

of hI(5), i.e., the dimension of homogeneous polynomials of degree five that vanish on the
five subspaces ZA = S1 ∪ . . .∪S5. For all the possible values of 1 ≤ c1 ≤ · · · ≤ c5 < 3,
we have computed the values of D3

5 and listed them in Table B.3. Notice that the values

c1 c2 c3 c4 c5 hI(5)

1 1 1 1 1 1
1 1 1 1 2 2
1 1 1 2 2 4
1 1 2 2 2 7
1 2 2 2 2 11
2 2 2 2 2 16

Table B.3. Values of the Hilbert function hI(5) for arrangements of five subspaces in R
3.

of hI(3) in the earlier Table B.1 is a subset of those of hI(5) Table B.3. In fact, many re-
lationships like this one exist among the values of Hilbert function. If properly harnessed,
they can significantly reduce the amount of work for computing Hilbert function.

Example B.19 (Five Subspaces in R
4). Similar to the above example, we have computed

the values of hI(5) for arrangements of five linear subspaces in R
4. The results are given in

Table B.4. In fact, using the numerical method described earlier, we have computed using
computer the values of hI(5) up to five subspaces in R

12.

B.3.3 Computation of Hilbert Function
In this section, we give a general formula for the Hilbert polynomial of the sub-
space arrangement ZA = S1 ∪ S2 ∪ · · · ∪ Sn. However, due to the limit of space,
we will not be able to give a detailed proof for all the results given here. Interested
readers may refer to [?].

Let U be any subset of the set of indexes n .
= {1, 2, . . . , n}, we define the

following ideals

IU
.
=

⋂

u∈U

I(Su), JU
.
=

∏

u∈U

I(Su). (B.16)

If U is empty, we use the convention I∅ = J∅ = R. We further define VU =⋂
u∈U Su, dU = dim(VU ), and cU = D − dU .
Let us define polynomials pU (t) recursively as follows. First we define

p∅(t) = 1.
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c1 c2 c3 c4 c5 hI(5)

1 1 1 1 1 1
1 1 1 1 2 2
1 1 1 1 3 3
1 1 1 2 2 4
1 1 1 2 3 6
1 1 1 3 3 8
1 1 2 2 2 8
1 1 2 2 3 11
1 1 2 3 3 14
1 1 3 3 3 17
1 2 2 2 2 15
1 2 2 2 3 19
1 2 2 3 3 23
1 2 3 3 3 27
1 3 3 3 3 31
2 2 2 2 2 26
2 2 2 2 3 31
2 2 2 3 3 36
2 2 3 3 3 41
2 3 3 3 3 46
3 3 3 3 3 51

Table B.4. Values of the Hilbert function hI(5) for arrangements of five subspaces in R
4.

For U 6= ∅ and pW (t) is already defined for all proper subsetsW of U , then pU (t)
is uniquely determined by the following equation

∑

W⊆U

(−t)|W |pW (t) ≡ 0 mod (1− t)cU , deg(pU (t)) < cU . (B.17)

Here |W | is the number of indexes in the set W .
With the above definitions, the Hilbert series of the product ideal J is given by

H(J, t) =
pn(t)t

n

(1− t)D . (B.18)

That is, the Hilbert series of the product ideal J depends only on the numbers
cU , U ⊆ n. Thus, the values of the Hilbert function hJ(i) are all combinatorial
invariants – invariants that depend only on the values {cU} but not the particular
position of the subspaces.

Definition B.20 (Transversal Subspaces). The subspaces S1, S2, . . . , Sn are
called transversal if cU = min

(
D,

∑
u∈U cu

)
for all U ⊆ n. In other words, the

intersection of any subset of the subspaces has the smallest possible dimension.
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Notice that the notion of “transversality” defined here is less strong than the
typical notion of “general position.” For instance, according to the above defini-
tion, three coplanar lines (through the origin) in R

3 are transversal. However, they
are not “in general position.”

Theorem B.21. Suppose that S1, S2, . . . , Sn are transversal, thenH(I, t)−f(t)

andH(J, t)− f(t) are polynomials in t, where f(t) =
Qn

i=1

(
1−(1−t)ci

)
(1−t)D .

Thus, the difference between H(I, t) and H(J, t) is also a polynomial. As a
corollary to the above theorem, we have

Corollary B.22. If S1, S2, . . . , Sn are transversal, then hI(i) = HI(i) =
hJ(i) = HJ(i) for all i ≥ n. That is, the Hilbert polynomials of both the vanish-
ing ideal I and the product ideal J are the same, and the values of their Hilbert
functions agree with the polynomial with i ≥ n.

One of the consequences of this corollary is that for transversal subspace
arrangements, we must have Ii = Ji for all i ≥ n. This is a result that we have
mentioned earlier in Section B.2.

Then, using the recursive formula (B.18) of the Hilbert series H(J, t), we can
derive a closed-form formula for the values of the Hilbert function hI(i) with
i ≥ n:

Corollary B.23 (A Formula for Hilbert Function). If S1, S2, . . . , Sn are transver-
sal, then

hI(i) = hJ(i) =
∑

U

(−1)|U |

(
D + i− 1− cU
D − 1− cU

)
, i ≥ n, (B.19)

where the sum is over all index subsets U of n for which cU < n.

The following proposition shows a strong theoretical connection between
Hilbert function and the GPCA problem.

Corollary B.24. Given a transversal arrangements of n subspaces. Suppose that
the co-dimensions c1, c2, . . . , cn are unknown, but we know the values of the
Hilbert function hI(i) for i = n, n + 1, . . . , n + D − 1, then we can uniquely
recover c1, c2, . . . , cn.

As we have alluded to earlier, in the context of GPCA, these values of the
Hilbert function can be estimated from the rank of the embedded data matrix V i

for i = n, n+ 1, . . . , n+D − 1.

B.4 Bibliographic Notes
Subspace arrangements constitute of a very special but important class of al-
gebraic sets that have been studied in mathematics for centuries [?, ?, ?]. The
importance as well as the difficulty of studying subspace arrangements can hardly
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be exaggerated. Different aspects of their properties have been and are still be-
ing investigated and exploited in many mathematical fields, including algebraic
geometry & topology, combinatorics and complexity theory, and graph and lat-
tice theory, etc. See [?] for a general review. Although the results about subspace
arrangements are extremely rich and deep, only a few special classes of subspace
arrangements have been fully characterized. Nevertheless, thanks to the work of
Derksen [?], the Hilbert function, Hilbert polynomial, and Hilbert series of the
vanishing ideal (and the product ideal) of transversal subspace arrangements have
been well understood recently. This appendix gives a brief summary of these the-
oretical developments. These results have provided a sound theoretical foundation
for many of the methods developed in this book for GPCA.
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Appendix C
Basic Facts from Mathematical
Statistics

In the practice of science and engineering, data are often modeled as samples
of a random variable (or vector) drawn from certain probabilistic distribution.
Mathematical statistics then deals with the problem how to infer the underlying
distribution from the given samples. To render the problem tractable, we typi-
cally assume that the unknown distribution belongs to certain parametric family
(e.g., Gaussian), and the problem becomes how to estimate the parameters of the
distribution from the samples.

In this appendix, we provide a brief review of some of the relevant concepts and
results from mathematical statistics used in this book. The review is not meant to
be complete but to make the book self-contained for readers who already have
basic knowledge in probability theory and statistics. If one is looking for a more
formal and complete introduction to mathematical statistics, we recommend the
classic books by Bickel and Doksum [?] or by Wilks [?].

C.1 Estimation of Parametric Models
Let x be a random variable or vector. For simplicity, we assume the distribution
of x has a density p(x, θ), where the parameter (vector) θ = [θ1, θ2, . . . , θd]

T ∈
R
d, once known, uniquely determines the density function p(·, θ). Now suppose

X = {x1,x2, . . . ,xN} are a set of samples of x independently drawn according
to the density p(x, θ). That is, X has the density

p(X, θ) =

N∏

i=1

p(xi, θ). (C.1)
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We call any real or vector-valued function of the samples X a statistic and
denote it by T (X). The goal here is to properly choose the function T (·) so that
it gives a “good” estimate for the true parameter θ.

Definition C.1 (Sufficient Statistic). A statistic T (X) is said to be sufficient for
θ if, and only if, the conditional distribution of X given T (X) does not depend
on θ.

That is, p(X, θ|T (X)) no longer depends on θ. Thus, the original samples X

do not contain any more information about θ than T (X).

Theorem C.2 (Factorization Theorem). A statistic T (X) is sufficient for θ if, and
only if, there exists a function g(t, θ) and a function h(X) such that

p(X, θ) = g(T (X), θ)h(X). (C.2)

A popular measure of “goodness” of a statistic T (X) ∈ R
d as an estimate of

θ ∈ R
d is the mean squared error between T (X) and θ:

R(θ, T ) = E[‖T (X)− θ‖2]. (C.3)

The choice of this measure is not just for convenience: When the sample sizeN is
large, the distribution of many estimates converges to a normal distribution with
θ as the mean. Then R is the variance of the estimates. In some literature, such a
function is also referred to as the “risk function,” hence the capital letter “R.”

We may rewrite the expression R(θ, T ) as follows:

R(θ, T ) = E[‖T (X)− E[T (X)] + E[T (X)]− θ‖2]
= E[‖T (X)− E[T (X)]‖2] + ‖E[T (X)]− θ‖2
.
= Var(T (X)) + b2(θ, T ),

where b(θ, T ) = E[T (X)] − θ is called the bias of the estimate T (X), and
Var(T (X)) ∈ R is the trace of the covariance matrix

cov(T (X))
.
= E[T (X)T (X)T ] ∈ R

d×d.

We refer to Var(T (X)) as the “variance” of T (X). Thus, a good estimate is one
that has both small bias and variance.

Unfortunately, there is no such thing as a universally optimal estimate that gives
a smaller error R than any other estimates for all θ. For instance, if the true pa-
rameter is θ0, for the estimate S(X) = θ0, it achieves the smallest possible error
R(θ, S) = 0. Thus, the universally optimal estimate, say T , would have to have
R(θ0, T ) = 0 too. As θ0 can be arbitrary, then T has to estimate every potential
parameter θ perfectly, which is impossible except for trivial cases. One can view
this as a manifestation of the so-called No Free Lunch Theorem known in learn-
ing theory: Without any prior knowledge in θ, we can only expect a statistical
estimate to be better than others most of the time, but we can never expect it to
be the best all the time. Thus, in the future, whenever we claim some estimate is
“optimal,” it will be in the restricted sense that it is optimal within a special class
of estimates considered (e.g., unbiased estimates).
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Define the Fisher information matrix to be

I(θ)
.
= E

[( ∂
∂θ

log p(X, θ)
)( ∂
∂θ

log p(X, θ)
)T ]
∈ R

d×d. (C.4)

Let ψ(θ)
.
= E[T (X)] = [ψ1(θ), ψ2(θ, . . . , ψd(θ)]

T and define:

∂ψ(θ)

∂θ

.
=




∂ψ1(θ)
∂θ1

∂ψ1(θ)
∂θ2

· · · ∂ψ1(θ)
∂θd

∂ψ2(θ)
∂θ1

∂ψ2(θ)
∂θ2

· · · ∂ψ2(θ)
∂θd

...
... · · ·

...
∂ψd(θ)
∂θ1

∂ψd(θ)
∂θ2

· · · ∂ψd(θ)
∂θd



∈ R

d×d. (C.5)

Theorem C.3 (Information Inequality). Under reasonable conditions, we have
that for all θ, ψ(θ) is differentiable and

cov(T (X)) ≥ ∂ψ(θ)

∂θ
I(θ)

−1
(∂ψ(θ)

∂θ

)T
, (C.6)

where the inequality is between semi-positive definite symmetric matrices.

For unbiased estimate ψ(θ) = θ, we have ψ′(θ) = I . The information inequal-
ity can be thought of as giving a lower bound for the variance of any unbiased
estimate: cov(T (X)) ≥ I(θ)

−1, which is often referred to as the Cramér-Rao
lower bound.

As X = {x1,x2, . . . ,xN} are i.i.d. samples from the distribution p(x, θ), we
define I1(θ)

.
= E

[
∂
∂θ log p(x1, θ)(

∂
∂θ log p(x1, θ))

T
]
∈ R

d×d. Then, we have

I(θ) = NI1(θ). (C.7)

The Cramér-Rao lower bound can be rewritten as cov(T (X)) ≥ 1
N I1(θ)

−1.

C.1.1 Uniformly Minimum Variance Unbiased Estimates
One way to resolve the above difficulty is to restrict the class of estimates. For
instance, we may require the estimate T (X) needs to be unbiased, i.e., b(θ, T ) =
0. Then the problem of finding the best unbiased estimate becomes

min
T (·)

R(θ, T ) = Var(T (X)) s.t. E[T (X)] = θ. (C.8)

The optimal T ∗ is then called the uniformly minimum variance unbiased (UMVU)
estimate. Such a T ∗ often exists and in the absence of knowledge in θ, it seems to
be the best estimate one can hope to obtain.

Definition C.4 (Complete Statistic). A statistic T is said to be complete if the only
real function g(·) which satisfies E[g(T )] = 0 for all θ is the function g(T ) ≡ 0.

Starting with a sufficient and complete statistic T (X), the following theorem
simplifies the computation of the UMVU estimate:

Theorem C.5 (Lehmann-Scheffé). If T (X) is a complete sufficient statistic and
S(X) is any unbiased estimate of θ, then T ∗(X) = E[S(X)|T (X)] is an UMVU
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estimate of θ. If further Var(T ∗(X)) <∞ for all θ, T ∗(X) is the unique UMVU
estimate.

Even so, the UMVU estimate is often too difficult to compute in practice.
Furthermore, the property of unbiasedness is not invariant under functional trans-
formation: if T (X) is an unbiased estimate for θ, g(T (X)) is in general not an
unbiased estimate for g(θ). To have the functional invariant property, we often
resort to the so-called Maximum Likelihood estimate.

C.1.2 Maximum Likelihood Estimates
As we assume the N samples xi in the given sample set X are independently
drawn from the same distribution, the joint distribution of xi has the density
p(X, θ) =

∏N
i=1 p(xi, θ). Now consider p(X, θ as a function of θ with X fixed.

We call this function the likelihood function, denoted as L(θ,X) = p(X, θ).
Then the maximum likelihood (ML) estimate of θ is given by solving the

following optimization problem:

θ̂N = arg max
θ
L(θ,X) = p(X, θ) =

N∏

i=1

p(xi, θ). (C.9)

As θ̂N maximizes the likelihood function L(θ,X), a necessary condition for
solving θ̂N is

∂L(θ,X)

∂θ

∣∣∣
θ̂N

= 0. (C.10)

It is easy to show that the ML estimate is invariant under functional trans-
formation: if θ̂N is an ML estimate of θ, then g(θ̂N ) is an ML estimate of
g(θ).

Since the logorithmic function is monotonic, we may choose to maximize the
log likelihood function instead:

θ̂N = arg max
θ

log(L(θ,X)) =

N∑

i=1

log p(xi, θ), (C.11)

which often turns out to be more convenient to use in practice. The ML estimate is
a more popular choice than the UMVU estimate because its existence is easier to
establish and is usually easier to compute than the UMVU estimate. Furthermore,
when the sample size is large, the ML estimate is asymptotically optimal for a
wide variety of parametric models. Thus, both UMVU and ML estimates give
essentially the same answer in a way that we explain in more detail.
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C.1.3 Estimates from a Large Number of Samples
Definition C.6 (Consistency). An estimate θ̂N of θ is said to be consistent if, and
only if,

P
[
‖θ̂N − θ‖ ≥ ε

]
→ 0 (C.12)

for all ε > 0 as N →∞.

In other words, θ̂N is consistent if it converges in probability to θ.

Definition C.7 (Asymptotic Unbiasedness). Let µN = E[θ̂N ] ∈ R
d and ΣN =

cov(θ̂N ) ∈ R
d×d. We say that θ̂ is asymptotically unbiased if as N →∞
√
N(µN − θ)→ 0, and NΣN → Σ > 0 (C.13)

for some positive-definite symmetric matrix Σ ∈ R
d×d.

It is easy to see that asymptotic unbiasedness is a stronger property than consis-
tency. That is, an estimate can be consistent but asymptotically biased. In addition,
for most “reasonable” estimate θ̂N (e.g., the ML estimate), due to the law of large
numbers, it is often asymptotically normal distributed with mean µN and covari-
ance matrix ΣN . Therefore, the asymptotical distribution of an asymptotically
unbiased estimate is uniquely characterized by the parameters θ and Σ.

Between any two asymptotically unbiased estimates, say θ̂
(1)
N and θ̂(2)N , their

relative asymptotic efficiency of θ̂(1)N to θ̂(2)N is defined to be the ratio

e
(
θ̂
(1)
N , θ̂

(2)
N

) .
=

det(Σ(2))

det(Σ(1))
, (C.14)

where Σ(i) = limN→∞Ncov
(
θ̂
(i)
N

)
, for i = 1, 2. The larger the efficiency ratio

e, the smaller the asymptotic variance of θ̂(1), relative to that of θ̂(2). Thus, θ̂(1)
gives more accurate or “sharper” estimate for θ although both θ̂(1) and θ̂(2) are
asymptotically unbiased.

Nevertheless, according to Theorem C.3, an estimate cannot be arbitrarily more
efficient than others. That is, for any asymptotically unbiased estimate θ̂N , using
(C.7) and (C.13), its covariance matrix is bounded asymptotically from below by
the Cramér-Rao bound:

lim
N→∞

NΣN = Σ ≥ I1(θ)−1
. (C.15)

Definition C.8 (Asymptotic Efficiency). An estimate θ̂N is said to be asymp-
totically efficient if it is asymptotically normal and it achieves equality in the
Cramér-Rao bound (C.15).

Obviously, an asymptotically efficient estimate has efficiency e ≥ 1 with
respect to any other asymptotically unbiased estimates that satisfy (C.15).

Asymptotic efficiency is a desirable property for an estimate and it is sometimes
referred to as asymptotic optimality. It often can be shown that UMVU estimates
are asymptotically efficient. We also have that:
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Proposition C.9. In general, the maximum likelihood estimate of is asymptoti-
cally efficient.

Proof. We here outline the basic ideas for a “proof,” which can also be used to es-
tablish for other estimates their asymptotic unbiasedness or efficiency with respect
to the ML estimate. Define the function

ψ(x, θ)
.
=

∂

∂θ
log p(x, θ) ∈ R

d. (C.16)

Assume that the maximum likelihood estimate θ̂N exists. It satisfies the equation

∂L(θ,X)

∂θ

∣∣∣
θ̂N

=

N∑

i=1

ψ(xi, θ̂N ) = 0. (C.17)

By the mean value theorem,
N∑

i=1

ψ(xi, θ̂N )−
N∑

i=1

ψ(xi, θ) =
[ N∑

i=1

∂ψ(xi, θ
∗
N )

∂θ

](
θ̂N − θ

)
, (C.18)

where θ∗N is a point between θ and θ̂N . Using (C.17),

√
N

(
θ̂N − θ

)
=

[ 1

N

N∑

i=1

∂ψ(xi, θ
∗
N )

∂θ

]−1(
−N− 1

2

N∑

i=1

ψ(xi, θ)
)
. (C.19)

Under suitable conditions, θ̂N is consistent, and by the law of large numbers,
1
N

∑N
i=1

∂ψ(xi,θ
∗
N )

∂θ behaves like 1
N

∑N
i=1

∂ψ(xi,θ)
∂θ which converges to

E
[∂ψ(x1, θ)

∂θ

]
= E

[ ∂2

∂θ2
log p(x1, θ)

]

= −E
[ ∂
∂θ

log p(x1, θ)
( ∂
∂θ

log p(x1, θ)
)T ]

= −I1(θ).

It is easy to show that ψ(x, θ) is zero-mean and thus, by the central limit theorem,
the right-hand side of (C.19) converges to a normal distribution with zero mean
and variance I1(θ)−1. That is, the asymptotic variance of the ML estimate reaches
the Carmér-Rao lower bound.

When the sample size is large and the law of large number is in effect, there is
an information-theoretic justification for the ML estimate, which can be somewhat
more revealing. Notice that maximizing the log likelihood function is equivalent
to minimizing the following objective function:

min
θ
H(θ,N)

.
=

1

N

N∑

i=1

− log p(xi, θ). (C.20)

In information theory, the quantity − log p(x, θ) is associated with the number
of bits required to represent a random event x that has the probability p(x, θ)
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[Cover and Thomas, 1991]. When the sample size N is large, due to the law of
large numbers, the quantity H(θ,N) converges to

lim
N→∞

H(θ,N) = H(θ) = E[− log p(x, θ)] =

∫ (
−log p(x, θ)

)
p(x, θ0) dx,

(C.21)
where p(x, θ0) is the true distribution. Notice that the above quantity is a mea-
sure similar to the notion of “entropy”: H(θ) is asymptotically the average code
length of the sample set {xi} when we assume that it is of the distribution p(x, θ)
while x is actually drawn according to p(x, θ0). Thus, the goal of ML estimate
is to find the θ̂ that minimizes the empirical entropy of the given sample set.
This is obviously a smart thing to do as such estimate θ̂ gives the most compact
representation of the given sample data if an optimal coding scheme is adopted
[Cover and Thomas, 1991]. We refer to this as the “minimum entropy principle.”

Notice that the θ̂ that minimizes
∫ (
− log p(x, θ)

)
p(x, θ0) dx is the same as

that minimizing

D
(
p(x, θ0)‖p(x, θ)

) .
=

∫ (
log

p(x, θ0)

p(x, θ)

)
p(x, θ0) dx,

the so-called Kullback-Leibler (KL) distance between the two distributions
p(x, θ0) and p(x, θ). One may show that under general conditions, the distance
is always non-negative and becomes zero if and only if θ = θ0. Therefore,
in essence, when the sample size is large, the ML objective is equivalent to
minimizing the KL distance.

However, the ML estimate is known to have very bad performance in some
models even with a large number of samples. This is particularly the case when
the models have many redundant parameters or the distributions are degenerate.
Furthermore, both UMVU and ML estimates are not the optimal estimate in a
Bayesian1 or minimax2 sense. For instance, the ML estimate can be viewed as a
special Bayesian estimate only when the parameter θ is of a uniform distribution.

In this book, the concepts introduced in this section help us to establish the im-
portant fact that typically, the estimate given by the algebraic GPCA algorithm is
asymptotically unbiased (hence consistent). We will show that the GPCA estimate
is in general not asymptotically efficient but a precise expression of its efficiency
with respect to the ML estimate can be derived.

1A bayesian estimate T ∗ is the solution to the following problem minT

R

R(θ, T )π(θ) dθ for a
given prior distribution π(θ) of θ. That is, T ∗ is the best estimate in terms of its average risk.

2A minimax estimate T ∗ is the solution to the problem minT maxθ R(θ, T ). That is, T ∗ is the
best estimate according to its worst performance. Of course, such a T ∗ does not have to always exist
or be easier to compute than the ML estimate.
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C.2 Expectation Maximization
In many practical situations, one is required to estimate a statistical model with
only part of the random states being observable and the rest being “missing,”
“hidden,” or “latent.” For instance, suppose that two random vectors (x, z) have
a joint distribution (density) p(x, z, θ) but only samples of x are observable and
z is not available. Our goal is, as before, to find an optimal estimate θ̂ for θ from
the observations.

As samples of z are not available, there is no way one can find the maximum
likelihood estimate of θ from the complete log likelihood function:

max
θ
Lc(θ,X,Z) =

N∑

i=1

log p(xi, zi, θ). (C.22)

Thus, it makes sense to use only the marginal distribution of x: p(x, θ) =∫
p(x, z, θ) dz and find the maximum likelihood estimate from

max
θ
L(θ,X) =

N∑

i=1

log p(xi, θ), (C.23)

which, in this context, is often referred to as the incomplete log likelihood func-
tion in the statistical literature. The problem is now reduced to a standard ML
estimation problem and one can adopt any appropriate optimization method (say
conjugate gradient) to find the maximum. It seems that there is no need of
involving z at all.

An alternative approach to maximizeL(θ,X) is to use the available data of x to
estimate the values ẑ of the latent variables, and then search for the ML estimate θ̂
from the complete log likelihood Lc(θ,X, Ẑ). There are several reasons why this
often turns out to be a better idea. First, for some models p(x, z, θ), marginalizing
z out can be difficult to do or that could destroy good structures in the models.
The alternative approach may better harness these structures. Second, directly
maximizing L(θ,X) may turn out to be a very difficult optimization problem
(e.g., high-dimension, many local minima), the introduction of intermediate latent
variables z often make the optimization easier (as we will see later). Third, in
some applications, it is desired to obtain an estimate of the unobservables z from
the observables x. The alternative approach can simultaneously estimate both θ
and z. Be aware that regardless of the introduction of the latent variables z or not,
the objective has always been to maximize the objective function maxθ L(θ,X).

Using the following identities

∀z p(x, θ) =
p(x, z, θ)

p(z|x, θ) and
∫
p(z|x, θ) dz = 1, (C.24)
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we have

L(θ,X) =

N∑

i=1

log p(xi, θ) =

N∑

i=1

∫
p(z|xi, θ) log

p(xi, z, θ)

p(z|xi, θ)
dz

=

N∑

i=1

∫ [
p(z|xi, θ) log p(xi, z, θ)− p(z|xi, θ) log p(z|xi, θ)

]
dz. (C.25)

Although the last expression seems more complicated than the original log like-
lihood L(θ,X), it reveals that the likelihood is a function of the a posterior
probability wi(z)

.
= p(z|xi, θ). The a posterior distribution of z gives us the

best estimate of z given xi and θ. In turn, we can update the parameter θ based
on the estimate of z. This leads to the well-known Expectation and Maximization
(EM) algorithm for optimizing the log likelihood L(θ,X):

Expectation Step: For fixed θk and every i = 1, . . . , N ,

wk+1
i (z) = arg max

wi

[
wi(z) log p(xi, z, θ

k)− wi(z) logwi(z)
]
.

Maximization Step: For fixed wk+1
i ,

θk+1 = arg max
θ

N∑

i=1

∫
wk+1
i (z) log p(xi, z, θ) dz.

The Maximization step does not involve the second term in (C.25) because it is
constant with wi fixed. The Expectation step is decomposed to every i because
the a posterior wi(z) depends only on xi. It is important to know that each step
of the EM algorithm is in general a much simpler optimization problem than
directly maximizing the log likelihood L(θ,X) as the sum

∑N
i=1 log p(xi, θ).

For many popular models (e.g., mixtures of Gaussians), one might even be able
to find closed-form formulae for both steps (see Chapter 3).

Notice that the EM algorithm is an iterative algorithm. Like gradient ascent, it
is essentially a hill-climbing algorithm that each iteration increases the value of
the log likelihood.

Proposition C.10. The Expectation Maximization process converges to one of the
stationary points (extrema) of the (log) likelihood function L(θ,X).

Proof. Notice that the a posterior wi defined above depend on both z and the
parameter θ. By substituting w = {wi} into the incomplete log-likelihood, we
can view L(θ,X) as

L(θ,X)
.
= g(w, θ) (C.26)

for some function g(·). Instead of directly maximizing the L(θ,X) with respect
to θ, the EM algorithm maximizes g(w, θ) in a “hill-climbing” style by iterating
between the following two steps:

E Step: partially maximizing g(w, θ) with respect to w with the second variable
θ fixed;
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M Step: partially maximizing g(w, θ) with respect to the second variable θ with
w fixed.

Notice that at each step the value of g(w, θ) does not decrease, so does L(θ,X).
When both steps become stationary and no longer increase the value, the process
reaches a (local) extremum θ∗ of the function L(θ,X). To see this, examine the
equation

dL(θ,X)

dθ
=
∂g(w, θ)

∂w

∂w

∂θ
+
∂g(w, θ)

∂θ
. (C.27)

Since at θ∗, each step is stationary, we have ∂g(w,θ)
∂w

= 0 and ∂g(w,θ)
∂θ = 0.

Therefore, dL(θ,X)
dθ

∣∣∣
θ∗

= 0.

However, for the algorithm to converge to the maximum likelihood estimate
(usually the global maximum) of L(θ,X), a good initialization is crucial.

C.3 Mixture Models
The EM algorithm is often used for estimating a mixture model. By that, we mean
the data x is sampled from a distribution which is a superposition of multiple
distributions:

p(x, θ) = π1p1(x, θ) + π2p2(x, θ) + · · ·+ πnpn(x, θ). (C.28)

Such a distribution can be easily interpreted as the marginal distribution of a
model with a latent random variable z that takes discrete values in {1, 2, . . . , n}:

p(x, θ) =
∑

z

p(x, z, θ) =
∑

z

p(x|z, θ)p(z, θ)

= p(x|z = 1, θ)p(z = 1, θ) + · · ·+ p(x|z = n, θ)p(z = n, θ)

with p(z = j, θ) = πj > 0, j = 1, 2, . . . , n. Obviously, one can use the EM
algorithm to estimate the mixture model, with the mixing weights πj as part of
the unknown model parameters.

Obviously, for a mixture model, we need to estimate both the distribution pa-
rameters θ and the unknown mixing weights πj . This increases the dimension
of the optimization problem that needs to be solved. In practice, we often seek
for alternative estimates of the mixture model which do not depend on the mix-
ing weights. Such estimates may no longer be optimal but can be much easier to
compute than the ML estimate.

C.3.1 Minimax Estimates
In many practical problems in which a mixture model is used, in addition to esti-
mating the model parameter, one is also interested in the “membership” of every



280 Appendix C. Basic Facts from Mathematical Statistics

sample xi, i.e., the component distribution from which xi is most likely drawn.
In this case, we like to optimize the following objective:

min
θ

N∑

i=1

(
min
j
− log pj(xi, θ)

)
. (C.29)

One may interpret the above objective as the following: for each sample, we find
the component distribution for which xi achieves the highest likelihood; once we
have decided to “assign” xi to the distribution pj(x, θ), it takes − log pj(xi, θ)
bits to encode xi. Thus, the objective function is to minimize the total coding
length given the membership of all the samples.

A straightforward way to solve the above optimization problem is to iterate
between the following two steps:

Step 1: For fixed θk and every i = 1, . . . , N ,

σk+1(i) = arg max
j

log pj(xi, θ). (C.30)

Step 2: With all σk+1(i) known,

θk+1 = arg min
θ

N∑

i=1

(
− log pσk+1(i)(xi, θ)

)
. (C.31)

Notice that the two steps resemble the two steps of the EM algorithm introduced
earlier. The difference is that here each sample xi is assigned to only one of the
n groups while in the EM algorithm the hidden variable zi gives a probabilistic
assignment of xi to the n groups. In fact, the well-known K-means algorithm for
clustering is essentially based upon the above iteration.

C.3.2 Minimum Entropy-Product Estimates
Instead of directly searching for the maximum likelihood estimate, one can
alternatively obtain an estimate of θ by minimizing the following objective
function:

θ̃N =arg min
θ

N∑

i=1

(
−log p1(xi, θ)

)(
−log p2(xi, θ)

)
· · ·

(
−log pn(xi, θ)

)
, (C.32)

where a product of the component distributions has replaced the superposition in
the mixture model p(x, θ). To distinguish from the maximum likelihood estimate,
we call the new estimate as the minimum entropy-product (MEP) estimate. One
obvious advantage of the product over the conventional likelihood is that it does
not require to know the mixing weights πj , j = 1, . . . , n, which is often not avail-
able a priori in many applications of mixture models. In some important cases
(e.g., subspace arrangements), the above objective may lead to much simpler and
even closed-form solutions. The downside is that from the objective (C.32), one
can no longer directly estimate the mixing weights πj as part of the parameter θ.
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In the light of the minimum entropy principle, the minimum entropy-product
estimate replaces the empirical entropy with a slightly different measure of the
sample set:

Hv(θ,N)
.
=

1

N

N∑

i=1

(
− log p1(xi, θ)

)(
− log p2(xi, θ)

)
· · ·

(
− log pn(xi, θ)

)
.

Given a sample x, if it is drawn from the first component distribution p1(x, θ),
then we need a number of − log p1(x, θ) bits to represent such a random event.
Geometrically, the product

∏n
j=1

(
− log pj(x, θ)

)
corresponds to a “volume” of

the encoding bits in an n-dimensional space – each component distribution corre-
sponds to one independent dimension in this space. Thus, minimizing Hv(θ,N)
is equivalent to finding the estimate θ̃ that gives the smallest average volume of
codes needed to represent the given sample data.

There is also a technical reason why we choose the product of entropies instead
of some other simple choices, say the sum of entropies:

∑n
j=1

(
− log pj(x, θ)

)
.

From a (model) representation viewpoint, for most distributions of interest, the
product gives a genuine representation of the parameter θ. That is, for different θ1

and θ2, the products
∏n
j=1

(
− log pj(x, θ1)

)
and

∏n
j=1

(
− log pj(x, θ2)

)
corre-

spond to different functions in x. However, the sum often cannot give a genuine
representation. The reader can easily verify this with pj(x, θ) being Gaussians.

Asymptotic Bias of the MEP Estimate

By the law of large numbers, we know Hv(θ,N) converges to

Hv(θ) =

∫ ( n∏

j=1

(
−log pj(x, θ)

))
p(x, θ0) dx. (C.33)

Now let us define the function

φ(x, θ)
.
=

∂

∂θ

n∏

j=1

(
−log pj(x, θ)

)
=

n∑

j=1

−
p′j(x, θ)

pj(x, θ)

∏

k 6=j

(
− log pk(x, θ)

)
.

The derivative of Hv(θ) is

∂Hv(θ)

∂θ
= E[φ(x, θ)] =

∫
φ(x, θ)p(x, θ0) dx. (C.34)

Thus, in general, the minimum entropy-product estimate θ̃N converges to a
stationary point θ̃ of Hv(θ). That is, we have

∂Hv(θ)

∂θ

∣∣∣
θ̃

=

∫
φ(x, θ̃)p(x, θ0) dx = 0, (C.35)

where θ∗ is a point between θ0 and θ̃.
In general, the true θ0 does not necessarily satisfy the above equation. Thus θ̃

is a biased estimate of θ0. To evaluate how large the bias is, using the mean value
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theorem, we have
∂Hv(θ0)

∂θ
=
∂2Hv(θ

∗)

∂θ2
(
θ0 − θ̃

)
. (C.36)

The bias is given by

θ0 − θ̃ =

[
∂2Hv(θ

∗)

∂θ2

]−1
∂Hv(θ0)

∂θ
. (C.37)

Efficiency of the MEP Estimate

Following a similar derivation to that in the proof of Proposition C.9, we can
obtain
√
N

(
θ̃N − θ0

)
=

[ 1

N

N∑

i=1

∂φ(xi, θ
∗
N )

∂θ

]−1(
−N− 1

2

N∑

i=1

φ(xi, θ0)
)
, (C.38)

where θ∗N is a point between θ0 and θ̃N .
For many mixture models of interest (e.g., mixtures of Gaussians), the matrices

cov
(
φ(x, θ)

)
and E

[∂φ(x,θ)
∂θ

]
both exists. Then by both the law of large numbers

and the central limit theorem,
√
N(θ̃N − θ0) converges to a normal distribution

with the covariance matrix:

Σ = E
[∂φ(x, θ∗)

∂θ

]−1

cov
(
φ(x, θ0)

)
E

[∂φ(x, θ∗)

∂θ

]−1

, (C.39)

which should satisfy the Cramér-Rao bound:

Σ ≥ E
[∂φ(x, θ0)

∂θ

]−1

I1(θ0)
−1E

[∂φ(x, θ0)

∂θ

]−1

.

In general, the equality holds only when n = 1. In general, the estimate θ̃N
given by maximizing (C.32) is not necessarily asymptotically efficient as the ML
estimate θ̂N .

The formulae for computing the bias and the covariance of the MEP estimate
are very complicated. In practice, we can adopt random sampling techniques
such as Markov Chain Monte Carlo (MCMC) method to estimate their values.
With such values, we can then evaluate the accuracy and efficiency of the MEP
estimate.

C.4 Model Selection Criteria
Many important model-selection criteria have been developed in the algorithmic
complexity community and the statistics community for general classes of mod-
els. These criteria include minimum message length (MML) [Wallace and Boulton, 1968,
Wallace and Dowe, 1999], minimum description length (MDL) [Rissanen, 1978,
Hansen and Yu, 2001], Bayesian information criterion (BIC), Akaike information
criterion (AIC) [Akaike, 1977], and Geometric AIC (G-AIC) [Kanatani, 2003].
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All these criteria are very similar in nature: They all aim to strike a balance
between the model complexity (typically measured by the dimension of the para-
meter space) and the data fidelity to the chosen model (typically measured as the
sum of squares of the residuals).

Let us denote the projection of each data point xi ∈X to the closest subspace
as x̂i and let X̂ = {x̂i}. Then, the total error residual can be measure by:

‖X − X̂‖2 =

N∑

i=1

‖xi − x̂i‖2. (C.40)

Using the Grassmannian coordinates, the dimension of the parameter space for a
d-dimensional subspace in R

D should beDd−d2,3 which can be used to measure
the model complexity.

Thus, with a model parameter space of dimension Dd − d2 and Gaussian
noise of variance σ2, the MDL criterion (equivalent to BIC in this case)
[Rissanen, 1978, Rissanen, 1999, Hansen and Yu, 2001] minimizes

MDL = BIC .
=

1

2σ2
‖X − X̂‖2 +

(Dd− d2)

2
logN. (C.41)

Similarly, Mallows’ criterion [Mallows, 1973] minimizes the quantity

Cp
.
=

1

2σ2
‖X − X̂‖2 + (Dd− d2)−N, (C.42)

while Akaike’s information criterion (AIC) [Akaike, 1977] minimizes

AIC .
=

1

2σ2
‖X − X̂‖2 + (Dd− d2), (C.43)

which is essentially the same as Mallows’ Cp when the data size N is fixed for
all models in comparison. More recently, Kanatani’s proposed the geometric AIC
[Kanatani, 2003] which minimizes

G-AIC .
=

1

2σ2
‖X − X̂‖2 + (Dd− d2 +Nd), (C.44)

where the extra termNd accounts for the complexity in representing the data with
respect to the chosen model.

We refer to all the above criteria loosely as information-theoretic model se-
lection criteria, in the sense that most of these objectives can be interpreted as
variations to minimizing the optimal code length for both the model and the data
with given distributions and coding schemes [Hansen and Yu, 2001].4

3Dd − d2 is the dimension of the Grassmannian manifold of d-dimensional subspaces in RD . To
specify a subspace, one can use the so-called Grassmannian coordinates which need exactly Dd− d2

entries: starting with a D × d matrix whose columns form a basis for the subspace, perform column-
reduction so that the first d × d block is the identity matrix. Then, one only needs to give the rest
(D − d) × d entries to specify the subspace.

4Even if one chooses to compare models by their algorithmic complexity, such as the minimum
message length (MML) criterion [Wallace and Boulton, 1968] (an extension of the Kolmogrov com-
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C.5 Robust Statistical Methods

C.5.1 Sample Influence Function
C.5.2 Multivariate Trimming
C.5.3 Random Sample Consensus

plexity to model selection), a strong connection with the above information-theoretic criteria, such as
MDL, can be readily established via Shannon’s optimal coding theory [Wallace and Dowe, 1999].
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