Generalized Principal Component Analysis

Modeling & Segmentation of Multivariate Mixed Data

René Vidal (JOHNS HOPKINS UNIVERSITY)
Yi Ma (UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN)
S. Shankar Sastry (UNIVERSITY OF CALIFORNIA AT BERKELEY)

July 24, 2006
To be written (R.V.)

To be written (Y.M.)

To be written (S.S.S.)
Preface

In the past few years, we have encountered a variety of important problems that arise in computer vision, image processing, pattern recognition, and systems identification, that can be abstracted to a common mathematical problem: Given a set of data points sampled from a “mixture” of unknown geometric or statistical models, how to automatically learn or infer these models? The word “mixture” means that the data points are clustered into different groups, each of which belongs to a different model. In the literature, in different contexts, such data sets are sometimes referred to as “mixed,” or “multi-modal,” or “multi-model,” or “heterogeneous,” or “hybrid.” In this book, we have settled on the usage of the expression “mixed data” and the associated model as a “hybrid model.” Thus, a solution to the problem normally requires to segment the data into groups, each belonging to one of the constituent models and to then estimate the parameters of each model. In the case that each of the constituent models are linear, the foregoing problem is reduced to one of fitting multiple low-dimensional linear subspaces to the set of sample points in a high-dimensional space.

The main goal of this book is to introduce a new method to study hybrid models, which we refer to as generalized principal component analysis, with the acronym GPCA.1 The general problems that GPCA aims to address represents

1In the literature, the word “generalized” is sometimes used to indicate different extensions to the classical principal component analysis (PCA) [Jolliffe, 1986]. In our opinion these are indeed extensions rather than a more extensive generalization that we propose in this book. Additionally, for the “nonlinear” case when each component is an algebraic variety of higher degree such as a quadratic surface or a more complicated manifold, we may still use the same term GPCA. Other names like “hybrid component analysis” (HCA) have also been suggested and would also be appropriate.
a fairly general class of *unsupervised learning* problems — many data clustering and modeling methods in machine learning can be viewed as special cases of this method.²

A main difficulty associated with estimation of a hybrid model is that, without knowing which subset of sample points belong to which constituent model it is not possible to determine the model that this group belongs to. Thus, there is seemingly a “chicken-and-egg” relationship between data segmentation and model estimation: If the segmentation of the data was known, one could easily fit a single model to each subset of samples using classical model estimation techniques; and conversely, if the models were known, one could easily find the subset of samples that best fit each model. This relationship has been the intuitive and heuristic justification for many iterative techniques for estimating a hybrid (or mixture) model, such as the well-known expectation maximization (EM) algorithm. This book aims to provide a non-iterative and general solution to the problem of simultaneously grouping and model fitting the data, based on a repertoire of new tools drawn from a novel and somewhat unconventional source in the statistics literature: algebraic geometry – mainly polynomial and linear algebra. The immediate reaction of a statistician to this statement is that the methods of classical algebraic geometry are extremely sensitive to noise (or outliers) and modeling uncertainties and are therefore not robust in problems of estimation and model fitting. However, we will show how to combine these new tools with traditional statistical techniques so as to obtain both robust and efficient algorithms for simultaneous data segmentation and model estimation.

There are several reasons why we felt that it was the right time to write a book on estimation of hybrid models. First, the conventional single-model paradigm has shown to have significant limitations in numerous important emerging applications. For example, in image processing, it is well known that to achieve a more economic (compressed) representation of images, different images or different regions of the same image, it is best to represent either the regions of a single image or a class of images adaptively using different sets of linear bases. However, the traditional image processing doctrine advocates the use of a prefixed or prechosen set of bases (for e.g., the discrete cosine transform or a wavelet transform). This approach is largely because segmentation of the image and identification of adaptive bases are difficult problems – they belong to a hybrid model. Yet another example arises from systems theory: classical system identification theory and techniques are of limited use for a system that switches among multiple control systems, called a *hybrid* linear system. New identification theory and algorithms need to be developed for such systems.

Second, although the classical model estimation techniques, for a single model, have been well studied in statistics (see Appendix A), techniques specifically customized for hybrid models, even for hybrid linear models, has not been com-

² Classical clustering analysis can be viewed as the specializaion of GPCA to the case that each subspace is of dimension one, as we will explain in Section 3.2.
pletely understood and thoroughly developed. Designing a working algorithm for many practical problems of this nature is currently a matter of intuition and clever heuristics: almost a work of art from application to application! Of course, as a result it is difficult to abstract the lessons from one context and use it in another.

Finally, in our opinion, even though attempts have been made in the past to study and solve many special cases of hybrid models, for instance in statistical learning, pattern recognition, and system identification, there has never been an attempt to unify and truly generalize the results in a unified framework that is able to encompass all aspects of the problem. For instance, both the so called Expectation Maximization (EM) method and the K-means method have been proposed to resolve the “chicken-and-egg” difficulty between data segmentation and model estimation. However, these methods resort primarily to an incremental and iterative scheme that starts from a random initialization. They therefore are prone to converge to local minima and lack efficiency. Only recently has GPCA, a new algebro-geometric approach, been developed that offers a global and non-iterative solution to this problem. Not only does this new approach lead to simple and effective algorithms that do not have the same difficulty as the existing methods, but it also offers new insights to modeling mixed data with a hybrid model. This book gives an introduction to these new findings, together with their relations to extent methods.

Thus, the primary goal of this book is to provide a comprehensive introduction of the fundamental statistical, geometric and algebraic concepts associated with the estimation (and segmentation) of the hybrid models, especially the hybrid linear models. Traditionally, data modeling and model estimation has been primarily a topic of study in statistics. We contend in this book that the algebraic and geometric properties are equally (if not more) important for a complete understanding of hybrid models. These properties are largely complementary and indeed compatible with their statistical counterparts. They together are responsible for the development of more efficient algorithms and solutions.

Intended audience of the book.

The topics covered in this book are of great relevance and importance to both theoreticians and practitioners in the areas of statistical learning, pattern recognition, computer vision, signal/image processing, and systems identification (in many fields including control theory, econometrics, and finance). The applications given in this book highlight our own experiences which are directly relevant for researchers who work on practical areas such as image representation & segmentation, motion segmentation & estimation from video data, and hybrid system identification. Nevertheless, even a cursory examination of the literature shows that the number of other application domains is virtually limitless.

3 We will summarize almost all statistical facts used in this book in Appendix A.

4 We will develop many of the properties throughout this book, especially those that are directly useful for algorithm development. Some of the more abstract properties will be summarized in Appendix B and C.
We have written this book with the idea that it should be friendly to teachers and students. At the end of each chapter, we have provided some basic exercises. In addition, source codes for all the algorithms and applications in this book are available at the following website:

http://perception.csl.uiuc.edu/gpca

We have used material from this book to teach a one-semester course at the University of Illinois at Urbana Champaign, University of California at Berkeley, and Johns Hopkins University. As the reader may find, hybrid model estimation is a very unique subject that touches upon many fundamental concepts, facts, and principles in statistics, mathematics, and computation. Now these concepts and facts can now be taught and learned in the same context so that their strengths and limitations can be better assessed and understood by engineering students and practitioners.

Organization of the book.

Part I of this book develops the fundamental theory and basic algorithms for the identification and estimation of hybrid linear models. The chapters in this part systematically extend classical principal component analysis (PCA) for a single linear subspace, also known as the Karhunen-Loève (KL) expansion, to the case of a subspace arrangement. Chapter 1 provides an overview of the book. Chapter 2 gives a review of PCA from a geometric, statistical and robustness standpoint and its extensions in Chapter 2. In Chapter 3, we start to study the problem of modeling data with subspace arrangements. The focus is primarily on existing iterative subspace segmentation methods such as EM and K-Means (or K-Subspaces in our context). These methods are based on either geometric intuition or statistical inference. In Chapter 4 we develop a non-iterative algebraic method for the estimation and segmentation of subspace arrangements, i.e., the Generalized Principal Component Analysis (GPCA) algorithm. Statistical considerations and robustness issues which provide the link between the algebraic techniques and some traditional statistical methods are given in Chapter 5.

Parts II of this book provide a few case studies of real-world problems. The problems are selected from image processing and computer vision. They include image representation & segmentation (Chapter 6), 2-D and 3-D motion segmentation (Chapter 7 and 8), and segmentation of dynamical textures and videos. Some of the case studies are straightforward application of the proposed algorithms, while others require certain more elaborate justification and special domain knowledge. We hope that these case studies will inspire the reader to discover new applications for the general concepts and methods introduced in this book.

Part III extends the theory and application to more complicated hybrid models, namely hybrid dynamical systems and nonlinear models. In particular, Chapter 10 and 11 study the identification of hybrid linear systems and Chapter 12 studies nonlinear extensions of the basic GPCA algorithm to arrangements of quadratic surfaces and other manifolds.
Figure 1. Organization of the book – dependency among the chapters and the appendices.

To make the book self-contained, we have summarized relevant notations, concepts and results in mathematical statistics and algebraic geometry in Appendix A, B, and C. They may come by handy for readers who are not so familiar with certain mathematical facts used in the book, especially for the early chapters of the book. Figure 1 shows the overall organization and logical dependency of all the chapters and appendices.

René Vidal, Baltimore, Maryland
Yi Ma, Champaign, Illinois
Shankar Sastry, Berkeley, California
Spring, 2006
Acknowledgments

The seeds of Generalized Principal Component Analysis (GPCA) can be traced back to year 2001 when René and Yi started to work together on a polynomial-based method for solving the motion segmentation problem in computer vision. We soon realized that the important concepts and ideas behind this method can be extended and applied to solving many other problems with a similar nature. That observation has encouraged us to work very actively for the past few years to develop a more complete theoretical and algorithmic paradigm for this method. René has summarized in his PhD thesis at Berkeley much of the work as of May 2003. About one year later, on the day after Yi’s wedding reception, we decided to formalize our findings with a manuscript and sketched an outline of this book at Café Kopi in downtown Champaign.

Following René’s PhD thesis and our earlier papers, many of our graduate students have studied and extended GPCA to many new problems in computer vision, image processing, and system identification. We especially thank Jacopo Piazzi of Johns Hopkins, Kun Huang now at the Biomedical and Informatics Department of Ohio State University, Wei Hong, Yang Yang, Shankar Rao, Andrew Wagner, and John Wright of UIUC. Their research projects have led to many exciting theoretical results, applications, and examples presented in this book. They have also helped develop and maintain the official GPCA website at:

http://perception.csl.uiuc.edu/gpca/

We are greatly indebted to Professor Robert Fossum at the Mathematics Department of the University of Illinois at Urbana-Champaign and Professor Harm Derksen at the Mathematics Department of the University of Michigan. They have painstakingly taught Yi algebraic geometry and have helped us provide a rather complete characterization of the algebraic properties of subspace arrangements.
that are related to GPCA. Their results have helped providing a rigorous mathematical footing for algorithms developed in this book. Professor Robert Fossum has also helped proofreading the manuscript.

We thank many of our colleagues for valuable collaborations, discussions, suggestions, and moral support. They are Professor Stefano Soatto of the University of California at Los Angeles, Professor Jana Kosecka of George Mason University, Professor Richard Hartley of Australia National University, Professor Jitendra Malik of the University of California at Berkeley, Dr. Harry Shum – the director of Microsoft Research in Asia, and Professor Minh Do, Professor Thomas Huang, Professor Narendra Ahuja, Professor Yizhou Yu of the University of Illinois at Urbana-Champaign.

We also thank Professor Martin Vetterli of Ecole Polytechnique Fédérale de Lausanne and Professor David Donoho of Stanford University for their encouragement for us to apply GPCA to sparse image representation.

We are obviously grateful for all the funding agencies that have supported us. In particular, we would like to thank Dr. Helen Gill and Dr. Haesun Park of the National Science Foundation and Dr. Behzad Kamgar-Parsi of the Office of Naval Research. They have generously supported our research in this direction even when much of the theory and results were still at their infancy. Without their vision and trust, this book would not have been possible.
Contents

Preface v
Acknowledgments xii

1 Introduction 1

1.1 Modeling Data with a Parametric Model 2
1.1.1 The Choice of a Model Class 3
1.1.2 Statistical Models versus Geometric Models 4

1.2 Modeling Mixed Data with a Hybrid Model 6
1.2.1 Examples of Mixed Data Modeling 7
1.2.2 Mathematical Representations of Hybrid Models 11
1.2.3 Noise, Outliers, and Model Selection 15

I Theory, Analysis, and Algorithms 17

2 Data Modeling with a Single Subspace 19

2.1 Principal Component Analysis (PCA) 19
2.1.1 A Geometric Approach to PCA 20
2.1.2 A Statistical View of PCA 22
2.1.3 Determining the Number of Principal Components . . 24

2.2 Robustness Issues for PCA 25
2.2.1 Outliers . 25
2.2.2 Incomplete Data Points 28
2.3 Extensions to PCA

- **2.3.1 Nonlinear PCA**
- **2.3.2 Kernel PCA**

2.4 Bibliographic Notes

2.5 Exercises

3 Iterative Methods for Multiple-Subspace Segmentation

- **3.1 Statistical Methods for Data Clustering**
 - **3.1.1 K-Means**
 - **3.1.2 Expectation Maximization (EM)**
- **3.2 Problem Formulation of Subspace Segmentation**
 - **3.2.1 Projectivization of Affine Subspaces**
 - **3.2.2 Subspace Projection and Minimum Representation**
- **3.3 Subspace-Segmentation Algorithms**
 - **3.3.1 K-Subspaces**
 - **3.3.2 Expectation Maximization for Subspaces**
 - **3.3.3 Relationships between K-Subspaces and EM**
- **3.4 Bibliographic Notes**
- **3.5 Exercises**

4 Algebraic Methods for Multiple-Subspace Segmentation

- **4.1 Introductory Cases of Subspace Segmentation**
 - **4.1.1 Segmenting Points on a Line**
 - **4.1.2 Segmenting Lines on a Plane**
 - **4.1.3 Segmenting Hyperplanes**
- **4.2 Knowing the Number of Subspaces**
 - **4.2.1 An Introductory Example**
 - **4.2.2 Fitting Polynomials to Subspaces**
 - **4.2.3 Subspaces from Polynomial Differentiation**
 - **4.2.4 Point Selection via Polynomial Division**
 - **4.2.5 The Basic Generalized PCA Algorithm**
- **4.3 Not Knowing the Number of Subspaces**
 - **4.3.1 Introductory Examples**
 - **4.3.2 Segmenting Subspaces of Equal Dimension**
 - **4.3.3 Segmenting Subspaces of Different Dimensions**
 - **4.3.4 The Recursive GPCA Algorithm**
- **4.4 Relationships between GPCA, K-Subspaces, and EM**
- **4.5 Bibliographic Notes**
- **4.6 Exercises**

5 Statistical Techniques and Robustness Issues

- **5.1 Estimation of the Vanishing Polynomials**
 - **5.1.1 Sampson Distance**
 - **5.1.2 Generalized Eigenvector Fit**
 - **5.1.3 Linear Discriminant Analysis**

Contents

- 2.3 Extensions to PCA ... 29
- 2.3.1 Nonlinear PCA ... 29
- 2.3.2 Kernel PCA .. 31
- 2.4 Bibliographic Notes .. 32
- 2.5 Exercises .. 33

- 3 Iterative Methods for Multiple-Subspace Segmentation 36
 - 3.1 Statistical Methods for Data Clustering 36
 - 3.1.1 K-Means .. 38
 - 3.1.2 Expectation Maximization (EM) 40
 - 3.2 Problem Formulation of Subspace Segmentation 46
 - 3.2.1 Projectivization of Affine Subspaces 47
 - 3.2.2 Subspace Projection and Minimum Representation 48
 - 3.3 Subspace-Segmentation Algorithms 50
 - 3.3.1 K-Subspaces .. 51
 - 3.3.2 Expectation Maximization for Subspaces 52
 - 3.3.3 Relationships between K-Subspaces and EM 55
 - 3.4 Bibliographic Notes .. 57
 - 3.5 Exercises .. 57

- 4 Algebraic Methods for Multiple-Subspace Segmentation 59
 - 4.1 Introductory Cases of Subspace Segmentation 60
 - 4.1.1 Segmenting Points on a Line 60
 - 4.1.2 Segmenting Lines on a Plane 62
 - 4.1.3 Segmenting Hyperplanes 65
 - 4.2 Knowing the Number of Subspaces 67
 - 4.2.1 An Introductory Example 68
 - 4.2.2 Fitting Polynomials to Subspaces 70
 - 4.2.3 Subspaces from Polynomial Differentiation 72
 - 4.2.4 Point Selection via Polynomial Division 73
 - 4.2.5 The Basic Generalized PCA Algorithm 76
 - 4.3 Not Knowing the Number of Subspaces 77
 - 4.3.1 Introductory Examples 78
 - 4.3.2 Segmenting Subspaces of Equal Dimension 79
 - 4.3.3 Segmenting Subspaces of Different Dimensions 81
 - 4.3.4 The Recursive GPCA Algorithm 83
 - 4.4 Relationships between GPCA, K-Subspaces, and EM 85
 - 4.5 Bibliographic Notes .. 86
 - 4.6 Exercises .. 86

- 5 Statistical Techniques and Robustness Issues 88
 - 5.1 Estimation of the Vanishing Polynomials 89
 - 5.1.1 Sampson Distance 90
 - 5.1.2 Generalized Eigenvector Fit 91
 - 5.1.3 Linear Discriminant Analysis 93
5.2 Estimation of Multiple Subspaces via a Voting Scheme . . 99
 5.2.1 Stacks of Bases and Counters 99
 5.2.2 Tally the Votes of the Subspaces 100
 5.2.3 Simulation Results 101
5.3 Model Selection for Multiple Subspaces 103
 5.3.1 Effective Dimension of Samples of Multiple Subspaces 104
 5.3.2 Minimum Effective Dimension of Noisy Samples . 105
5.4 Robust Estimation of Multiple Subspaces 107
 5.4.1 Outlier Percentage Known 107
 5.4.2 Outlier Percentage Unknown 110
 5.4.3 Random Sampling Techniques 112
5.5 Bibliographic Notes . 116
5.6 Exercises . 117

II Applications in Image Processing & Computer Vision 119

6 Image Representation & Segmentation 121
 6.1 Lossy Image Representation 121
 6.1.1 A Hybrid Linear Model 124
 6.1.2 Multi-Scale Hybrid Linear Models 130
 6.1.3 Experiments and Comparisons 134
 6.1.4 Limitations 137
 6.2 Multi-Scale Hybrid Linear Models in Wavelet Domain . . . 138
 6.2.1 Imagery Data Vectors in Wavelet Domain 138
 6.2.2 Estimation of Hybrid Linear Models in Wavelet Domain 140
 6.2.3 Comparison with Other Lossy Representations . . 141
 6.2.4 Limitations 142
 6.3 Image Segmentation 143
 6.3.1 Hybrid Linear Models for Image Segmentation . 143
 6.3.2 Dimension and Size Reduction 146
 6.3.3 Experiments 147
 6.4 Bibliographic Notes 147

7 2-D Motion Segmentation from Image Partial Derivatives 149
 7.1 An Algebraic Approach to Motion Segmentation 150
 7.2 The Multibody Brightness Constancy Constraint 151
 7.3 Segmentation of 2-D Translational Motion Models . . . 154
 7.3.1 The Multibody Optical Flow 154
 7.3.2 Computing the 2-D Translational Model Parameters . 154
 7.4 Segmentation of 2-D Affine Motion Models 155
 7.4.1 The Multibody Affine Matrix 156
 7.4.2 Computing the Number of 2-D Affine Motion Models . 157
 7.4.3 Computing the 2-D Affine Motion Model Parameters 159
 7.5 Segmentation of Motions Models of Different Type . . . 160
7.5.1 The Multibody Motion Matrix 161
7.5.2 Computing the Number of 2-D Motion Models 161
7.5.3 Computing the Type of 2-D Motion at Each Pixel 163
7.5.4 Computing the 2-D Motion Model Parameters 164
7.5.5 Algorithm Summary 165
7.6 Experimental Results 165
7.6.1 Simulation Results 167
7.6.2 2-D Translational Motions 168
7.6.3 2-D Affine Motions 169
7.6.4 2-D Translational and 2-D Affine Motions 169
7.7 Bibliographic Notes 172
7.8 Exercises 175

8 3-D Motion Segmentation from Point Correspondences 177
8.1 The Motion Estimation Problem 178
8.1.1 Rigid-Body Motions and Camera Projection Models 178
8.1.2 The Fundamental Matrix 179
8.1.3 The Homography Matrix 180
8.1.4 The Trifocal Tensor 181
8.2 The Motion Segmentation Problem 182
8.3 Segmentation of Linear Motion Models 183
8.3.1 The Affine Motion Subspaces 183
8.3.2 Segmenting Affine Motion Subspaces 184
8.3.3 Experimental Results 185
8.4 Segmentation of Bilinear Motion Models 186
8.4.1 Segmenting Fundamental Matrices 186
8.4.2 Segmenting Homography Matrices 191
8.5 Segmentation of Trilinear Motion Models 195
8.5.1 The Multibody Trifocal Tensor 195
8.5.2 Segmenting Trifocal Tensors 199
8.6 Bibliographical Notes 202
8.7 Exercises 203

9 Spatial and Temporal Segmentation of Videos 207
9.1 Modeling Dynamic Scenes by Linear Dynamical Systems 208
9.1.1 A Linear Model for Textured Images 209
9.1.2 A Linear Dynamical Model for Dynamic Textures 209
9.1.3 Identification of Linear Dynamical Models 210
9.1.4 Synthesis and Recognition of Dynamic Textures 213
9.2 Spatial Segmentation of Videos 214
9.2.1 A Hybrid Linear Model for Multiple Dynamic Textures 214
9.2.2 Dynamic Texture Segmentation using GPCA 216
9.2.3 Experimental Results 217
9.3 Temporal Segmentation of Videos 217
9.3.1 A Hybrid Linear Model for Multiple Video Events 217
III Extensions to Dynamical and Nonlinear Models 223

10 Switched ARX Systems 225
10.1 Problem Statement 227
10.2 Identification of a Single ARX System 228
10.3 Identification of Hybrid ARX Systems 231
 10.3.1 The Hybrid Decoupling Polynomial 232
 10.3.2 Identifying the Hybrid Decoupling Polynomial 233
 10.3.3 Identifying System Parameters and Discrete States 236
 10.3.4 The Basic Algorithm and its Extensions 238
10.4 Simulations and Experiments 239
 10.4.1 Error in the Estimation of the Model Parameters 240
 10.4.2 Error as a Function of the Model Orders 240
 10.4.3 Error as a Function of Noise 241
 10.4.4 Experimental Results on Test Datasets 242
10.5 Bibliographic Notes 244

11 Switched ARMA Systems 245
11.1 Subspace Embeddings of an ARMA System 246
 11.1.1 Input/Output Embedding via the Oblique Projection 247
 11.1.2 Direct Input/Output Embedding 249
11.2 Identification of Hybrid ARMA Systems 251
11.3 Outliers Caused by Switches 253
11.4 Implementation and Experiments 254
 11.4.1 Subspace Segmentation and Detection of Switches 255
 11.4.2 Subspace Angle Errors Induced by Noises 256
 11.4.3 Identifiability Using the Two Embeddings 257
11.5 Bibliographic Notes 257

12 Extensions to Arrangements of Nonlinear Models 259
12.1 Arrangements of Quadratic Surfaces 259
 12.1.1 Properties of the Vanishing Polynomials 261
 12.1.2 Generalized Principal Surface Analysis (GPSA) 264
 12.1.3 Simulation Results 268
12.2 Other Nonlinear Models 268
12.3 Bibliographic Notes 269
12.4 Exercises 269
IV Appendices

A Basic Facts from Mathematical Statistics
- **A.1** Estimation of Parametric Models ... 273
 - A.1.1 Uniformly Minimum Variance Unbiased Estimates 275
 - A.1.2 Maximum Likelihood Estimates 276
 - A.1.3 Estimates from a Large Number of Samples 277
- **A.2** Expectation Maximization .. 280
- **A.3** Estimation of Mixture Models .. 282
 - A.3.1 Maximum-Likelihood Estimates 282
 - A.3.2 Minimax Estimates .. 283
- **A.4** Model Selection Criteria ... 284
 - A.4.1 Akaike and Bayesian Information Criteria 285
 - A.4.2 Model Selection Criteria for PCA 286
- **A.5** Robust Statistical Methods ... 287
 - A.5.1 Sample Influence ... 288
 - A.5.2 Robust Covariance Estimation 290
 - A.5.3 Random Sampling Techniques 292

B Basic Facts from Algebraic Geometry
- **B.1** Polynomial Ring ... 295
- **B.2** Ideals and Algebraic Sets ... 297
- **B.3** Algebra and Geometry: Hilbert’s Nullstellensatz 299
- **B.4** Algebraic Sampling Theory ... 300
- **B.5** Decomposition of Ideals and Algebraic Sets 302
- **B.6** Hilbert Function, Polynomial, and Series 303

C Algebraic Properties of Subspace Arrangements
- **C.1** Ideals of Subspace Arrangements 306
- **C.2** Subspace Embedding and PL-Generated Ideals 307
- **C.3** Hilbert Functions of Subspace Arrangements 310
 - C.3.1 Relationships between the Hilbert Function and GPCA 310
 - C.3.2 Special Cases of the Hilbert Function 313
 - C.3.3 Formulae for the Hilbert Function 315
- **C.4** Bibliographic Notes ... 318

References

273
295
305
320
Chapter 1
Introduction

“The sciences do not try to explain, they hardly even try to interpret, they mainly make models. By a model is meant a mathematical construct which, with the addition of certain verbal interpretations, describes observed phenomena. The justification of such a mathematical construct is solely and precisely that it is expected to work.”

– John von Neumann

The primary goal of this book is to study how to model a data set that consists of multiple subsets with each drawn from a different primitive model. In different contexts, such a data set is sometimes referred to as “mixed,” or “multi-modal,” or “multi-model,” or “piecewise,” or “heterogeneous,” or “hybrid.” To unify the terminology, in this book, we will refer to such data as “mixed data” and the model used to fit the data as a “hybrid model.” Thus, a hybrid model typically consists of multiple constituent (primitive) models. Modeling mixed data with a hybrid model implies grouping the data into multiple (disjoint) subsets and fitting each subset with one of the constituent models. In the literature, the words “group,” or “cluster,” or “partition,” or “decompose,” or “segment” are often used interchangeably. However, in this book, we will use the words “group,” or “cluster,” or “partition” primarily for the data points, and use the words “decompose” or “segment” for the associated models.

1 For instance, we may say “group (or cluster or partition) the data into multiple subsets,” or “a group (or a cluster) of sample points.”

2 For instance, we may say “decompose (or segment) a hybrid model into its constituent primitive models.”
Chapter 1. Introduction

Figure 1.1. Four sample points on a plane are fitted by a straight line. However, they can also be fitted by many other smooth curves, for example the one indicated by the dashed curve.

An ever growing number of problems that arise today in computer vision, image processing, pattern recognition, system identification or system biology require us to model mixed data. The techniques in this book are most evolved from studying the specific case of modeling data with an arrangement of subspaces, also called hybrid linear models, with algorithms that we refer to as generalized principal component analysis (GPCA). These techniques include extensions to hierarchical and recursive approaches to finding hybrid (sub)models inside an initial grouping of the data according to an initial hybrid model. We will also discuss how some of the techniques can be further extended to hybrid quadratic models and more general hybrid models. Taken together these techniques provide a powerful set of general techniques for modeling mixed data, which are both computationally efficient and statistically robust. In this chapter, we first give a brief introduction to some basic concepts associated with data modeling in general. After a few motivating examples that highlight the importance of modeling mixed data, we give a brief account of some related approaches, including the approach taken by this book.

1.1 Modeling Data with a Parametric Model

In scientific studies or engineering practice, one is frequently called upon to infer (or learn) a quantitative model M of a given set of sample points, denoted as $X = \{x_1, x_2, \ldots, x_N\} \subset \mathbb{R}^D$. For instance, Figure 1.1 shows a simple example in which one is given a set of four sample points on a two dimensional plane. Obviously, these points can be fitted perfectly by a (one-dimensional) straight line. The line can then be called a “model” for the given points. The reason for inferring such a model is because it serves many useful purposes: It can reveal the information encoded in the data or the underlying mechanisms from which the data were generated; Or it may simplify significantly the representation of the given data set or help to predict effectively future samples.

In this book, we will use interchangeably “a mixture,” “a collection,” “a union,” or “an arrangement” of subspaces or models. But be aware that, in the case of subspaces, the formal terminology in Algebraic Geometry is “an arrangement of subspaces.”
1.1. Modeling Data with a Parametric Model

1.1.1 The Choice of a Model Class

However, inferring the “correct” model of a given data set is an elusive, if not impossible, task. A fundamental difficulty is that, if we are not specific about what we mean by a “correct” model, there could easily be many different models that fit the given data set “equally well.” For instance, for the example shown in Figure 1.1, any smooth curve that passes through the sample points would seem to be as valid a model as the straight line. Furthermore, if there were noise in the given sample points, then any curve, including the line, passing through the points exactly would unlikely be the “ground truth.”

The question now is: in what sense then can we say a model is correct or optimal for a given data set? On one hand, to make the model-inference a meaningful problem, we need to impose additional assumptions or restrictions on the class of models considered. This is to say we should not be looking for any model that can describe the data. Instead, we seek a model \(M^* \) that is the best among a restricted class of models \(M = \{ M \} \). In fact, the well-known No Free Lunch Theorem\(^5\) in computational learning implies that in the absence of prior information or preference about the final model, there is no reason to prefer one optimization or learning algorithm over another [Duda et al., 2000]. On the other hand, to make the model-inference a tractable problem, we need to specify how restricted the class of models need to be. A common strategy is to try to get away with the simplest possible class of models that is just necessary to describe the data or solve the problem at hand – known as the principle of Occam’s Razor\(^6\). More precisely, the model class should be rich enough that it contains at least one model that can fit the data to a desired accuracy and yet be restricted enough so that it is relatively simple to find the best model for the given data.

Thus, in engineering practice, the most popular strategy is to start from the simplest class of models, and only increase the complexity of the models when the simpler models become inadequate. For instance, to fit a set of sample points, one may try first the simplest class of models, namely linear models, followed by the class of hybrid (piecewise) linear models, then followed by the class of (piecewise) quadratic models, and finally followed by the class of general topological manifolds. One of the goals of this book is to demonstrate that between them,

\(^4\) Or equivalently, we may impose a non-uniform prior distribution over all models.

\(^5\) Or more precisely, the “No Free Lunch Theorem for Search,” attributed to Wolpert and Macready (1995), states “...all algorithms that search for an extremum of a cost function perform exactly the same, when averaged over all possible cost functions. In particular, if algorithm A outperforms algorithm B on some cost functions, then loosely speaking there must exist exactly as many other functions where B outperforms A.”

\(^6\) Occam’s (or Ockham’s) razor is a principle attributed to the 14th century logician and Franciscan friar; William of Occam: “Pluralitas non est ponenda sine necessitate,” which translates literally as “entities should not be multiplied unnecessarily.” In science, this principle is often interpreted as “when you have two competing theories which make exactly the same predictions, the one that is simpler is the better.”
piecewise linear (and quadratic) models can already achieve an excellent balance between expressiveness and simplicity for many important practical problems.

1.1.2 Statistical Models versus Geometric Models

Roughly speaking, without any training samples whose group membership are known a priori, the problem of modeling mixed data falls into the category of unsupervised learning. In the literature, almost all unsupervised learning methods fall into one of two categories. The first category of methods model the data as random samples from a probabilistic distribution and try to learn the distribution from the data. We call such models statistical models. The second category of methods model the overall geometric shape of the data set as smooth manifolds or topological spaces. We call such models geometric models.

Statistical Learning.

In the statistical paradigm, one assumes that the points x_i in the data set X are drawn independently from a common probability distribution $p(x)$. So the task of learning a model from the data becomes one of inferring the most likely probability distribution within a family of distributions of interest (for example the Gaussian distributions). Normally the family of distributions is parameterized and denoted as $\mathcal{M} = \{p(x|\theta) : \theta \in \Theta\}$. Consequently, the optimal model $p(x|\theta^*)$ is given by the maximum likelihood (ML) estimate:

$$\theta_{ML}^* = \arg \max_{\theta \in \Theta} \prod_{i=1}^{N} p(x_i|\theta).$$

(1.1)

If a prior distribution (density) $p(\theta)$ of the parameter θ is also given, then, following the Bayesian rule, the optimal model is given by the maximum a posteriori (MAP) estimate

$$\theta_{MAP}^* = \arg \max_{\theta \in \Theta} \prod_{i=1}^{N} p(x_i|\theta)p(\theta).$$

(1.2)

Many effective methods and algorithms have been developed in the statistics and machine learning literature to infer the optimal distribution $p(x|\theta^*)$ or a good approximation of it if the exact solution is computationally prohibitive. A brief review is given in Appendix A. The estimated probability distribution gives a generative description of the samples and can be used to generate new samples or predict the outcomes of new observations.

7 Roughly speaking, a smooth manifold is a special topological space that is locally smooth – Euclidean space-like, and has the same dimension everywhere. A general topological space may have singularities and consist of components of different dimensions.

8 If the true distribution from which the data are drawn is $q(x)$, then the maximum likelihood estimate $p(x|\theta^*)$ minimizes the Kullback-Leibler (KL) divergence: $D(q||p) = \int q \log \frac{q}{p} dx$ among the given class of distributions, see Appendix A.
1.1. Modeling Data with a Parametric Model

Geometric Modeling.

However, in many practical scenarios, it is rather difficult to know *a priori* the statistical origins of the data, since we frequently begin with only a few raw sample points, which may be insufficient to determine a unique optimal distribution within a large class of possible distributions. Very often, the data points are subject to certain hard geometric constraints, and can only be represented as a distribution that is close to be singular.\(^9\) It is very ineffective to learn such a singular or approximately singular distribution via statistical means [Vapnik, 1995]. Thus, an alternative data-modeling paradigm is to directly learn the overall geometric shape of the given data set. Typical methods include fitting one or more geometric primitives such as points\(^{10}\), lines, subspaces, surfaces, and manifolds to the data set. For instance, the approach of classical principal component analysis (PCA) is essentially to fit a lower-dimensional subspace, say \(S = \text{span}\{u_1, u_2, \ldots, u_d\}\), to a data set in a high-dimensional space, say \(X = \{x_i\} \subseteq \mathbb{R}^D\). That is, we try to represent the data points as:

\[
x_i = y_{i1} u_1 + y_{i2} u_2 + \cdots + y_{id} u_d + \epsilon_i, \quad \forall x_i \in X,
\]

where \(d < D\), \(y_{ij} \in \mathbb{R}\), and \(u_1, u_2, \ldots, u_d \in \mathbb{R}^D\) are unknown model parameters and need to be determined – playing the role of the parameters \(\theta\) in the foregoing statistical model. The line model in Figure 1.1 can be viewed as an example of PCA for the four points on the plane. In the above equation, the term \(\epsilon_i \in \mathbb{R}^D\) denotes the error between the sample and the model. PCA minimizes the error \(\sum_i ||\epsilon_i||^2\) for the optimal subspace (see Chapter 2 for details).\(^{11}\)

In general, a geometric model gives an intuitive description of the samples, and it is often preferred to a statistical one as a “first-cut” description of the given data set. Its main purpose is to capture global geometric, topological, or algebraic characteristics of the data set, such as the number of clusters and their dimensions. A geometric model always gives a more compact representation of the original data set, which makes it useful for data compression and dimension reduction.

As two competing data-modeling paradigms, the statistical modeling techniques in general are more effective in the high-noise (or high-entropy) regime when the generating distribution is (piecewise) non-singular; and the geometric techniques are more effective in the low-noise (or low-entropy) regime when the underlying geometric space is (piecewise) smooth, at least locally. The two paradigms thus complement each other in many ways. On one hand, once the overall geometric shape, the clusters and their dimensions, of the data set are obtained from geometric modeling, one can choose the class of probabilistic distributions more properly for further statistical inference. On the other hand, since

\(^9\)Mathematically, singular distributions are represented as generalized functions in the Sobolev space. The delta function \(\delta(\cdot)\) is one such example.

\(^{10}\)As the means of clusters.

\(^{11}\)When the data points \(x_i\) are independent samples drawn from a Gaussian distribution, the geometric formulation of PCA coincides with the classical statistical formulation [Jolliffe, 1986].
samples are often corrupted by noise and sometimes contaminated with outliers, in order to robustly estimate the optimal geometric model, one often resorts to statistical techniques. Thus, although this book puts more emphasis on geometric and algebraic modeling techniques, we will also thoroughly investigate their connection to and combination with various statistical techniques (see Chapter 5).

1.2 Modeling Mixed Data with a Hybrid Model

However, in practice, many data sets X cannot be modeled well by any single model M in a pre-chosen or preferred model class \mathcal{M}. Nevertheless, it is often the case that if we group such a data set X into multiple disjoint subsets:

$$X = X_1 \cup X_2 \cup \cdots \cup X_n, \quad \text{(with } X_l \cap X_m = 0 \text{, for } l \neq m, \text{)}$$

then each subset X_j can be modeled sufficiently well by a model in the chosen model class:

$$M_j^* = \arg\min_{M \in \mathcal{M}} \left[\text{Error}(X_j, M) \right], \quad j = 1, 2, \ldots, n,$$

where $\text{Error}(X_j, M)$ is certain measure of error resulted in using the model M to fit the data set X_j. Each model M_j^* is called a primitive or a component model. Precisely in this sense, we call the data set X mixed (with respect to the chosen model class \mathcal{M}) and call the collection of primitive models $\{M_j^*\}_{j=1}^n$ together a hybrid model for X. For instance, suppose we are given a set of sample points shown in Figure 1.2. These points obviously cannot be fitted well by any single line, plane or smooth surface in \mathbb{R}^3; but once they are grouped into three subsets, each subset can be fitted well by a line or a plane (as a standard PCA problem). Note that in this example the topology of the data is indeed “hybrid” – two of the subsets are of dimension one and the other is of dimension two.
1.2. Modeling Mixed Data with a Hybrid Model

1.2.1 Examples of Mixed Data Modeling

In fact, the aforementioned example of mixed data is quite representative of many data sets that one often encounters in real world. To motivate further the importance of modeling mixed data, we give below a few real-world problems that arise in computer vision and image processing. Most of these problems will be revisited later in this book with more detailed and principled solutions given.

Example One: Vanishing Points in a Perspective Image

The first example is the problem of vanishing point detection in computer vision. It is known in computer vision that the perspective images of a group of parallel lines in space all pass through a common point on the image plane which is the so-called vanishing point – a fact already well-known to and extensively exploited by Renaissance artists. Detecting vanishing points is very important for many practical applications such as estimating camera orientation and reconstructing scene structure, especially for man-made environments. A line on the image plane is described as the set of points \((x, y)\) described by an equation \(ax + by + c = 0\). For each of the lines passing through the same vanishing point, its coefficient vector \(x = [a, b, c]^T \in \mathbb{R}^3\) must lie on a 2-D subspace, whose normal vector is exactly the vanishing point \(v = [v_x, v_y, 1]^T\), i.e., \(v^T x = 0\). The vanishing point is the point in the plane \((v_x, v_y)\) \(\in \mathbb{R}^2\). The extra entry 1 in the vector \(v \in \mathbb{R}^3\) may be thought of as representing membership in the plane.

For a scene that consists of multiple sets of parallel lines, as is usually the case for man-made objects and environments, the problem of detecting all the vanishing points from the set of all edge segments is then mathematically equivalent to clustering points into multiple 2-D subspaces in \(\mathbb{R}^3\). As we will see later, this is a special case of the subspace-segmentation problem addressed by GPCA (see Chapter 4). Figure 1.3 shows the application of the GPCA algorithm to one such example, in which edge segments are correctly grouped to three vanishing points.
Example Two: Motion Segmentation from Two Images

The second example is the so-called motion segmentation problem that arises also in the field of computer vision: given a sequence of images of multiple moving objects in a scene, how does one segment the images so that each segment corresponds to only one moving object? This is a very important problem in applications such as motion capture, vision-based navigation, target tracking, and surveillance. If we study the image sequence two images at a time, as it has been known in computer vision, feature points that belong to the same moving object are subject to either linear or quadratic constraints (see Chapter 8), depending on the type of motions and camera models. Therefore, mathematically, the problem of motion segmentation is equivalent to segmentation of points to different linear subspaces and quadratic surfaces. Figure 1.4 shows two images of a moving checkerboard and cube. The image on the left shows the starting positions of the board and the cube and their directions of motion; and the image on the right shows the final positions. The image on the right also shows the segmentation results obtained using the GPCA algorithm applied to their motion flow for points on the cube and the board. We will describe in detail the motion segmentation method used to achieve the above result in Chapter 7 and 8.

Example Three: Image Representation and Segmentation

A third example arises in the context of image representation and segmentation. It is commonplace that, in an image, pixels at different regions have significantly different local color/texture profiles (normally an $N \times N$ window around a pixel). Conventional image representation/compression schemes (JPEG, JPEG2000) often ignore such differences and apply the same linear filters or bases (for example, the Fourier transform, discrete cosine transform, wavelets, or curvelets) to the entire set of local profiles. Nevertheless, modeling the set of local profiles as a mixed data set allows us to segment the image into different regions and represent them differently. Each region consists of only those pixels whose local profiles span...
1.2. Modeling Mixed Data with a Hybrid Model

The same low-dimensional linear subspace.12 The basis of the subspace can be viewed as a bank of adaptive filters for the associated image region and the subspaces (and hence the segmentation of the image) can be effectively estimated via the GPCA algorithm. Figure 1.5 shows regions of an image segmented by such a hybrid representation. The so-obtained subspaces (and their bases) normally pro-

Figure 1.5. Image segmentation based on fitting different linear subspaces (and bases) to regions of different textures. The three segments (or subspaces) correspond to the ground, the clouds, and the sky.

vide a very compact representation of the image, often more compact than any of the aforementioned fixed-basis schemes, and therefore very useful for purposes such as image compression, classification, or retrieval. More details on this image representation/segmentation scheme can be found in Chapter 6.

Example Four: Object Classification

The fourth example arises in the context of image-based object classification. Given a collection of unlabeled images \(\{I_i\}_{i=1}^n \) of several different faces taken under varying illumination, we would like to classify the images corresponding to the face of the same person. For a Lambertian object, it has been shown that the set of all images taken under all lighting conditions forms a cone in the image space, which can be well approximated by a low-dimensional subspace [Ho et al., 2003]. Therefore, we can classify the collection of images by estimating a basis for each one of those subspaces, because the images of different faces will live in different subspaces. This is obviously another subspace-segmentation problem. In the example shown in Figure 1.6, we use a subset of the Yale Face Database B consisting of \(n = 64 \times 3 \) frontal views of three faces (subjects 5, 8 and 10) under 64 varying lighting conditions. For computational efficiency, we first down-sample each image to a size of 30 × 40 pixels. We then project the data onto their first three principal components using PCA, as shown in Figure 1.6 (left).13 We apply GPCA to the projected data in \(\mathbb{R}^3 \) and obtain three affine subspaces of dimension 2, 1, and 1, respectively. Despite the series of down-sampling and projection, the subspaces lead to a perfect classification of the images, as shown in Figure 1.6 (right).

12Unlike the previous two examples, there is no rigorous mathematical justification that local profiles from a region of similar texture must span a low-dimensional linear subspace. However, there is strong empirical evidence that a linear subspace is normally a very good approximation.

13The legitimacy of the projection process will be addressed in Chapter 3.
Figure 1.6. Classifying a subset of the Yale Face Database B consisting of 64 frontal views under varying lighting conditions for subjects 2, 5 and 8. Left: Image data projected onto the first three principal components. Right: Classification of the images given by GPCA.

Figure 1.7. Clustering frames of a news video sequence into groups of scenes by modeling each group with a linear dynamical system. Left: 30 frames of a video sequence clustered into 3 groups: host, guest, and both of them. Right: 60 frames of a news video sequence from Iraq clustered into 3 groups: rear of a car with a burning wheel, a burnt car with people, and a burning car.

Example Five: Video Segmentation and Event Detection

The last example arises in the context of detecting events from video sequences. A typical video sequence contains multiple activities or events separated in time. For instance, Figure 1.7 left shows a news sequence where the host is interviewing a guest and the camera is switching between the host, the guest and both of them. Let us assume that all the consecutive frames of the same scene can be modeled as the output from a linear dynamical system and that different scenes correspond to different dynamical systems. Since the image data live in a very high-dimensional space (≈ 10^5, the number of pixels), we first project the image data onto a low-dimensional subspace (≈ 10) using principal component analysis (PCA) and then apply GPCA to the projected data to identify the different dynamical systems (see Chapter 9). Figure 1.7 shows the segmentation results for two video sequences. In both cases, a perfect segmentation is obtained.
As we see from the above examples, in some cases, one can rigorously show that a given data set belongs to a collection of linear and quadratic surfaces of the same dimension (example one) or of possibly different dimensions (example two). In many other cases, one can use piecewise linear structures to approximate the data set and obtain a more compact and meaningful geometric representation of the data, including segments, dimensions, and bases (examples three, four, and five). Subspace (or surface) segmentation is a natural abstraction of all these problems and thus merits systematic investigation. From a practical standpoint, the study will lead to many general and powerful modeling tools that are applicable also to many types of data, such as feature points, images, videos, audios, dynamical data, genomic data, proteomic data, and other bio-informatic data sets.

1.2.2 Mathematical Representations of Hybrid Models

Obviously, whether the model associated with a given data set is hybrid or not depends on the class of primitive models considered. In this book, the primitives are normally chosen to be simple classes of smooth manifolds or non-singular distributions. For instance, one may choose the primitive models to be linear subspaces. Then one can use an arrangement of linear subspaces \(\{ S_i \}_{i=1}^n \subset \mathbb{R}^D \),

\[
Z = S_1 \cup S_2 \cup \cdots \cup S_n,
\]

also called a hybrid linear model, to approximate many nonlinear manifolds or piecewise smooth topological spaces. This is the typical model in GPCA and it is to be studied for most part of this book. Or as its statistical counterpart, one can assume that the samples points are drawn independently from a mixture of Gaussian distributions \(\{ p_i(\mathbf{x}), \mathbf{x} \in \mathbb{R}^D \}_{i=1}^n \):

\[
q(\mathbf{x}) = \pi_1 p_1(\mathbf{x}) + \pi_2 p_2(\mathbf{x}) + \cdots + \pi_n p_n(\mathbf{x}),
\]

with \(\pi_i > 0 \) and \(\pi_1 + \pi_2 + \cdots + \pi_n = 1 \). This is the typical model studied in mixtures of probabilistic principal component analysis (PPCA) [Tipping and Bishop, 1999a]. A classical way of estimating such a mixture model is the so-called expectation maximization (EM) method, which infers the membership of each sample as a hidden random variable (see Appendix A for a review). In this book, we will study and clarify the similarities and differences between these geometric models and statistical models (see Chapter 3 and 4).

Difficulties with Conventional Data-Modeling Methods.

One may have been wondering why not simply enlarge the class of primitive models to include such hybrid models so that we can deal with them by the conventional single-model paradigms for learning distribution- or manifold-like models? If this were the case, then there would be no need of developing special theory and algorithms for hybrid models and thus no need of this book! However, the most compelling reason that we do need hybrid models is that smooth manifolds and non-singular distributions are not rich or flexible enough to describe the
structure of many commonly observed data, as we have seen in the examples in the previous section. On one hand, the underlying topological space of a mixed data set may contain multiple manifolds of different dimensions which will probably intersect with each other, as is the case with a collection of multiple subspaces. Conventional estimation techniques for manifold-like models do not apply well to this class of spaces [Tenenbaum et al., 2000, Roweis and L.Saul, 2000]. On the other hand, if one represents a hybrid model as a probabilistic distribution, then the distribution will typically not be a typical distribution but often be close to singular. Conventional statistical-learning techniques become rather ineffective in inferring such (close to) singular distributions [Vapnik, 1995].

An alternative approach to model mixed data is first to segment the data set into coherent subsets and then to model each subset using the classical single-model methods. This is a popular approach adopted by many practitioners in the industry. The fundamental difficulty with this approach is that, without knowing which subset of sample points belongs to which constituent model, there is seemingly a “chicken-and-egg” relationship between data segmentation and model estimation: If the segmentation of the data was known, one could fit a model to each subset of samples using classical model estimation techniques; and conversely, if the constituent models were known, one could easily find the subset of samples that best fit each model. This relationship has been the rationale that supports all the iterative modeling techniques for mixed data, such as the well-known expectation maximization (EM) algorithm and the K-means method (see Appendix A). These iterative methods share several drawbacks:

- The iteration needs to start with a good initial guess of the solution; otherwise the iteration is likely to converge to an irrelevant local minimum.
- Without knowing a priori the number of models and the dimension of each model, the algorithm may diverge if it starts with a wrong guess on these key parameters.
- There are cases in which it is difficult to solve the grouping problem correctly, yet it is possible to obtain a good estimate of the models. In such cases a direct estimation of the models without grouping seems more appropriate than that based on incorrectly segmented data.

Hybrid Models as Algebraic Sets.

In this book, instead of manifolds or distributions, we will represent hybrid models mainly as algebraic sets.\(^\text{14}\) To see the merit of such a representation, let us suppose that data that belong to the \(i\)th constituent model can be described as the zero-level set of some polynomials in a prime ideal \(p_i\), i.e., an (irreducible) algebraic set.

\(^{14}\text{Roughly speaking, an algebraic set is the common zero-level set of a family of algebraic equations, see Appendix B. For instance, most constraints among multiple images of the same scene are given in the form of algebraic equations [Ma et al., 2003].}\)
1.2. Modeling Mixed Data with a Hybrid Model

An algebraic variety:

\[Z_i = \{ x : p(x) = 0, \ p \in p_i \} \subset \mathbb{R}^D, \ i = 1, 2, \ldots, n. \] (1.8)

The (mixed) data from a union of \(n \) such models then belong to an algebraic set:

\[Z = Z_1 \cup Z_2 \cup \cdots \cup Z_n \]
\[= \{ x : p_1(x)p_2(x)\cdots p_n(x) = 0, \ \forall p_i \in p_i, \ i = 1, 2, \ldots, n \}. \] (1.9)

From a number of (random) sample points on the algebraic set \(X = \{ x_j \in Z \} \), one can determine the (radical) ideal of polynomials that vanish on the set \(Z \):

\[X \rightarrow q(Z) = \{ q(x_j) = 0, \ \forall x_j \in Z \}. \] (1.10)

Obviously, the ideal \(q \) is no longer a prime ideal. Nevertheless, once the ideal \(q \) is obtained, the constituent models \(p_i \) (or \(Z_i \)) can be subsequently retrieved by decomposing the ideal \(q \) into irreducible prime ideals via algebraic means.

\[q \rightarrow q = p_1 \cap p_2 \cap \cdots \cap p_n. \] (1.11)

Clearly, the above representation establishes a natural correspondence between terminologies developed in algebraic geometry and the heuristic languages used in modeling mixed data.

Modeling Hybrid Topologies and Degenerate Distributions.

Despite its pure algebraic nature, the above representation is closely related to, as well as complements, the aforementioned two data modeling paradigms. From the geometric viewpoint, unlike a smooth manifold \(M \) which sometimes can be implicitly represented as the level set of a single function, an algebraic set \(Z \) is the zero-level set of a family of polynomials. Because of that, an algebraic set \(Z \) allows components with different dimensions as well as singularities that the zero-level set of a single function does not have. From the statistical viewpoint, one can also view the irreducible components \(\{ Z_i \} \) of \(Z \) as the “means” of a collection of probabilistic distributions \(\{ p_i(\cdot) \} \) and the overall set \(Z \) as the “skeleton” of their mixture \(q(\cdot) \). For instance, a piecewise linear structure can be viewed as the skeleton of a mixture of Gaussian distributions (see Figure 1.8). Therefore, hybrid models represented by algebraic sets can be interpreted as a special class of generative models such that the random variables have small variance outside the algebraic sets but large variance inside.

15 A prime ideal is an ideal that cannot be decomposed further as the intersection of two other ideals, see Appendix B. Geometrically, its zero-level set corresponds to an algebraic set that cannot be the union of multiple algebraic sets. An irreducible algebraic set is called an algebraic variety. A subspace is one such example.

16 Notice that the “union” of algebraic varieties corresponds to the “multiplication” of the polynomials associated with the varieties.

17 According to Hilbert’s Nullstellensatz (see Appendix B), there is a one-to-one correspondence between algebraic sets and radical ideals [Eisenbud, 1996].

18 For the special case in which the ideal is generated by a single polynomial, the decomposition is equivalent to factoring the polynomial into factors.
As we will show in this book, if the primitive varieties are simple models such as linear subspaces (or quadratic surfaces), then in principle, the problem of segmenting mixed data and estimating a hybrid model can be solved non-iteratively (see Chapter 4). As it turns out, the correct number of models and their dimensions can also be correctly determined via purely algebraic means, at least in the noise-free case (see Chapter 4). The algebraic theory of GPCA will be thoroughly developed in Chapter 4. The algorithms developed there are algebraic in their methods. The most common concern that one hears is that algebraic methods are extremely sensitive to noise. But an amazing fact is that even the basic algebraic algorithm works extremely well with moderate noise in the data; and it is very efficient even for high-dimensional data as long as the data in fact is clustered on fairly low-dimensional structures.
1.2.3 Noise, Outliers, and Model Selection

However, in many real-world applications, the given data samples may be corrupted with noise or contaminated with outliers. Figure 1.9 shows one such example. Unlike the noiseless or low-noise scenario, the problem of finding the “correct” model becomes much more challenging in presence of a significant amount of noise or outliers. Proper statistical and robust statistical techniques therefore need to be developed for the estimation and segmentation of algebraic sets such as subspace arrangements. These issues will be carefully treated in Chapter 5.

Another important observation is that, in the presence of noise and outliers, a hybrid linear model is not necessarily the best if it has the highest fidelity to the data. This is especially the case when the number of subspaces and their dimensions are not known _a priori_. In fact, for every point in the data set, one can fit a separate line to it, which results in no modeling error at all. But such a model is not so appealing since it has exactly the same complexity as the original data.

In general, the higher the model complexity, the smaller the modeling error. A good model should strike a balance between the complexity of a model M and its fidelity to the data X. Many general model selection criteria have been proposed in the statistics or machine learning literature, including the Akaike information criterion (AIC), the Bayesian information criterion (BIC), the minimum description length (MDL), and the minimum message length (MML). See Appendix A for a brief review. Despite some small differences, these criteria all trade off modeling error for model complexity and minimize an objective of the following form:

$$
\min_{M \in \mathcal{M}} J(M) = [\alpha \cdot \text{Complexity}(M) + \beta \cdot \text{Error}(X, M)].
$$

In this book, we will introduce a model complexity measure that is specially designed for an arrangement of linear subspaces of arbitrary dimensions, namely the effective dimension (see Chapter 5).

There is yet another fundamental tradeoff that is often exploited for model selection. When the model complexity is too high, the model tends to over-fit the given data, including the noise in it. Such a model does not generalise well in the sense that it would not predict well the outcome of new samples; when the model complexity is too low, the model under-fits the data and, again, would result in a large error in the prediction. Therefore, a good model should minimize the prediction error. The relationships between modeling error and prediction error as a function of model complexity is plotted in Figure 1.10. Unfortunately, the “optimal” models obtained from trading off modeling error and prediction error can

19 For example, any function can be approximated arbitrarily well by a piecewise linear function with a sufficient number of pieces.

20 For instance, the complexity of a model can be measured as the minimum number of bits needed to fully describe the model and the data fidelity can be measured by the distance from the sample points to the model.
be different, as illustrated in the figure. In such a case, a choice between the two objectives has to be made. In the unsupervised learning setting, it is often difficult to obtain the prediction error curve;21 and for purposes such as data compression, the prediction error is of less concern than the modeling error. In these cases, we often choose the tradeoff between the modeling error and the model complexity (see Chapter 5).

In the end, all these statistical variations of the algebraic GPCA algorithms can be easily combined with the EM and K-means algorithms (for instance to initialize them) so as to improve the generality, efficiency, robustness, and optimality of the existing methods for modeling mixed data.

21Unless one does cross-validation within the given data set itself.
Part I

Theory, Analysis, and Algorithms
Chapter 2
Data Modeling with a Single Subspace

“Principal component analysis is probably the oldest and best known of the techniques of multivariate analysis.”

– I. T. Jolliffe

In this chapter, we give a brief review of principal component analysis (PCA), i.e., the method for finding an optimal (affine) subspace to fit a set of data points. The solution to PCA has been well established in the literature and it has become one of the most useful tools for data modeling, compression, and visualization. In this section, we first show that the singular value decomposition (SVD) provides an optimal solution to PCA. Both the geometric and statistical formulation of PCA will be introduced and their equivalence will be established. When the dimension of the subspace is unknown, we introduce some conventional model selection methods to determine the number of principal components. When the samples contain outliers and incomplete data points, we review some robust statistical techniques that help resolve these difficulties. Finally, some nonlinear extensions to PCA such as nonlinear PCA and kernel PCA will also be reviewed.

2.1 Principal Component Analysis (PCA)

Principal component analysis (PCA) refers to the problem of fitting a low-dimensional affine subspace \(S \) to a set of points \(X = \{x_1, x_2, \ldots, x_N\} \) in a high-dimensional space \(\mathbb{R}^D \), the ambient space. Mathematically, this problem can
be formulated as either a statistical problem or a geometric one, and they both lead to the same solution, as we will show in this section.

2.1.1 A Geometric Approach to PCA

We first examine the more intuitive geometric approach to PCA. That is, one tries to find an (affine) subspace that fits the given data points. Let us assume for now that the dimension of the subspace \(d \) is known. Then every point \(x_i \) on a \(d \)-dimensional affine subspace in \(\mathbb{R}^D \) can be represented as

\[
 x_i = x_0 + U_d y_i, \quad i = 1, 2, \ldots, N
\]

(2.1)

where \(x_0 \in \mathbb{R}^D \) is a(ny) fixed point in the subspace, \(U_d \) is a \(D \times d \) matrix with \(d \) orthonormal column vectors, and \(y_i \in \mathbb{R}^d \) is simply the vector of new coordinates of \(x_i \) in the subspace. Notice that there is some redundancy in the above representation due to the arbitrariness in the choice of \(x_0 \) in the subspace. More precisely, for any \(y_0 \in \mathbb{R}^d \), we can re-represent \(x_i \) as \(x_i = (x_0 + U_d y_0) + U_d (y_i - y_0) \).

Therefore, we need some additional constraints in order to end up with a unique solution to the problem of finding an affine subspace to fit the data. A common constraint is to impose that the mean of \(y_i \) is zero:

\[
 \bar{y} = \frac{1}{N} \sum_{i=1}^{N} y_i = 0.
\]

(2.2)

In general the given points are imperfect and have noise. We define the “optimal” affine subspace to be the one that minimizes the sum of squared error between \(x_i \) and its projection on the subspace, i.e.,

\[
 \min_{x_0, U_d, \{y_i\}} \sum_{i=1}^{N} \| x_i - x_0 - U_d y_i \|^2, \quad \text{s.t.} \quad U_d^T U_d = I \text{ and } \bar{y} = 0.
\]

(2.3)

Differentiating this function with respect to \(x_0 \) and \(y_i \) (assuming \(U_d \) is fixed) and setting the derivatives to be zero,\(^2\) we obtain the relations:

\[
 \hat{x}_0 = \bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i; \quad \hat{y}_i = U_d^T (x_i - \bar{x}).
\]

(2.4)

The vector \(\hat{y}_i \in \mathbb{R}^d \) is simply the coordinates of the projection of \(x_i \in \mathbb{R}^D \) in the subspace \(S \). We may call such \(\hat{y} \) the “geometric principal components” of \(x \).\(^3\)

\(^1\)In the statistical setting, \(x_i \) and \(y_i \) will be samples of two random variables \(x \) and \(y \), respectively. Then this constraint is equivalent to setting their means to be zero.

\(^2\)which are the necessary conditions for the minima.

\(^3\)As we will soon see in the next section, it coincides with the traditional principal components defined in a statistical sense.
2.1. Principal Component Analysis (PCA)

Then the original objective becomes one of finding an orthogonal matrix $U_d \in \mathbb{R}^{D \times d}$ that minimizes

$$
\min_{U_d} \sum_{i=1}^{N} \left\| (x_i - \bar{x}) - U_d U_d^T (x_i - \bar{x}) \right\|^2. \tag{2.5}
$$

Note that this is a restatement of the original problem with the mean \bar{x} subtracted from each of the sample points. Therefore, from now on, we will consider only the case in which the data points have zero mean. If not, simply subtract the mean from each point and the solution for U_d remains the same. The following theorem gives a constructive solution to the optimal solution \hat{U}_d.

Theorem 2.1 (PCA via SVD). Let $X = [x_1, x_2, \ldots, x_N] \in \mathbb{R}^{D \times N}$ be the matrix formed by stacking the (zero-mean) data points as its column vectors. Let $X = U \Sigma V^T$ be the singular value decomposition (SVD) of the matrix X. Then for any given $d < D$, a solution to PCA, \hat{U}_d is exactly the first d columns of U; and \hat{y}_i is the ith column of the top $d \times N$ submatrix $\Sigma_d V_d^T$ of the matrix ΣV^T.

Proof. Note that the problem

$$
\min_{U_d} \sum_{i=1}^{N} \left\| (x_i - U_d U_d^T x_i) \right\|^2 \tag{2.6}
$$

is equivalent to

$$
\min_{U_d} \sum_{i=1}^{N} \text{trace} \left[(x_i - U_d U_d^T x_i) (x_i - U_d U_d^T x_i)^T \right]
\Leftrightarrow \min_{U_d} \text{trace} \left[(I - U_d U_d^T) X X^T \right],
$$

where, for the second equivalence, we use the facts $\text{trace}(AB) = \text{trace}(BA)$, $U_d U_d^T U_d U_d^T = U_d U_d^T$, and $X X^T = \sum_{i=1}^{N} x_i x_i^T$ to simplify the expression. Substitute $X = U \Sigma V^T$ into the above expression, the problem becomes

$$
\min_{U_d} \text{trace} \left[(I - U^T U_d^T U_d U_d^T) \Sigma^2 \right].
$$

Let $\sum_{i=1}^{D} \sigma_i^2 e_i e_i^T$ be the dyadic decomposition of the diagonal matrix Σ^2. Since $U_d^T U_d$ is an orthogonal matrix, the above minimization is the same as

$$
\min_{U_d} \sum_{i=1}^{D} \text{trace} \left[(\sigma_i e_i - U^T U_d^T U \sigma_i e_i) (\sigma_i e_i - U^T U_d^T U \sigma_i e_i)^T \right]
\Leftrightarrow \min_{U_d} \sum_{i=1}^{D} \sigma_i^2 \left\| (I - U^T U_d^T U) e_i \right\|^2.
$$

\[Here \, e_i \in \mathbb{R}^D \text{ is the standard } i \text{th base vector of } \mathbb{R}^D, \text{ i.e., its } i \text{th entry is 1 and others are 0.}\]
Because \(U_d \) is an orthogonal matrix of rank \(d \), so is \(U_d^T U_d \); this implies that \(I - U_d^T U_d \) is an idempotent matrix of rank \(D - d \), and so the \(D \) terms \(\| (I - U_d^T U_d) e_i \|^2 \) always sum up to a constant \(D - d \), and \(\sigma_1^2 \geq \sigma_2^2 \geq \cdots \geq \sigma_D^2 \) are ordered. Therefore, the minimum is achieved when the \(d \) terms associated with the higher weights \(\sigma_1^2, \sigma_2^2, \ldots, \sigma_d^2 \) become zero. This happens only when \(\hat{U}_d \) consists of the first \(d \) columns of \(U \). The rest of the theorem then easily follows.

When there are repeated singular values with \(\sigma_d = \sigma_{d+1} \), there is a loss of uniqueness of the solution corresponding to the principal components.

According to the theorem, the SVD gives an optimal solution to the PCA problem. The resulting matrix \(\hat{U}_d \) (together with the mean \(\bar{x} \) if the data is not zero-mean) provides a geometric description of the dominant subspace structure for all the points\(^5\); and the columns of the matrix \(\Sigma_d V_d^T = [\hat{y}_1, \hat{y}_2, \ldots, \hat{y}_N] \in \mathbb{R}^{d \times N} \), i.e., the principal components, give a more compact representation for the points \(X = [x_1, x_2, \ldots, x_N] \in \mathbb{R}^{D \times N} \), as \(d \) is typically much smaller than \(D \).

2.1.2 A Statistical View of PCA

Historically PCA was first formulated in a statistical setting to estimate the principal components of a multivariate random variable \(x \) from given sample points \(\{x_i\} \) [Hotelling, 1933]. For a multivariate random variable \(x \in \mathbb{R}^D \) and any \(d < D \), the \(d \) “principal components” are defined to be \(d \) uncorrelated linear components of \(x \):

\[
y_i = u_i^T x \in \mathbb{R}, \quad i = 1, 2, \ldots, d
\]

for some \(u_i \in \mathbb{R}^D \) such that the variance of \(y_i \) is maximized subject to

\[
u_i^T u_i = 1, \quad \text{Var}(y_1) \geq \text{Var}(y_2) \geq \cdots \geq \text{Var}(y_d).
\]

For example, to find the first principal component, we seek a vector \(u_1^* \in \mathbb{R}^D \) such that

\[
u_1^* = \arg \max_{u_1 \in \mathbb{R}^D} \text{Var}(u_1^T x), \quad \text{s.t.} \quad u_1^T u_1 = 1.
\]

Without loss of generality, in what follows, we will assume \(x \) has zero-mean.

Theorem 2.2 (Principal Components of a Random Variable). The first \(d \) principal components of a multivariate random variable \(x \) are given by the \(d \) leading eigenvectors of its covariance matrix \(\Sigma_x \triangleq E[xx^T] \).

Proof. Notice that for any \(u \in \mathbb{R}^D \),

\[
\text{Var}(u^T x) = E[(u^T x)^2] = E[u^T xx^T u] = u^T \Sigma_x u.
\]

\(^5\)From a statistical standpoint, the column vectors of \(U_d \) give the directions in which the data \(X \) has the largest variance, hence the name “principal components.” See the next section for detail.
2.1. Principal Component Analysis (PCA)

Then to find the first principal component, the above minimization (2.8) is equivalent to

$$\max_{u_1 \in \mathbb{R}^D} u_1^T \Sigma_x u_1, \quad \text{s.t.} \quad u_1^T u_1 = 1. \quad (2.9)$$

Solving the above constrained minimization problem using the Lagrange multiplier method, we obtain the necessary condition for u_1 to be an extremum:

$$\Sigma_x u_1 = \lambda u_1 \quad (2.10)$$

for some Lagrange multiplier $\lambda \in \mathbb{R}$, and the associated extremum value is $u_1^T \Sigma_x u_1 = \lambda$. Obviously, the optimal solution u_1^* is exactly the eigenvector associated with the largest eigenvalue of Σ_x.

To find the remaining principal components, since $u_1^T x$ and $u_i^T x (i > 1)$ need to be uncorrelated, we have

$$E[(u_1^T x)(u_i^T x)] = E[u_1^T xx^T u_i] = u_1^T \Sigma_x u_i = \lambda_1 u_1^T u_i = 0.$$

That is, u_2, \ldots, u_d are all orthogonal to u_1. Following the proof for the optimality of u_1, u_2 is then the leading eigenvector of Σ_x restricted to the orthogonal complement of u_1.\footnote{The reason for this is that both u_1 and its orthogonal complement u_1^\perp are invariant subspaces of Σ_x.} Overall, u_2 is the second leading eigenvector of Σ_x. Inductively, one can show for the rest of the principal components. \hfill \square

Normally, we do not know Σ_x and can only estimate it from the given N samples x_i. It is known from statistics that

$$\hat{\Sigma}_x = \frac{1}{N-1} \sum_{i=1}^N x_i x_i^T = \frac{1}{N-1} XX^T \quad (2.11)$$

is an asymptotically unbiased estimate of the covariance matrix Σ_x. The eigenvectors of $\hat{\Sigma}_x$, or equivalently those of XX^T, lead to the “sample principal components”:

$$\hat{y}_i = \hat{u}_1^T x, \quad \text{s.t.} \quad \hat{\Sigma}_x \hat{u}_i = \lambda \hat{u}_i \quad \text{and} \quad \hat{u}_1^T \hat{u}_i = 1. \quad (2.12)$$

One can show that, if x is Gaussian, then every eigenvector \hat{u} of $\hat{\Sigma}_x$ is an asymptotically unbiased estimate for the corresponding eigenvector u of Σ_x [Jollife, 1986].

Theorem 2.3 (Equivalence of Geometric and Sample Principal Components). Let $X = [x_1, x_2, \ldots, x_N] \in \mathbb{R}^{D \times N}$ be the data matrix (with $\bar{x} = 0$). The vectors $\hat{u}_1, \hat{u}_2, \ldots, \hat{u}_d \in \mathbb{R}^D$ associated with the d sample principal components for X are exactly the columns of the matrix $\hat{U}_d \in \mathbb{R}^{D \times d}$ that minimizes the least-squares error (2.6).

Proof. The proof is simple. Notice that if X has the singular value decomposition $X = U \Sigma V^T$, then $XX^T = U \Sigma^2 U^T$ is the eigenvalue decomposition of XX^T.
If Σ is ordered, then the first d columns of U are exactly the leading d eigenvectors of XX^T, which give the d sample principal components.

Therefore, both the geometric and statistical formulation of PCA lead to exactly the same solutions/estimates of the principal components. The geometric formulation allows us to apply PCA to data even if the statistical nature of the data is unclear; the statistical formulation allows to quantitatively evaluate the quality of the estimates. For instance, for Gaussian random variables, one can derive explicit formulae for the mean and covariance of the estimated principal components. For a more thorough analysis of the statistical properties of PCA, we refer the reader to the classical book [Jollife, 1986].

2.1.3 Determining the Number of Principal Components

Notice that SVD of the noisy data matrix X does not only give a solution to PCA for a particular d, but also the solutions to all $d = 1, 2, \ldots, D$. This has an important side-benefit: If the dimension d of the subspace S, or equivalently the rank of the matrix X, is not known or specified a priori, one may have to look at the entire spectrum of solutions to decide on the “best” estimate d for the dimension and hence the subspace S for the given data.

The problem of determining the optimal dimension d is in fact a “model selection” problem. As we have discussed in the introduction of the book, the conventional wisdom is to strike a good balance between the complexity of the chosen model and the data fidelity (to the model). In Appendix A, we have given a brief review of some general model-selection criteria. One can certainly directly employ any of those for PCA (see Appendix A.4.2 for detail). We here discuss a few heuristic criteria that are especially designed for PCA and are easy to use in practice.

In PCA, the dimension d of the subspace S can be viewed as a natural measure of model complexity; and the sum of squares of the remaining singular values $\sum_{i=d+1}^{D} \sigma_i^2$ is exactly the modeling error $\sum_{i=1}^{N} \|x_i - \hat{x}_i\|^2$ (see the proof of Theorem 2.1). Normally, the leading term σ_{d+1}^2 of $\sum_{i=d+1}^{D} \sigma_i^2$ is already a good index of the magnitude of the remaining ones. Thus, one can simply seek for a balance between d and σ_{d+1}^2 by minimizing an objective function of the form:

$$J_{PCA}(d) = \alpha \cdot \sigma_{d+1}^2 + \beta \cdot d$$

for some proper weights $\alpha, \beta > 0$. Another somewhat similar criterion that people often use to determine the rank d of a noisy matrix X is:

$$J_{rank}(d) = \frac{\sigma_{d+1}^2}{\sum_{i=1}^{d} \sigma_i^2} + \kappa d$$

where $\kappa > 0$ is a proper weight (see [Kanatani and Matsunaga, 2002a]). In this book, unless stated otherwise, this will be the criterion of choice when we try to determine the rank of a (data) matrix corrupted by noise.
In general, the ordered singular values of the data matrix X versus the dimension d of the subspace resemble a plot as in Figure 2.1. In the statistics literature, this is known as the “Scree graph.” We will see a significant drop in the singular value right after the “correct” dimension \hat{d}, which is sometimes called the “knee” or “elbow” point of the plot. Obviously, such a point is a stable minimum as it optimizes the above objective function (2.13) for a range of values for α and β, or (2.14) for a range of κ.

A model can also be selected from the Scree graph in another way. If, instead of the dimension d, a tolerance τ for the modeling error is specified, one can easily use the plot to identify the model that has the lowest dimension and satisfies the given tolerance, as indicated in the figure.

There are many other methods for determining the dimension for PCA. Interested readers may find more references in [Jollife, 1986].

2.2 Robustness Issues for PCA

In the above discussions, we have assumed that all the sample points can be fit with the same geometric or statistical model. In this section, we discuss various robustness issues for PCA. More specifically, we study how to resolve the difficulties with outliers and incomplete data points.

2.2.1 Outliers

In practice, it is often the case that a small portion of the data points do not fit well the same model as the rest of the data. Such points are called outliers. The true nature of outliers can be very elusive. There is really no unanimous definition for
what an outlier is. Outliers can be perfectly valid samples from the same distribution as the rest of the data and it just happens so that they are small-probability instances; or they are not samples drawn from the same model at all and therefore they will likely not be consistent with the model derived from the rest of the data; or they are atypical samples that have an unusually large influence on the estimated model parameters. In principle however, there is no way that one can tell which case is really true for a particular “outlying” sample point. In fact, for many common noise models, all these cases lead to more or less equivalent criteria for detecting or accommodating outliers. However, these different interpretations may lead to different approaches to detect (and subsequently eliminate or accommodate) outliers. We here discuss a few approaches that are particularly related to PCA. In Chapter 5, we will further explore the possibility of generalizing these approaches to GPCA.

Probability-Based Outlier Detection

The first approach is to first fit a model to all the sample points, including potential outliers, and then detect the outliers as the ones that, with respect to the identified model, correspond to small-probability events or have large modeling errors. In PCA, if we assume the samples are all drawn from a (zero-mean) Gaussian distribution, the covariance of the distribution can be estimated as $\hat{\Sigma} = \frac{1}{N-1} \sum_{i=1}^{N} x_i x_i^T$. The probability distribution is approximately $p(x) \propto \exp\left(-\frac{1}{2} x^T \hat{\Sigma}^{-1} x\right)$. If the probability of a sample x_i is small if and only if the following quantity

$$d_i = x_i^T \hat{\Sigma}^{-1} x_i$$

(2.15)

is large. The quantity d_i is also known as the Mahalanobis distance. In terms of the principal components $y = U^T x$, the Mahalanobis distance can also be written as

$$d_i = \sum_{i=1}^{D} \frac{y_i^2}{\sigma_i^2},$$

(2.16)

where σ_i are the singular values of X (or equivalently, σ_i^2 are the eigenvalues of $\hat{\Sigma}$).

Thus, one can remove a certain percentage (say 10 percent) of samples that have relatively large Mahalanobis distance, as outliers. Once the outliers are trimmed out, one can use the remaining samples to re-estimate the covariance matrix $\hat{\Sigma}$ as well as their principal components. One can repeat the above trimming process until the estimate of the covariance matrix stabilizes. The resulting estimate will in general be more robust. This is essentially the basic idea of a very popular robust covariance estimator, known as multivariate trimming (MVT). The reader

For a more thorough exposition of outliers in statistics, we recommend the books of [Barnett and Lewis, 1983, Huber, 1981].
Consensus-Based Outlier Detection

The second approach assumes that the outliers are not drawn from the same model as the rest of the data. Hence it makes sense to try to avoid the outliers when we infer the model in the first place. However, without knowing which points are outliers beforehand, how can we avoid them? One idea is to fit a model, instead of to all the data points at the same time, only to a subset of the data. This is possible when the number of data points required for a unique solution for the estimate is much smaller than that of the given data set. Of course, one should not expect that a randomly chosen subset will have no outliers and always lead to a good estimate of the model. Thus, one should try on many different subsets:

\[X_1, X_2, \ldots, X_n \subset X. \] (2.17)

The rationale is that if the number of subsets are large enough, one of the trial subsets, say \(X_i \), likely contains few or no outliers and hence the resulting model would be the most consistent with the rest of the data points. For instance, for PCA we may claim a subset \(X_i \) gives a consistent estimate \(\hat{U}_d(X_i) \) of the subspace if the following criterion is maximized (among all the chosen subsets):

\[
\max \# \{ x \in X : \| x - \hat{U}_d(X_i) \| \leq \tau \},
\] (2.18)

where \(\tau > 0 \) is a chosen error threshold. This scheme is typically called Random Sample Consensus (RANSAC) [Fischler and Bolles, 1981], and it normally improves the robustness of the estimate. As a word of caution, in practice, in order to design a successful RANSAC algorithm, one needs to carefully choose a few key parameters: the size of every subset, the number of subsets, and the consensus criterion. There is a vast amount of literature on RANSAC-type algorithms, especially in computer vision. For more details on RANSAC and other related random sampling techniques, the reader is referred to Appendix A.5. In Chapter 5, we will discuss some limitations of RANSAC in the context of estimating multiple subspaces simultaneously.

Influence-Based Outlier Detection

The third approach relies on the assumption that an outlier is an atypical sample which has an unusually large influence on the estimated model parameters. This leads to an outlier detection scheme which to some extent combines the characteristics of the previous two approaches: it determines the influence of a sample by comparing the difference between the model estimated with and without this sample. For instance, for PCA one may use a sample influence function to measure

8See Appendix A.5 for details on how large this number needs to be.

9That is, the criterion that verifies whether each sample is consistent with the model derived from the subset.
the difference:

\[I(x_i, U_d) \equiv \langle \hat{U}_d, \hat{U}_{d(i)} \rangle, \]

where \(\langle \cdot, \cdot \rangle \) is the largest subspace angle (see Exercise 2.2) between the subspace span(\(\hat{U}_d \)) estimated with the \(i \)th sample and the subspace span(\(\hat{U}_{d(i)} \)) without the \(i \)th sample. The larger the difference, the larger the influence of \(x_i \) on the estimate, and the more likely that \(x_i \) is an outlier. Thus, we may eliminate a sample \(x_i \) as an outlier if

\[I(x_i, U_d) \geq \tau \]

for some threshold \(\tau > 0 \) or \(I(x_i, U_d) \) is relatively large among all the samples. However, this method does not come without an extra cost. We need to compute the principal components (and hence perform SVD) \(N \) times: one time with all the samples together and another \(N - 1 \) times with one sample eliminated from each time. There have been many studies that aim to give a formula that can accurately approximate the sample influence without performing SVD \(N \) times. Such a formula is called a theoretical influence function. For more detailed discussion of the sample influence (as well the other robust statistical techniques) for PCA, we refer the interested readers to [Jollife, 2002].

2.2.2 Incomplete Data Points

Another issue that we often encounter in practice is that some of the given data points are “incomplete.” For an incomplete data point \(x = [x_1, x_2, \ldots, x_D]^T \), we mean that some of its entries are missing or unspecified. For instance, if the \(x_i \)-entry is missing from \(x \), it means that we know \(x \) only up to a line in \(\mathbb{R}^D \):

\[x \in L \doteq \{[x_1, \ldots, x_{i-1}, t, x_{i+1}, \ldots, x_D]^T, t \in \mathbb{R} \}. \tag{2.21} \]

One should be aware that an incomplete data point is in nature rather different from a noisy data point or an outlier.\(^{10}\) In general, such incomplete data points can contain useful information about the model, and in the case of PCA, the principal subspace. For instance, if the principal subspace happens to contain the line \(L \), the principal subspace can be determined from a sufficiently large number of such lines. In general, the line \(L \) may or may not lie in the principal subspace. We therefore should handle incomplete data points with more care.

A useful observation here is that an incomplete data point \(x \) is just as good as any point on the line \(L \). Hence it is natural to choose a representative \(\hat{x} \in L \) that is the closest to the principal subspace. If we denote \(B_d = I - U_d U_d^T \), then the closest point \(x^* = [x_1, \ldots, x_{i-1}, t^*, x_{i+1}, \ldots, x_D]^T \) on \(L \) to the principal subspace can be found by minimizing the following quadratic function in \(t \):

\[t^* = \arg \min_t (x^T B_d^T B_d x). \tag{2.22} \]

\(^{10}\)One can view incomplete data points as a very special type of noisy data points which have infinite uncertainty only in certain directions.
This problem has a unique solution as long as the line \(L \) is not parallel to the principal subspace, i.e., \(e_i \not\in \text{span}(U_d) \).

In essence, the above process of finding \(x^* \) on the principal subspace is to give a rank-\(d \) approximation of the entire data set containing both complete and incomplete data points. Mathematically, PCA with incomplete data is equivalent to finding a rank-\(d \) approximation/factorization of the data matrix \(X \) with incomplete data entries (in a least-squares sense). In numerical linear algebra, \textit{power factorization} is especially designed to solve this problem. We refer the interested readers to [Vidal and Hartley, 2004] and references therein.

2.3 Extensions to PCA

Although PCA offers a rather useful tool to model the linear structure of a given data set, it however becomes less effective when the data actually has some significant nonlinearity, e.g., belonging to some nonlinear manifold. In this section, we introduce some basic extensions to PCA which can, to some extent, handle the difficulty with nonlinearity.

2.3.1 Nonlinear PCA

For nonlinear data, the basic rationale is not to apply PCA directly to the given data, but rather to a transformed version of the data. More precisely, we seek a nonlinear transformation (more precisely, usually an embedding):

\[
\phi(\cdot): \mathbb{R}^D \rightarrow \mathbb{R}^M, \\
\mathbf{x} \mapsto \phi(\mathbf{x}),
\]

such that the structure of the resulting data \(\{\phi(\mathbf{x}_i)\} \) becomes (significantly more) linear. In machine learning, \(\phi(\mathbf{x}) \) is called the “feature” of the data point \(\mathbf{x} \), and \(\mathbb{R}^M \) is called the “feature space.”

Define the matrix \(\Phi = [\phi(\mathbf{x}_1), \phi(\mathbf{x}_2), \ldots, \phi(\mathbf{x}_N)] \in \mathbb{R}^{M \times N} \). The principal components in the feature space are given by the eigenvectors of the sample covariance matrix\(^{11}\)

\[
\Sigma_{\phi(\mathbf{x})} = \frac{1}{N-1} \sum_{i=1}^{N} \phi(\mathbf{x}_i)\phi(\mathbf{x}_i)^T = \frac{1}{N-1} \Phi \Phi^T \in \mathbb{R}^{M \times M}.
\]

Let \(v_i \in \mathbb{R}^M \) be the eigenvectors:

\[
\Sigma_{\phi(\mathbf{x})} v_i = \lambda_i v_i, \quad i = 1, 2, \ldots, M. \tag{2.23}
\]

\(^{11}\)In principle, we should use the notation \(\hat{\Sigma}_{\phi(\mathbf{x})} \) to indicate that it is the estimate of the actual covariance matrix. But for simplicity, we will drop the hat in the sequel and simply use \(\Sigma_{\phi(\mathbf{x})} \). The same goes for the eigenvectors and the principal components.
Then the \(d \) “nonlinear principal components” of every data point \(\mathbf{x} \) are given by
\[
y_i = v_i^T \phi(\mathbf{x}) \in \mathbb{R}, \quad i = 1, 2, \ldots, d. \tag{2.24}
\]

In general, we do not expect that the map \(\phi(\cdot) \) is given together with the data. In many cases, searching for the proper map is a difficult task, and the use of nonlinear PCA is therefore limited. However, in some practical applications, good candidates for the map \(\phi(\cdot) \) can be found from the nature of the problem. In such cases, the map, together with PCA, can be very effective in extracting the overall geometric structure of the data.

Example 2.4 (Veronese Map for an Arrangement of Subspaces). As we will see later in this book, if the data points belong to a union of multiple subspaces, then a natural choice of the transformation \(\phi(\cdot) \) is the Veronese map:
\[
\nu_n(\cdot): \mathbf{x} \mapsto \nu_n(\mathbf{x}),
\]
\[
(x_1, \ldots, x_D) \mapsto (x_1^n, x_2^{n-1}, \ldots, x_D^n),
\]
where the monomials are ordered in the degree-lexicographic order. Under such a mapping, the multiple low-dimensional subspaces are mapped into a single subspace in the feature space, which can then be identified via PCA for the features.

NLPCA in a High-dimensional Feature Space.

There is a potential difficulty associated with nonlinear PCA. The dimension of the feature space, depending on the map \(\phi(\cdot) \), can be very high and it may be computationally prohibitive to compute the principal components in the feature space. For instance, if we try to search for a Veronese map of the proper degree \(n \), the dimension of the feature space \(M \) grows exponentially with the degree. When \(M \) exceeds \(N \), the eigenvalue decomposition of \(\Phi \Phi^T \in \mathbb{R}^{M \times M} \) becomes more costly than that of \(\Phi^T \Phi \in \mathbb{R}^{N \times N} \), although the two matrices have the same eigenvalues.

This motivates us to examine whether computation of PCA in the feature space can be reduced to computation with the lower-dimensional matrix \(\Phi^T \Phi \). The answer is actually yes. The key is to notice that, despite the dimension of the feature space, every eigenvector \(v \in \mathbb{R}^M \) of \(\Phi \Phi^T \) associated with a non-zero eigenvalue is always in the span of the matrix \(\Phi \):\(^{12}\)
\[
\Phi \Phi^T v = \lambda v \iff v = \Phi (\lambda^{-1} \Phi^T v) \in \text{range}(\Phi). \tag{2.25}
\]

We define the vector \(w = \lambda^{-1} \Phi^T v \in \mathbb{R}^N \). Obviously \(\| w \|^2 = \lambda^{-1} \). It is straightforward to check that \(w \) is an eigenvector of \(\Phi^T \Phi \) for the same eigenvalue \(\lambda \). Once such a \(w \) is computed from \(\Phi^T \Phi \), we can recover the corresponding \(v \) in the feature space as:
\[
v = \Phi w. \tag{2.26}
\]

\(^{12}\)The remaining \(M - N \) eigenvectors of \(\Phi \Phi^T \) are associated with the eigenvalue zero.
Therefore the ith nonlinear principal component of x under the map $\phi(\cdot)$ can be computed as:

$$y_i = v_i^T \phi(x) = w_i^T \Phi^T \phi(x) \in \mathbb{R},$$

(2.27)

where $w_i \in \mathbb{R}^M$ is the ith leading eigenvector of $\Phi^T \Phi$.

2.3.2 Kernel PCA

One should notice a very interesting feature about the above NLPCA method. Entries of both the matrix $\Phi^T \Phi$ and the vector $\Phi^T \phi(x)$ (in the expression for y_i) are all inner products of two features, i.e., of the form $\phi(x)^T \phi(y)$. In other words, computation of the principal components involves only inner products of the features. In the machine learning literature, one defines the “kernel function” of two vectors $x, y \in \mathbb{R}^D$ to be the inner product of their features

$$k(x, y) = \phi(x)^T \phi(y) \in \mathbb{R}.$$

(2.28)

The so-defined function $k(\cdot, \cdot)$ is a symmetric semi-positive definite function in x and y.\(^{13}\) The entries of the matrix $\Phi^T \Phi$ are nothing but $k(x_i, x_j)$.

As a consequence of our discussion above, one can perform nonlinear principal component analysis as long as a (semi-positive definite) kernel function is given. One does not have to explicitly define and evaluate the map $\phi(\cdot)$. In fact, given any (positive-definite) kernel function, according to a fundamental result in functional analysis, one can in principle decompose the kernel and recover the associated map $\phi(\cdot)$ if one wishes to.

Theorem 2.5 (Mercer’s Theorem). Given a symmetric function $k(x, y)$ with $|k(\cdot, \cdot)| \leq K$ for some K, if the linear operator $L : L^2(\mathbb{R}^D) \rightarrow L^2(\mathbb{R}^D)$:

$$L(f)(x) = \int_{\mathbb{R}^D} k(x, y) f(y) dy$$

(2.29)

is semi-positive definite, then:

- The operator L has an eigenvalue-eigenfunction decomposition $\{(\lambda_i, \phi_i(\cdot))\}$ such that $\sum \lambda_i < \infty$ and $|\phi_i(\cdot)| < K_i$ for some K_i.
- The kernel $k(x, y) = \sum \lambda_i \phi_i(x) \phi_i(y)$ for almost all (x, y).\(^{14}\)

The interested readers may refer to [Mercer, 1909] for a proof of the theorem. One important reason for computing with the kernel function is because when the dimension of the feature space is high (sometimes even infinite), the computation of features and their inner products is expensive. But for many popular choices of embedding, the evaluation of the kernel function can be much simpler.

\(^{13}\) A function $k(x, y)$ is semi-positive definite if $\int_{\mathbb{R}^D} f(x) k(x, y) f(y) dx dy \geq 0$ for all smooth functions $f(\cdot)$.

\(^{14}\) “Almost all” means except for a zero-measure set.
Example 2.6 (Examples of Kernels). There are several popular choices for the nonlinear kernel function:

\[k_1(x, y) = (x^T y)^n, \quad k_2(x, y) = \exp\left(-\frac{\|x - y\|^2}{2}\right). \]

Evaluation of such functions only involves the inner product or the difference between two vectors in the original space \(\mathbb{R}^D \). This is much more efficient than evaluating the inner product in the associated feature space, whose dimension for the first kernel grows exponentially with the degree \(n \) and for the second kernel is infinite.

We summarize our discussion in this section as Algorithm 2.1.

Algorithm 2.1 (Nonlinear Kernel PCA).

For a given set of data points \(X = [x_1, x_2, \ldots, x_N] \in \mathbb{R}^{D \times N} \), and a given map \(\phi(x) \) or a kernel function \(k(x, y) \):

1. Compute the inner product matrix
 \[\Phi^T \Phi = (\phi(x_i)^T \phi(x_j)) \quad \text{or} \quad (k(x_i, x_j)) \in \mathbb{R}^{N \times N}; \]
 (2.31)

2. Compute the eigenvectors \(w_i \in \mathbb{R}^N \) of \(\Phi^T \Phi \):
 \[\Phi^T \Phi w_i = \lambda_i w_i, \]
 (2.32)
 and normalize \(\|w_i\|^2 = \lambda_i^{-1} \);

3. For any data point \(x \), its \(i \)th nonlinear principal component is given by
 \[y_i = w_i^T \Phi^T \phi(x) \quad \text{or} \quad w_i^T [k(x_1, x), \ldots, k(x_N, x)]^T, \]
 (2.33)
 for \(i = 1, 2, \ldots, d \).

2.4 Bibliographic Notes

As a matrix decomposition tool, SVD was initially developed independently from PCA in the numerical linear algebra literature, also known as the Eckart and Young decomposition [Eckart and Young, 1936, Hubert et al., 2000]. The result regarding the least-squares optimality of SVD given in Theorem 2.1 can be traced back to [Householder and Young, 1938, Gabriel, 1978]. While principal components were initially defined exclusively in a statistical sense [Pearson, 1901, Hotelling, 1933], one can show that the algebraic solution given by SVD gives asymptotically unbiased estimates of the true parameters in the case of Gaussian distributions. A more detailed analysis of the statistical properties of PCA can be found in [Jollife, 2002].

Note that PCA only infers the principal subspace (or components), but not a probabilistic distribution of the data in the subspace. Probabilistic PCA was developed to infer an explicit probabilistic distribution from the data.
2.5 Exercises

Exercise 2.1 (Some Properties of PCA). Let \(x \) be a random vector with covariance matrix \(\Sigma_x \). Consider a linear transformation of \(x \):
\[
y = W^T x,
\]
where \(y \in \mathbb{R}^d \) and \(W \) is a \(D \times d \) orthogonal matrix. Let \(\Sigma_y = W^T \Sigma_x W \) be the covariance matrix for \(y \). Show that

1. The trace of \(\Sigma_y \) is maximized by \(W = U_d \), where \(U_d \) consists of the first \(d \) (normalized) eigenvectors of \(\Sigma_x \).
2. The trace of \(\Sigma_y \) is minimized by \(W = \tilde{U}_d \), where \(\tilde{U}_d \) consists of the last \(d \) (normalized) eigenvectors of \(\Sigma_x \).

Exercise 2.2 (Subspace Angles). Given two \(d \)-dimensional subspaces \(S_1 \) and \(S_2 \) in \(\mathbb{R}^D \), define the largest subspace angle \(\theta_1 \) between \(S_1 \) and \(S_2 \) to be the largest possible sharp angle (\(< 90^\circ \)) formed by any two vectors \(u_1, u_2 \in (S_1 \cap S_2) \perp \) with \(u_1 \in S_1 \) and \(u_2 \in S_2 \) respectively. Let \(U_1 \in \mathbb{R}^{D \times d} \) be an orthogonal matrix whose columns form a basis for \(S_1 \) and similarly \(U_2 \) for \(S_2 \). Then show that if \(\sigma_1 \) is the smallest non-zero singular value of the matrix \(W = U_1^T U_2 \), we have
\[
\cos(\theta_1) = \sigma_1.
\]
Similarly, one can define the rest of the subspace angles as \(\cos(\theta_i) = \sigma_i, i = 2, \ldots, d \) from the rest of the singular values of \(W \).

Exercise 2.3 (Fixed-Rank Approximation of a Matrix). Given an arbitrary full-rank matrix \(A \in \mathbb{R}^{m \times n} \), find the matrix \(B \in \mathbb{R}^{m \times n} \) with a fixed rank \(r < \min \{m, n\} \) such that the Frobenius norm \(\|A - B\|_F \) is minimized. The Frobenius norm of a matrix \(M \) is defined

[Tipping and Bishop, 1999b]. The data is assumed to be independent samples drawn from an unknown distribution, and the problem becomes one of identifying the subspace and the parameters of the distribution in a maximum-likelihood or a maximum-a-posteriori sense. When the underlying noise distribution is Gaussian, the geometric and probabilistic interpretations of PCA coincide [Collins et al., 2001]. However, when the underlying distribution is non-Gaussian, the optimal solution to PPCA may no longer be linear. For example, in [Collins et al., 2001] PCA is generalized to arbitrary distributions in the exponential family.

PCA is obviously not applicable to data whose underlying structure is nonlinear. PCA was generalized to principal curves and surfaces by [Hastie, 1984] and [Hastie and Stuetzle, 1989]. A more general approach however is to find a nonlinear embedding map, or equivalently a kernel function, such that the embedded data would lie on a linear subspace. Such methods are referred to as nonlinear kernel PCA [Scholkopf et al., 1998]. Finding such nonlinear maps or kernels is by no means a simple problem. Learning kernels is still an active research topic in the statistical learning community.
to be \(\|M\|_F^2 = \text{trace}(M^T M) \). (Hint: Use the SVD of \(A \) to guess the matrix \(B \) and then prove its optimality.)

Exercise 2.4 (Identification of Auto-Regressive Exogeneous (ARX) Systems). A popular model that people use to analyze a time series \(\{y_t\}_{t \in \mathbb{Z}} \) is the linear auto-regressive model:

\[
y_t = a_1 y_{t-1} + a_2 y_{t-2} + \cdots + a_n y_{t-n} + \epsilon_t, \quad \forall t, y_t \in \mathbb{R},
\]

where \(\epsilon_t \in \mathbb{R} \) models the modeling error or noise and it is often assumed to be a white-noise random process. Now suppose that you are given the values of \(y_t \) for a sufficiently long period of time.

1. Show that in the noise free case, i.e. \(\epsilon_t \equiv 0 \), regardless of the initial conditions, the vectors \(x_t = [y_t, y_{t-1}, \ldots, y_{t-n}]^T \) for all \(t \) lie on an \(n \)-dimensional hyperplane in \(\mathbb{R}^{n+1} \). What is the normal vector to this hyperplane?

2. Now consider the case with noise. Describe how you may use PCA to identify the unknown model parameters \((a_1, a_2, \ldots, a_n)\)?

Exercise 2.5 (Basis for an Image). Given a gray-level image \(I \), consider all of its \(b \times b \) blocks, denoted as \(\{B_i \in \mathbb{R}^{b \times b}\} \). We would like to approximate each block as a superposition of \(d \) base blocks, say \(\{\hat{B}_j \in \mathbb{R}^{b \times b}\}_{j=1}^d \). That is,

\[
B_i = \sum_{j=1}^d a_{ij} \hat{B}_j + E_i,
\]

where \(E_i \in \mathbb{R}^{b \times b} \) is the possible residual from the approximation. Describe how you can use PCA to identify an optimal set of \(d \) base blocks so that the residual is minimized?

In Section 1.2.1, we have seen an example in which a similar process can be applied to an ensemble of face images, where the first \(d = 3 \) principal components are computed for further classification. In the computer vision literature, the corresponding base images are called “eigen faces.”

Exercise 2.6 (Probability of Selecting a Subset of Inliers). Imagine we have 80 samples from a four-dimensional subspace in \(\mathbb{R}^5 \). However, the samples are contaminated with another 20 samples that are far from the subspace. We want to estimate the subspace from randomly drawn subsets of four samples. In order to be of probability 0.95 that one of the subsets contains only inliers, what is the smallest number of subsets that we need to draw?

Exercise 2.7 (Ranking of Webpages). PCA is actually used to rank webpages on the Internet by many popular search engines. One way to see this is to view the Internet as a directed graph \(G = (V, E) \), where every webpage, denoted as \(p_i \), is a node in \(V \), and every hyperlink from \(p_i \) to \(p_j \), denoted as \(e_{ij} \), are directed edges in \(E \). We can assign each webpage \(p_i \) an “authority” score \(x_i \) that indicates how many other webpages point to it and a “hub” score \(y_i \) that indicates how many other webpages it points out to. Then, the authority score \(x_i \) depends on how many hubs point to \(p_i \) and the hub score \(y_i \) depends on how many authorities \(p_i \) points to. Let \(L \) be the adjacent matrix of the graph \(G \) (i.e. \(L_{ij} = 1 \) if \(e_{ij} = E \)), \(x \) the vector of the authority scores and \(y \) the vector of the hub scores.

1. Justify that the following relationships hold:

\[
y' = Lx, \quad x' = L^T y; \quad x = x'/\|x'\|, \quad y = y'/\|y'\|.
\]
2. Show that x is the eigenvector of $L^T L$ and y is the eigenvector of LL^T associated with the largest eigenvalue (why not the others). Explain how x and y can be computed from the singular value decomposition of L.

In the literature, this is known as the Hyperlink Induced Topic Selection (HITS) algorithm [Kleinberg, 1999, Ding et al., 2004]. In fact, the same algorithm can also be used to rank any competitive sports such as football teams and chess players.

Exercise 2.8 (Karhunen-Loève Transform). The Karhunen-Loève transform (KLT) can be thought as a generalization of PCA from a (finite-dimensional) random vector $x \in \mathbb{R}^D$ to an (infinite-dimensional) random process $x(t), t \in \mathbb{R}$. When $x(t)$ is a (zero-mean) second-order stationary random process, its auto correlation function is defined to be $K(t, \tau) = E[x(t)x(\tau)]$ for all $t, \tau \in \mathbb{R}$.

1. Show that $K(t, \tau)$ has a family of orthonormal eigen-functions $\{\phi_i(t)\}_{i=1}^{\infty}$ that are defined as

 \[
 \int K(t, \tau) \phi_i(\tau) d\tau = \lambda_i \phi_i(t), \quad i = 1, 2, \ldots
 \]

 (2.39)

 (Hint: First show that $K(t, \tau)$ is a positive definite function and then use Mercer’s Theorem.)

2. Show that with respect to the eigen-functions, we original random process can be decomposed as

 \[
 x(t) = \sum_{i=1}^{n} x_i \phi_i(t),
 \]

 (2.40)

 where $\{x_i\}_{i=1}^{\infty}$ are a set of uncorrelated random variables.
Chapter 3
Iterative Methods for
Multiple-Subspace Segmentation

“The whole is more than the sum of its parts.”
– Metaphysica, Aristotle

In this chapter, we consider a generalization of PCA in which the given sample points are drawn from an unknown arrangement of subspaces of unknown and possibly different dimensions. To some extent, this problem can be cast as a variation to the problem of clustering of multivariate data, which has been widely studied in pattern recognition and statistical learning. We will first review some basic concepts and existing iterative algorithms for clustering multivariate data, i.e. the K-means algorithm and the Expectation Maximization (EM) algorithm. We then give a clear formulation of the problem in which the clusters are subspaces and introduce the basic notation for representing both linear and affine subspaces. We then customize the two algorithms so as to segment a known number of subspaces with known dimensions. We point out the advantages and disadvantages of these algorithms, particularly their sensitivity to initialization.

3.1 Statistical Methods for Data Clustering

In clustering analysis, the basic assumption is that the given data points $X = \{x_i\}_{i=1}^N \subset \mathbb{R}^D$ are grouped into a number of clusters $n \leq N$ such that the “distance” (or “dissimilarity”) among points in the same group is significantly smaller than those between clusters. Thus the outcome of clustering analysis is a
map:
\[c(\cdot) : i \in \{1, 2, \ldots, N\} \mapsto j = c(i) \in \{1, 2, \ldots, n\} \quad (3.1) \]
that assigns each point \(x_i \) to one of the \(n \) clusters. Obviously, the outcome of the clustering very much depends on what the chosen measure of distance is. If the notion of distance is not clearly specified, the clustering problem can be ill-defined. The following example shows some of the reasons.

Example 3.1 (No Invariant Clustering by the Euclidean Distance). If we always choose the Euclidean distance, then the clustering result cannot be invariant under an arbitrary linear transformation of the data points – usually representing a change of coordinates. That is, if we replace \(x_i \) with \(x'_i = Ax_i \) for some non-singular matrix \(A \in \mathbb{R}^{D \times D} \), then the clustering of \(\{x_i\} \) and \(\{x'_i\} \) will in general be different. This is easy to see with a simple example. Suppose we need to cluster the \(N = 4 \) points in \(\mathbb{R}^2 \) as follows

\[
\begin{align*}
 x_1 &= [1, 10]^T, & x_2 &= [-1, 10]^T, & x_3 &= [1, -10]^T, & x_4 &= [-1, -10]^T
\end{align*}
\]

into \(n = 2 \) clusters. The two clusters are obviously \(\{x_1, x_2\} \) and \(\{x_3, x_4\} \). Now consider two linear transformations \(A_1 \) and \(A_2 \in \mathbb{R}^{2 \times 2} \):

\[
A_1 = \begin{bmatrix} 100 & 0 \\ 0 & 1 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}, \quad \begin{bmatrix} 0 & -10 \\ 10 & 0 \end{bmatrix}.
\]

Applying the two maps to the original set of points, we obtain two new sets of points \(\{x'_i = A_1 x_i\} \) and \(\{x''_i = A_2 x_i\} \), respectively:

\[
\begin{align*}
 x'_1 &= [100, 10]^T, & x'_2 &= [-100, 10]^T, & x'_3 &= [100, -10]^T, & x'_4 &= [-100, -10]^T; \\
 x''_1 &= [-100, 10]^T, & x''_2 &= [-100, -10]^T, & x''_3 &= [100, 10]^T, & x''_4 &= [100, -10]^T.
\end{align*}
\]

As a set \(\{x'_i\} \) is the same as \(\{x''_i\} \). However, the two clusters are \(\{x'_1, x'_3\} \) and \(\{x'_2, x'_4\} \) for the first set; and \(\{x''_1, x''_3\} \) and \(\{x''_2, x''_4\} \) for the latter. In fact, regardless of the choice of objective or method, it is always the case that the clustering result for one of the two new sets will be different from that for the original set.

From the above example, we see that in order for the clustering result to be invariant under a linear transformation, instead of always using the Euclidean distance, one should properly adjust the distance measure after each linear transformation of the data. To be more precise, let the length of a vector \(x \in \mathbb{R}^D \) be measured by

\[
\|x\|^2_\Sigma = x^T \Sigma^{-1} x \quad (3.2)
\]

for some positive-definite symmetric matrix \(\Sigma \in \mathbb{R}^{D \times D} \). Notice that \(\Sigma = I_{D \times D} \) corresponds to the Euclidean length. Then after a linear transformation, \(x' = Ax \) for some \(D \times D \) matrix \(A \), the “induced” length of \(x' \) is defined to be

\[
\|x'\|^2_\Sigma = (x')^T (\Sigma')^{-1} x' = (x')^T (A\Sigma A^T)^{-1} x' = x^T \Sigma^{-1} x. \quad (3.3)
\]

Thus, the induced length remains the same after the transformation.

Notice that the relationship between \(\Sigma \) and \(\Sigma' = A\Sigma A^T \) is just like that between the covariance matrices of two random vectors related by a linear transformation \(A \). Thus, the change of distance measure is equivalent to the assumption that the original data \(\{x_i\} \) are drawn from some probabilistic distribution. In the
context of data clustering, it is natural to further assume that the distribution itself is a mixture of \(n \) (Gaussian) distributions with different means and covariances:\(^1\)

\[
p_j(x) \sim \mathcal{N}(\mu_j, \Sigma_j), \quad j = 1, 2, \ldots, n.
\]

Thus, the clustering problem becomes a statistical model estimation problem and can be solved via statistical methods. We introduce below two such methods that are based on two different estimation (and optimization) paradigms: 1. Minimax estimate; 2. Maximum-likelihood estimate. In this section, we illustrate the basic ideas using mixtures of Gaussians; but a discussion on more general cases can be found in Appendix C.

3.1.1 K-Means

With respect to the above statistical model, a natural measure of the distance between a sample point and the mean of a cluster is the Mahalanobis distance:

\[
d(x_i, \mu_j) = \|x_i - \mu_j\|_\Sigma_j^{-1},
\]

which is proportional to the (negative) log-likelihood of the sample. The map \(c^*(\cdot) \) that represents an optimal clustering of the data \(\{x_i\} \) minimizes the following “within-cluster scatter”:

\[
\min_{c(\cdot)} w(c) = \frac{1}{N} \sum_{j=1}^{n} \sum_{c(i)=j} \|x_i - \mu_j\|_\Sigma_j^{-1}.
\]

That is, \(w(c) \) is a measure of the average distance of all the sample points to their respective cluster means. Notice that the minimum value of \(w(c) \) decreases with the increase of the number \(n \) of clusters. In the extreme case \(n = N \), i.e., each point is a cluster itself, we have \(w(c) = 0 \). Therefore, before conducting clustering analysis, it is very important to know the correct value of \(n \). We will discuss methods to determine \(n \) in later chapters; in this chapter, we always assume the correct cluster number \(n \) is known.

In the above objective \(w(c) \) (3.6), \(c(\cdot), \{\mu_j\}, \) and \(\{\Sigma_j\} \) are all unknown. The problem is how to find the optimal \(c^*(\cdot), \mu^*_j \) and \(\Sigma^*_j \) so that \(w(c) \) is minimized. Unfortunately, there is no closed-form solution to the optimal estimates. The main difficulty is that the objective (3.6) is hybrid – it is a combination of minimization on the continuous variables \(\{\mu_j, \Sigma_j\} \) and the discrete variable \(c(i) \). Conventional nonlinear optimization techniques, such as gradient descent, do not directly apply to this case. Hence special optimization schemes have to be developed.

Notice that for \(w(c) \) to be minimum, it is necessary that each point \(x_i \) is assigned to the cluster whose mean is the closest to \(x_i \). That is, given \(\{\mu_j, \Sigma_j\} \), we

\(^1\)From the viewpoint of subspaces, here we try to fit the data with multiple zero-dimensional affine spaces (or points) – one point (the mean) for each cluster. Later in this Chapter, we will see how to generalize the cluster means from points to arbitrary (affine) subspaces.
3.1. Statistical Methods for Data Clustering

have
\[
c(i) = \arg \min_j \| x_i - \mu_j \|_{\Sigma_j}^2.
\] (3.7)

Also, from the samples that belong to each cluster, we can obtain unbiased estimates of the mean and covariance of the cluster:
\[
\hat{\mu}_j = \frac{1}{N_j} \sum_{c(i) = j} x_i \in \mathbb{R}^D, \quad \hat{\Sigma}_j = \frac{1}{N_j - 1} \sum_{c(i) = j} (x_i - \hat{\mu}_j)(x_i - \hat{\mu}_j)^T \in \mathbb{R}^{D \times D},
\] (3.8)

where \(N_j\) is the number of points that are assigned to cluster \(j\) by the map \(c(\cdot)\).

The above discussions have suggested the following two-step iterative process for minimizing \(w(c)\).

Suppose that some initial estimates \(\{\hat{\mu}_j^{(0)}, \hat{\Sigma}_j^{(0)}\}\) of the means are available. Then we can easily minimize the objective (3.6) for \(c(\cdot)\). That is, for each cluster with the mean \(\hat{\mu}_j^{(0)}\) and covariance \(\hat{\Sigma}_j^{(0)}\), we obtain the subset of points \(X_j^{(0)}\) that are closer to \(\mu_j\) than to any other means. The data set \(X\) is therefore segmented into \(n\) clusters
\[
X = X_1^{(0)} \cup X_2^{(0)} \cup \cdots \cup X_n^{(0)},
\] (3.9)

and we further require \(X_j^{(0)} \cap X_{j'}^{(0)} = \emptyset\) for \(j \neq j'\). In this way we obtain an estimate of the map \(c^{(0)}(\cdot)\).

Knowing the membership of each point \(x_i\) from the above segmentation, the objective (3.6) can be rewritten as:
\[
\sum_{j=1}^n \left(\min_{\mu_j, \Sigma_j} \sum_{c(i) = j} \| x_i - \mu_j \|_{\Sigma_j}^2 \right).
\] (3.10)

Notice that the solution to the minimization inside the bracket is a new set of estimates of the mean and covariance:
\[
\hat{\mu}_j^{(1)} = \frac{1}{N_j} \sum_{c(i) = j} x_i, \quad \hat{\Sigma}_j^{(1)} = \frac{1}{N_j - 1} \sum_{c(i) = j} (x_i - \hat{\mu}_j^{(1)})(x_i - \hat{\mu}_j^{(1)})^T.
\]

These new means and covariances give a new value of the objective no larger than that given by the initial estimates \(\{\hat{\mu}_j^{(0)}, \hat{\Sigma}_j^{(0)}\}\).

We can further reduce the objective by re-classifying each data point \(x_i\) to its closest mean according to the new estimates \(\{\hat{\mu}_j^{(1)}, \hat{\Sigma}_j^{(1)}\}\). In this way, we obtain a new segmentation \(X = X_1^{(1)} \cup X_2^{(1)} \cup \cdots \cup X_n^{(1)}\). If we keep iterating between the above two steps, the objective will keep decreasing until its value stabilizes to a (local) equilibrium and the segmentation no longer changes. This minimization process is referred to as the K-means algorithm in the statistical-learning literature. We summarize the algorithm as Algorithm 3.1.

If a point \(x \in X\) has the same minimal distance to more than one cluster, then we assign it arbitrarily to one of them.
Algorithm 3.1 (K-Means).

Given a set of sample points \(X = \{x_i\}_{i=1}^N \), the number of clusters \(n \), initialize the means and covariances of the clusters with a set of initial values \(\mu_j^{(0)} \in \mathbb{R}^D, \Sigma_j^{(0)} \in \mathbb{R}^{D \times D}, j = 1, 2, \ldots, n \).

Let \(m = 0 \).

1. **Segmentation:** For each point \(x_i \in X \), assign it to \(X_j^{(m)} \) if
 \[
 j = c(i) = \underset{\ell=1,2,\ldots,n}{\arg\min} \|x_i - \mu_\ell^{(m)}\|^2_{\Sigma_\ell^{(m)}}. \tag{3.11}
 \]
 If the above cost function is minimized by more than one mean, assign the point arbitrarily to one of them.

2. **Estimation:** Obtain new estimates for the \(n \) cluster means and covariances:
 \[
 \mu_j^{(m+1)} = \frac{1}{N_j} \sum_{c(i)=j} x_i,
 \]
 \[
 \Sigma_j^{(m+1)} = \frac{1}{N_j - 1} \sum_{c(i)=j} (x_i - \mu_j^{(m+1)}) (x_i - \mu_j^{(m+1)})^T. \tag{3.12}
 \]

Let \(m \leftarrow m + 1 \), and repeat Steps 1 and 2 until the segmentation does not change.

Notice that Algorithm 3.1 can be significantly simplified if the Gaussian distributions are all *isotropic*, i.e., \(\Sigma_j = \sigma_j^2 I \) for some \(\sigma_j^2 \in \mathbb{R}_+ \), or all covariance matrices are equal to the identity matrix \(\Sigma_j \equiv I \). In the latter case, one essentially adopts the Euclidean distance between the sample points and the cluster means. This special case is often referred to also as the “K-means” algorithm in the literature.

3.1.2 Expectation Maximization (EM)

The K-means algorithm essentially relies on the minimax estimation paradigm in statistics (see Appendix C) and it does not need to assume how exactly the \(n \) component distributions are mixed. The Expectation Maximization (EM) algorithm [Dempster et al., 1977] to be introduced below, however, relies on the maximum-likelihood estimation paradigm (see Appendix C) and it does need an explicit model for the mixed distribution. Instead of minimizing the modeling error in a least-distance sense, the EM algorithm estimates the model parameters and the segmentation of the data in a maximum-likelihood (ML) sense. As we shall soon see, the EM algorithm, though derived from a different set of assump-
3.1. Statistical Methods for Data Clustering

A Probabilistic Model for a Mixed Distribution

The EM algorithm is based on the assumption that the given data points \(\{x_i\}_{i=1}^N \) are independent samples from a (mixed) probabilistic distribution. In the context of clustering analysis, it is reasonable to assume that \(x_i \) are samples drawn from multiple “component” distributions and each component distribution is centered around a mean. To model from which component distribution a sample \(x_i \) is actually drawn, we can associate a latent discrete random variable \(z \in \mathbb{R} \) to each data point \(x_i \), such that each discrete random variable \(z_i = j \) if the point \(x_i \) is drawn from the \(j \)th component, \(i = 1, 2, \ldots, N \). Then the random vector

\[
(x, z) \in \mathbb{R}^D \times \mathbb{Z}_+ \tag{3.13}
\]

completely describes the random event that the point \(x \) is drawn from a component distribution indicated by the value of \(z \).

Typically, one assumes that the random variable \(z \) is subject to a multinomial (marginal) distribution, i.e.,

\[
p(z = j) = \pi_j \geq 0, \quad \text{s.t. } \pi_1 + \pi_2 + \cdots + \pi_n = 1. \tag{3.14}
\]

Each component distribution is then modeled as a conditional distribution \(p(x|z) \) of \(x \) given \(z \). A popular choice for the component distribution is a multivariate Gaussian distribution: \(p(x|z = j) \sim \mathcal{N}(\mu_j, \Sigma_j) \), in which \(\mu_j \) is the mean and \(\Sigma_j \) is the covariance of the \(j \)th cluster.

The Maximum-Likelihood Estimation

In the model, the parameters \(\theta = \{\mu_j, \Sigma_j, \pi_j\}_{j=1}^n \) are unknown and they need to be inferred from the samples of \(x \). The marginal distribution of \(x \) given the parameters is called the likelihood function, and is given by

\[
p(x|\theta) = \sum_{z=1}^n p(x|z, \theta) p(z|\theta) = \sum_{j=1}^n \pi_j p(x|z = j, \theta). \tag{3.15}
\]

Notice that \(p(x|\theta) \) is a “mixture” of \(n \) distributions \(p(x|z = j, \theta), j = 1, 2, \ldots, n \) that is exactly of the form (1.7) introduced in Chapter 1.

Given \(N \) i.i.d. samples \(X = \{x_i\}_{i=1}^N \) from the distribution, the optimal estimates of the parameters \(\hat{\theta}_{ML} \) are given by maximizing the log-likelihood function

\[
l(X; \theta) = \sum_{i=1}^N \log p(x_i|\theta). \tag{3.16}
\]

\footnote{This resemblance however should not be mistaken as excuses to confuse these two algorithms. The solutions given by these two algorithms will be close but different in general.}
In the statistical learning literature, this objective is often referred to as the \textit{incomplete log-likelihood function} – “incomplete” compared to the complete log-likelihood function to be introduced later. However, maximizing the incomplete log-likelihood with respect to the parameters θ is typically very difficult, because this is a very high-dimensional nonlinear optimization problem. This is the motivation for the \textit{expectation maximization} (EM) process which utilizes the latent random variable z introduced earlier to attempt to simplify the maximization process.

\textbf{Derivation of the Expectation and Maximization}

First notice $p(x|\theta) = p(x,z|\theta)/p(z|x,\theta)$ and $\sum_j p(z = j|x,\theta) = 1$. We can rewrite the (incomplete) log-likelihood function as

$$l(X;\theta) = \sum_{i=1}^{N} \sum_{j=1}^{n} p(z_i = j|x_i,\theta) \log \frac{p(x_i,z_i = j|\theta)}{p(z_i = j|x_i,\theta)}$$

(3.17)

$$= \sum_{i=1}^{N} \sum_{j=1}^{n} p(z_i = j|x_i,\theta) \log p(x_i,z_i = j|\theta)$$

(3.18)

$$- \sum_{i=1}^{N} \sum_{j=1}^{n} p(z_i = j|x_i,\theta) \log p(z_i = j|x_i,\theta).$$

(3.19)

The first term (3.18) is called the \textit{expected complete log-likelihood function} in the statistical learning literature;\footnote{That is, it is the expected value of the complete log-likelihood $\log p(x,z|\theta)$ of the “complete” random vector (x,z) with respect to the distribution of $(z|x,\theta)$.} and the second term (3.19) is the \textit{conditional entropy}5 of z_i given x_i and θ. Hence, the maximum-likelihood estimation is equivalent to maximizing the expected log-likelihood and at the same time minimizing the conditional entropy of z_i.

Given each x_i, we can define a new function $w_{ij}(\theta) \doteq p(z_i = j|x_i,\theta)$. By replacing $w(\theta) = \{w_{ij}(\theta)\}$ into the incomplete log-likelihood, we can view $l(X;\theta)$ as a new function

$$l(X;\theta) \doteq g(w(\theta),\theta).$$

(3.20)

Instead of directly maximizing the $l(X;\theta)$ with respect to θ, we may maximize $g(w(\theta),\theta)$ in a “hill-climbing” style by iterating between the following two steps:

\textbf{Step 1}. partially maximizing $g(w(\theta),\theta)$ with respect to $w(\theta)$ with θ (the second argument) fixed;

\textbf{Step 2}. partially maximizing $g(w(\theta),\theta)$ with respect to the second θ with $w(\theta)$ fixed (to the value obtained from Step 1.)

5The entropy of a (discrete) random variable z is defined to be $H(z) \doteq \sum_j p(z = j) \log p(z = j)$.
Notice that at each step the value of \(g(w(\theta), \theta) \) does not decrease, so neither does that of \(l(X; \theta) \). When the iteration converges to a stationary point \(\theta^* \), it must be a (local) extremum for the function \(l(X; \theta) \). To see this, examine the equation

\[
\frac{dl(X; \theta)}{d\theta} = \frac{\partial g(w, \theta)}{\partial w} \frac{\partial w(\theta)}{\partial \theta} + \frac{\partial g(w, \theta)}{\partial \theta}.
\]

Since \(\theta^* \) must be a stationary point for each step, we have

\[
\left. \frac{\partial g(w, \theta)}{\partial w} \right|_{\theta^*} = 0 \quad \text{and} \quad \left. \frac{\partial g(w, \theta)}{\partial \theta} \right|_{\theta^*} = 0.
\]

As we have alluded to earlier, the main reason for choosing this alternative maximization is that, for the log-likelihood function of a mixture of distributions, each of these two steps of maximizing \(g \) are much easier to compute than directly maximizing the original log-likelihood function. In fact, for Gaussian distributions, one can often find closed-form solutions to each step.

E-Step: Expected Membership of Samples. To find the optimal \(\hat{w} = \{\hat{w}_{ij}\} \) that maximizes \(g(w, \theta) \), we need to maximize the function

\[
\max_w g(w, \theta) = \sum_{i=1}^{N} \sum_{j=1}^{n} w_{ij} \log p(x_i, z_i = j|\theta) - \sum_{i=1}^{N} \sum_{j=1}^{n} w_{ij} \log w_{ij}
\]

with respect to \(w \) subject to the constraints \(\sum_j w_{ij} = 1 \) for every \(i \). For this purpose, we have the following statement.

Proposition 3.2 (Expected Membership). The optimal \(\hat{w} \) that partially maximizes \(g(w, \theta) \) is given by:

\[
\hat{w}_{ij} = \frac{\pi_j p(x_i | z_i = j, \theta)}{\sum_{\ell=1}^{n} \pi_{\ell} p(x_i | z_i = \ell, \theta)}
\]

Proof. Using the Lagrange multipliers method, we differentiate the objective function

\[
\sum_{i=1}^{N} \sum_{j=1}^{n} \left(w_{ij} \log p(x_i, z_i = j|\theta) - w_{ij} \log w_{ij} \right) + \sum_{i=1}^{N} \lambda_i \left(\sum_{j=1}^{n} w_{ij} - 1 \right).
\]

with respect to \(w_{ij} \) and set the derivatives to zero. We obtain the necessary conditions for extrema:

\[
\log p(x_i, z_i = j|\theta) - \log w_{ij} - 1 + \lambda_i = 0
\]

for every \(i \) and \(j \). Solving for \(w_{ij} \) from this equation, we obtain:

\[
w_{ij} = e^{\lambda_i - 1} p(x_i, z_i = j|\theta).
\]

Since \(\sum_j w_{ij} = 1 \), we have \(e^{\lambda_i - 1} = \left(\sum_{\ell} p(x_i, z_i = \ell|\theta) \right)^{-1} \). In addition,

\[
p(x_i, z_i = j|\theta) = p(x_i | z_i = j, \theta) p(z_i = j|\theta) = \pi_j p(x_i | z_i = j, \theta).
\]

We hence have the claim of the proposition. \(\square \)
M-Step: Maximize the Expected Complete Log-Likelihood. Now we consider the second step in which we fix w and maximize $g(w, \theta)$ with respect to θ. This means we fix $w_{ij} = p(z_i = j|x_i, \theta)$ in the expression of $l(X; \theta)$. The second term (3.19) of $l(X; \theta)$ is therefore fixed as far as this step is concerned. Hence it is equivalent to maximizing the first term (3.18), the so-called expected complete log-likelihood:

$$L(X; \theta) = \sum_{i=1}^{N} \sum_{j=1}^{n} w_{ij} \log \left(\pi_j p(x_i|z_i = j, \theta) \right). \quad (3.27)$$

For many common choices of the distributions $p(x|z = j, \theta)$, we can find closed-form solutions to maximize $L(X; \theta)$.

For simplicity, in the clustering analysis, we may assume that each cluster is an isotropic normal distribution, i.e., $p(x|z = j, \theta) = N(\mu_j, \sigma_j^2 I)$. Maximizing $L(X; \theta)$ is then equivalent to maximizing the function

$$\sum_{i=1}^{N} \sum_{j=1}^{n} w_{ij} \left(\log \pi_j - D \log \sigma_j - \frac{\|x_i - \mu_j\|^2}{\sigma_j^2} \right), \quad (3.28)$$

where we have omitted terms that depend on only the fixed w_{ij} and constants.

The goal of maximization is to find the parameters $\hat{\theta} = \{\hat{\mu}_j, \hat{\sigma}_j, \hat{\pi}_j\}_{j=1}^{n}$ that maximize the above expression. Since $\sum_{j=1}^{n} \pi_j = 1$, this is a constrained optimization problem, which can be solved in closed-form using the Lagrange-multiplier method. We here give below the formulae but leave the derivation to the reader as an exercise (see Exercise 3.2):

$$\hat{\mu}_j = \frac{\sum_{i=1}^{N} w_{ij} x_i}{\sum_{i=1}^{N} w_{ij}}, \quad \hat{\sigma}_j^2 = \frac{\sum_{i=1}^{N} w_{ij} \|x_i - \hat{\mu}_j\|^2}{D \sum_{i=1}^{N} w_{ij}}, \quad \hat{\pi}_j = \frac{\sum_{i=1}^{N} w_{ij}}{N}. \quad (3.29)$$

We summarize the above results as Algorithm 3.2.

Instead of using a deterministic map to assign each point x_i to a cluster (as in the K-means algorithm 3.1, where $j = c(i)$), the EM algorithm assigns the point x_i “softly” to each cluster according to a set of probabilities $\{w_{ij}\}$ (that are subject to $\sum_{i=1}^{n} w_{ij} = 1$). Subsequently, the number of points N_j in the jth cluster is expected to be $\sum_{i=1}^{N} w_{ij}$; the ratio $\frac{N_j}{N}$ is expected as $\frac{\sum_{i=1}^{N} w_{ij}}{N}$; and the means μ_j in (3.12) are replaced by an expected version in (3.31). In general, if the variances σ_j are significantly smaller than the distances between the means μ_j, the K-means and EM algorithms give similar clustering results.

From the above derivation, each step of the EM algorithm increases the log-likelihood function $l(X; \theta)$. However, beware that a stationary value θ^* that the algorithm converges to is not necessarily the global maximum (if the global maximum exists at all). Furthermore, for distributions as simple as a mixture of Gaussian distributions, the global maximum may not even exist! We illustrate this via the following example.
Let \(N \) Gaussian clusters \(\{ \mu_j, \sigma_j \} \) exist a small \(\sigma \). Example 3.3 (ML Estimate of Two Mixed Gaussians [Vapnik, 1995]).

Given a set of sample points \(X = \{ x_i \}_{i=1}^n \subset \mathbb{R}^D \) drawn from \(n \) (isotropic) Gaussian clusters \(\mathcal{N}(\mu_j, \sigma_j^2 I) \), \(j = 1, 2, \ldots, n \), initialize the parameters \(\theta = \{ \mu_j, \sigma_j, \pi_j \} \) with a set of vectors \(\hat{\mu}_j^{(0)} \in \mathbb{R}^D \) and scalars \(\hat{\sigma}_j^{(0)}, \hat{\pi}_j^{(0)} \in \mathbb{R} \). Let \(m = 0 \).

1. **Expectation:** Using the current estimate for the parameters \(\hat{\theta}^{(m)} = \{ \hat{\mu}_j^{(m)}, \hat{\sigma}_j^{(m)}, \hat{\pi}_j^{(m)} \} \), compute the estimate of \(w_{ij} \) as
 \[
 w_{ij}^{(m)} = p(z_i = j|x_i, \hat{\theta}^{(m)}) = \frac{\hat{\pi}_j^{(m)} p(x_i|z_i = j, \hat{\theta}^{(m)})}{\sum_{\ell=1}^n \hat{\pi}_\ell^{(m)} p(x_i|z_i = \ell, \hat{\theta}^{(m)})}, \tag{3.30}
 \]
 where \(p(x|z = j, \theta) \) is given in (3.43).

2. **Maximization:** Using the estimated \(w_{ij}^{(m)} \), update the estimates for the parameters \(\hat{\mu}_j, \hat{\sigma}_j \) as:
 \[
 \hat{\mu}_j^{(m+1)} = \frac{\sum_{i=1}^N w_{ij}^{(m)} x_i}{\sum_{i=1}^N w_{ij}^{(m)}}, \quad (\hat{\sigma}_j^{(m+1)})^2 = \frac{\sum_{i=1}^N w_{ij}^{(m)} \| x_i - \hat{\mu}_j^{(m+1)} \|^2}{D \sum_{i=1}^N w_{ij}^{(m)}}, \tag{3.31}
 \]
 and update \(\hat{\pi}_j \) as \(\hat{\pi}_j^{(m+1)} = \frac{\sum_{i=1}^N w_{ij}^{(m)}}{N} \).

Let \(m \leftarrow m + 1 \), and repeat Steps 1 and 2 until the update in the parameters is small enough.

Example 3.3 (ML Estimate of Two Mixed Gaussians [Vapnik, 1995]). Consider a distribution \(p(x) \), \(x \in \mathbb{R} \) that is a mixture of two Gaussian (normal) distributions:

\[
 p(x; \mu, \sigma) = \frac{1}{2\sigma\sqrt{2\pi}} \exp \left\{ -\frac{(x - \mu)^2}{2\sigma^2} \right\} + \frac{1}{2\sqrt{2\pi}} \exp \left\{ -\frac{x^2}{2} \right\}, \tag{3.32}
\]

where \(\theta = (\mu, \sigma) \) are unknown.

Then for any data \(X = \{ x_1, x_2, \ldots, x_N \} \) and for any given constant \(A > 0 \), there exists a small \(\sigma_0 \) such that for \(\mu = x_1 \) the log-likelihood will exceed \(A \) (regardless of the true \(\mu, \sigma \)):

\[
 l(X; \theta) \big|_{\mu=x_1, \sigma=\sigma_0} = \sum_{i=1}^N \ln p(x_i \mid \mu = x_1, \sigma = \sigma_0) > \ln \left(\frac{1}{2\sigma_0\sqrt{2\pi}} \right) + \sum_{i=2}^N \ln \left(\frac{1}{2\sqrt{2\pi}} \exp \left\{ -\frac{x_i^2}{2} \right\} \right) = -\ln \sigma_0 - \sum_{i=1}^N \frac{x_i^2}{2} - N \ln 2\sqrt{2\pi} > A.
\]

Therefore, the maximum of the log-likelihood does not exist, and the ML objective does not provide a solution to estimating the unknown parameters. In fact, in this case, the true parameter corresponds to the largest (finite) local maximum of the log-likelihood.
From the simple example, we can conclude that the ML method only applies to very restrictive set of densities. If we insist using it for mixtures of Gaussians, we have to rule out the situations that the variance can be arbitrarily small, i.e., $\sigma_0 \to 0$. Fortunately, in practice, the EM algorithm typically tends to avoid such singular directions and is able to converge to a local maximum that represents the true parameters if a reasonable initialization is given. However, this leads to another potential problem: What if the distributions to be estimated are indeed close to being singular? This is unfortunately the case with subspace-like distributions. Thus, singular distributions like subspaces require special treatment.

Also notice that the above K-means and EM algorithms are derived mainly for isotropic Gaussian distributions. In practice, a cluster is rarely isotropic. For instance, as we have seen in PCA, a cluster can be a set of points sampled from a principal subspace. For the above reasons, in the next two sections of this chapter (Section 3.2 and 3.3), we will extend the basic ideas of K-means and EM to the case in which clusters are subspaces.

3.2 Problem Formulation of Subspace Segmentation

In mathematics (especially in algebraic geometry), a collection of subspaces is formally known as a subspace arrangement:

Definition 3.4 (Subspace Arrangement). A subspace arrangement is defined as a finite collection of n linear subspaces in \mathbb{R}^D: $\mathcal{A} = \{S_1, \ldots, S_n\}$. The union of the subspaces is denoted as $Z_{\mathcal{A}} = S_1 \cup S_2 \cup \cdots \cup S_n$.

For simplicity, we will use the term “subspace arrangement” to refer to both \mathcal{A} and $Z_{\mathcal{A}}$.

Imagine that we are given a set of sample points drawn from an arrangement of unknown number of subspaces which have unknown and possibly different dimensions. Our goal is to simultaneously estimate these subspaces and segment the points into their corresponding subspaces. Versions of this problem are known in the literature as subspace clustering, multiple eigenspaces [Leonardis et al., 2002], or mixtures of principal component analyzers [Tipping and Bishop, 1999a], etc. To be precise, we will first state the problem that we will study in this book, which we refer to as “multiple-subspace segmentation,” or simply as “subspace segmentation,” to be suggestive of the problem of fitting multiple (principal) subspaces to the data.

Notice that in the foregoing problem statement, we have not yet specified the objective for what is an “optimal” solution. We will leave the interpretation of that open for now and will delay the definition until the context is more specific.

6 For instance, a class of density functions that are bounded by a common finite value from above.

7 A subspace-like distribution is one that has large variance inside the subspace but very small (close to singular) variance in directions orthogonal to the subspace.
Problem 3.1 (Multiple-Subspace Segmentation).

Given a set of sample points $X = \{x_i \in \mathbb{R}^D\}_{i=1}^N$ drawn from $n \geq 1$ distinct linear subspaces $S_j \subset \mathbb{R}^D$ of dimensions $d_j < D, j = 1, 2, \ldots, n$, identify each subspace S_j without knowing which sample points belong to which subspace. More specifically, by identifying the subspaces we mean the following:

1. Identifying the number of subspaces n and their dimensions $d_j = \text{dim}(S_j)$;
2. Identifying an orthonormal basis for each subspace S_j (or equivalently a basis for its orthogonal complement S_j^\perp);
3. Clustering the N points into the subspaces to which they belong.

Although the problem seems to be stated in a purely geometric fashion, it is easy to re-formulate it in a statistical fashion. For instance, we have assumed here that the subspaces do not have to be orthogonal to each other. In a statistical setting, this is essentially equivalent to assuming that these subspaces are not necessarily uncorrelated. Within each subspace, one can also relate all the geometric and statistical notions associated with “principal components” in the classical PCA: The orthonormal basis chosen for each subspace usually corresponds to a decomposition of the random variable into uncorrelated principal components conditioned on the subspace. In Section 3.3, a detailed analysis and comparison will be given for both points of view.

3.2.1 Projectivization of Affine Subspaces

Note that a linear subspace always passes through the origin but an affine subspace does not. So, would the above problem statement lose any generality by restricting it only to linear subspaces? The answer to this question is no. In fact every proper affine subspace in \mathbb{R}^D can be converted to a proper linear subspace in \mathbb{R}^{D+1} by lifting every point of it through the so-called homogeneous coordinates:

Definition 3.5 (Homogeneous Coordinates). The homogeneous coordinates of a point $x = [x_1, x_2, \ldots, x_D]^T \in \mathbb{R}^D$ are defined as $[x_1, x_2, \ldots, x_D, 1]^T$.

Given a set of points in an affine subspace, it is easy to prove that their homogeneous coordinates span a linear subspace. More precisely:

Fact 3.6 (Homogeneous Representation of Affine Subspaces). The homogeneous coordinates of points on a k-dimensional affine subspace in \mathbb{R}^D span a $(d + 1)$-dimensional linear subspace in \mathbb{R}^{D+1}. This representation is one-to-one.

Figure 3.1 shows an example of the homogeneous representation of three lines in \mathbb{R}^2. The points on these lines span three linear subspaces in \mathbb{R}^3 which pass through the origin.
Figure 3.1. Lifting of three (affine) lines in \mathbb{R}^2 to three linear subspaces in \mathbb{R}^3 via the homogeneous representation.

Definition 3.7 (Central Subspace Arrangements). We say an arrangement of subspaces is central if every subspace passes through the origin, i.e., every subspace is a linear subspace.

According to this definition, the homogeneous representation of any (affine) subspace arrangement in \mathbb{R}^D gives a central subspace arrangement in \mathbb{R}^{D+1}. Therefore, Problem 3.1 does not loss any generality. From now on, we may assume that our data set is drawn from a central subspace arrangement, in which all subspaces are linear, not affine, subspaces, unless otherwise stated. In a statistical setting, this is equivalent to assuming that each subset of samples has zero mean.

3.2.2 Subspace Projection and Minimum Representation

There are many cases in which the given data points live in a very high dimensional space. For instance, in many computer vision problems the dimension of the ambient space D is the number of pixels in an image, which is normally in the range 10^6. In such cases, the complexity of any subspace segmentation solution becomes computationally prohibitive. It is therefore important for us to seek situations in which the dimension of the ambient space can be significantly reduced.

Fortunately, in most practical applications, we are interested in modeling the data by subspaces of relatively small dimensions ($d \ll D$), thus one can avoid dealing with high-dimensional data sets by first projecting them onto a lower-dimensional (sub)space. An example is shown in Figure 3.2, where two lines L_1 and L_2 in \mathbb{R}^3 are projected onto a plane P. In this case, segmenting the two lines in the three-dimensional space \mathbb{R}^3 is equivalent to segmenting the two projected lines in the two-dimensional plane P.

In general, we will distinguish between two different kinds of “projections.” The first kind corresponds to the case in which the span of all the subspaces is a proper subspace of the ambient space, i.e., $\text{span}(\cup_{j=1}^n S_j) \subset \mathbb{R}^D$. In this case, one may simply apply PCA (Chapter 2) to eliminate the redundant dimensions. The second kind corresponds to the case in which the largest dimension of the
3.2. Problem Formulation of Subspace Segmentation

Figure 3.2. Samples on two 1-dimensional subspaces L_1, L_2 in \mathbb{R}^3 projected onto a 2-dimensional plane P. The number and separation of the lines is preserved by the projection.

subspaces, denoted by d_{max}, is strictly less than $D - 1$. When d_{max} is known, one may choose a ($d_{\text{max}}+1$)-dimensional subspace P such that, by projecting \mathbb{R}^D onto this subspace:

$$\pi_P : x \in \mathbb{R}^D \mapsto x' = \pi_P(x) \in P,$$

the dimension of each original subspace S_j is preserved, and there is a one-to-one correspondence between S_j and its projection — no reduction in the number of subspaces n, as stated in the following theorem.

Theorem 3.8 (Segmentation-Preserving Projections). If a set of vectors $\{x_i\}$ all lie in n linear subspaces of dimensions $\{d_j\}_{j=1}^n$ in \mathbb{R}^D, and if π_P represents a linear projection onto a subspace P of dimension D', then the points $\{\pi_P(x_i)\}$ lie in at most n linear subspaces of P of dimensions $\{d'_{j}\}_{j=1}^n$. Furthermore, if $D > D' > d_{\text{max}}$, then there is an open and dense set of projections that preserve the separation and dimensions of the subspaces.

Thanks to Theorem 3.8, if we are given a data set X drawn from an arrangement of low-dimensional subspaces in a high-dimensional space, we can first project X onto a generic subspace of dimension $D' = d_{\text{max}} + 1$ and then model the data with a subspace arrangement in the projected subspace, as illustrated by
the following sequence of steps:

\[
X \subset \mathbb{R}^D \xrightarrow{\pi_P} X' \subset P \xrightarrow{\cup_{j=1}^{n} \pi_P(S_j)} \cup_{j=1}^{n} S_j, \quad (3.34)
\]

However, even though the set of \((d_{\text{max}}+1)\)-dimensional subspaces \(P \subset \mathbb{R}^D\) that preserve the separation and dimension of the subspaces is an open and dense set, it remains unclear as to what a “good” choice for \(P\) is, especially when there is noise in the data. For simplicity, one may randomly select a few projections and choose the one that results in the smallest fitting error. Another alternative is to apply PCA regardless and project the data onto the \((d_{\text{max}}+1)\)-dimensional principal subspace.

One solution for choosing \(P\) is attributed to [Broomhead and Kirby, 2000]. The technique was originally designed for dimension reduction of differential manifolds.\(^{11}\) We here adopt it for subspace arrangements. Instead of directly using the original data matrix \(X\), we gather the vectors (also called “secants”) defined by every pair of points \(x_i, x_j \in X\)

\[
y_{ij} \equiv x_i - x_j \in \mathbb{R}^D, \quad (3.35)
\]

and construct a matrix consisting of \(y_{ij}\) as columns:

\[
Y \equiv [y_{12}, y_{13}, \ldots, y_{(N-1)N}] \in \mathbb{R}^{D \times M}, \quad (3.36)
\]

where \(M = (N-1)N/2\). Then the principal components of \(Y\) span the subspace in which the distance (and hence the separateness) between the projected points is preserved the most. Therefore, the optimal subspace that maximizes the separateness of the projected points is given by the \(d_{\text{max}}+1\) principal components of \(Y\). More precisely, if \(Y = U\Sigma V^T\) is the SVD of \(Y\), then the optimal subspace \(P\) is given by the first \(d_{\text{max}}+1\) columns of \(U\).

3.3 Subspace-Segmentation Algorithms

In this section, we generalize the K-means and EM algorithms to estimate arrangements of principal subspaces and cluster points into subspaces. They can both be viewed as certain extension of PCA to multiple principal subspaces. Both algorithms assume that the number of subspaces \(n\) and their dimensions \(d_j, j = 1, 2, \ldots, n\) are known. They estimate a basis for each subspace and the segmentation of the data by optimizing certain objective functions, namely the least-squares error in the geometric setting or the log-likelihood in the statistical setting. Since the optimal solution is normally not available in closed-form, the optimization problem is solved by iterating between the segmentation of the data points and the estimation of the subspace bases, starting from an initial guess for the subspace bases.

\(^{11}\)That is essentially based on Whitney’s classic proof of the fact any differential manifold can be embedded in a Euclidean space.
The following sections give a detailed description of both algorithms tailored to Problem 3.1. The goal is to reveal the similarity and difference between these two algorithms as well as their advantages and disadvantages.

3.3.1 K-Subspaces

If the number of subspaces \(n \) and their dimensions \(d_j, j = 1, 2, \ldots, n \) are known, then the problem of fitting multiple subspaces to the data is to find orthogonal matrices \(U_j, j = 1, 2, \ldots, n \) of dimension \(D \times d_j \) such that

\[
\forall i \exists j \text{ such that } x_i = U_j y_i, \quad (3.37)
\]

where \(i \in \{1, 2, \ldots, N\} \) and \(j \in \{1, 2, \ldots, n\} \). Once the assignment map \(c(i) = j \) is found for each point \(x_i, y_i \) is simply given by \(y_i = U_{c(i)}^T x_i \). When \(x_i \) is at the intersection of two subspaces, the solution for \(c(i) \) and therefore \(y_i \) is not unique. In this case, we arbitrarily choose one of the possible solutions.

In case the given points are corrupted by noise, we expect that the model parameters be found in a least-squares sense by minimizing the modeling error between \(x_i \) and its closest projection onto the subspaces:

\[
\min_{\{U_j\}} \sum_{i=1}^{N} \min_j \|x_i - U_j y_i\|^2, \quad (3.38)
\]

where \(U_j \) is a \(D \times d_j \) orthogonal matrix that represents a basis for the \(j \)th subspace \(S_j, j = 1, 2, \ldots, n \). Unfortunately, unlike PCA, there is no constructive solution to the above minimization problem. The main difficulty is that the foregoing objective of (3.38) is hybrid – it is a combination of minimization on the continuous variables \(\{U_j\} \) and the discrete variable \(j \). Conventional nonlinear optimization techniques, such as gradient descent, do not directly apply to this case. Hence special optimization schemes have to be developed. For that purpose, we need to examine more closely the relationships between the two minimizations in the above objective function.

Suppose that some initial estimates \(\hat{U}_1^{(0)}, \hat{U}_2^{(0)}, \ldots, \hat{U}_n^{(0)} \) of the subspaces are available. Then we can easily minimize the objective (3.38) for \(j \). That is, for each subspace \(S_j \) defined by \(\hat{U}_j^{(0)} \), we obtain the subset of points \(X_j^{(0)} \) that are closer to \(S_j \) than to any other subspace. The data set \(X \) is therefore segmented into \(n \) groups

\[
X = X_1^{(0)} \cup X_2^{(0)} \cup \cdots \cup X_n^{(0)}, \quad (3.39)
\]

and we further require \(X_i^{(0)} \cap X_j^{(0)} = \emptyset \) for \(i \neq j \).\(^{12}\)

\(^{12}\)If a point \(x \in X \) has the same minimal distance to more than one subspace, then we assign it to an arbitrary subspace.
Knowing the membership of each point x_i from the above segmentation, the objective (3.38) can be rewritten as:

$$\sum_{j=1}^{n} \left(\min_{U_j} \sum_{x_i \in X_j^{(0)}} \|x_i - U_j U_j^T x_i\|^2 \right).$$ (3.40)

Notice that the minimization inside the bracket is exactly the same as the minimization in (2.6). Consequently, we have solved this problem in Theorem 2.1 for PCA. We can therefore apply PCA to each group of points $\{X_j^{(0)}\}$ to obtain new estimates for the bases $\{\hat{U}_j^{(1)}\}$. Such estimates give a modeling error no larger than the error given by the initial estimates $\{\hat{U}_j^{(0)}\}$.

We can further reduce the modeling error by re-assigning each data point x_i to its closest subspace according to the new estimates $\{\hat{U}_j^{(1)}\}$. In this way, we obtain a new segmentation $X = X_1^{(1)} \cup X_2^{(1)} \cup \cdots \cup X_n^{(1)}$. If we keep iterating between the above two steps, the modeling error will keep decreasing until its value stabilizes to a (local) equilibrium and the segmentation no longer changes. This minimization process is in essence an extension of the K-means algorithm to subspaces. We summarize the algorithm as Algorithm 3.3.

Algorithm 3.3 (K-Subspaces: K-Means for Subspace Segmentation).

Given a set of noisy sample points $X = \{x_i\}_{i=1}^N$ drawn from n subspaces with the dimensions $d_j, j = 1, 2, \ldots, n$, initialize the bases of the subspaces with a set of orthogonal matrices $U_j^{(0)} \in \mathbb{R}^{D \times d_j}$.

Let $m = 0$.

1. **Segmentation:** For each point $x_i \in X$, assign it to $X_j^{(m)}$ if
 $$j = \arg \min_{\ell=1,...,n} \frac{\|x_i - \hat{U}_\ell^{(m)} (\hat{U}_\ell^{(m)})^T x_i\|^2}{\|x_i - \hat{U}_\ell^{(m)} (\hat{U}_\ell^{(m)})^T x_i\|^2}.$$

 If the above cost function is minimized by more than one subspace, assign the point arbitrarily to one of them.

2. **Estimation:** Apply PCA to each subset $X_j^{(m)}$ using Theorem 2.1 and obtain new estimates for the subspace bases
 $$\hat{U}_j^{(m+1)} = \text{PCA}(X_j^{(m)}), \quad j = 1, 2, \ldots, n.$$

Let $m \leftarrow m + 1$, and repeat Steps 1 and 2 until the segmentation does not change.

3.3.2 Expectation Maximization for Subspaces

To apply the EM method in Section 3.1.2 to subspaces, we need to assume a statistical model for the data. Following the general setting in Section 3.1.2, it
is reasonable to assume that the data points $X = \{x_i\}_{i=1}^N$ are samples drawn from multiple component distributions and each component distribution is centered around a subspace. To model from which component distribution a sample x is actually drawn, we again associate a latent discrete random variable $z \in \mathbb{R}$ to every data point x, where each discrete random variable $z_i = j$ if the point x_i is drawn from the jth component, $i = 1, 2, \ldots, N$.

To model the fact that each component distribution has a principal subspace, say spanned by the columns of an orthogonal matrix $U_j \in \mathbb{R}^{D \times d_j}$, we may assume that the jth component distribution is a special Gaussian distribution determined by the following equation:

$$x = U_j y + B_j s,$$ \hspace{1cm} (3.41)

where the orthogonal matrix $B_j \in \mathbb{R}^{D \times (D-d_j)}$ is the orthogonal complement to the orthogonal matrix $U_j \in \mathbb{R}^{D \times d_j}$, and $y \sim \mathcal{N}(0, \sigma_y^2 I)$ and $s \sim \mathcal{N}(0, \sigma_j^2 I)$. If we further assume that y and s are independent random variables, then we have

$$\Sigma_j^{-1} = \sigma_y^{-2} U_j U_j^T + \sigma_j^{-2} B_j B_j^T. \hspace{1cm} (3.42)$$

The term $B_j s$ models the projection error of x onto the subspace spanned by U_j. For x to be close to the subspace, one may assume $\sigma_j^2 \ll \sigma_y^2$. Therefore, when $\sigma_y^2 \to \infty$, we have $\Sigma_j^{-1} \to \sigma_j^{-2} B_j B_j^T$. In the limiting case, one essentially assumes a uniform distribution for y inside the subspace. The uniform assumption suggests that we do not care much about the distribution of the data inside the subspace — it is the subspace itself in which we are interested. Technically, this assumption also helps eliminate additional parameters so that the ML method may better avoid the difficulty shown in Example 3.3. In practice, this assumption is approximately valid as long as the variance of the data inside the subspace is significantly larger than that outside the subspace.

Therefore, in the sequel, we will adopt the limiting case as our probabilistic model for the derivation of the EM algorithm and derive closed-form formulae for the two steps of the EM algorithm. More precisely, we assume the distributions are

$$p(x|z = j) \equiv \frac{1}{(2\pi \sigma_j^2)^{(D-d_j)/2}} \exp \left(-\frac{x^T B_j B_j^T x}{2\sigma_j^2} \right). \hspace{1cm} (3.43)$$

In the model, the parameters $\theta \equiv \{B_j, \sigma_j, \pi_j\}_{j=1}^n$ are unknowns and they need to be inferred from the samples of x. The likelihood function (which is given by the marginal distribution of x given the parameters) is

$$p(x|\theta) = \sum_{z=1}^n p(x|z, \theta) p(z|\theta)$$

$$= \sum_{j=1}^n \frac{\pi_j}{(2\pi \sigma_j^2)^{(D-d_j)/2}} \exp \left(-\frac{x^T B_j B_j^T x}{2\sigma_j^2} \right). \hspace{1cm} (3.44)$$
Then given the N samples $X = \{x_i\}$, estimates of the parameters $\hat{\theta}_{ML}$ are given by maximizing the log-likelihood function

$$l(X; \theta) = \sum_{i=1}^{N} \log p(x_i|\theta)$$

$$= \sum_{i=1}^{N} \log \left[\sum_{j=1}^{n} \frac{\pi_j}{(2\pi\sigma_j^2)^{(D-d_j)/2}} \exp \left(-\frac{x_i^T B_j x_i}{2\sigma_j^2} \right) \right]$$

Again, this is in general a difficult high-dimensional optimization problem. Thus, we can apply the Expectation Maximization method introduced in Section 3.1.2. All the analysis in Section 3.1.2 directly applies to this new log-likelihood function except that in the M-Step, under the new probabilistic model, the new expected complete log-likelihood $L(X; \theta)$ becomes

$$\sum_{i=1}^{N} \sum_{j=1}^{n} w_{ij} \left(\log \pi_j - (D - d_j) \log \sigma_j - \frac{\|B_j^T x_i\|^2}{2\sigma_j^2} \right),$$

where, as before, we have omitted terms that depend on only the fixed w_{ij} and constants. The goal now is to find the parameters $\hat{\theta} = \{(\hat{B}_j, \hat{\sigma}_j, \hat{\pi}_j)\}_{j=1}^{n}$ that maximize the above expected complete log-likelihood. Since $B_j^T B_j = I$ and $\sum_{j=1}^{n} \pi_j = 1$, this is again a constrained optimization problem, whose solutions are given by the following proposition.

Proposition 3.9 (Maximum of the Expected Complete Log-Likelihood). The parameters $\theta = \{B_j, \sigma_j, \pi_j\}_{j=1}^{n}$ that maximize the expected complete log-likelihood function (3.47) are: \hat{B}_j are exactly the eigenvectors associated with the smallest $D - d_j$ eigenvalues of the weighted sample covariance matrix $\hat{\Sigma}_j = \sum_{i=1}^{N} w_{ij} x_i x_i^T$, and $\hat{\pi}_j$ and $\hat{\sigma}_j^2$ are

$$\hat{\pi}_j = \frac{\sum_{i=1}^{N} w_{ij}}{N}, \quad \hat{\sigma}_j^2 = \frac{\sum_{i=1}^{N} w_{ij} \|\hat{B}_j^T x_i\|^2}{(D - d_j) \sum_{i=1}^{N} w_{ij}}.$$

Proof. The part of objective function associated with the bases $\{B_j\}$ can be rewritten as

$$\sum_{i=1}^{N} \sum_{j=1}^{n} -w_{ij} \frac{\|B_j^T x_i\|^2}{2\sigma_j^2} = \sum_{j=1}^{n} -\text{trace} \left(\frac{B_j^T \hat{\Sigma}_j B_j}{2\sigma_j^2} \right),$$

where $\hat{\Sigma}_j = \sum_{i=1}^{N} w_{ij} x_i x_i^T$. Differentiating the Lagrangian associated with B_j and setting the derivatives to zero, we obtain the necessary conditions for extrema:

$$\sum_{j=1}^{n} -\text{trace} \left(\frac{B_j^T \hat{\Sigma}_j B_j}{2\sigma_j^2} \right) + \text{trace} \left(\Lambda_j (B_j^T B_j - I) \right) \Rightarrow \hat{\Sigma}_j B_j = 2\sigma_j^2 B_j \Lambda_j,$$

where Λ_j is a matrix of Lagrangian multipliers. Since $B_j^T B_j = I$, the objective function for B_j becomes $-\sum_{j=1}^{n} \text{trace}(\Lambda_j)$. Thus \hat{B}_j can be obtained as the
3.3. Subspace-Segmentation Algorithms

matrix whose columns are the eigenvectors of $\hat{\Sigma}_j$ associated with the $(D - d_j)$ smallest eigenvalues.

From the Lagrangian associated with the mixing proportions $\{\pi_j\}$, we have

$$\min_{\pi_1, \ldots, \pi_n} \sum_{i=1}^{N} \sum_{j=1}^{n} w_{ij} \log(\pi_j) + \lambda \left(1 - \sum_{j=1}^{n} \pi_j\right) \Rightarrow \hat{\pi}_j = \frac{\sum_{i=1}^{N} w_{ij}}{N}. \quad (3.50)$$

Finally, after taking the derivative of the expected log-likelihood with respect to σ_j and setting it to zero, we obtain

$$\hat{\sigma}^2_j = \frac{\sum_{i=1}^{N} w_{ij} \| \hat{B}_j^T x_i \|^2}{(D - d_j) \sum_{i=1}^{N} w_{ij}}. \quad (3.51)$$

We summarize the above results as Algorithm 3.4.

Algorithm 3.4 (EM for Subspace Segmentation).

Given a set of sample points $X = \{x_i\}_{i=1}^{N} \subset \mathbb{R}^D$, the number of subspaces n and the dimensions d_j, initialize the parameters $\theta = \{B_j, \sigma_j, \pi_j\}$ with a set of initial orthogonal matrices $\hat{B}_j^{(0)} \in \mathbb{R}^{D \times (D - d_j)}$ and scalars $\hat{\sigma}^{(0)}_j, \hat{\pi}^{(0)}_j, j = 1, 2, \ldots, n$. Let $m = 0$.

1. **Expectation:** Using the current estimate for the parameters $\hat{\theta}^{(m)} = \{\hat{B}_j^{(m)}, \hat{\sigma}_j^{(m)}, \hat{\pi}_j^{(m)}\}$, compute the estimate of w_{ij} as

$$w_{ij}^{(m)} = p(z_i = j|x_i, \hat{\theta}^{(m)}) = \frac{\hat{\pi}_j^{(m)} p(x_i|z_i = j, \hat{\theta}^{(m)})}{\sum_{\ell=1}^{n} \hat{\pi}_\ell^{(m)} p(x_i|z_i = \ell, \hat{\theta}^{(m)})}, \quad (3.52)$$

where $p(x|z = j, \theta)$ is given in (3.43).

2. **Maximization:** Using the estimated $w_{ij}^{(m)}$, compute $\hat{B}_j^{(m+1)}$ as the eigenvectors associated with the smallest $D - d_j$ eigenvalues of the matrix $\hat{\Sigma}_j^{(m)} = \sum_{i=1}^{N} w_{ij}^{(m)} x_i x_i^T$, and update $\hat{\pi}_j$ and $\hat{\sigma}_j$ as:

$$\hat{\pi}_j^{(m+1)} = \frac{\sum_{i=1}^{N} w_{ij}^{(m)}}{N}, \quad (\hat{\sigma}_j^{(m+1)})^2 = \frac{\sum_{i=1}^{N} w_{ij}^{(m)} \| (\hat{B}_j^{(m+1)})^T x_i \|^2}{(D - d_j) \sum_{i=1}^{N} w_{ij}^{(m)}}. \quad (3.53)$$

Let $m \leftarrow m + 1$, and repeat Steps 1 and 2 until the update in the parameters is small enough.

3.3.3 Relationships between K-Subspaces and EM

As we have seen in the above, both K-subspaces and EM are algorithms that can be used to analyze arrangements of principal subspaces and fit multiple subspaces...
to a given set of data points. Both algorithms optimize their objectives via an iterative scheme. The overall structure of the two algorithms is also very much similar: the “Segmentation” step in K-subspaces is replaced by the “Expectation” step in EM; and “Estimation” by “Maximization”.

In addition to the structural similarity, there are also subtle technical relationships between the two steps of K-subspaces and EM. To see this, let us further assume that in the EM algorithm, the noise has the same variance for all the subspaces (i.e., $\sigma = \sigma_1 = \cdots = \sigma_n$). According to equation (3.49), the EM algorithm updates the estimates for the subspaces in the “Maximization” step by minimizing the objective function:

$$\min_{\{U_j\}} \sum_{i=1}^{N} \sum_{j=1}^{n} w_{ij} ||x_i - U_j U_j^T x_i||^2,$$

where the equality is due to the identity $B_j B_j^T = I - U_j U_j^T$. For EM, the weights w_{ij} are computed from the “Expectation” step as the expected membership of x_i in the subspaces j according to the equation (3.23), and w_{ij} in general take continuous values between 0 and 1. For K-subspaces, however, w_{ij} is a discrete variable and it is computed in the “Segmentation” step as (see Algorithm 3.3):

$$w_{ij} = \begin{cases}
1 & \text{if } j = \arg \min_{\ell=1,\ldots,n} ||B_\ell x_i||^2, \\
0 & \text{otherwise.}
\end{cases}$$

Then the objective function (3.54) can be rewritten as:

$$\min_{\{U_j\}} \sum_{i=1}^{N} \sum_{j=1}^{n} w_{ij} ||x_i - U_j U_j^T x_i||^2 = \min_{\{U_j\}} \sum_{i=1}^{N} \min_{j} ||x_i - U_j U_j^T x_i||^2,$$

which is exactly the same objective function (3.38) for K-subspaces. This is also the reason why both K-subspaces and EM rely on the eigenvalue decomposition (or singular value decomposition) of the sample covariance matrix to estimate the basis for each subspace.

Based on the above analysis, the only conceptual difference between the K-subspaces and EM algorithm is: At each iteration, the K-subspaces algorithm gives a “definite” assignment of every data point into one of the subspaces; but the EM algorithm views the membership as a random variable and uses its expected value to give a “probabilistic” assignment of the data point. Because of this difference, for the same set of data points, the “subspaces” found by using K-subspaces and EM will in general be different, although normally the difference is expected to be small. A precise quantitative characterization of the difference between the solutions by K-subspaces and EM remains an open question. Also because of this difference, the K-subspaces algorithm is less dependent on the correct knowledge of the dimension of each subspace: As long as the initial subspaces may segment the data well enough, both the basis and the dimension of each subspace can be updated at the Estimation step. However, the EM algorithm, at least for the version we presented above, depends explicitly on correct knowledge in both the
number of subspaces and their dimensions. In addition, both algorithms require a
good initialization so that they are more likely to converge to the optimal solution
(e.g., the global maximum of the log likelihood) when the iteration stabilizes. In
the next chapter, we will show how these difficulties can be resolved by a new
algebraic method for identifying arrangements of principal subspaces.

3.4 Bibliographic Notes

When the data points lie on an arrangement of subspaces, the modeling problem
was initially treated as “chicken-and-egg” and tackled with iterative methods,
such as the K-means and EM algorithms. The basic ideas of K-means clustering goes back to [Lloyd, 1957, Forgy, 1965, Jancey, 1966, MacQueen, 1967]. Its probabilistic counterpart, the Expectation Maximization (EM) algorithm is due to [Dempster et al., 1977]. See Appendix A for a more general review. For a more thorough and complete exposition of EM, one may refer to [Neal and Hinton, 1998] or the book of [McLachlan and Krishnan, 1997].

In [Tipping and Bishop, 1999a], the classical PCA has been extended to the
mixtures of probabilistic PCA, and the maximum-likelihood solution was recom-
manded to be found by the EM algorithm too. The classical K-means algorithm
was also extended to the case of subspaces, called K-subspace [Ho et al., 2003].
Some other algorithms such as the subspace growing and the subspace selection algorithm [Leonardis et al., 2002] were also proposed in different contexts. Unfortunately, as we have alluded to above, iterative methods are sensitive to initialization, hence they may not converge to the global optimum. This has severely limited the performance and generality of such methods in solving practical problems in computer vision or image processing [Shi and Malik, 1998, Torr et al., 2001]. Thus, in the next chapter, we will change the tools a little bit and seek for alternative solutions to the subspace segmentation problem.

3.5 Exercises

Exercise 3.1 (K-Means for Image Segmentation). K-means is a very useful and simple
algorithm for many practical problems that require clustering multivariate data. In this
exercise, implement the K-means algorithm 3.1 and apply it to the segmentation of color
(RGB) images. Play with the number of segments and the choice of the window size (i.e.,
instead of using only the RGB values at the pixel, use also the RGB values of a window of
surrounding pixels).

Exercise 3.2 (Maximizing the Expected Log-Likelihood of Gaussians). Show that
the formulae given in equation (3.29) are the solutions for maximizing the expected
log-likelihood $L(X; \theta)$ (3.27) for isotropic Gaussian distributions $p(x|z = j, \theta) =
\mathcal{N}(\mu_j, \sigma_j^2 I)$.

Exercise 3.3 (Two Subspaces in General Position). Consider two linear subspaces of
dimension d_1 and d_2 respectively in \mathbb{R}^D. We say they are in general position if an arbitrary
(small) perturbation of the position of the subspaces does not change the dimension of their intersection. Show that two subspaces are in general position if and only if

\[
\dim(S_1 \cap S_2) = \min\{d_1 + d_2 - D, 0\}.
\]

(3.57)

Exercise 3.4 (Segmenting Three Planes in \(\mathbb{R}^3\)). Customize and implement (in MATLAB) the K-subspaces algorithm 3.3 and the EM-algorithm 3.4 for the purpose of segmenting three planes in \(\mathbb{R}^3\). Randomly generate three subspaces and draw a number of (say uniformly distributed) sample points on the planes. Use the algorithms to segment the samples. Play with the level of noise (added to the samples) and the number of random initializations of the algorithm.
Chapter 4
Algebraic Methods for Multiple-Subspace Segmentation

“The art of doing mathematics consists in finding that special case which contains all the germs of generality.”
– David Hilbert

In Chapter 3, we have shown that the subspace segmentation problem can be cast as a special case of a statistical learning or clustering problem. We have presented two iterative algorithms (K-means and EM) for segmenting a known number of subspaces with known dimensions. This chapter starts to reveal the main agenda of this book. We examine a different solution to the more general problem of segmenting an unknown number of subspaces of unknown and possibly different dimensions. In order to make the material accessible to a larger audience, in this chapter we focus primarily on the development of a (conceptual) algorithm. We leave a more formal study of subspace arrangements and rigorous justifications of all the algebraic facts that support the algorithms of this chapter to Appendix C.

We first present a series of simple examples that demonstrate that the subspace-segmentation problem can be solved non-iteratively via certain algebraic methods. These solutions lead to a general-purpose algebro-geometric algorithm for subspace segmentation. We conveniently refer to the algorithm as Generalized Principal Component Analysis (GPCA). To better isolate the difficulties in the general problem, we will develop the algorithm in two steps. The first step is to develop a basic GPCA algorithm by assuming a known number of subspaces; and in the second step, we deal with an unknown number of subspaces and develop a recursive version of the GPCA algorithm. The algorithms in this chapter will
be derived under ideal noise-free conditions and assume no probabilistic model. Nevertheless, the algebraic techniques involved are numerically well-conditioned and the algorithms are designed to tolerate moderate amounts of noise. Dealing with large amounts of noise or even outliers will be the subject of Chapter 5.

4.1 Introductory Cases of Subspace Segmentation

Notice that, to apply the K-subspaces and EM algorithms, we need to know three things in advance: the number of subspaces, their dimensions, and initial estimates of the bases of the subspaces. In practice, this may not be the situation and many difficulties may arise. The optimizing process in both algorithms is essentially a local iterative descent scheme. If the initial estimates of the bases of the subspaces are far off from the global optimum, the process is likely to converge to a local minimum. More seriously, if the number of subspaces and their dimensions were wrong, the process might never converge or might converge to meaningless solutions. Furthermore, when the number and dimensions of the subspaces are unknown and the samples are noisy (or contaminated by outliers), model selection becomes a much more elusive problem as we have alluded to earlier in the introduction chapter.

In this and next few chapters, we will systematically address these difficulties and aim to arrive at global non-iterative solutions to subspace segmentation that require less or none of the above initial information. Before we delve into the most general case, we first examine, in this section, a few important special cases. The reason is two-fold: Firstly, many practical problems fall into these cases already and the simplified solutions can be directly applied; and secondly, the analysis of these special cases offers some insights into a solution to the general case.

4.1.1 Segmenting Points on a Line

Let us begin with an extremely simple clustering problem: clustering a collection of points \(\{x_1, x_2, \ldots, x_N\} \) on the real line \(\mathbb{R} \) around a collection of cluster centers \(\{\mu_1, \mu_2, \ldots, \mu_n\} \). In spite of its simplicity, this problem shows up in various segmentation problems. For instance, in intensity-based image segmentation, one wants to separate the pixels of an image into different regions, with each region corresponding to a significantly different level of intensity (a one-dimensional quantity). More generally, the point clustering problem is very much at the heart of spectral clustering, a popular technique for clustering data in spaces of any dimension. Furthermore, as we will see throughout this book, the same basic ideas introduced through this simple example can also be applied to clustering points from arrangements of more complex structures such as lines, hyperplanes, subspaces, and even surfaces.

In the sequel, we introduce a not so conventional solution to the point clustering problem. The new formulation that the solution is based on is neither geomet-
ric (like K-subspaces) nor statistical (like EM). Instead, the solution is purely algebraic.

Let \(x \in \mathbb{R} \) be any of the data points. In an ideal situation in which each data point perfectly matches one of the cluster centers, we know that there exists a constant \(\mu_j \) such that \(x = \mu_j \). This means that
\[
(x = \mu_1) \lor (x = \mu_2) \lor \cdots \lor (x = \mu_n).
\]
(4.1)
The “\(\lor \)" in the preceding equation stands for the logical connective “or.” This is equivalent to that \(x \) satisfies the following polynomial equation of degree \(n \) in \(x \):
\[
p_n(x) = (x - \mu_1)(x - \mu_2) \cdots (x - \mu_n) = \sum_{k=0}^{n} c_k x^{n-k} = 0.
\]
(4.2)
Since the polynomial equation \(p_n(x) = 0 \) must be satisfied by every data point, we have that
\[
V_n c_n = \begin{bmatrix}
x_1^n & x_1^{n-1} & \cdots & x_1 & 1 \\
x_2^n & x_2^{n-1} & \cdots & x_2 & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
x_N^n & x_N^{n-1} & \cdots & x_N & 1
\end{bmatrix}
\begin{bmatrix}
c_1 \\
c_2 \\
\vdots \\
c_n
\end{bmatrix} = 0,
\]
(4.3)
where \(V_n \in \mathbb{R}^{N \times (n+1)} \) is a matrix of embedded data points, and \(c_n \in \mathbb{R}^{n+1} \) is the vector of coefficients of \(p_n(x) \).

In order to determine the number of groups \(n \) and then the vector of coefficients \(c_n \) from (4.3), notice that for \(n \) groups there is a unique polynomial of degree \(n \) whose roots are the \(n \) cluster centers. Since the coefficients of this polynomial must satisfy equation (4.3), in order to have a unique solution we must have that \(\text{rank}(V_n) = n \). This rank constraint on \(V_n \in \mathbb{R}^{N \times (n+1)} \) enables us to determine the number of groups \(n \) as
\[
n = \min\{j : \text{rank}(V_j) = j\}.
\]
(4.4)

Example 4.1 (Two Clusters of Points). The intuition behind this formula is as follows. Consider, for simplicity, the case of \(n = 2 \) groups, so that \(p_n(x) = p_2(x) = (x - \mu_1)(x - \mu_2) \), with \(\mu_1 \neq \mu_2 \). Then, it is clear that there is no polynomial equation of degree one, \(p_1(x) = x - \mu \), that is satisfied by all the points. Similarly, there are infinitely many polynomial equations of degree 3 or more that are satisfied by all the points, namely any multiple of \(p_2(x) \). Thus the degree \(n = 2 \) is the only one for which there is a unique polynomial that fits all the points.

Once the minimum polynomial \(p_n(x) \) that fits all the data points is found, we can solve the equation \(p_n(x) = 0 \) for its \(n \) roots. These roots, by definition, are the centers of the clusters. We summarize the overall solution as Algorithm 4.1.

\footnote{Notice that the minimum number of points needed is \(N \geq n \), which is linear in the number of groups. We will see in future chapters that this is no longer the case for more general segmentation problems.}
Algorithm 4.1 (Algebraic Point Clustering Algorithm).

Let \(\{x_1, x_2, \ldots, x_N\} \subset \mathbb{R} \) be a given collection of \(N \geq n \) points clustering around an unknown number \(n \) of cluster centers \(\{\mu_1, \mu_2, \ldots, \mu_n\} \). The number of groups, the cluster centers and the segmentation of the data can be determined as follows:

1. **Number of Groups.** Let \(V_j \in \mathbb{R}^{N \times (j+1)} \) be a matrix containing the last \(j + 1 \) columns of \(V_n \). Determine the number of groups as
 \[n = \min\{j : \text{rank}(V_j) = j\}. \]

2. **Cluster Centers.** Solve for \(c_n \) from \(V_n c_n = 0 \). Set \(p_n(x) = \sum_{k=0}^n c_k x^{n-k} \). Find the cluster centers \(\mu_j \) as the \(n \) roots of \(p_n(x) \).

3. **Segmentation.** Assign point \(x_i \) to cluster \(j = \arg\min_{l=1,\ldots,n} (x_i - \mu_l)^2 \).

Notice that the above algorithm is described in a purely algebraic fashion and is more of a conceptual than practical algorithm. It does not minimize any geometric errors or maximize any probabilistic likelihood functions. In the presence of noise in the data, one has to implement each step of the algorithm in a numerically more stable and statistically more robust way. For example, with noisy data, the matrix \(V_n \) will most likely be of full rank. In this case, the vector of coefficients \(c_n \) should be solved in a least-squares sense as the singular-vector of \(V_n \) associated with the smallest singular value. It is also possible that the \(p_n(x) \) obtained from \(c_n \) may have some complex roots, because the constraint that the polynomial must have real roots is never enforced when solving for the coefficients in the least-squares sense.\(^2\) In practice, for well-separated clusters with moderate noise, the roots normally give decent estimates of the cluster centers.

Although clustering points on a line may seem a rather simple problem, it can be easily generalized to the problem of clustering points on a plane (see Exercise 4.1). Furthermore, it is also a key step of a very popular data clustering algorithm: spectral clustering. See Exercise 4.2.

4.1.2 Segmenting Lines on a Plane

Let us now consider the case of clustering data points to a collection of \(n \) lines in \(\mathbb{R}^2 \) passing through the origin, as illustrated in Figure 4.1. Each one of the lines can be represented as:

\[L_j = \{x = [x, y]^T : b_{j1}x + b_{j2}y = 0\}, \quad j = 1, 2, \ldots, n. \tag{4.5} \]

\(^2\)However, in some special cases, one can show that this would never occur. For example, when \(n = 2 \), the least-squares solution for \(c_n \) is \(c_2 = \text{Var}[x] \), \(c_1 = E[x^2]E[x] - E[x^3] \) and \(c_0 = E[x^2(E[x] - E[x^2])^2] \leq 0 \), hence \(c_1^2 - 4c_0c_2 \geq 0 \) and the two roots of the polynomial \(c_0x^2 + c_1x + c_2 \) are always real.
Given a point $x = [x, y]^T$ in one of the lines we must have that

$$(b_{11} x + b_{12} y = 0) \lor \cdots \lor (b_{n1} x + b_{n2} y = 0). \tag{4.6}$$

Therefore, even though each individual line is described with one polynomial equation of degree one (a linear equation), an arrangement of n lines can be described with a polynomial of degree n, namely

$$p_n(x) = (b_{11} x + b_{12} y) \cdots (b_{n1} x + b_{n2} y) = \sum_{k=0}^{n} c_k x^{n-k} y^k = 0. \tag{4.7}$$

An example is shown in Figure 4.1.

Figure 4.1. A polynomial in two variables whose zero set is three lines in \mathbb{R}^2.

The polynomial $p_n(x)$ allows us to algebraically eliminate the segmentation of the data at the beginning of the model estimation, because the equation $p_n(x) = 0$ is satisfied by every data point regardless of whether it belongs to L_1, L_2, \ldots, L_n. Furthermore, even though $p_n(x)$ is nonlinear in each data point $x = [x, y]^T$, $p_n(x)$ is actually linear in the vector of coefficients $c = [c_0, c_1, \ldots, c_n]^T$. Therefore, given enough data points $\{x_i = [x_i, y_i]^T\}_{i=1}^N$, one can linearly fit this polynomial to the data. Indeed, if n is known, we can obtain the coefficients of $p_n(x)$ from solving the equation:

$$V_n c_n = \begin{bmatrix} x_1^0 & x_1^{n-1} y_1 & \cdots & x_1 y_1^{n-1} & y_1^n \\ x_2^0 & x_2^{n-1} y_2 & \cdots & x_2 y_2^{n-1} & y_2^n \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ x_N^0 & x_N^{n-1} y_N & \cdots & x_N y_N^{n-1} & y_N^n \end{bmatrix} [c_0 \ c_1 \ \cdots \ c_n]^T = 0. \tag{4.8}$$

Similar to the case of points in a line, the above linear system has a unique solution if and only if $\text{rank}(V_n) = n$, hence the number of lines is given by

$$n = \min\{j : \text{rank}(V_j) = j\}. \tag{4.9}$$
Given the vector of coefficients c_n, we are now interested in estimating the equations of each line from the associated polynomial $p_n(x)$. We know each line is determined by its normal vector $b_j = [b_{j1}, b_{j2}]^T, j = 1, 2, \ldots, n$. For the sake of simplicity, let us consider the case $n = 2$. A simple calculation shows that the derivative of $p_2(x)$ is given by

$$\nabla p_2(x) = (b_{21}x + b_{22}y)b_1 + (b_{11}x + b_{12}y)b_2.$$ (4.10)

Therefore, if the point x belongs to L_1, then $(b_{11}x + b_{12}y) = 0$ and hence $\nabla p_2(x) \sim b_1$. Similarly, if x belongs to L_2, then $\nabla p_2(x) \sim b_2$. This means that given any point x, without knowing which line contains the point, we can obtain the equation of the line passing through the point by simply evaluating the derivative of $p_2(x)$ at x. This fact should come at no surprise and is valid for any number of lines n. Therefore, if we are given one point in each line $\{y_j \in L_j\}$, we can determine the normal vectors as $b_j \sim \nabla p_n(y_j)$. We summarize the overall solution for clustering points to multiple lines as Algorithm 4.2.

Algorithm 4.2 (Algebraic Line Segmentation Algorithm).

Let $\{x_1, x_2, \ldots, x_N\}$ be a collection of $N \geq n$ points in \mathbb{R}^2 clustering around an unknown number n of lines whose normal vectors are $\{b_1, b_2, \ldots, b_N\}$. The number of lines, the normal vectors, and the segmentation of the data can be determined as follows:

1. **Number of Lines.** Let V_j be defined as in (4.8). Determine the number of groups as

 $$n = \min\{j : \text{rank}(V_j) = j\}.$$

2. **Normal Vectors.** Solve for c_n from $V_n c_n = 0$ and set $p_n(x, y) = \sum_{k=0}^{n} c_k x^{n-k} y^k$. Determine the normal vectors as

 $$b_j = \frac{\nabla p_n(y_j)}{\|\nabla p_n(y_j)\|} \in \mathbb{R}^2, \quad j = 1, 2, \ldots, n,$$

 where y_j is a point in the jth line.

3. **Segmentation.** Assign point x_i to line $j = \arg\min_{\ell=1, \ldots, n} (b_\ell^T x_i)^2$.

The reader may have realized that the problem of clustering points on a line is very much related to the problem of segmenting lines in the plane. In point clustering, for each data point x there exists a cluster center μ_j such that $x - \mu_j = 0$. By working in homogeneous coordinates, one can convert it into a line clustering problem: for each data point $x = [x, 1]^T$ there is a line $b_j = [1, -\mu_j]^T$ passing through the point. Figure 4.2 shows an example of how three cluster centers are

3We will discuss how to automatically obtain one point per subspace from the data in the next subsection when we generalize this problem to clustering points on hyperplanes.
converted into three lines via homogeneous coordinates. Indeed, notice that if we let $y = 1$ in the matrix V_n in (4.8), we obtain exactly the matrix V_n in (4.3). Therefore, the vector of coefficients c_n is the same for both algorithms and the two polynomials are related as $p_n(x, y) = y^n p_n(x/y)$. Therefore, the point clustering problem can be solved either by polynomial factorization (Algorithm 4.1) or by polynomial differentiation (Algorithm 4.2).

4.1.3 Segmenting Hyperplanes

In this section, we consider another particular case of Problem 3.1 in which all the subspaces are hyperplanes of equal dimension $d_1 = \cdots = d_n = d = D - 1$. This case shows up in a wide variety of segmentation problems in computer vision, including vanishing point detection and motion segmentation. We will discuss these applications in greater detail in later chapters.

We start by noticing that every $(D-1)$-dimensional subspace $S_j \subset \mathbb{R}^D$ can be defined in terms of a nonzero *normal* vector $b_j \in \mathbb{R}^D$ as follows:

$$S_j = \{ x \in \mathbb{R}^D : b_j^T x = 0 \}.$$ \hspace{1cm} (4.11)

Therefore, a point $x \in \mathbb{R}^D$ lying in one of the hyperplanes S_j must satisfy the formula:

$$(b_1^T x = 0) \lor (b_2^T x = 0) \lor \cdots \lor (b_n^T x = 0),$$ \hspace{1cm} (4.12)

which is equivalent to the following homogeneous polynomial of degree n in x with real coefficients:

$$p_n(x) = \prod_{j=1}^{n} (b_j^T x) = \sum c_{n_1, n_2, \ldots, n_D} x_1^{n_1} x_2^{n_2} \cdots x_D^{n_D} = \nu_n(x)^T c_n = 0,$$ \hspace{1cm} (4.13)

\footnote{Since the subspaces S_j are all different from each other, we assume that the normal vectors $\{b_j\}_{j=1}^n$ are pairwise linearly independent.}
where $c_{n_1, \ldots, n_D} \in \mathbb{R}$ represents the coefficient of monomial $x_1^{n_1} x_2^{n_2} \cdots x_D^{n_D}$, c_n is the vector of all coefficients, and $\nu_n(x)$ is the stack of all possible monomials. The number of linearly independent monomials is $M_n = (D + n - 1)$, hence c_n and $\nu_n(x)$ are vectors in \mathbb{R}^{M_n}.

After applying (4.13) to the given collection of N sample points $\{x_i\}_{i=1}^N$, we obtain the following system of linear equations on the vector of coefficients c_n:

$$
\begin{bmatrix}
\nu_n(x_1)^T \\
\nu_n(x_2)^T \\
\vdots \\
\nu_n(x_N)^T
\end{bmatrix} c_n = 0 \quad \in \mathbb{R}^N.
$$

We now study under what conditions we can solve for n and c_n from equation (4.14). To this end, notice that if the number of hyperplanes n was known, we could immediately recover c_n as the eigenvector of $V_n^T V_n$ associated with its smallest eigenvalue. However, since the above linear system (4.14) depends explicitly on the number of hyperplanes n, we cannot estimate c_n directly without knowing n in advance. Recall from Example C.14, the vanishing ideal I of a hyperplane arrangement is always principal, i.e., generated by a single polynomial of degree n. The number of hyperplanes n then coincides with the degree of the first non-trivial homogeneous component I_n of the vanishing ideal. This leads to the following theorem.

Theorem 4.2 (Number of Hyperplanes). Assume that a collection of $N \geq M_n - 1$ sample points $\{x_i\}_{i=1}^N$ on n different $(D - 1)$-dimensional subspaces of \mathbb{R}^D is given. Let $V_j \in \mathbb{R}^{N \times M_j}$ be the matrix defined in (4.14), but computed with polynomials of degree j. If the sample points are in general position and at least $D - 1$ points correspond to each hyperplane, then:

$$
\text{rank}(V_j) \begin{cases} = M_j & j < n, \\
= M_j - 1 & j = n, \\
< M_j - 1 & j > n.
\end{cases}
$$

Therefore, the number n of hyperplanes is given by:

$$
n = \min\{j : \text{rank}(V_j) = M_j - 1\}.
$$

In the presence of noise, one cannot directly estimate n from (4.16), because the matrix V_j is always full rank. In this case, one can use the criterion (2.14) given in Chapter 2 to determine the rank.

Theorem 4.2 and the linear system in equation (4.14) allow us to determine the number of hyperplanes n and the vector of coefficients c_n, respectively, from sample points $\{x_i\}_{i=1}^N$. The rest of the problem now becomes how to recover the normal vectors $\{b_j\}_{j=1}^n$ from c_n. Imagine, for the time being, that we were given a set of n points $\{y_j\}_{j=1}^n$, each one lying in only one of the n hyperplanes, that is $y_j \in S_j$ for $j = 1, 2, \ldots, n$. Now let us consider the derivative of $p_n(x)$.
4.2 Knowing the Number of Subspaces

In this section, we derive a general solution to the subspace-segmentation problem (Problem 3.1) in the case in which the number of subspaces \(n\) is known. However, unlike the special cases we saw in the previous section, the dimensions of the subspaces can be different. In Section 4.2.1, we illustrate the basic ideas of dealing with subspaces of different dimensions via a simple example. Through Sections 4.2.2-4.2.4, we give detailed derivation and proof for the general case. The final algorithm is summarized in Section 4.2.5.

4.2. Knowing the Number of Subspaces

In this section, we derive a general solution to the subspace-segmentation problem (Problem 3.1) in the case in which the number of subspaces \(n\) is known. However, unlike the special cases we saw in the previous section, the dimensions of the subspaces can be different. In Section 4.2.1, we illustrate the basic ideas of dealing with subspaces of different dimensions via a simple example. Through Sections 4.2.2-4.2.4, we give detailed derivation and proof for the general case. The final algorithm is summarized in Section 4.2.5.

4.2. Knowing the Number of Subspaces

In this section, we derive a general solution to the subspace-segmentation problem (Problem 3.1) in the case in which the number of subspaces \(n\) is known. However, unlike the special cases we saw in the previous section, the dimensions of the subspaces can be different. In Section 4.2.1, we illustrate the basic ideas of dealing with subspaces of different dimensions via a simple example. Through Sections 4.2.2-4.2.4, we give detailed derivation and proof for the general case. The final algorithm is summarized in Section 4.2.5.
Algorithm 4.3 (Algebraic Hyperplane Segmentation Algorithm).

Let \(\{x_1, x_2, \ldots, x_N\} \subset \mathbb{R}^D \) be a given collection of points clustered around an unknown number \(n \) of planes \(\{b_1, b_2, \ldots, b_n\} \). The number of planes, the normal vectors, and the segmentation of the data can be determined as follows:

1. **Number of Hyperplanes.** Let \(V_j \) be defined as in (4.14). Determine the number of groups as
 \[
 n = \min \{ j : \text{rank}(V_j) = M_j - 1 \}.
 \]

2. **Normal Vectors.** Solve for \(c_n \) from \(V_n c_n = 0 \) and set \(p_n(x) = c_n^T \nu_n(x) \).
 Choose \(x_0 \) and \(\nu \) at random and compute the \(n \) roots \(t_1, t_2, \ldots, t_n \in \mathbb{R} \) of the univariate polynomial \(q_n(t) = p_n(t \nu + x_0) \). Determine the normal vectors as
 \[
 b_j = \frac{\nabla p_n(y_j)}{\|\nabla p_n(y_j)\|}, \quad j = 1, 2, \ldots, n,
 \]
 where \(y_j = x_0 + t_j \nu \) is a point in the \(j \)th hyperplane.

3. **Segmentation.** Assign point \(x_i \) to hyperplane \(j = \arg \min_{l=1,\ldots,n} (b_l^T x_i)^2 \).

\[
\mathbb{R}^3 \quad b_{11} = \nabla p_{21}(y_1) \\
\quad b_{12} = \nabla p_{22}(y_1) \\
\quad y_1 \\
\quad b_2 = \nabla p_{21}(y_2) = \nabla p_{22}(y_2) \\
\quad y_2 \\
\quad x \\
\quad \mathcal{S}_1 \\
\quad \mathcal{S}_2
\]

Figure 4.3. Data samples drawn from a union of one plane and one line (through the origin \(o \)) in \(\mathbb{R}^3 \). The derivatives of the two vanishing polynomials \(p_{21}(x) = x_1 x_2 \) and \(p_{22}(x) = x_1 x_3 \) evaluated at a point \(y_1 \) in the line give two normal vectors to the line.
Similarly, the derivatives at a point \(y_2 \) in the plane give the normal vector to the plane.

4.2.1 An Introductory Example

To motivate and highlight the key ideas, in this section we study a simple example of clustering data points lying in subspaces of different dimensions in \(\mathbb{R}^3 \): a line \(S_1 = \{ x : x_1 = x_2 = 0 \} \) and a plane \(S_2 = \{ x : x_3 = 0 \} \), as shown in Figure 4.3.

We can describe the union of these two subspaces as
\[
S_1 \cup S_2 = \{ x : (x_1 = x_2 = 0) \lor (x_3 = 0) \} = \{ x : (x_1 x_3 = 0) \land (x_2 x_3 = 0) \}.
\]
4.2. Knowing the Number of Subspaces

Therefore, even though each individual subspace is described with polynomials of degree one (linear equations), the union of two subspaces is described with two polynomials of degree two, namely \(p_{21}(x) = x_1 x_3 \) and \(p_{22}(x) = x_2 x_3 \). In general, we can represent any two subspaces of \(\mathbb{R}^3 \) as the set of points satisfying a set of homogeneous polynomials of the form

\[
c_1 x_1^2 + c_2 x_1 x_2 + c_3 x_1 x_3 + c_4 x_2^2 + c_5 x_2 x_3 + c_6 x_3^2 = 0. \tag{4.21}
\]

Although these polynomials are nonlinear in each data point \([x_1, x_2, x_3]^T \), they are actually linear in the vector of coefficients \(c = [c_1, c_2, \ldots, c_6]^T \). Therefore, given enough data points, one can linearly fit these polynomials to the data.

Given the collection of polynomials that vanish on the data points, we are now interested in estimating a basis for each subspace. In our example, let \(P_2(x) = [p_{21}(x), p_{22}(x)] \) and consider the derivatives of \(P_2(x) \) at two representative points of the two subspaces \(y_1 = [0, 0, 1]^T \in S_1 \) and \(y_2 = [1, 1, 0]^T \in S_2 \):

\[
\nabla P_2(x) = \begin{bmatrix} x_3 & 0 \\ 0 & x_3 \\ x_1 & x_2 \end{bmatrix} \implies \nabla P_2(y_1) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \quad \text{and} \quad \nabla P_2(y_2) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 1 \end{bmatrix}. \tag{4.22}
\]

Then the columns of \(\nabla P_2(y_1) \) span the orthogonal complement to the first subspace \(S_1^\perp \) and the columns of \(\nabla P_2(y_2) \) span the orthogonal complement to the second subspace \(S_2^\perp \) (see Figure 4.3). Thus the dimension of the line is given by \(d_1 = 3 - \text{rank}(\nabla P_2(y_1)) = 1 \) and the dimension of the plane is given by \(d_2 = 3 - \text{rank}(\nabla P_2(y_2)) = 2 \). Therefore, if we are given one point in each subspace, we can obtain the subspace bases and their dimensions from the derivatives of the polynomials at the given points.

The final question is how to choose one representative point per subspace. With perfect data, we may choose a first point as any of the points in the data set. With noisy data, we may first define a distance from any point in \(\mathbb{R}^3 \) to the union of the subspaces,\(^6\) and then choose a point in the data set that minimizes this distance. Say we pick \(y_2 \in S_2 \) as such point. We can then compute the normal vector \(b_2 = [0, 0, 1]^T \) to \(S_2 \) from \(\nabla P(y_2) \) as above. How do we now pick a second point in \(S_1 \) but not in \(S_2 \)? As it turns out, this can be done by polynomial division. We can divide the original polynomials by \(b_2^T x \) to obtain new polynomials of degree \(n - 1 = 1 \):

\[
p_{11}(x) = \frac{p_{21}(x)}{b_2^T x} = x_1 \quad \text{and} \quad p_{12}(x) = \frac{p_{22}(x)}{b_2^T x} = x_2.
\]

Since these new polynomials vanish on \(S_1 \) but not on \(S_2 \), we can use them to define a new distance to \(S_1 \) only,\(^7\) and then find a point \(y_1 \) in \(S_1 \) but not in \(S_2 \) as the point in the data set that minimizes this distance.

The next sections shows how this simple example can be systematically generalized to multiple subspaces of unknown and possibly different dimensions by

\(^6\)For example, the squared algebraic distance to \(S_1 \cup S_2 \) is \(p_{21}(x)^2 + p_{22}(x)^2 = (x_1^2 + x_2^2)x_3^2 \).

\(^7\)For example, the squared algebraic distance to \(S_1 \) is \(p_{11}(x)^2 + p_{12}(x)^2 = x_1^2 + x_2^2 \).
polynomial fitting (Section 4.2.2), differentiation (Section 4.2.3), and division (Section 4.2.4).

4.2.2 Fitting Polynomials to Subspaces

Now consider a subspace arrangement $A = \{S_1, S_2, \ldots, S_n\}$ with $\dim(S_i) = d_j$, $j = 1, 2, \ldots, n$. Let $X = \{x_1, x_2, \ldots, x_N\}$ be a sufficiently large number of sample points in general position drawn from $Z_A = S_1 \cup S_2 \cup \cdots \cup S_n$. As we may know from Appendix C, the vanishing ideal $I(Z_A)$, i.e., the set of all polynomials that vanish on Z_A, is much more complicated than the special cases we studied earlier in this chapter.

Nevertheless, since we assume to know the number of subspaces n, we only have to consider the set of polynomials of degree n that vanish on Z_A, i.e., the homogeneous component I_n of $I(Z_A)$. As we know from Appendix C, these polynomials uniquely determine Z_A. Furthermore, as the result of Corollary C.22, we know that if the subspace arrangement is transversal, I_n is generated by the products of n linear forms that vanish on the n subspaces, respectively. More precisely, suppose the subspace S_j is of dimension d_j and let $k_j = D - d_j$. Let

$$B_j \doteq [b_1, b_2, \ldots, b_{k_j}] \in \mathbb{R}^{D \times (k_j)}$$

be a set of base vectors for the orthogonal complement S_j^\perp of S_j. The vanishing ideal $I(S_j)$ of S_j is generated by the set of linear forms

$$\{l(x) \doteq b^T x, \ b \in B_j\}.$$

Then any polynomial $p_n(x) \in I_n$ can be written as a summation of products of the linear forms

$$p_n(x) = \sum l_1(x)l_2(x) \cdots l_n(x),$$

where $l_j \in I(S_j)$.

Using the Veronese map, each polynomial in I_n can also be written as:

$$p_n(x) = c_n^T \nu_n(x) = \sum_{n_1, n_2, \ldots, n_D} c_{n_1, n_2, \ldots, n_D} x_1^{n_1} x_2^{n_2} \cdots x_D^{n_D} = 0,$$ \hspace{1cm} (4.23)

where $c_{n_1, n_2, \ldots, n_D} \in \mathbb{R}$ represents the coefficient of the monomial $x^n = x_1^{n_1} x_2^{n_2} \cdots x_D^{n_D}$. Although the polynomial equation is nonlinear in each data point x, it is linear in the vector of coefficients c_n. Indeed, since each polynomial $p_n(x) = c_n^T \nu_n(x)$ must be satisfied by every data point, we have $c_n^T \nu_n(x_i) = 0$ for all $i = 1, 2, \ldots, N$. Therefore, the vector of coefficients c_n must satisfy the system of linear equations

$$V_n(D) c_n = 0 \in \mathbb{R}^N, \hspace{1cm} (4.24)$$

where $V_n(D) \in \mathbb{R}^{N \times M_n(D)}$ is called the embedded data matrix.
4.2. Knowing the Number of Subspaces

Figure 4.4. The polynomial embedding maps a union of subspaces of \mathbb{R}^D into a single subspace of $\mathbb{R}^{M_n(D)}$ whose normal vectors $\{c_n\}$ are the coefficients of the polynomials $\{p_n\}$ defining the subspaces. The normal vectors to the embedded subspace $\{c_n\}$ are related to the normal vectors to the original subspaces $\{b_j\}$ via the symmetric tensor product.

Clearly, the coefficient vector of every polynomial in I_n is in the null space of the data matrix $V_n(D)$. For every polynomial obtained from the null space of $V_n(D)$ to be in I_n, we need to have

$$\dim(\text{Null}(V_n(D))) = \dim(I_n) = h_I(n),$$

where $h_I(n)$ is the Hilbert function of the ideal $I(Z_A)$ (see Appendix C). Or equivalently, the rank of the data matrix $V_n(D)$ needs to satisfy

$$\text{rank}(V_n(D)) = M_n(D) - h_I(n) \quad (4.25)$$

in order that I_n can be exactly recovered from the null space of $V_n(D)$. As a result of the Algebraic Sampling Theory in Appendix B, the above rank condition is typically satisfied with $N \geq (M_n(D) - 1)$ data points in general position.\(^8\) A basis of I_n,

$$I_n = \text{span}\{p_{n\ell}(x), \ell = 1, 2, \ldots, h_I(n)\}, \quad (4.26)$$

can be computed from the set of $h_I(n)$ singular vectors of $V_n(D)$ associated with its $h_I(n)$ zero singular values. In the presence of moderate noise, we can still estimate the coefficients of the polynomials in a least-squares sense from the singular vectors associated with the $h_I(n)$ smallest singular values.

As discussed in Sections 2.3.1 and 2.3.2, the basic modeling assumption in NLPCA and KPCA is that there exists an embedding of the data into a higher-dimensional feature space F such that the features live in a linear subspace of F. However, there is no general methodology for finding the correct embedding for an arbitrary problem. Equation (4.24) shows that the commonly used polynomial embedding ν_n is the right one to use when the data lives in an arrangement of subspaces, because the embedded data points $\{\nu_n(x_i)\}^{N}_{i=1}$ indeed live in a subspace of $\mathbb{R}^{M_n(D)}$. Notice that each vector c_n is simply a normal vector to the embedded subspace, as illustrated in Figure 4.4.

\(^8\)In particular, it requires at least d_j points from each subspace S_j.

4.2.3 Subspaces from Polynomial Differentiation

Given a basis for the set of polynomials representing an arrangement of subspaces, we are now interested in determining a basis and the dimension of each subspace. In this section, we show that one can estimate the bases and the dimensions by differentiating all the polynomials \(\{p_{n,\ell}\} \) obtained from the null space of the embedded data matrix \(V_n(D) \).

Let \(p_n(x) \) be any polynomial in \(I_n \). Since \(p_n \in I(Z_A) \subset I(S_j) \), where \(I(S_j) \) is generated by linear forms \(l(x) = b^T x \) with \(b \in S_j^\perp \), \(p_n \) is of the form
\[
p_n = l_1 g_1 + l_2 g_2 + \cdots + l_k g_k \tag{4.27}
\]
for \(l_1, l_2, \ldots, l_k \in I(S_j) \) and some polynomials \(g_1, g_2, \ldots, g_k \).

The derivative of \(p_n \) is
\[
\nabla p_n = \sum_{i=1}^{k_j} (g_i \nabla l_i + l_i \nabla g_i) = \sum_{i=1}^{k_j} (g_i b_i + l_i \nabla g_i). \tag{4.28}
\]

Let \(y_j \) be a point in the subspace \(S_j \) but not in any other subspaces in the arrangement \(Z_A \). Then \(l_i(y_j) = 0 \), \(i = 1, 2, \ldots, k_j \). Thus, the derivative of \(p_n \) evaluated at \(y_j \) is a superposition of the vectors \(b_i \):
\[
\nabla p_n(y_j) = \sum_{i=1}^{k_j} g_i(y_j) b_i \quad \in S_j^\perp. \tag{4.29}
\]

This fact should come at no surprise. The zero set of each polynomial \(p_n \) is just a surface in \(\mathbb{R}^D \), therefore its derivative at a regular point \(y_j \in S_j \), \(\nabla p_n(y_j) \), gives a vector orthogonal to the surface. Since an arrangement of subspaces is locally flat, i.e., in a neighborhood of \(y_j \) the surface is merely the subspace \(S_j \), then the derivative at \(y_j \) lives in the orthogonal complement \(S_j^\perp \) of \(S_j \). By evaluating the derivatives of all the polynomials in \(I_n \) at the same point \(y_j \) we obtain a set of normal vectors that span the orthogonal complement of \(S_j \). We summarize the above facts as Theorem 4.3. Figure 4.3 illustrates the theorem for the case of a plane and a line described in Section 4.2.1.

Theorem 4.3 (Subspace Bases and Dimensions by Polynomial Differentiation). *If the data set \(X \) is such that \(\dim(\text{Null}(V_n(D))) = \dim(I_n) = h_1(n) \) and one generic point \(y_j \) is given for each subspace \(S_j \), then we have
\[
S_j^\perp = \text{span} \left\{ \left. \frac{\partial}{\partial x} c_n^T v_n(x) \right|_{x = y_j} : \forall c_n \in \text{Null}(V_n(D)) \right\}. \tag{4.30}
\]
Therefore, the dimensions of the subspaces are given by
\[
d_j = D - \text{rank} (\nabla P_n(y_j)) \quad \text{for} \quad j = 1, 2, \ldots, n, \tag{4.31}
\]

\(^9\)In fact, from discussions in the preceding subsection, we know the polynomials \(g_i \) are products of linear forms that vanish on the remaining \(n - 1 \) subspaces.
where $P_n(x) = [p_{n1}(x), \ldots, p_{nh_I}(x)]^T \in \mathbb{R}^{1 \times h_I(n)}$ is a row of linearly independent polynomials in I_n, and $\nabla P_n(x) = [\nabla p_{n1}(x), \ldots, \nabla p_{nh_I}(x)]^T \in \mathbb{R}^{D \times h_I(n)}$.

Proof. (Sketch only). The fact that the derivatives span the entire normal space is the consequence of the general dimension theory for algebraic varieties [Bochnak et al., 1998, Harris, 1992, Eisenbud, 1996]. For a (transversal) subspace arrangement, one can also prove the theorem by using the fact that polynomials in I_n are generated by the products of n linear forms that vanish on the n subspaces, respectively.

Given c_n, the computation of the derivative of $p_n(x) = c_n^T \nu_n(x)$ can be done algebraically:

$$\nabla p_n(x) = c_n^T \nabla \nu_n(x) = c_n^T E_n \nu_{n-1}(x),$$

where $E_n \in \mathbb{R}^{M_n(D) \times M_{n-1}(D)}$ is a constant matrix containing only the exponents of the Veronese map $\nu_n(x)$. Thus, the computation does not involve taking derivatives of the (possibly noisy) data.

4.2.4 Point Selection via Polynomial Division

Theorem 4.3 suggests that one can obtain a basis for each S_j^\perp directly from the derivatives of the polynomials representing the union of the subspaces. However, in order to proceed we need to have one point per subspace, i.e., we need to know the vectors $\{y_1, y_2, \ldots, y_n\}$. In this section, we show how to select these n points in the unsupervised learning scenario in which we do not know the label for any of the data points.

In Section 4.1.3, we showed that in the case of hyperplanes, one can obtain one point per hyperplanes by intersecting a random line L with the union of all hyperplanes. However, this solution, however, does not generalize to subspaces of arbitrary dimensions. For instance, in the case of data lying in a line and a plane shown in Figure 4.3, a randomly chosen line L may not intersect the line. Furthermore, because polynomials in the null space of $V_n(D)$ are no longer factorizable, their zero set is no longer a union of hyperplanes, hence the points of intersection with L may not lie in any of the subspaces.

In this section we propose an alternative algorithm for choosing one point per subspace. The idea is that we can always choose a point y_n lying in one of the subspaces, say S_n, by checking that $P_n(y_n) = 0$. Since we are given a set of data points $X = \{x_1, x_2, \ldots, x_N\}$ lying in the subspaces, in principle we can choose y_n to be any of the data points. However, in the presence of noise and outliers, a random choice of y_n may be far from the true subspaces. One may be tempted to choose a point in the data set X that minimizes $\|P_n(x)\|$, as we did in our

10 This can always be done, except when the chosen line is parallel to one of the subspaces, which corresponds to a zero-measure set of lines.
introductory example in Section 4.2.1. However, such a choice has the following problems:

1. The value \(\|P_n(x)\| \) is merely an algebraic error, i.e., it does not really represent the geometric distance from \(x \) to its closest subspace. In principle, finding the geometric distance from \(x \) to its closest subspace is a hard problem, because we do not know the normal bases \(\{B_1, B_2, \ldots, B_n\} \).

2. Points \(x \) lying close to the intersection of two or more subspaces are more likely to be chosen, because two or more factors in \(p_n(x) = (b_1^T x)(b_2^T x) \cdots (b_n^T x) \) are approximately zero, which yields a smaller value for \(\|p_n(x)\| \). In fact, we can see from (4.29) that for an arbitrary \(x \) in the intersection, the vector \(\nabla p_n(x) \) needs to be a common normal vector to the two or more subspaces. If the subspaces have no common normal vector, then \(\|\nabla p_n(x)\| = 0 \). Thus, one should avoid choosing points close to the intersection, because they typically give very noisy estimates of the normal vectors.

We could avoid these two problems if we could compute the distance from each point to the subspace passing through it. However, we cannot compute such a distance yet because we do not know the subspace bases. The following lemma shows that we can compute a first order approximation to such a distance from \(P_n \) and its derivatives.

Lemma 4.4. Let \(\hat{x} \) be the projection of \(x \in \mathbb{R}^D \) onto its closest subspace. The Euclidean distance from \(x \) to \(\hat{x} \) is given by

\[
\|x - \hat{x}\| = n\sqrt{P_n(x)^T \nabla P_n(x) P_n(x)^T + O(\|x - \hat{x}\|^2)},
\]

where \(P_n(x) = [p_{n1}(x), \ldots, p_{nh(n)}(x)] \in \mathbb{R}^{1 \times h(n)} \) is a row vector with all the polynomials, \(\nabla P_n(x) = [\nabla p_{n1}(x), \ldots, \nabla p_{nh(n)}(x)] \in \mathbb{R}^{D \times h(n)} \), and \(A^\dagger \) is the Moore-Penrose inverse of \(A \).

Proof. The projection \(\hat{x} \) of a point \(x \) onto the zero set of the polynomials \(\{p_{ni} \}_{i=1}^{h(n)} \) can be obtained as the solution to the following constrained optimization problem

\[
\min_{\hat{x}, \lambda} \|\hat{x} - x\|^2, \quad \text{s.t.} \quad p_n(\hat{x}) = 0, \quad \ell = 1, 2, \ldots, h(n). \tag{4.32}
\]

By using Lagrange multipliers \(\lambda \in \mathbb{R}^{h(n)} \), we can convert this problem into the unconstrained optimization problem

\[
\min_{\hat{x}, \lambda} \|\hat{x} - x\|^2 + P_n(\hat{x}) \lambda. \tag{4.33}
\]

From the first order conditions with respect to \(\hat{x} \) we have

\[
2(\hat{x} - x) + \nabla P_n(\hat{x}) \lambda = 0. \tag{4.34}
\]

After multiplying on the left by \((\nabla P_n(\hat{x}))^T \) and \((\hat{x} - x)^T \), respectively, we obtain

\[
\lambda = 2(\nabla P_n(\hat{x})^T P_n(\hat{x}))^T \nabla P_n(\hat{x})^T x, \quad \|\hat{x} - x\|^2 = \frac{1}{2} x^T \nabla P_n(\hat{x}) \lambda. \tag{4.35}
\]
where we have used the fact that \((\nabla P_n(\tilde{x}))^T \tilde{x} = 0\). After substituting the first equation into the second, we obtain that the squared distance from \(x\) to its closest subspace can be expressed as

\[
\|\tilde{x} - x\|^2 = x^T \nabla P_n(\tilde{x}) (\nabla P_n(\tilde{x}))^T \nabla P_n(\tilde{x}) x. \tag{4.36}
\]

After expanding in Taylor series about \(\tilde{x} = x\), and noticing that \(\nabla P_n(x)^T x = n P_n(x)^T\) we obtain

\[
\|\tilde{x} - x\|^2 \approx n^2 P_n(x) (\nabla P_n(x)^T \nabla P_n(x))^\dagger P_n(x)^T, \tag{4.37}
\]

which completes the proof.

Thanks to Lemma 4.4, we can immediately choose a candidate \(y_n\) lying in (close to) one of the subspaces and not in the intersection as

\[
y_n = \arg\min_{x \in X \setminus P_n(x) \neq 0} P_n(x) (\nabla P_n(x)^T \nabla P_n(x))^\dagger P_n(x)^T. \tag{4.38}
\]

and compute a basis \(B_n \in \mathbb{R}^{D \times (D - d_n)}\) for \(S_n^\perp\) by applying PCA to \(\nabla P_n(y_n)\).

In order to find a point \(y_{n-1}\) lying in (close to) one of the remaining \((n - 1)\) subspaces but not in (far from) \(S_n\), we could in principle choose \(y_{n-1}\) as in (4.38) after removing the points in \(S_n\) from the data set \(X\). With noisy data, however, this depends on a threshold and is not very robust. Alternatively, we can find a new set of polynomials \(\{p_{(n-1)}(x)\}\) defining the algebraic set \(\cup_{j=1}^{n-1} S_j\). In the case of hyperplanes, there is only one such polynomial, namely

\[
p_{n-1}(x) \approx (b_1 x)(b_2 x) \cdots (b_{n-1} x) = \frac{p_n(x)}{b_n^T x} = c_n^T c_{n-1}^\dagger \nu_{n-1}(x).
\]

Therefore, we can obtain \(p_{n-1}(x)\) by polynomial division. Notice that dividing \(p_n(x)\) by \(b_n^T x\) is a linear problem of the form

\[
R_n(b_n) c_{n-1} = c_n, \tag{4.39}
\]

where \(R_n(b_n) \in \mathbb{R}^{M_n(0)^T \times M_{n-1}(D)}\). This is because solving for the coefficients of \(p_{n-1}(x)\) is equivalent to solving the equations \((b_n^T x)(c_{n-1}^\dagger \nu_{n-1}(x)) = c_n^T \nu_n(x)\) for all \(x \in \mathbb{R}^D\). These equations are obtained by equating the coefficients, and they are linear in \(c_{n-1}\), because \(b_n\) and \(c_n\) are already known.

Example 4.5 If \(n = 2\) and \(b_2 = [b_1, b_2, b_3]^T\), then the matrix \(R_2(b_2)\) is given by

\[
R_2(b_2) = \begin{bmatrix} b_1 & b_2 & b_3 & 0 & 0 & 0 \\ 0 & b_1 & 0 & b_2 & b_3 & 0 \\ 0 & 0 & b_1 & 0 & b_2 & b_3 \end{bmatrix}^T \in \mathbb{R}^{6 \times 3}.
\]

In the case of subspaces of arbitrary dimensions we cannot directly divide the entries of the polynomial vector \(P_n(x)\) by \(b_n^T x\) for any column \(b_n\) of \(B_n\), because the polynomials \(\{p_n(x)\}\) may not be factorizable. Furthermore, they do not necessarily have the common factor \(b_n^T x\). The following theorem resolves
we first show the necessity. That is, any polynomial of degree \(n-1\) must satisfy the following linear system of equations:

\[
V_n(D)R_n(b_n)c_{n-1} = 0, \quad \forall b_n \in S_n^+.
\]

(4.40)

Proof. We first show the necessity. That is, any polynomial of degree \(n-1\), \(c_{n-1}^T\nu_{n-1}(x)\), that vanishes on \(\bigcup_{j=1}^{n-1}S_j\) satisfies the above equation. Since a point \(x\) in the original algebraic set \(\bigcup_{j=1}^{n-1}S_j\) belongs to either \(\bigcup_{j=1}^{n-1}S_j\) or \(S_n\), we have \(c_{n-1}^T\nu_{n-1}(x) = 0\) or \(b_n^T\ x = 0\) for all \(b_n \in S_n^+\). Hence \(p_n(x) = (c_{n-1}^T\nu_{n-1}(x))(b_n^T\ x)\) must be a linear combination of polynomials in \(P_n(x)\). If we denote \(p_n(x)\) as \(c_n^T\nu_n(x)\), then the vector of coefficients \(c_n\) must be in the null space of \(V_n(D)\). From \(c_n^T\nu_n(x) = (c_{n-1}^T\nu_{n-1}(x))(b_n^T\ x)\), the relationship between \(c_n\) and \(c_{n-1}\) can be written as \(R_n(b_n)c_{n-1} = c_n\). Since \(V_n(D)c_n = 0\), \(c_{n-1}\) needs to satisfy the following linear system of equations:

\[
V_n(D)R_n(b_n)c_{n-1} = 0.
\]

We now show the sufficiency. That is, if \(c_{n-1}\) is a solution to (4.40), then \(c_{n-1}^T\nu_{n-1}(x)\) is a homogeneous polynomial of degree \((n-1)\) that vanishes on \(\bigcup_{j=1}^{n-1}S_j\). Since \(c_{n-1}\) is a solution to (4.40), then for all \(b_n \in S_n^+\) we have that \(c_n = R_n(b_n)c_{n-1}\) is in the null space of \(V_n(D)\). Now, from the construction of \(R_n(b_n)\), we also have that \(c_n^T\nu_n(x) = (c_{n-1}^T\nu_{n-1}(x))(b_n^T\ x)\). Hence, for every \(x \in \bigcup_{j=1}^{n-1}S_j\) but not in \(S_n\), we have \(c_n^T\nu_{n-1}(x) = 0\), because there is a \(b_n\) such that \(b_n^T\ x \neq 0\). Therefore, \(c_n^T\nu_{n-1}(x)\) is a homogeneous polynomial of degree \((n-1)\) that vanishes on \(\bigcup_{j=1}^{n-1}S_j\).

Thanks to Theorem 4.6, we can obtain a basis \(\{p_{(n-1)\ell}(x)\}, \ell = 1, 2, \ldots, h_1(n-1)\) for the polynomials vanishing on \(\bigcup_{j=1}^{n-1}S_j\) from the intersection of the null spaces of \(V_n(D)R_n(b_n) \in \mathbb{R}^{n \times M_{n-1}(D)}\) for all \(b_n \in S_n^+\). By evaluating the derivatives of the polynomials \(p_{(n-1)\ell}\) we can obtain normal vectors to \(S_{n-1}\) and so on. By repeating these processes, we can find a basis for each one of the remaining subspaces. The overall subspaces estimation and segmentation process involves polynomial fitting, differentiation, and division.

4.2.5 The Basic Generalized PCA Algorithm

We summarize the results of this section with the following Generalized Principal Component Analysis (GPCA) algorithm for segmenting a known number of subspaces of unknown and possibly different dimensions from sample data points \(X = \{x_1, x_2, \ldots, x_N\}\).
4.3 Not Knowing the Number of Subspaces

The solution to the subspace-segmentation problem proposed in Section 4.2.5 assumes prior knowledge of the number of subspaces \(n \). In practice, however, the number of subspaces \(n \) may not be known beforehand, hence we cannot estimate the polynomials representing the subspaces directly, because the linear system in (4.24) depends explicitly on \(n \).

Earlier in Section 4.1, we have presented some special cases (e.g., arrangements of hyperplanes) for which one can recover the number of subspaces from data. In this section, we show that by exploiting the algebraic structure of the vanishing...
ideals of subspace arrangements it is possible to simultaneously recover the number of subspaces, together with their dimensions and their bases. As usual, we first examine some subtlety with determining the number of subspaces via two simple examples in Section 4.3.1 and illustrate the key ideas. Section 4.3.2 considers the case of perfect subspace arrangements in which all subspaces are of equal dimension \(d = d_1 = \cdots = d_n \). We derive a set of rank constraints on the data from which one can estimate the \(n \) and \(d \). Section 4.3.3 considers the most general case of subspaces of different dimensions and shows that \(n \) and \(d \) can be computed in a recursive fashion by first fitting subspaces of larger dimensions and then further segmenting these subspaces into subspaces of smaller dimensions.

4.3.1 Introductory Examples

Imagine we are given a set of points \(X = \{x_1, x_2, \ldots, x_N\} \) lying in two lines in \(\mathbb{R}^3 \), say

\[
S_1 = \{x : x_2 = x_3 = 0\} \quad \text{and} \quad S_2 = \{x : x_1 = x_3 = 0\}.
\]

If we form the matrix of embedded data points \(V_n(D) \) for \(n = 1 \) and \(n = 2 \), respectively:

\[
V_1(3) = \begin{bmatrix}
\vdots & \vdots & \vdots \\
x_1 & x_2 & x_3 \\
\vdots & \vdots & \vdots
\end{bmatrix} \quad \text{and} \quad V_2(3) = \begin{bmatrix}
\vdots & \vdots & \vdots & \vdots \\
x_1 & x_2 & x_3 & x_2^2 & x_2x_3 & x_3^2 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots
\end{bmatrix},
\]

we obtain \(\text{rank}(V_1(3)) = 2 \leq 3 \) and \(\text{rank}(V_2(3)) = 2 < 6 \). Therefore, we cannot determine the number of subspaces as the degree \(n \) such that the matrix \(V_n(D) \) drops rank (as we did in Section 4.1.3 for the case of hyperplanes), because we would obtain \(n = 1 \) which is not the correct number of subspaces.

How do we determine the correct number of subspaces in this case? As discussed in Section 3.2.2, a linear projection onto a low-dimensional subspace preserves the number and dimensions of the subspaces. In our example, if we project the data onto the plane \(P = \{x : x_1 + x_2 + x_3 = 0\} \) and then embed the projected data we obtain

\[
V_1(2) = \begin{bmatrix}
\vdots & \vdots \\
x_1 & x_2 \\
\vdots & \vdots
\end{bmatrix} \quad \text{and} \quad V_2(2) = \begin{bmatrix}
\vdots & \vdots & \vdots \\
x_1^2 & x_1x_2 & x_2^2 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots
\end{bmatrix}.
\]

In this case \(\text{rank}(V_1(2)) = 2 \neq 2 \), but \(\text{rank}(V_2(2)) = 2 < 3 \). Therefore, the first time the matrix \(V_n(d + 1) \) drops rank is when \(n = 2 \) and \(d = 1 \). This suggests that, as we will formally show in Section 4.3.2, when the subspaces are of equal dimension.

\[
\text{The reader is encouraged to verify these facts numerically and do the same for the examples in the rest of this section.}
\]
Not Knowing the Number of Subspaces

4.3. Not Knowing the Number of Subspaces

In this section, we derive explicit formulae for the number of subspaces n and their dimensions $\{d_j\}$ in the case of subspaces of equal dimension $d = d_1 = d_2 = \cdots = d_n$. Notice that this is a generalized version to the two-lines example that we discussed in the previous section. In the literature, arrangements of subspaces of equal dimensions are called pure arrangements. This type of arrangements are important for a wide range of applications in computer vision [Costeira and Kanade, 1998b, Kanatani, 2002, Vidal and Ma, 2004], pattern recognition [Belhumeur et al., 1997, Vasilescu and Terzopoulos, 2002], as well as identification of hybrid linear systems [Overschee and Moor, 1993, Ma and Vidal, 2005b].

Theorem 4.7 (Subspaces of Equal Dimension). Let $\{x_i\}_{i=1}^N$ be a given collection of $N \geq M_n(d+1) - 1$ sample points lying in n different d-dimensional subspaces of \mathbb{R}^D. Let $V_j(\ell + 1) \in \mathbb{R}^{N \times M_j(\ell+1)}$ be the embedded data matrix defined in (4.24), but computed with the Veronese map ν_j of degree j applied to the data projected onto a generic $(\ell+1)$-dimensional subspace of \mathbb{R}^D. If the sample points are in general position and at least d points are drawn from each subspace, then
the dimension of the subspaces is given by:

\[d = \min \{ \ell : \exists j \geq 1 \text{ such that } \text{rank}(V_j(\ell + 1)) < M_j(\ell + 1) \}, \] \hspace{1cm} (4.43)

and the number of subspaces can be obtained as:

\[n = \min \{ j : \text{rank}(V_j(d + 1)) = M_j(d + 1) - 1 \}. \] \hspace{1cm} (4.44)

Proof. For simplicity, we divide the proof into the following three cases:

Case 1: d known

Imagine for a moment that \(d \) was known, and that we wanted to compute \(n \) only. Since \(d \) is known, following our analysis in Section 3.2.2, we can first project the data onto a \((d + 1)\)-dimensional space \(P \subset \mathbb{R}^D \) so that they become \(d \)-dimensional hyperplanes in \(P \) (see Theorem 3.8). Now compute the matrix \(V_j(d + 1) \) as in (4.24) by applying the Veronese map of degree \(j = 1, 2, \ldots \) to the projected data. From our analysis in Section 4.1.3, there is a unique polynomial of degree \(n \) representing the union of the projected subspaces and the coefficients of this polynomial must lie in the null space of \(V_n(d + 1) \). Thus, given \(N \geq M_n(d + 1) - 1 \) points in general position, with at least \(d \) points in each subspace, we have that \(\text{rank}(V_n(d + 1)) = M_n(d + 1) - 1 \). Furthermore, there cannot be a polynomial of degree less than \(n \) that is satisfied by all the data, hence \(\text{rank}(V_j(d + 1)) = M_j(d + 1) \) for \(j < n \). Consequently, if \(d \) is known, we can compute \(n \) by first projecting the data onto a \((d + 1)\)-dimensional space and then obtain

\[n = \min \{ j : \text{rank}(V_j(d + 1)) = M_j(d + 1) - 1 \}. \] \hspace{1cm} (4.45)

Case 2: n known

Consider now the opposite case in which \(n \) is known, but \(d \) is unknown. Let \(V_n(\ell + 1) \) be defined as in (4.24), but computed from the data projected onto a generic \((\ell + 1)\)-dimensional subspace of \(\mathbb{R}^D \). When \(\ell < d \), we have a collection of \((\ell + 1)\)-dimensional subspaces in an \((\ell + 1)\)-dimensional space, which implies that \(V_n(\ell + 1) \) must be full rank. If \(\ell = d \), then from equation (4.45) we have that \(\text{rank}(V_n(\ell + 1)) = M_n(\ell + 1) - 1 \). When \(\ell > d \), then equation (4.24) has more than one solution, thus \(\text{rank}(V_n(\ell + 1)) < M_n(\ell + 1) - 1 \). Therefore, if \(n \) is known, we can compute \(d \) as

\[d = \min \{ \ell : \text{rank}(V_n(\ell + 1)) = M_n(\ell + 1) - 1 \}. \] \hspace{1cm} (4.46)

Case 3: n and d unknown

We are left with the case in which both \(n \) and \(d \) are unknown. As before, if \(\ell < d \) then \(V_j(\ell + 1) \) is full rank for all \(j \). When \(\ell = d \), \(V_j(\ell + 1) \) is full rank for \(j < n \), drops rank by one if \(j = n \) and drops rank by more than one if \(j > n \). Thus one

\[12 \text{This is guaranteed by the algebraic sampling theorem in Appendix B.} \]
can set d to be the smallest integer ℓ for which there exist an j such that $V_j(\ell+1)$ drops rank, that is
\[
d = \min\{\ell : \exists j \geq 1 \text{ such that } \text{rank}(V_j(\ell+1)) < M_j(\ell+1)\}.
\]
Given d one can compute n as in equation (4.45).

Therefore, in principle, both n and d can be retrieved if sufficient data points are drawn from the subspaces. The subspace-segmentation problem can be subsequently solved by first projecting the data onto a $(d+1)$-dimensional subspace and then applying the GPCA algorithm (Algorithm 4.4) to the projected data points.

In the presence of noise, one may not be able to estimate d and n from from equations (4.43) and (4.44), respectively, because the matrix $V_j(\ell+1)$ may be full rank for all j and ℓ. As before, we can use the criterion (2.14) of Chapter 2 to determine the rank of $V_j(\ell+1)$. However, in practice this requires to search for up to possibly $(D-1)$ values for d and $\lceil N/(D-1) \rceil$ values for n. In our experience, the rank conditions work well when either d or n are known. There are still many open issues in the problem of finding a good search strategy and model selection criterion for n and k when both of them are unknown. Some of these issues will be discussed in more detail in Chapter 5

4.3.3 Segmenting Subspaces of Different Dimensions

In this section, we consider the problem of segmenting an unknown number of subspaces of unknown and possibly different dimensions from sample points.

First of all, we notice that the simultaneous recovery of the number and dimensions of the subspaces may be an ill-conditioned problem if we are not clear about what we are looking for. For example, in the extreme cases, one may interpret the sample set X as N 1-dimensional subspaces, with each subspace spanned by each one of the sample points $x \in X$; or one may view the whole X as belonging to one D-dimensional subspace, i.e., \mathbb{R}^D itself.

Although the above two trivial solutions can be easily rejected by imposing some conditions on the solutions, other more difficult ambiguities may also arise in cases such as that of Figure 1.2 in which two lines and a plane can also be interpreted as two planes. More generally, when the subspaces are of different dimensions one may not be able to determine the number of subspaces directly from the degree of the polynomials fitting the data, because the degree of the polynomial of minimum degree that fits a collection of subspaces is always less than or equal to the number of subspaces.

To resolve the difficulty in determining the number and dimension of subspaces, notice that the algebraic set $Z_A = \bigcup_{j=1}^n S_j$ can be decomposed into

13To reject the N-lines solution, one can put a cap on the maximum number of groups n_{max}; and to reject \mathbb{R}^D as the solution, one can simply require that the maximum dimension of every subspace is strictly less than D.
irreducible subsets S_j’s – an irreducible algebraic set is also called a variety. The decomposition of Z_A into $\{S_1, S_2, \ldots, S_n\}$ is always unique. Therefore, as long as we are able to correctly determine from the given sample points the underlying algebraic set Z_A or the associated (radical) ideal $I(Z_\text{A})$, in principle the number of subspaces n and their dimensions $\{d_1, d_2, \ldots, d_n\}$ can always be uniquely determined in a purely algebraic fashion. In Figure 1.2, for instance, the first interpretation (2 lines and 1 plane) would be the right one and the second one (2 planes) would be incorrect, because the two lines, which span one of the planes, is not an irreducible algebraic set.

Having established that the problem of subspace segmentation is equivalent to decomposing the algebraic ideal associated with the subspaces, we are left with deriving a computable scheme to achieve the goal.

From every homogeneous component I_i of

$$I(Z_\text{A}) = I_m \oplus I_{m+1} \oplus \cdots \oplus I_n \oplus \cdots,$$

we may compute a subspace arrangement Z_i such that $Z_\text{A} \subseteq Z_i$ is a subspace embedding (see Section C.2). For each $i \geq m$, we can evaluate the derivatives of polynomials in I_i on subspace S_j and denote the collection of derivatives as

$$D_{i,j} = \cup_{x \in S_j} \{\nabla f \mid x, \forall f \in I_i\}, \quad j = 1, 2, \ldots, n. \quad (4.47)$$

Obviously, we have the following relationship:

$$D_{i,j} \subseteq D_{i+1,j} \subseteq S_j^\perp, \quad \forall i \geq m. \quad (4.48)$$

Then for each I_i, we can define a new subspace arrangement as

$$Z_i = \bigcup_{i=1}^n D_{i,j}^\perp, \quad \forall i \geq m. \quad (4.49)$$

Notice that it is possible that $D_{i,j} = D_{i,j'}$ for different j and j' and Z_i contains less than n subspaces. We summarize the above derivation as the following theorem.

Theorem 4.8 (A Filtration of Subspace Arrangements). Let $I(Z_\text{A}) = I_m \oplus I_{m+1} \oplus \cdots \oplus I_n \oplus \cdots$ be the ideal of a subspace arrangement Z_A. Let Z_i be the subspace arrangement defined by the derivatives of $I_i, i \geq m$ as above. Then we obtain a filtration of subspace arrangements:

$$Z_m \supseteq Z_{m+1} \supseteq \cdots \supseteq Z_n = Z_\text{A},$$

and each subspace of Z_A is embedded in one of the subspaces of Z_i.

The above theorem naturally leads to a recursive scheme that allows us to determine the correct number and dimensions of the subspaces in Z_A. Specifically, we start with $n = 1$ and increase n until there is at least one polynomial of degree n fitting all the data, i.e., until the matrix $V_n(D)$ drops rank for the first time. For such an n, we can use Algorithm 4.4 to separate the data into n subspaces. Then we can further separate each one of these n groups of points using the same
procedure. The stopping criterion for the recursion is when all the groups cannot be further separated or the number of groups \(n \) reaches some \(n_{\max} \).\(^{14}\)

4.3.4 The Recursive GPCA Algorithm

To summarize the above discussions, in principle we can use the following algorithm to recursively identify and segment subspaces in a subspace arrangement \(Z \) from a set of samples \(X = \{x_1, x_2, \ldots, x_N\} \).

Algorithm 4.5 (Recursive GPCA).

Given a set of samples \(X = \{x_1, x_2, \ldots, x_N\} \) in \(\mathbb{R}^D \), find a set of subspaces that fit the data:

1. **for all** \(n = 1 : n_{\max} \) **do**
 2. Build a data matrix \(V_n(D) \equiv [\nu_n(x_1), \nu_n(x_2), \ldots, \nu_n(x_N)]^T \in \mathbb{R}^{M_n(D) \times N} \) via the Veronese map \(\nu_n \) of degree \(n \).
 3. **if** \(\text{rank}(V_n(D)) < M_n(D) \) **then**
 4. Compute the basis \(\{c_{n\ell}\} \) of the null space of \(V_n(D) \).
 5. Obtain polynomials \(\{p_{n\ell}(x) = c_{n\ell}^T \nu_n(x)\} \).
 6. \(Y = \emptyset \).
 7. **for** \(j = 1 : n \) **do**
 8. Select a point \(x_j \) from \(X \setminus Y \).
 9. Obtain the subspace \(S_j \) spanned by the derivatives \(\{\nabla p_{n\ell}(x_j)\} \).
 10. Find the subset \(X_j \subset X \) that belongs to the subspace \(S_j \).
 11. \(Y \leftarrow Y \cup X_j \).
 12. Call Recursive GPCA for \(X_j \) (with \(S_j \) now as the ambient space).
 end for
 13. \(n \leftarrow n_{\max} \).
 else
 14. \(n \leftarrow n + 1 \).
 end if
end for

Figure 4.5 shows the result of applying the Recursive GPCA algorithm to a set of points sampled from two lines and one plane. The points are corrupted by about 5% noises and the algorithm seems to tolerate them well. The appearance of a third “ghost” line in the final solution clearly illustrates the recursive segmentation process: points at the intersection of the two planes segmented at the highest level get assigned to both planes depending on the distances, which are random due to the noises.

Be aware that when the data is noisy, it sometimes can be very difficult to determine the correct dimension of the null space of the matrix \(V_n(D) \) from...

\(^{14}\)For example, the inequality \(M_n(D) \leq N \) imposes a constraint on the maximum possible number of groups \(n_{\max} \).
Figure 4.5. Recursive segmentation of the data points on one plane and two lines. Initially the points are partitioned into two planes. Then one of the planes is further partitioned into three lines. Notice that a “ghost” line appears, because points on the intersection of the two planes form a new line. The arrows on each subspace indicate the normal vectors.

its singular-value spectrum. If the dimension is wrongfully determined, it may result in either under-estimating or over-estimating the number of fitting polynomials. In general, if the number of polynomials were under-estimated, the resulting subspaces would over-fit the data;\(^{15}\) and if the number of polynomials were over-estimated, the resulting subspaces would under-fit the data.

Obviously, both over-fitting and under-fitting result in incorrect estimates of the subspaces. However, do they necessarily result in equally bad segmentation of the data? The answer is no. Between over-fitting and under-fitting, we actually would favor over-fitting. The reason is that, though over-fitting results in subspaces that are larger than the original subspaces, but it is a zero-measure event that any over-estimated subspace contains simultaneously more than one original subspace. Thus, the grouping of the data points may still be correct. For instance, consider the extreme case that we choose only one polynomial that fits the data, then the derivatives of the polynomial, evaluated at one point per subspace, lead to \(n\) hyperplanes. Nevertheless, these over-fitting hyperplanes will in general result in a correct grouping of the data points. One can verify this with the

\(^{15}\)That is, the dimensions of some of the subspaces estimated could be larger than the true ones.
4.4 Relationships between GPCA, K-Subspaces, and EM

In Section 3.3.3, we have discussed the relationships between K-subspaces and EM. In this section, we reveal their relationships with GPCA through the special case of hyperplane arrangements. Let \(b_j \) be the normal vectors to an arrangement of hyperplanes \(S_j, j = 1, 2, \ldots, n \), respectively.

We know from Chapter 3 that, under reasonable assumptions, both the K-subspaces and the EM methods minimize an objective of the form

\[
\min_{\{b_j\}} \sum_{i=1}^{N} \sum_{j=1}^{n} w_{ij} \|b_j^T x_i\|^2. \tag{4.50}
\]

In the case of K-subspaces, \(w_{ij} \) is a “hard” assignment of \(x_i \) to the subspaces: \(w_{ij} = 1 \) only if \(x_i \in S_j \) and 0 otherwise. The above objective function becomes exactly the geometric modeling error. In the case of EM, \(w_{ij} \in [0, 1] \) is the probability of the latent random variable \(z_i = j \) given \(x_i \). Then \(w_{ij} \) plays the role as a “soft” assignment of \(x_i \) to group \(j \).

Following the same line of reasoning, we can replace \(w_{ij} \) with an even “softer” assignment of membership:

\[
w_{ij} \doteq \frac{1}{n} \prod_{l \neq j} \|b_l^T x_i\|^2 \in \mathbb{R}. \tag{4.51}\]

Notice that, in general, the value of \(w_{ij} \) is large when \(x_i \) belongs to (or is close to) \(S_j \), and the value is small when \(x_i \) belongs to (or is close to) any other subspace. With this choice of \(w_{ij} \), the objective function becomes

\[
\min_{\{b_j\}} \sum_{i=1}^{N} \sum_{j=1}^{n} \left(\frac{1}{n} \prod_{l \neq j} \|b_l^T x_i\|^2 \right) \|b_j^T x_i\|^2 = \sum_{i=1}^{N} \prod_{j=1}^{n} \|b_j^T x_i\|^2. \tag{4.52}\]

This is exactly the objective function that all the algebraic methods are based upon. To see this, notice that

\[
\prod_{i=1}^{N} \prod_{j=1}^{n} \|b_j^T x_i\|^2 = \sum_{i=1}^{N} (c_n^T \nu_n(x_i))^2 = \sum_{i=1}^{N} (c_n^T \nu_n(x_i))^2. \tag{4.53}\]

Not so surprisingly, we end up with a “least-squares like” formulation in terms of the embedded data \(\nu_n(x) \) and the coefficient vector \(c_n \). Notice that the above
objective function can be rewritten as

$$\sum_{i=1}^{N} (c_n^T \nu_n(x_i))^2 = \|V_n(D)c_n\|^2.$$ \hspace{1cm} (4.54)$$

The least-squares solution of c_n is exactly given by the eigenvector associated with the smallest eigenvalue of the matrix $V_n(D)$.

The K-subspaces or EM methods minimizes its objective iteratively using b_j computed in the previous iteration. However, one key observation in the GPCA algorithm is that the derivative of the vanishing polynomial $p_n(x) = c_n^T \nu_n(x)$ at the sample points provide information about the normal vectors b_j. Therefore, the GPCA algorithm does not require initialization and iteration but still achieves a goal similar to that of K-subspaces or EM.

4.5 Bibliographic Notes

The difficulty with initialization for the iterative clustering algorithms that we have presented in the previous chapter has motivated the recent development of algebro-geometric approaches to subspace segmentation that do not require initialization. [Kanatani, 2001, Boult and Brown, 1991, Costeira and Kanade, 1998a] demonstrated that when the subspaces are orthogonal, of equal dimensions, and with trivial intersection, one can use the SVD of the data to define a similarity matrix from which the segmentation of the data can be obtained using spectral clustering techniques. Unfortunately, this method is sensitive to noise in the data, as pointed out in [Kanatani, 2001, Wu et al., 2001], where various improvements are proposed. When the intersection of the subspaces is nontrivial, the segmentation of the data is usually obtained in an ad-hoc fashion again using clustering algorithms such as K-means. A basis for each subspace is then obtained by applying PCA to each group. For the special case of two planes in \mathbb{R}^3, a geometric solution was developed by [Shizawa and Mase, 1991] in the context of segmentation of 2-D transparent motions. In the case of subspaces of co-dimension one, i.e., hyperplanes, an algebraic solution was developed by [Vidal et al., 2003b], where the hyperplane clustering problem is shown to be equivalent to homogeneous polynomial factorization.

The GPCA algorithm for the most general case was later developed in [Vidal et al., 2004]; and the decomposition of the polynomial(s) was based on differentiation, a numerically better-conditioned operation. The GPCA algorithm was successfully applied to solve the motion segmentation problem in computer vision [Vidal and Ma, 2004]. The generalization to arrangements of both linear and quadratic surfaces was first studied by [Rao et al., 2005a], which we will present in Chapter 12.

16That is, an arbitrary number of subspaces of arbitrary dimensions.
References on various statistical and robustness issues of the GPCA algorithm will be given in Chapter 5.

4.6 Exercises

Exercise 4.1 (Clustering Points in a Plane). Describe how Algorithm 4.1 can also be applied to a set of points in the plane \(\{ x_i \in \mathbb{R}^2 \}_{i=1}^N \) that are distributed around a collection of cluster centers \(\{ \mu_j \in \mathbb{R}^2 \}_{j=1}^m \) by interpreting the data points as complex numbers: \(\{ z = x + y\sqrt{-1} \in \mathbb{C} \} \). In particular, discuss what happens to the coefficients and roots of the fitting polynomial \(p_n(z) \).

Exercise 4.2 (Connection of Algebraic Clustering with Spectral Clustering). Spectral clustering is a very popular data clustering method. In spectral clustering, one is given a set \(N \) data points (usually in a multi-dimensional space) and an \(N \times N \) pairwise similarity matrix \(S = (s_{ij}) \). The entries \(s_{ij} \) of \(S \) measure the likelihood of two points belonging to the same cluster: \(s_{ij} \to 1 \) when points \(i \) and \(j \) likely belong to the same group and \(s_{ij} \to 0 \) when points \(i \) and \(j \) likely belong to different groups.

1. First examine the special case in which the \(N \) data points have two clusters and the similarity matrix \(S \) is ideal: That is, \(s_{ij} = 1 \) if and only if points \(i \) and \(j \) belong to the same cluster and \(s_{ij} = 0 \) otherwise. What do the eigenvectors of \(S \) look like, especially the one(s) that correspond to nonzero eigenvalue(s)? Argue how the entries of the eigenvectors encode information about the membership of the points.

2. Generalize your analysis and conclusions to the case of \(n \) clusters.

3. Show how Algorithm 4.1 can be used to cluster the points based on the eigenvector of the similarity matrix. Based on Exercise 4.1, show how to cluster the points by using two eigenvectors simultaneously.

Since many popular image segmentation algorithms are based on spectral clustering (on certain similarity measure between pixels), you may use the above algorithm to improve the segmentation results.

Exercise 4.3 (Level Sets and Normal Vectors). Let \(f(x) : \mathbb{R}^D \to \mathbb{R} \) be a smooth function. For any constant \(c \in \mathbb{R} \), the set \(S_c = \{ x \in \mathbb{R}^D | f(x) = c \} \) is called a level set of the function \(f \). \(S_c \) is in general a \(D - 1 \) dimensional submanifold. Show that if \(\| \nabla f(x) \| \) is nonzero at a point \(x_0 \in S_c \), then the gradient \(\nabla f(x_0) \in \mathbb{R}^D \) at \(x_0 \) is orthogonal to any tangent vectors of the level set \(S_c \).

Exercise 4.4 (Hyperplane Embedding from a Single Polynomial). Consider a subspace arrangement \(Z_A = S_1 \cup S_2 \cup \cdots \cup S_n \subset \mathbb{R}^D \). \(f(x) \) is a polynomial that vanishes on \(Z_A \). Show that if we differentiate \(f(x) \) at points on \(Z_A \), we always obtain an arrangement of hyperplanes that contain \(Z_A \).

Exercise 4.5 (Multiple GPCA). For each \(f = 1, 2, \ldots, F \), let \(\{ x_{fj} \in \mathbb{R}^D \}_{j=1}^N \) be a collection of \(N \) points lying in \(n \) hyperplanes with normal vectors \(\{ b_{fj} \}_{j=1}^n \). Assume that \(x_{1j}, x_{2j}, \ldots, x_{Fj} \) correspond to each other, i.e., for each \(i = 1, 2, \ldots, N \) there is a \(j = 1, 2, \ldots, n \) such that for all \(f = 1, 2, \ldots, F \), we have \(b_{fj}^T x_{1j} = 0 \). Propose an extension of the GPCA algorithm that computes the normal vectors in such a way that \(b_{1j}, b_{2j}, \ldots, b_{Fj} \) correspond to each other.
Hint: If $p_{j_1}(x) = c^\top_{j_1} \nu_n(x) = (b_{j_1}^\top x)(b_{j_2}^\top x) \cdots (b_{j_n}^\top x)$ and the ith set of points $x_{1i}, x_{2i}, \ldots, x_{Fi}$ corresponds to the jth group of hyperplanes, then $b_{j_1} \sim \nabla p_{j_1}(x_{j_1})$.

Exercise 4.6 Implement the basic GPCA Algorithm 4.4 and test the algorithm for different subspace arrangements with different levels of noise.
Chapter 5
Statistical Techniques and Robustness Issues

“Statistics in the hands of an engineer are like a lamppost to a drunk – they’re used more for support than illumination.”
– A.E. Housman

The GPCA algorithms developed in the previous chapter are based on purely (linear) algebraic techniques. When there is noise in the given data samples, the vanishing polynomials are found as such that they minimize the least-square fitting error. In practice, these techniques can tolerate moderate noise in the data or numerical error in the computation. However, they are not designed to deal with large amount of noises or outliers as many statistical issues of the subspace-segmentation problem have not been sufficiently addressed. Thus, in this chapter, we switch gears a little bit and show how to incorporate various statistical techniques with the algebraic GPCA algorithms so as to improve their statistical optimality and robustness. For the reader’s convenience, we have summarized related concepts and facts from statistics in Appendix A.

As there are many ways to improve different aspects of the GPCA algorithms, it is impossible for us to examine every possible scenario. Instead, we decide to select a few representative statistical issues and demonstrate how to deal with them in the context of GPCA:

1. The vanishing polynomials estimated using the least-square fitting in the basic GPCA algorithm are not necessarily the statistically optimal ones. In Section 5.1, we show that to obtain the statistically optimal estimates, the least-square fitting error needs to be replaced by the so-called Sampson distance (if one adopts the additive Gaussian noise model). Furthermore, we show that an approximation of the Sampson distance leads to a linear
solution that resembles the one given by the Fisher linear discriminative analysis (see Section 5.1.3).

2. The normal vectors estimated using the derivatives of the vanishing polynomials at only one point per subspace can certainly be improved if they can be estimated collectively from many points on the same subspace. However, we must deal with the difficulty that we do not know which points belong to the same subspace. In Section 5.2, we show how this difficulty can be resolved using a voting scheme from statistics.

3. We have seen in the previous chapter (as well as in Appendix B) that one can determine the number of subspaces and their dimensions from a sufficient number of samples via purely algebraic means. However, in practice, when the data are corrupted by noise, this becomes a rather challenging problem. In Section 5.3, we show how to adopt certain model-selection criterion to solve this problem.

4. Real data are often contaminated with outliers. In Section 5.4, we introduce some robust statistical techniques and show how they can be adopted by GPCA to detect and reject outliers. In particular, we will examine the influence function method, multivariate trimming, and random sample consensus (RANSAC).

5.1 Estimation of the Vanishing Polynomials

Unlike PCA, GPCA aims to find multiple subspaces $Z_A = S_1 \cup S_2 \cup \cdots \cup S_n$ that best fit the sample data. It is essentially based on the notion that we are able to correctly identify a set of polynomials $P = \{p_1(x), p_2(x), \ldots, p_m(x)\}$ whose zero set is exactly the subspace arrangement:

$$Z_A = \{x \in \mathbb{R}^D : P(x) = 0\}. \quad (5.1)$$

However, in practice, identifying the vanishing polynomials from noisy data can be a very difficult problem.

For instance, in the basic GPCA algorithm, the least-square fitting does not necessarily gives the optimal estimate of the polynomials (of degree n) that fit the noisy data. In order for the least-square fitting error $\|\nu_n(x)^T c\|^2$ to be optimal, it is necessary that the embedded data vector $\nu_n(x)$ has an isotropic Gaussian distribution. However, it is more natural and meaningful to assume that the sample x itself is corrupted by (isotropic) Gaussian noise. That is, we assume that for each sample point x_i,

$$x_i = \hat{x}_i + n_i, \quad i = 1, 2, \ldots, N, \quad (5.2)$$

where \hat{x}_i is a point on the subspaces and n_i is an independent isotropic Gaussian random noise added to \hat{x}_i. It is easy to verify that with respect to this noise model, the embedded data vector $\nu_n(x_i)$ no longer has an isotropic Gaussian distribution.
5.1. Estimation of the Vanishing Polynomials

and subsequently the least-square fitting no longer gives the optimal estimate of the vanishing polynomials. In fact, under the above noise model, the maximum-likelihood estimate (see Appendix A) of the polynomials minimizes the mean square distance:

\[\frac{1}{N} \sum_{i=1}^{N} \| x_i - \hat{x}_i \|^2. \]

(5.3)

However, it is difficult to directly minimize the mean square distance as the closest point \(\hat{x}_i \) to \(x_i \) is a complicated function of the vanishing polynomials \(P \) that is yet to be estimated. To resolve this difficulty, in practice we often use the first order approximation of \(x_i - \hat{x}_i \) to replace that in the mean square distance. This leads to the so-called Sampson distance that we now introduce.

5.1.1 Sampson Distance

Without loss of generality, we may assume that the polynomials in \(P \) are linearly independent. We may view \(P(x) = [p_1(x), p_2(x), \ldots, p_m(x)]^T : \mathbb{R}^D \rightarrow \mathbb{R}^m \).

We denote the derivative (or Jacobian) of \(P(x) \) as

\[DP(x) = \begin{bmatrix} \frac{\partial p_1(x)}{\partial x_1} & \cdots & \frac{\partial p_1(x)}{\partial x_D} \\ \vdots & \ddots & \vdots \\ \frac{\partial p_m(x)}{\partial x_1} & \cdots & \frac{\partial p_m(x)}{\partial x_D} \end{bmatrix} = \begin{bmatrix} \nabla p_1(x) \\ \vdots \\ \nabla p_m(x) \end{bmatrix} \in \mathbb{R}^{m \times D}. \]

(5.4)

Given a point \(x \) close to the zero set of \(P(x) \), i.e., the subspaces \(Z_A \), we denote as \(\hat{x} \) the closest point to \(x \) on \(Z_A \). Then using the Taylor series of \(P \) expanded at \(x \), the value of \(P \) at \(\hat{x} \) is given by

\[P(\hat{x}) = P(x) + DP(x)(\hat{x} - x) + O(\|\hat{x} - x\|^2). \]

(5.5)

Since \(P(\hat{x}) = 0 \) by definition, after ignoring the high order terms, we have

\[x - \hat{x} \approx (DP(x)^TDP(x))^\dagger DP(x)^T P(x) \in \mathbb{R}^D, \]

(5.6)

where \((DP(x)^TDP(x))^\dagger \) is the pseudo inverse of the matrix \(DP(x)^TDP(x) \).

Thus, the approximate square distance from \(x \) to \(Z_A \) is given by

\[\| x - \hat{x} \|^2 \approx P(x)^T(DP(x)DP(x)^T)^\dagger P(x). \]

(5.7)

The expression on the right-hand side is known as the Sampson distance. Thus, the average Sampson distance

\[\frac{1}{N} \sum_{i=1}^{N} P(x_i)^T(DP(x_i)DP(x_i)^T)^\dagger P(x_i) \]

(5.8)
is an approximation to the mean square distance (5.3). In practice, minimizing the Sampson distance leads to a good approximation to the maximum-likelihood estimate.

However, there is certain redundancy in the expression of Sampson distance. If Z_A is the zero set of $P(x)$, it is also the zero set of $\tilde{P}(x) = MP(x)$ for any non-singular matrix $M \in \mathbb{R}^{m \times m}$. It is then easy to check that the Sampson distance (5.7) is invariant under the linear transformation M. Thus, the estimate of polynomials that minimizes the average Sampson distance is not unique.

One way to reduce the redundancy is to impose some constraints on the coefficients of the polynomials in P. Notice that $D\tilde{P}(x)DP(x)^T = MDP(x)DP(x)^T M^T$. If there is no polynomial of lower degree (than those in P) that vanishes on Z_A, the matrix $\frac{1}{N} \sum_{i=1}^{N} DP(x_i)DP(x_i)^T \in \mathbb{R}^{m \times m}$ must be a non-singular (symmetric) matrix. We can choose a matrix M such that the following matrix becomes the identity:

$$\frac{1}{N} \sum_{i=1}^{N} DP(x_i)DP(x_i)^T = I_{m \times m}. \quad (5.9)$$

Thus, the problem of minimizing the average Sampson distance now becomes a constrained optimization problem:

$$P^* = \arg \min_{P} \frac{1}{N} \sum_{i=1}^{N} (DP(x_i)DP(x_i)^T)^\dagger P(x_i),$$

subject to $\frac{1}{N} \sum_{i=1}^{N} DP(x_i)DP(x_i)^T = I_{m \times m}. \quad (5.10)$

Many nonlinear optimization methods allow us to iteratively minimize the above objective function via gradient-descent techniques. However, in order for such iterative methods to converge quickly to the global minimum, a good initialization is needed.

5.1.2 Generalized Eigenvector Fit

Notice that the remaining linear transformations that respect the above constraint (5.9) are unitary transformations $R \in O(m)$. Incidentally, the least-square fitting error is invariant under any unitary transformation: $\|RP(x)\|^2 = \|P(x)\|^2$. Now under the constraint (5.9), the identity matrix $I_{m \times m}$ is the average of all the matrices $DP(x_i)DP(x_i)^T$. We can use the identity matrix to approximate each $DP(x_i)DP(x_i)^T$. With this approximation, the Sampson distance (5.7) becomes the least-square fitting error:

$$P(x)^T (DP(x)DP(x)^T)^\dagger P(x) \approx P(x)^TP(x) = \|P(x)\|^2. \quad (5.11)$$

This leads to the following constrained optimization problem:

$$P^* = \arg \min_{P} \frac{1}{N} \sum_{i=1}^{N} \|P(x_i)\|^2,$$

subject to $\frac{1}{N} \sum_{i=1}^{N} DP(x_i)DP(x_i)^T = I_{m \times m}. \quad (5.12)$

This problem has a simple linear algebraic solution that we now describe in the context of GPCA. Without loss of generality, we now assume that all the
5.1. Estimation of the Vanishing Polynomials

Polynomials in P are of degree n and there is no polynomial of degree less than n that vanishes on the subspace arrangement Z_A of interest. For homogeneous polynomials of degree n, they have the form:

$$p_i(x) = c_i^T \nu_n(x), \quad i = 1, 2, \ldots, m.$$ \hspace{1cm} (5.13)

Define the matrix $C = [c_1, c_2, \ldots, c_m]$ and we then have $P(x) = C^T \nu_n(x)$ and $DP(x) = C^T \nabla \nu_n(x)$. We further define two matrices

$$W = \frac{1}{N} \sum_{i=1}^{N} \nu_n(x_i) \nu_n(x_i)^T = \frac{1}{N} V_n(D)^T V_n(D),$$ \hspace{1cm} (5.14)

$$B = \frac{1}{N} \sum_{i=1}^{N} \nabla \nu_n(x_i) \nabla \nu_n(x_i)^T.$$ \hspace{1cm} (5.15)

Using these notations, we can rewrite the above optimization problem (5.12) as

$$C^* = \arg \min_C \text{Trace}(C^T W C), \quad \text{subject to } C^T B C = I_{m \times m}. \hspace{1cm} (5.16)$$

In comparison, the least-square fitting in the basic GPCA algorithm minimizes the same objective function but subject to a different constraint: $C^T C = I_{m \times m}$. We will soon see the difference from simulations in Section 5.1.3.

Using Lagrange multipliers and the necessary conditions for minima, one can show that the optimal solution C^* is such that its ith column c_i^* is the ith generalized eigenvector of the matrix pair (W, B):

$$W c_i^* = \lambda_i B c_i^*, \quad i = 1, 2, \ldots, m,$$ \hspace{1cm} (5.17)

where $0 \leq \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_m$ are the m smallest generalized eigenvalues of (W, B). Furthermore, as B is non-singular, c_i^* is also the eigenvector associated with the ith smallest eigenvalue of the matrix $B^{-1} W$:

$$B^{-1} W c_i^* = \lambda_i c_i^*, \quad i = 1, 2, \ldots, m.$$ \hspace{1cm} (5.18)

As the optimal solution to the problem (5.12), the so-obtained polynomials $P(x) = (C^*)^T \nu_n(x)$ usually give a good initialization to the original problem (5.10). It usually takes only a few more iterations for most conventional gradient-descent method (such as the Levenberg-Marquardt) to converge to the (global) minimum.

Typically, the polynomials obtained from the above generalized eigenvectors already give very good results for GPCA purposes and the improvement gained by further minimizing the Sampson distance is limited. The reason is probably because these polynomials are in some sense already the optimal ones for clustering the data points into multiple subspaces. To explain this more clearly, we need to introduce the concept of discriminant analysis in statistics.

\[\text{Otherwise there would be polynomial of degree less than } n \text{ that fits the data, which contradicts our assumptions.}\]
5.1.3 Linear Discriminant Analysis

As we know from statistics, the model that best fits a given data set is not necessarily the one that best groups the data points into different clusters. If the distributions of the data points are known (e.g., mixtures of Gaussians), many techniques from discriminant analysis in statistics can offer principled solutions to the optimal clustering of the data points. These techniques include Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), and Regularized Discriminant Analysis (RDA) [Hastie, 1984]. It is beyond the scope of this book to discuss all such techniques. In this section, we show how we can adopt some of the concepts from Fisher Linear Discriminant Analysis (LDA) to obtain vanishing polynomials that are better for clustering the data into multiple subspaces. Interestingly, the solution turns out to be exactly the same as that to the generalized eigenvector fit studied in the previous section.

Fisher Linear Discriminant Analysis (LDA)

Given a set of labeled sample points \(\{x_1, x_2, \ldots, x_N\} \) drawn from multiple, say \(n \), clusters, the Fisher linear discriminant analysis aims to

\[
\text{find a linear combination } \hat{x} = c^T x \text{ such that the within-cluster variance is minimized relative to the between-cluster variance.}
\]

As discriminant analysis is primarily a supervised-learning method, it requires that the membership of samples is known. However, as we will see in the next section, some of the key notions of discriminant analysis can be adopted by GPCA to improve its performance without knowing the membership.

To minimize the within-cluster variance, we would like all data samples to be as close to their respective cluster means as possible. Thus for a given cluster \(j \) with the mean \(\mu_j \in \mathbb{R}^D \), we aim to minimize the following objective:

\[
\min J_{W_j} = \sum_{i=1}^{N_j} \| \hat{x}_i - \mu_j \|^2 = \sum_{i=1}^{N_j} \| c^T (x_i - \mu_j) e \|^2 = c^T W_{j} c \quad (5.19)
\]

with \(\{x_1, x_2, \ldots, x_{N_j}\} \) belong to the \(j \)th cluster, \(j = 1, 2, \ldots, n \). We will call \(W_j \) the within-cluster variance matrix for the \(j \)th cluster.

To best separate the \(n \) clusters from each other, we would also like the cluster means themselves to be as far apart as possible. Let \(\bar{\mu} \) be the mean of the \(n \)
cluster means $\{\mu_1, \mu_2, \ldots, \mu_n\}$. Thus, we would like to maximize the variance of means:

$$\max J_B = \frac{1}{n} \sum_{j=1}^{n} \|\hat{\mu}_j - \hat{\mu}\|^2 = \frac{1}{n} \sum_{j=1}^{n} ||\mu_j^T c - \bar{\mu}^T c||^2$$

(5.21)

$$= c^T \left(\frac{1}{n} \sum_{j=1}^{n} (\mu_j - \bar{\mu})(\mu_j - \bar{\mu})^T \right) c = c^T B c.$$

(5.22)

The matrix B defined above is called the *between-cluster variance matrix* for n clusters with cluster means $\{\mu_1, \mu_2, \ldots, \mu_n\}$.

The objective of the Fisher LDA is to find the line $c \in \mathbb{R}^D$ that minimizes the projected within-cluster variance $c^T W c$ relative to the projected between-cluster variance $c^T B c$. We can accomplishing this by minimizing the ratio of these two variances, which takes the form of the *Rayleigh Quotient*:

Definition 5.1 (Rayleigh Quotient). For two square symmetric matrices $W, B \in \mathbb{R}^{D \times D}$ and a vector $c \in \mathbb{R}^D$, the Rayleigh Quotient is the ratio

$$R(c) = \frac{c^T W c}{c^T B c}.$$

(5.23)

From the necessary condition $\nabla R(c) = 0$ for extrema, one can show that the unit vector c^* that minimizes the Rayleigh Quotient is the minimal generalized eigenvector of the matrix pair (W, B). That is, c^* satisfies the equation

$$W c^* = \lambda B c^* \quad \text{for some} \quad \lambda \in \mathbb{R}.$$

(5.24)

Furthermore, if B is invertible, then c is just the eigenvector of the matrix $B^{-1} W$ associated with the smallest eigenvalue λ_{\min}.

Fisher Discriminant Analysis for Subspaces

The basic idea of GPCA, as described in the previous chapters, is to fit the entire data set sampled from an arrangement of subspaces with a set of polynomials so that the subspaces are the common zero set of the polynomials. If the data samples are drawn from an arrangement of hyperplanes, then the polynomials are all generated by a factorable polynomial:

$$p(x) = \prod_{j=1}^{n} (b_j^T x) = c^T \nu_n(x) = 0$$

(5.25)

with n the number of (different) hyperplanes and b_j the normal vector to the jth plane. In this case, it is very easy to find the coefficient vector c. The kernel of the data matrix $V_n(D)$ is only one-dimensional, so the smallest singular vector will readily yield the vector c up to a scale.

However, if the data samples are drawn from an arrangement of linear subspaces, not all of which are hyperplanes in \mathbb{R}^D, then in general the kernel of $V_n(D)$ is multi-dimensional and the vectors c are in general linear combinations of the coefficients of polynomials of the form (5.25).
In the presence of noise, it is likely that \(p(x) \neq 0 \), but we would like to find the coefficient vector \(c \) that minimizes the following average least-square fitting error

\[
\min J_W = \frac{1}{N} \sum_{i=1}^{N} |p(x_i)|^2 = c^T \left(\frac{1}{N} \sum_{i=1}^{N} \nu_n(x_i) \nu_n(x_i)^T \right) c \tag{5.26}
\]

where the matrix \(W \) will be called the within-subspace scatter matrix. The eigenvectors of \(W \) associated with its smallest eigenvalues form a basis for the coefficients \(c \) of all the polynomials that fit the data set with a given error threshold. Nevertheless, the polynomial that minimizes \(J_W \) is not necessarily the best for separating the noisy data into their respective subspaces.

Let us examine the derivative of the polynomial at each of the data samples. Let us assume that the data sample \(x_1 \) lies exclusively in the subspace \(S_1 \). Then we have:

\[
\nabla p(x_1) = \left(\prod_{j=2}^{n} b_j^T x_1 \right) b_1 = c^T \nabla \nu_n(x_1). \tag{5.28}
\]

The direction of \(\nabla p(x_1) \) in (5.28) is the same as the vector \(b_1 \), and its magnitude is given by

\[
\| \nabla p(x_1) \|^2 = \left| \left(\prod_{j=2}^{n} b_j^T x_1 \right) \right|^2. \tag{5.29}
\]

The average of the quantity \(\| \nabla p(x_1) \|^2 \) over all \(x_1 \) in \(S_1 \) gives a good measure of “distance” from \(S_1 \) to \(\bigcup_{j=2}^{n} S_j \), the union of the other subspaces in the model. We leave it as an exercise for the reader to verify for \(n = 2 \) lines in \(\mathbb{R}^2 \), what the value \(\int_{x \in S_1} \| \nabla p(x) \|^2 dx \) is when \(x \) is a zero-mean Gaussian distribution in \(S_1 \).

Thus, for the segmentation purpose, we would like to find the coefficient vector \(c \) that maximizes the following quantity:

\[
\max J_B = \frac{1}{N} \sum_{i=1}^{N} \| \nabla p(x_i) \|^2 \tag{5.30}
\]

where \(B \) is the between-subspace scatter matrix.

The coefficient vector \(c \) that simultaneously minimizes the polynomial evaluated at each of the samples while maximizing the norm of the derivative at each point can be obtained by simply minimizing the ratio of these two metrics.

Definition 5.2 (Segmentation Polynomial). The Segmentation Polynomial \(p(x) = c^T \nu_n(x) \) of the given data set is specified by the coefficient vector \(c^* \) such that

\[
c^* = \arg \min_c \frac{c^T W c}{c^T B c}. \tag{5.32}
\]
This ratio is just like the Rayleigh quotient described earlier in Fisher LDA. Let us compare the within-cluster variance matrix and the within-subspace scatter matrix. The former measures the squared Euclidean distance between samples and their cluster means; the latter measures the squares of the polynomial evaluated at the samples, which can be regarded as a squared “distance” between samples and the linear subspaces they lie on. Similarly we can compare the between-cluster variance matrix and the between-subspace scatter matrix. The former measures the squared Euclidean distance between cluster means; the latter measures the squared norms of the derivative of the polynomial evaluated at the samples, which can be regarded as a squared “distance” between one subspace to all the other linear subspaces in the arrangement.

The minimization of the Rayleigh quotient only requires that W and B are real, symmetric, positive semi-definite matrices. Thus the vector c^* that minimizes this ratio will be the generalized eigenvector associated with the smallest generalized eigenvalue of (W, B). In our context, the within-subspace scatter matrix B will always be full rank, because otherwise all of the data samples can be fitted with some polynomials of degree lower than n. As a result, the vector c^* is simply the eigenvector of $B^{-1}W$ associated with the smallest eigenvalue.

Notice that the solution is exactly the same as the generalized eigenvector fit studied in Section 5.1.2 with $m = 1$. For a general subspace arrangement, there are usually $m > 1$ vanishing polynomials (of degree n). Therefore, we can define the m “Segmentation Polynomials” of a given data set drawn from the subspace arrangement to be the polynomials whose coefficients are given by the first m eigenvectors of $B^{-1}W$.

Simulation Results

In the basic GPCA Algorithm 4.4, the polynomials $p(x)$ that minimize the squared fitting error are estimated from eigenvectors of the matrix $W = \frac{1}{N}V_n(D)^T V_n(D)$. We now can replace them with the Segmentation Polynomials estimated from the eigenvectors of the matrix $B^{-1}W$. For the purpose of comparison, we call the resulting algorithm as *Fisher GPCA*.

To verify the improvement in performance of Fisher GPCA over basic GPCA, we present below a few simulations with synthetic data. Figure 5.1 shows an example data set that we will use in the first two experiments to evaluate the performance of Fisher GPCA in comparison with basic GPCA. Notice in this case that the zero set of the Segmentation Polynomial (asymptotically) approximates a union of three planes, which results in a correct segmentation of the three subspaces – the two lines are contained in two of the planes, respectively.

Comparison of the Singular-Value Spectrums

The first experiment demonstrates how the normalization of W by B may significantly improves the eigenvalue spectrum of W. That is, it makes the null space of W less sensitive to the corruption of noise, which makes the estimation of polynomials that fit the data a better-conditioned problem. To see this, let us con-
sider a set of points drawn from two lines and one plane in \mathbb{R}^3 (see Figure 5.1) – 1000 points from the plane and 200 points from each line – with 5% Gaussian noise added. As Figure 5.2 illustrates, the generalized eigenvalues of the Rayleigh Quotient provide a much sharper “knee point” than the singular values of the (embedded) data matrix $V_n(D)$ (or the eigenvalues of $W = \frac{1}{N}V_n(D)^T V_n(D)$). With the new spectrum, one can more easily estimate the correct number of polynomials that fit the data (in this case four polynomials).

Figure 5.2. Top: Plot of the eigenvalues of the within-subspace scatter matrix W. Bottom: Plot of the eigenvalues of the matrix $B^{-1}W$ derived from the Rayleigh quotient.
5.1. Estimation of the Vanishing Polynomials

Fisher GPCA versus GPCA for Subspace Segmentation

In this experiment, we randomly generate a number of different arrangements with one plane and two lines. The lines are chosen so as to have a random angle larger than 30°. The sample number of samples are drawn from the plane and the lines as before. We then add between 1% and 7% Gaussian noise and apply both the basic GPCA algorithm and the Fisher GPCA to the data set, instructing them to fit the data with three linear subspaces. This test was performed 1000 times at each noise level, and for each test run the misclassification rate was computed using the known a priori sample labels.

Figure 5.3 shows the result of our experiment. The average misclassification rate is displayed as a function of the noise level. These results verify that while the two algorithms have negligible difference in error for low noise level, as we increase the amount of noise, the difference in performance becomes much more dramatic. The ability of any set of subspaces to segment noisy data samples becomes limited as noise increases since samples near the intersections of the subspaces are more likely mis-classified. Our results show that Fisher GPCA approaches this limit.

To better understand the performance of Fisher GPCA, we can analyze the distribution of misclassification rates over the 1000 test runs for a given noise level. In Figure 5.4, the misclassifications rates for 1000 test runs of the data set with 6% noise are sorted and displayed as a distribution. These distributions reveal that both algorithms have performance types that can be grouped into one of three categories: (Class A), where the model and the segmentation are estimated correctly; (Class B), where the segmentation is reasonable, but the model estimation is incorrect (i.e., one or more of the subspaces has incorrect dimension); and (Class C), where neither the model nor the segmentation is correct. As Figure 5.4 demonstrates, even in the presence of 6% noise, Fisher GPCA can produce a meaningful segmentation of the noisy data samples almost 98% of the time.

Figure 5.3. Plot of average misclassification error as a function of the noise for the GPCA algorithm and the Fisher GPCA algorithm.
5.2 Estimation of Multiple Subspaces via a Voting Scheme

In the basic GPCA algorithm, the basis for each subspace is estimated from the derivatives of the fitting polynomials at a single representative point. However, if the chosen point is noisy, it may cause a large error in the estimated subspace and subsequently the segmentation. From a statistical viewpoint, more accurate estimates of the subspace can be obtained if we are able to use the derivatives at many points in the same subspace. However, a fundamental difficulty here is that we do not know which points belong to the same subspace in the first place. There is yet another issue. In the basic GPCA algorithm, the rank of the derivatives at each point is the co-dimension of the subspace to which it belongs. In the presence of noise, it is suggested to use PCA to determine the rank. However, the estimated rank can be wrong if the point is noisy. Furthermore, it is difficult to find a common threshold for PCA that works for different subspaces.

For the rest of the section, we assume that we already know the correct number of subspaces and their individual dimensions.\(^4\) We show below how to improve the estimates of the subspaces by generalizing a voting scheme similar to that adopted in some robust estimation techniques such as the Hough transform [Ballard, 1981]. The reason why robust estimation techniques become very much relevant here is because as far as each subspace is concerned, points in other subspaces can be viewed as “outliers.”

5.2.1 Stacks of Bases and Counters

Suppose the subspace arrangement is a union of \(n\) subspaces: \(Z_A = S_1 \cup S_2 \cup \cdots \cup S_n\). Let us assume that the dimensions of the subspaces are \(d_1, d_2, \ldots, d_n\) and their co-dimensions are \(c_i = D - d_i, i = 1, 2, \ldots, n\). From the value of the Hilbert function \(h_I(n)\) (see Appendix B), we know there should be \(h_I(n)\) linearly independent polynomials of degree \(n\) that fit the arrangement. From a set

\(^4\)We will study in the next section the case in which the number of subspaces and their dimensions are not known.
of sample data $X = \{ x_1 \}$, we may find the set of fitting polynomials

$$P \doteq \{ p_1(x), p_2(x), \ldots, p_{h_1(n)}(x) \}$$

from the eigenvectors associated with the $h_1(n)$ smallest eigenvalues of the matrix $W = \frac{1}{N} V_n(D)^T V_n(D)$.

Now suppose we pick a sample point x_1 from X. The derivatives of the fitting polynomials are

$$DP(x_1) \doteq \{ \nabla p_1(x_1), \nabla p_2(x_1), \ldots, \nabla p_{h_1(n)}(x_1) \}. \quad (5.33)$$

If there is no noise, $\text{rank}(DP(x_1))$ will be exactly the co-dimension of the subspace to which x_1 belongs. However, when the data are noisy, it can be very difficult to determine the co-dimension in this way. In principle, x_1 can be in any of subspaces. Without loss of generality, we assume that c_1, c_2, \ldots, c_n have m distinct values c'_1, c'_2, \ldots, c'_m. As we do not know the exact dimension yet, we can compute a set of basis candidates

$$B_i(x_1) \subset \mathbb{R}^{D \times c'_i}, \quad i = 1, 2, \ldots, m, \quad (5.34)$$

as $B_i(x_1)$ collects the first c'_1, c'_2, \ldots, c'_m principal components of $DP(x_1)$. Thus, $B_i(x_1)$ is a $D \times c'_i$ orthogonal matrix. The rationale here is, as we cannot yet decide the correct co-dimension at x_1, we keep all the possibilities open.

We also create a stack of bases of dimension c'_i:

$$U_i = \{ U_i(1), U_i(2), \ldots U_i(J) \}, \quad (5.35)$$

where each $U_i(j)$ is a $D \times c'_i$ orthogonal matrix for all $j = 1, 2, \ldots, J$. Correspondingly, we create another stack of numbers:

$$u_i = \{ u_i(1), u_i(2), \ldots u_i(J) \}, \quad (5.36)$$

where each $u_i(j)$ is an integer that counts how many sample points $x_k \in X$ with $B_i(x_k) = U_i(j)$.

5.2.2 Tally the Votes of the Subspaces

With the above definitions, we now can outline a voting scheme that will select a set of bases for the n subspaces that in a sense achieve the highest consensus among all the sample points. For every sample point $x_k \in X$,

1. we compute a set of basis candidates $B_i(x_k), i = 1, 2, \ldots, m$ as defined in equation (5.34);

2. for each $B_i(x_k)$, we compare it with each of the bases in the stack U_i:

 (a) if $B_i(x_k) = U_i(j)$ for some j, then increase the value of $u_i(j)$ by one;

 (b) if $B_i(x_k)$ is different from any of the bases in U_i, then add $U_i(J + 1) = B_i(x_k)$ as a new basis to the stack U_i, and also add a new counter $u_i(J + 1)$ to the stack u_i with the initial value $u_i(J + 1) = 1.$
In the end, the bases of the \(n\) subspaces are chosen to be the \(n\) bases in the stacks \(\{U_1, U_2, \ldots, U_m\}\) that have the highest votes according to the corresponding counters in the stacks \(\{u_1, u_2, \ldots, u_m\}\). Once the subspaces of the highest consensus are chosen as above, each data point is assigned to the closest subspace.

In the above scheme, if the data are noisy, in order to compare \(B_i(x_k)\) with bases in \(U_i\), we need to set an error tolerance. This tolerance, denoted as \(\tau\), can be a small subspace angle chosen by the user. Thus, if the subspace angle between \(B_i(x_k)\) and \(U_i(j)\) is less than \(\tau\), we increase the value of the counter \(u_i(j)\) by one and set the new value of \(U_i(j)\) to be a weighted sum:

\[
U_i(j) \leftarrow \frac{1}{u_i(j) + 1}(u_i(j)U_i(j) + B_i(x_k)).
\]

Notice that the weighted sum may no longer be an orthogonal matrix. If so, apply the Gram-Schmidt process to make \(U_i(j)\) an orthogonal matrix again.

In case when subspaces have different dimensions, for the same sample point \(x\), it is possible more than one candidate basis \(B_i_1(x), B_i_2(x), \ldots, B_i_j(x)\) belongs to more than one counter that has the highest vote. Further examination shows that this ambiguity is mainly caused by the fact that samples on a high-dimensional subspace may form a low-dimensional subspace, e.g., sample points on a 2-D plane along the same direction may result in high consensus as a line. To resolve this ambiguity, we choose highest votes starting with the smallest codimension. When a sample is grouped to a subspace of smaller codimension, its votes in other counters will be removed and the associated bases \(U_i(j)\) recalculated. We summarize the above process as Algorithm 5.1.

There are important features about the above voting scheme that are quite different from the well-known statistical learning methods K-Subspaces and EM for estimating subspace arrangements. The K-Subspaces and EM algorithms iteratively update one basis for each subspace; while the voting scheme essentially keeps multiple candidate bases per subspace through the process. Thus, the voting algorithm does not have the same difficulty with local minima as K-subspaces and EM do.

There are other voting or random sampling methods developed in statistics and machine learning, such as the least median estimate (LME) and random sampling consensus (RANSAC), see Appendix A. These methods are similar in nature as they compute multiple candidate models from multiple down-sampled subsets of the data and then choose the one which achieves the highest consensus (for RANSAC) or smallest median error (for LME). The data that do not conform to the model are regarded as outliers. We will discuss these methods in the context of dealing with outliers in Section 5.4.

5.2.3 Simulation Results

We here give a preliminary comparison of the various algorithms for segmenting subspaces that we have studied so far. They include: The EM algorithm, the K-
Algorithm 5.1 (GPCA with Voting).

Given a set of samples $X = \{x_1, x_2, \ldots, x_N\}$ in \mathbb{R}^D and a parameter for angle tolerance τ, fit n linear subspaces with co-dimensions c_1, c_2, \ldots, c_n:

1. Suppose there are m distinct co-dimensions, ordered as $c'_1 \geq c'_2 \geq \cdots \geq c'_m$.
 - Allocate u_1, u_2, \ldots, u_m to be m stacks of counters and U_1, U_2, \ldots, U_m be m stacks of candidate bases.
2. Estimate the set of fitting polynomials $P(x)$, and compute $DP(x_k)$ for all k.
3. for all sample x_k do
 4. for all $1 \leq i \leq m$ do
 5. Assume x_k is drawn from a subspace of co-dimension c'_i. Find the first c'_i principal vectors of $DP(x_k)$ and stack them into the matrix $B_i(x_k) \in \mathbb{R}^{D \times c'_i}$.
 6. If the subspace angle between $B_i(x_k)$ and $U_i(j)$ is less than τ for some j, increase $u_i(j)$ by one and reset $U_i(j)$ to be the weighted sum in (5.37). Otherwise, create a new candidate basis in U_i with initial value $B_i(x_k)$ and a new counter in u_i with initial value one.
 7. end for
8. end for
9. for all $1 \leq i \leq m$ do
10. Choose the n highest vote(s) in u_i with their corresponding base(s) in U_i.
11. Assign the samples to their closest subspaces, and remove their votes in other counters and bases of higher codimensions.
12. end for
13. Re-estimate the basis of each subspace from the derivatives of all the points that belong to the same subspace.

subspaces algorithm, the basic GPCA algorithm, and the GPCA algorithm with voting (as well as some combination of them).

We randomly generated some subspace arrangements of some pre-chosen dimensions. For instance, $(2, 2, 1)$ indicates an arrangement of three subspaces of dimensions 2, 2, 1, respectively. We then randomly draw a number of samples from them. The samples are corrupted with Gaussian noises. Here we choose the level of noise to be 4%. The error is measured in terms of the percentage of sample points that are wrongfully grouped. All cases are averaged over 200 trials. The performance of all the algorithms are compared in Table 5.1.

We see from the simulation that the voting scheme significantly improves the performance of the basic GPCA Algorithm 4.4. The improvement gained by further employing the K-subspace (or EM) algorithm is no longer significant.

5The percentage is the variance of the Gaussian relative to the diameter of the data.

6Notice that even with perfect knowledge of the subspaces, with noise being added to a sample, the closest subspace to the sample may change as a consequence.
Table 5.1. The percentage of sample points mis-grouped by different algorithms. (Note: The number of subspaces and their dimensions are given to all algorithms. The EM and K-Subspaces algorithms are randomly initialized. But “GPCA-Voting+K-Subspaces” means the K-Subspaces method initialized with the GPCA-Voting algorithm.)

<table>
<thead>
<tr>
<th>Methods</th>
<th>$(2, 2, 1) \in \mathbb{R}^3$</th>
<th>$(2, 2, 2) \in \mathbb{R}^3$</th>
<th>$(4, 2, 2, 1) \in \mathbb{R}^4$</th>
<th>$(4, 4, 4, 4) \in \mathbb{R}^5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM</td>
<td>29%</td>
<td>11%</td>
<td>53%</td>
<td>20%</td>
</tr>
<tr>
<td>K-Subspaces</td>
<td>27%</td>
<td>12%</td>
<td>57%</td>
<td>25%</td>
</tr>
<tr>
<td>GPCA-Basic</td>
<td>10.3%</td>
<td>10.6%</td>
<td>39.8%</td>
<td>25.3%</td>
</tr>
<tr>
<td>GPCA-Voting</td>
<td>6.4%</td>
<td>9.2%</td>
<td>5.7%</td>
<td>17%</td>
</tr>
<tr>
<td>GPCA-Voting + K-Subspaces</td>
<td>5.4%</td>
<td>8.6%</td>
<td>5.7%</td>
<td>11%</td>
</tr>
</tbody>
</table>

5.3 Model Selection for Multiple Subspaces

Most subspace-segmentation algorithms (e.g., EM, K-subspaces, GPCA-voting) assume that the number of subspaces and their dimensions are known or given. If they are not given, the problem of fitting multiple subspaces to a data set becomes much more elusive. For instance, sample points drawn from two lines and one plane in \mathbb{R}^3 can also be fit by two planes, one of which is spanned by the two lines. In Chapter 4, we have suggested that in this case one can apply the basic GPCA algorithm in a recursive fashion to identify all the subspaces (and their dimensions).

However, when there is significant noise in the given data, the purely algebraic GPCA algorithm may fail to return a meaningful solution. In fact, up till now, we have been purposely avoiding a fundamental difficulty in our problem: it is inherently ambiguous in fitting multiple subspaces for any given data set, especially if the number of subspaces and their dimensions are not given a priori. When the data is noisy or nonlinear, any multi-subspace model unlikely will fit the data perfectly except for the pathological cases: 1. All points are viewed as in one D-dimensional subspace – the ambient space; 2. Every point is viewed as in an individual one-dimensional subspace. In general, the more the number of planes we use, the higher accuracy may we achieve in fitting any given data set. Thus, a fundamental question we like to address in this section is:

Among a class of subspace arrangements, what is the “optimal” model that fits a given data set?

From a practical viewpoint, we also need to know under what conditions the optimal model exists and is unique, and more importantly, how to compute it efficiently.

In Appendix C, we have seen that in general, any model selection criterion aims to strike a balance between the complexity of the resulting model and the fidelity of the model to the given data. However, its exact form often depends on the class of models of interest as well as how much information is given about the
model in advance. If we were to apply any of the model-selection criteria (or their concepts) to subspace arrangements, at least two issues need to be addressed:

1. We need to know how to measure the model complexity of arrangements of subspaces (possibly of different dimensions).

2. As the choice of a subspace arrangement involves both continuous parameters (the subspace bases) and discrete parameters (the number of subspaces and their dimensions), we need to know how to properly balance the model complexity and the modeling error for subspace arrangements.

While model selection for subspace arrangements in its full generality is still an open problem at this point, in the next two subsections, we introduce a few specific approaches that address this problem from slightly different aspects. We hope the basic concepts introduced below may help the reader to better appreciate the subtlety and difficulty of the problem.

5.3.1 Effective Dimension of Samples of Multiple Subspaces

Definition 5.3 (Effective Dimension). Given an arrangement of \(n \) subspaces \(Z_A = \bigcup_{j=1}^{n} S_j \) in \(\mathbb{R}^D \) of dimension \(d_j < D \), and \(N_j \) sample points \(X_j \) drawn from each subspace \(S_j \), the effective dimension of the entire set of \(N = \sum_{j=1}^{n} N_j \) sample points, \(X = \bigcup_{j=1}^{n} X_j \), is defined to be:

\[
ED(X, Z_A) = \frac{1}{N} \left(\sum_{j=1}^{n} d_j (D - d_j) + \sum_{j=1}^{n} N_j d_j \right). \tag{5.38}
\]

We contend that \(ED(X, Z_A) \) is the “average” number of (unquantized) real numbers that one needs to assign to \(X \) per sample point in order to specify the configurations of the \(n \) subspaces and the relative locations of the sample points in the subspaces.\(^7\) In the first term of equation (5.38), \(d_j (D - d_j) \) is the total number of real numbers (known as the Grassmannian coordinates\(^8\)) needed to specify a \(d_j \)-dimensional subspace \(S_j \) in \(\mathbb{R}^D \); in the second term of (5.38), \(N_j d_j \) is the total number of real numbers needed to specify the \(d_j \) coordinates of the \(N_j \) sample points in the subspace \(S_j \). In general, if there are more than one subspace in \(Z_A \), \(ED(X, Z_A) \) can be a rational number, instead of an integer for the conventional dimension.

Notice that in the above definition, the effective dimension of \(X \) depends on the subspace arrangement \(Z_A \). This is because in general, there could be many

\(^7\)We here choose real numbers as the basic “units” for measuring complexity in a similar fashion to binary numbers, “bits,” traditionally used in algorithmic complexity or coding theory.

\(^8\)Notice that to represent a \(d \)-dimensional subspace in a \(D \)-dimensional space, we only need to specify a basis of \(d \) linearly independent vectors for the subspace. We may stack these vectors as rows of a \(d \times D \) matrix. Any nonsingular linear transformation of these vectors span the same subspace. Thus, without loss of generality, we may assume that the matrix is of the normal form \([I_{d \times d}, G] \) where \(G \) is a \(d \times (D - d) \) matrix consisting of the so-called Grassmannian coordinates.
subspace structures that can fit X. For example, we could interpret the whole data set as lying in one D-dimensional subspace and we would obtain an effective dimension D. On the other hand, we could interpret every point in X as lying in a one-dimensional subspace spanned by itself. Then there will be N such one-dimensional subspaces in total and the effective dimension, according to the above formula, will also be D. In general, such interpretations are obviously somewhat redundant. Therefore, we define the effective dimension of a given sample set X to be the minimum one among all possible multiple-subspace models that can fit the data set. \(^9\)

$$
\text{MED}(X) = \min_{Z_A: X \subset Z_A} \text{ED}(X, Z_A).
$$

(5.39)

Example 5.4 (Effective Dimension of One Plane and Two Lines). Figure 1.2 shows data points drawn from one plane and two lines in \mathbb{R}^3. Obviously, the points in the two lines can also be viewed as lying in the plane that is spanned by the two lines. However, that interpretation would result in an increase of the effective dimension since one would need two coordinates to specify a point in a plane, as opposed to one in a line. For instance, suppose there are fifteen points in each line; and thirty points in the plane. When we use two planes to represent the data, the effective dimension is: $\frac{1}{15}(2 \times 2 \times 3 - 2 \times 2^2 + 60 \times 2) = 2.07$; when we use one plane and two lines, the effective dimension is reduced to: $\frac{1}{15}(2 \times 2 \times 3 - 2^2 - 2 \times 1 + 30 \times 1 + 30 \times 2) = 1.6$. In general, if the number of points N is arbitrarily large (say approaching to infinity), depending on the distributions of points on the lines or the plane, the effective dimension can be anything between 1 and 2, the true dimensions of the subspaces.

As suggested by the above example, the multiple-subspace model that leads to the minimum effective dimension normally corresponds to a “natural” and hence “efficient” representation of the data in the sense that it achieves the best compression (or dimension reduction) among all possible multiple-subspace models.

5.3.2 Minimum Effective Dimension of Noisy Samples

In practice, real data are corrupted with noise, hence we do not expect that the optimal model fits the data perfectly. The conventional wisdom is to strike a good balance between the complexity of the chosen model and the data fidelity (to the model). To measure the data fidelity to the model, let us denote the projection of each data point $x_i \in X$ to the closest subspace as \hat{x}_i and let $\hat{X} = \{ \hat{x}_i \}$. Then, the total error residual can be measured by:

$$
\|X - \hat{X}\|^2 = \sum_{i=1}^{N} \|x_i - \hat{x}_i\|^2.
$$

(5.40)

\(^9\)The space of multiple-subspace models is topologically compact and closed, hence the minimum effective dimension is always achievable and hence well-defined.
As all model-selection criteria exercise the same rationale as above, we here adopt the geometric-AIC (GAIC) criterion\(^\text{10}\) and it leads to the following objective for selecting the optimal multiple-subspace model:

\[
Z_A^* = \arg \min_{Z_A : X \subset Z_A} \frac{1}{N} \| X - \hat{X} \|^2 + 2\sigma^2 \text{ED}(\hat{X}, Z_A),
\]

(5.41)

where \(\sigma^2\) is the noise variance of the data. However, this optimization problem can be very difficult to solve: The variance \(\sigma^2\) might not be known \textit{a priori} and we need to search for the global minimum in the configuration space of all subspace arrangements, which is not a smooth manifold and has very complicated topological and geometric structures. The resulting computation is typically prohibitive.

To alleviate some of the difficulty, in practice, we may instead minimize the effective dimension subject to a maximum allowable error tolerance. That is, among all the multiple-subspace models that fit the data within a given error bound, we choose the one with the smallest effective dimension. To this end, we define the minimum effective dimension \textit{subject to an error tolerance} \(\tau\) as:

\[
\text{MED}(X, \tau) = \min_{Z_A : \| X - \hat{X} \|_\infty \leq \tau} \text{ED}(\hat{X}, Z_A),
\]

(5.42)

where \(\hat{X}\) is the projection of \(X\) onto the subspaces in \(Z_A\) and the error norm \(\| \cdot \|_\infty\) indicates the maximum norm: \(\| X - \hat{X} \|_\infty = \max_{1 \leq i \leq N} \| x_i - \hat{x}_i \|\). Based on the above definition, the effective dimension of a data set is then a notion that depends on the error tolerance. In the extreme, if the error tolerance is arbitrarily large, the “optimal” subspace-model for any data set can simply be the (zero-dimensional) origin; if the error tolerance is zero instead, for data with random noise, each sample point needs to be treated as a one-dimensional subspace in \(\mathbb{R}^D\) of its own and that brings the effective dimension up close to \(D\).

In many applications, the notion of maximum allowable error tolerance is particularly relevant. For instance, in image representation and compression, the task is often to find a linear or hybrid linear model to fit the imagery data subject to a given peak signal to noise ratio (PSNR).\(^\text{11}\) The resulting effective dimension directly corresponds to the number of coefficients needed to store the resulting representation. The smaller the effective dimension is, the more compact or compressed is the final representation. In Chapter 6, we will see exactly how the minimum effective dimension principle is applied to image representation. The same principle can be applied to any situation in which one tries to fit a piecewise linear model to a data set whose structure is nonlinear or unknown.

Unlike the geometric AIC (5.41), the MED objective is relatively easy to achieve. For instance, the Recursive GPCA Algorithm 4.5 in Section 4.3.3 can

\(^{10}\)We here adopt the GAIC criterion only to illustrate the basic ideas. In practice, depending on the problem and application, it is possible that other model selection criteria may be more appropriate.

\(^{11}\)In this context, the noise is the different between the original image and the approximate image (the signal).
be easily modified to minimize the effective dimension subject to an error toler-
ance: we allow the recursion to proceed only if the effective dimension would
decrease while the resulting subspaces still fit the data with the given error bound.

Figure 5.5 demonstrates the result of the Recursive GPCA algorithm segment-
ing synthetic data drawn from two lines (100 points each) and one plane (400
points) in \(\mathbb{R}^3 \) corrupted with 5% uniform noise (Figure 5.5 top-left). Given a
reasonable error tolerance, the algorithm stops after two levels of recursion (Figure
5.5 top-right). Note that the pink line (top-right) or group 4 (bottom-left) is a
“ghost” line at the virtual intersection of the original plane and the plane spanned
by the two lines.\(^{12}\) Figure 5.5 bottom-right is the plot of MED of the same data set
subject to different levels of error tolerance. As we see, the effective dimension
decreases monotonically with the increase of error tolerance.

5.4 Robust Estimation of Multiple Subspaces

Given a set of sample points \(\{x_i\}_{i=1}^N \) drawn from an arrangement of subspaces
\(\{S_i\}_{i=1}^n \) in \(\mathbb{R}^D \), GPCA relies on obtaining the set of polynomials \(P(x) = \{p_n(x)\} \) of degree \(n \) that vanish on the subspaces. The coefficients of the polyno-
imals \(p_n(x) \) are typically computed from the eigenvectors (or generalized
eigenvectors) of the embedded data matrix

\[
V_n(D) = [\nu_n(x_1), \nu_n(x_2), \ldots, \nu_n(x_N)] \in \mathbb{R}^{M_n(D) \times N}. \quad (5.43)
\]

However, all the algorithms discussed earlier will not give good estimate of the
polynomials if the sample data are corrupted by even a small amount of outliers.
Figure 5.6 shows the performance of the GPCA (with voting) algorithm with var-
ious percentages of outliers. As we see, for four subspaces of dimensions 4, 2, 2, 1
in \(\mathbb{R}^5 \), with only 6% outliers, the segmentation error can be as high as 50%. More
seriously, the estimated subspaces are far from the ground truth,\(^{13}\) as illustrated in
Figure 5.7.

5.4.1 Outlier Percentage Known

The outliers affect the results mainly by influencing \(\text{Null}(V_n) \), which sub-
sequently leads to erroneous estimate of the coefficients of the vanishing polynomials. Therefore, to eliminate the effect of outliers, we are essentially seek-
ing a robust PCA method to estimate \(\text{Null}(V_n) \) such that it would be insensitive
to the outliers.

\(^{12}\)This is exactly what we would have expected since the recursive GPCA first segments the data
into two planes. Points on the intersection of the two planes get assigned to either plane depending on
the random noise. If needed, the points on the ghost line can be merged with the plane by some simple
post-processing.

\(^{13}\)In fact, the “break point” of the GPCA algorithm is 0%: that is, with even a single outlier that has
an arbitrarily large magnitude, the error of the estimate can be arbitrarily large.
5.4. Robust Estimation of Multiple Subspaces 109

In Appendix A.5, we have introduced several robust statistical techniques that can be used to improve the robustness of PCA and hence GPCA. We here test and compare the performance of three robust statistical techniques: sample influence, theoretical sample influence, and multivariate trimming (MVT). The GPCA-Voting algorithm 5.1 introduced earlier will be compared to its robust version. The only difference in the robust version is in step 2 of the Algorithm 5.1: The fitting polynomials $P(x)$ are estimated by the respective robust PCA techniques.

Two synthetic data sets are used for the comparison. Data set one: three subspaces in \mathbb{R}^3 of dimensions 2, 2, 1, with 400, 400, 200 sample points drawn from the subspaces, respectively. Data set two: four subspaces in \mathbb{R}^5 of dimensions 4, 2, 2, 1, with 600, 400, 400, 300 sample points. For each data set, we generate an additional set of outliers according to a uniform distribution in the range of the samples. The percentage of the outliers ranges from 0% to 48% of the total number of samples. The true outlier percentage is used in every robust technique.
Figure 5.6. Performance of GPCA with 6% Gaussian noise and different percentages of outliers.

Figure 5.7. Results of GPCA with 6% noise and 6% outliers (black stars) in 3-D space. Left: the ground truth. Right: estimated subspaces and segmentation result.

as the percentage of outliers rejected. At each percentage level, the simulation is repeated for 200 times.

Figure 5.8 shows the average error in segmentation (percentage) and subspace angle (in degree) between the ground truth and the estimated subspaces. Notice that because of randomness, some outliers lie very closely to the subspaces and are not rejected; and some original samples are rejected instead as outliers because of large noise. Thus, the segmentation error shown in the plot does not count the outliers and so rejected samples, as they are not assigned to any subspace. Table 5.2 summarizes the average running time in Matlab for one trial on a dual 2.7GHz G5 Macintosh workstation. Notice that the segmentation error of multivariate trimming actually decreases when the outlier percentage increases. This is due to the fact that some outliers lie very closely to the subspaces and the algorithm trims out instead original samples that have large noise.

To summarize, when the true outlier percentage is known, the multivariate trimming (MVT) turns out to be the most accurate and fastest method. The corresponding robustified GPCA algorithm can tolerate as much as 50% outliers. The
5.4. Robust Estimation of Multiple Subspaces

(a) \((2, 2, 1)\) in \(\mathbb{R}^3\)

(b) \((4, 2, 1)\) in \(\mathbb{R}^5\)

Figure 5.8. Performance of robustified GPCA by three different techniques: sample influence, theoretical sample influence, and multivariate trimming. For each outlier percentage, 6% Gaussian noise is added to the samples and the experiment repeats 200 times.

Table 5.2. Average computing time for three subspace of dimension 2, 2, 1 in \(\mathbb{R}^3\) with sample sizes \((400, 400, 200)\).

<table>
<thead>
<tr>
<th>Outlier Percentage</th>
<th>0%</th>
<th>4%</th>
<th>8%</th>
<th>16%</th>
<th>24%</th>
<th>32%</th>
<th>48%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Size</td>
<td>1000</td>
<td>1042</td>
<td>1087</td>
<td>1190</td>
<td>1316</td>
<td>1470</td>
<td>1923</td>
</tr>
<tr>
<td>Sample Influence</td>
<td>5.4s</td>
<td>2.5m</td>
<td>2.8m</td>
<td>3.7m</td>
<td>5m</td>
<td>7.8m</td>
<td>18m</td>
</tr>
<tr>
<td>Theoretical Influence</td>
<td>5.4s</td>
<td>9s</td>
<td>9.2s</td>
<td>9.3s</td>
<td>9.3s</td>
<td>9.6s</td>
<td>10.8s</td>
</tr>
<tr>
<td>MVT</td>
<td>5.4s</td>
<td>5.4s</td>
<td>5.5s</td>
<td>5.6s</td>
<td>5.7s</td>
<td>5.7s</td>
<td>5.8s</td>
</tr>
</tbody>
</table>

sample influence method also gives reasonable results when the outliers are less than 30%, but it is the slowest among the three. The theoretical sample influence method gives slightly worse segmentation than the sample influence method at high outlier levels, but it is much faster.

5.4.2 Outlier Percentage Unknown

In practice, however, we usually do not know the outlier percentage for a given data set. In this subsection, we propose a means to estimate the outlier percentage. The percentage will be so determined that the GPCA algorithm returns a “good” multiple-subspace model from the remaining sample points. The main idea is to perform the robust techniques by rejecting different percentages of samples as “outliers,” and verify the “goodness” of the resulting models. The multivariate trimming (MVT) covariance estimator becomes the natural choice because, besides its speed and accuracy comparing to the two influence function methods, it has the outlier rejection percentage naturally built in its process.
We first illustrate the basic ideas with an example. We randomly draw a set of sample points from three subspaces of dimensions $(2, 2, 1)$ in \mathbb{R}^3 with sample sizes $(200, 200, 100)$ and add 6% Gaussian noise. Then, the data are contaminated by 16% uniformly distributed outliers. We use MVT to trim out various percentages of samples ranging from 0% to 54%, and compute the maximal residual of the remaining samples with respect to the model estimated by the GPCA-Voting Algorithm 5.1. Figure 5.9 shows the plot of the maximal residual versus the rejection percentage. The maximal sample residual reaches a plateau right after 7% rejection percentage, and the residual decreases when the rejection percentage increases. Figure 5.10 shows the segmentation results at rejection percentage 7% and 38%, respectively.

In the experiment, although the 7% rejection percentage is much lower than the $a\ priori$ 16% outlier percentage, the remaining outliers in the sample set are nevertheless close to the subspaces (in terms of their residuals), and the resulting subspaces are close to the ground truth. We also see that MVT becomes relatively stable when the rejection percentage is higher than the actual percentage of outliers. In this case, when the rejection percentage is 38%, MVT trims out inlying samples that have relatively larger noise, which results in even a smaller maximal residual as shown in Figure 5.9. Therefore, one does not have to reject the
exact \textit{a priori} outlier percentage in order to obtain a good estimate of the model. In the presence of both noise and outliers, e.g., Figure 5.10(b), it is impossible and unnecessary to distinguish outliers that are close to the subspaces from valid samples that have large noise.

Outlier Percentage Test. \textit{A good estimation of the outlier percentage can be determined by the influence of the outlier candidates with respect to the estimated (subspace) models. That is, further rejection from the data set only results in small changes in the model estimated or in the fitting error.}

This principle suggests two possible approaches for determining the outlier percentage from the plot of the maximal sample residual:

1. The outlier percentage can be determined by finding the first “knee point,” or equivalently the first “plateau,” in the residual plot (in the above example, at 7%).
2. The outlier percentage can be determined by a pre-specified maximal residual threshold.

In practice, one may choose to use either approach based on the nature of the application. However, for the first approach, it is commonly agreed in the literature that a method that finds knee points and plateaus in a plot may not be robust as they are both related to the first-order derivatives of the plot. For example, in Figure 5.9, the rejection percentage 3\% is arguably a knee point too. In addition, a well-shaped plateau may not exist in the residual plot at all if the \textit{a priori} outlier percentage is small.

Therefore, we often determine the outlier percentage as the smallest one such that the maximal sample residual is smaller than a given residual threshold for several consecutive rejection percentages, i.e., the residual “stabilizes.” The residual threshold can also be seen as the variance of the noise of the underlying data, which is similar to the same parameter in other robust statistical techniques, in particular RANSAC. Algorithm 5.2 gives an outline of the resulting algorithm. In practice, we find that the increment of 3\% of the rejection percentage in consecutive trials works well in both simulation and real experiments.

5.4.3 Random Sampling Techniques

The above robust techniques have one thing in common: To begin with, they all somewhat rely on an estimate of the model from all the samples. This to some extent puts a limit on the amount of outliers that these techniques can deal with. Depending on the nature of the data and the actual implementation of the algorithm, these techniques, particularly robust covariance estimators, can only handle up to 50\% outliers. There is yet another category of robust statistical techniques that are based on \textit{random sampling}, including the \textit{least median estimate} (LME) and \textit{random sampling consensus} (RANSAC), see Appendix A.5. They typically start with certain estimates of the model from randomly drawn subsets of the whole sample set and then select the best one in terms of the resulting residual or
Algorithm 5.2 (Robust GPCA).

Given a set of samples \(X = \{x_1, x_2, \ldots, x_N\} \) in \(\mathbb{R}^D \), a threshold \(\tau \) for the subspace angle, and a residual threshold \(\sigma \), fit \(n \) linear subspaces of codimensions \(c_1, c_2, \ldots, c_n \):

1. Set a maximal possible outlier percentage \(M\% \).
2. Normalize the data such that the max vector magnitude is 1.
3. for all rejection percentage \(0 \leq r \leq M \) do
4. \(X' \leftarrow \) removing \(r\% \) samples from \(X \) using MVT.
5. Estimate the subspace bases \(\{\hat{B}_1, \hat{B}_2, \ldots, \hat{B}_n\} \) by applying GPCA to \(X' \) with parameters \(\tau \) and \(c_1, c_2, \ldots, c_n \).
6. Maximal residual \(\sigma_{\text{max}} \leftarrow \max_{x \in X'} \min_k \|x - \hat{B}_k \hat{B}_k^T x\| \).
7. if \(\sigma_{\text{max}} \) is consistently smaller than \(\sigma \) then
8. \(B_k \leftarrow \hat{B}_k \) for \(k = 1, 2, \ldots, n \). Break.
9. end if
10. end for
11. if \(\sigma_{\text{max}} > \sigma \) then
12. \(\text{ERROR: the given } \sigma \text{ is too small.} \)
13. else
14. Label \(x \in X \) as an inlier if \(\min_k \|x - B_k B_k^T x\| < \sigma \).
15. Segment the inlying samples to their respective subspaces.
16. end if

consensus for the remaining samples. In principle, these techniques can deal with larger than or equal to 50% outliers.

In the context of multiple subspaces, there are at least three possible ways to estimate the subspaces using the random sampling scheme. In the following, we briefly discuss the difficulties of applying such random sampling techniques.

1. Estimating the Vanishing Polynomials. Similar to the previous methods, a random sampling algorithm can be applied to the estimation of a set of polynomials that vanish on a subset of the sample data. In this approach, the number of random samplings becomes prohibitive when the model dimension is high. For instance, in the context of GPCA, assume the dimension of the vector \(\nu_n(x) \) is 70 (which corresponds to the case of 4 subspaces in \(\mathbb{R}^5 \)). To estimate a hyperplane in \(\mathbb{R}^{70} \) with 20% outliers, in order to have at least one subset of 69 inliers with probability 0.95, one needs to sub-sample over 14 millions subsets, not to mention that we still need to use GPCA to calculate the subspace bases using the resulting polynomials. This drawback makes it impractical to apply random sampling techniques to the estimation of the vanishing polynomials.

2. Estimating the Union of Subspaces. For a union of multiple subspace, another natural sampling scheme is to sub-sample a set of inliers drawn from all subspaces. For instance, to estimate three subspaces of dimensions \((5, 5, 5)\) in \(\mathbb{R}^6 \), we sub-sample 15 samples each time, and evenly partition
the set into three subsets and estimate three individual subspace models. Although an estimate of the subspaces is directly obtained, unfortunately, the number of samplings is also very high even for a relatively small number of subspaces. To estimate the above three subspaces in \(\mathbb{R}^6 \) with 600 inliers drawn from each subspace and 20% outliers, one needs to sub-sample over 7.27 billions subsets in order to have one subset of 15 inliers with probability of 95%. To estimate a union of four subspaces of dimensions (4, 2, 2, 1) in \(\mathbb{R}^5 \) and sample sizes (400, 200, 200, 100), respectively, one also needs to sub-sample more than 2 million times with 95% confidence. We have implemented this method in MATLAB, and the results of three simulations are shown in Table 5.3. The numbers of sub-samplings shown in the table are the smallest ones to achieve reasonable segmentation results. Although they are much smaller than the theoretical ones with 95% confidence, RANSAC in this case is extremely slow.

Table 5.3. Space angle errors and average time for estimating the three subspace arrangements with 20 percentage outliers via RANSAC for the union of subspaces.

<table>
<thead>
<tr>
<th>Arrangement</th>
<th>Inlying Sample Size</th>
<th>Number of Samplings</th>
<th>Angle Error (degree)</th>
<th>Time Lapse</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2, 2, 1) in (\mathbb{R}^3)</td>
<td>(200, 200, 100)</td>
<td>5,000</td>
<td>1.5</td>
<td>27s</td>
</tr>
<tr>
<td>(4, 2, 2, 1) in (\mathbb{R}^5)</td>
<td>(400, 200, 200, 100)</td>
<td>1,000,000</td>
<td>3.5</td>
<td>5 hours</td>
</tr>
<tr>
<td>(5, 5, 5) in (\mathbb{R}^6)</td>
<td>(600, 600, 600)</td>
<td>10,000,000</td>
<td>10.2</td>
<td>> 2 days</td>
</tr>
</tbody>
</table>

3. Estimating One Subspace at a Time. One can also consider to apply the random sampling techniques to find one subspace at a time. The number of sub-samplings becomes relatively reasonable in this case. For instance, for 4 hyperplanes in \(\mathbb{R}^5 \) with 20% outliers, suppose that the samples are somewhat evenly distributed among the 4 hyperplanes. Then, with respect to each hyperplane, the outliers are about 80%. In order to get at least one subset of 4 inliers with probability 0.95, we need to sub-sample about 1,900 subsets. However, when the subspaces have different dimensions, many complications may arise that can severely limit the performance of RANSAC: 1. If one tries to find higher-dimensional subspaces first, the model will over-fit lower-dimensional subspaces or combinations of multiple subspaces, and they are more likely to rank high in the consensus test. 2. If one tries to estimate lower-dimensional subspaces first, subsets from higher-dimensional subspaces or even intersections of these subspaces may likely win out first in the consensus test. Figure 5.11 shows that this approach may have problems even for a very simple arrangement of subspaces in \(\mathbb{R}^3 \).

In the computer vision literature, RANSAC has shown good performance for some special subspace arrangements. For instance, if all subspaces are of the same dimension, the third approach has been used to effectively recover one subspace at a time [Torr, 1998a]. If the subspace dimensions have different di-
mensions, a *Monte Carlo* scheme can be applied to speed up the second approach [Torr and Davidson, 2003, Schindler and Suter, 2005]. However, none of the special cases seems to generalize well to arbitrary subspace arrangements. At the time this book is written, we are not yet aware of any implementation of random sampling techniques whose performance is competitive against the Robust GPCA method discussed earlier, even in the range of less than 50% outliers and for relatively small number of subspaces (say 4) in a relatively low-dimensional ambient space (say 6).

To conclude this chapter, we provide a comparison between the Robust GPCA Algorithm 5.2 and the third RANSAC approach (one subspace at a time). We consider the same three data sets as in Table 5.3, i.e., samples drawn from \((2, 2, 1)\) in \(\mathbb{R}^3\), \((4, 2, 2, 1)\) in \(\mathbb{R}^5\), and \((5, 5, 5)\) in \(\mathbb{R}^6\), respectively. 6% Gaussian noise and uniformly distributed outliers of various percentages are added to the sample sets. We let the RANSAC algorithm extract higher-dimensional subspaces first. It samples 5000 subsets for each subspace, which is more than double the number needed for a 95% confidence. For the robust GPCA algorithm, the residual threshold \(\sigma\) is fixed at 0.05, and the angle threshold \(\tau\) is fixed at 0.3 radian. Figure 5.12 plots the average error in the estimated subspaces, in terms of subspace angle between the estimates and the ground truth. Table 5.4 shows the average running time of the algorithms with 24% outliers.

<table>
<thead>
<tr>
<th>Arrangement</th>
<th>((2,2,1)) in (\mathbb{R}^3)</th>
<th>((4,2,2,1)) in (\mathbb{R}^5)</th>
<th>((5,5,5)) in (\mathbb{R}^6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RANSAC</td>
<td>3.2s</td>
<td>10s</td>
<td>20s</td>
</tr>
<tr>
<td>Robust GPCA</td>
<td>46s</td>
<td>23m</td>
<td>8m</td>
</tr>
</tbody>
</table>

Table 5.4. Average time of RANSAC and Robust GPCA at 24% outlier.
5.5. Bibliographic Notes

There have been many work on the estimation of polynomials that fit a given set of data. The approach given in Section 5.1 follows that of [Taubin, 1991]. Voting is a very popular and effective technique for obtaining a more stable and robust estimate from noisy data. A popular voting technique developed in computer vision is the Hough transform, which quantizes the parameter space and the estimate is chosen to be the one that gets the highest confirming votes from the data [Ballard, 1981, Tong et al., 2004].

In this chapter, we use subspace arrangements to illustrate a basic principle for model selection: balancing between the model complexity and data fidelity. In practice, the balance can be achieved by minimizing a weighted sum of the two or by minimizing one with the other subject to a given threshold. The latter leads to the minimum effective dimension objective proposed in this chapter. In general, there might be more than one subspace arrangements of the same effective dimension that fit the data subject to a given error tolerance. In many applications, any of the solutions are as good as others. However, in statistical learning, one often tends to choose the model that achieves the maximum entropy: \(\max H(X, \hat{X}) \). This is believed to maximize the generalizability of the learned model. One may refer to [Rose, 1998] for more discussions on this topic for the case of vector quantization (arrangements of 0-dimensional affine subspaces).

There is vast body of literature on robust statistics, see Appendix A.5 for a brief review. Sample influence is always believed to be an important index for detecting outliers. Certain first order approximations of the influence value were developed at roughly the same period as the sample influence function was proposed [Campbell, 1978, Critchley, 1985], when the computational resource was scarcer than it is today. In the literature, formulæ that approximate an influence function are referred to as theoretical influence functions. Usually, the percentage of outliers can be determined by the influence of the candidate outliers on the model estimated [Hampel et al., 1986].

Among the class of robust covariance estimators (see Appendix A.5), the multivariate trimming (MVT) method [Gnanadesikan and Kettenring, 1972] has always been one of the most popular for practitioners, probably because of its computational efficiency for high-dimensional data as well as its tolerance of large percentage of outliers.

![Figure 5.12. Average subspace angle errors of the subspaces estimated by Robust GPCA and RANSAC, respectively.](image)

(a) \((2, 2, 1)\) in \(\mathbb{R}^3\)
(b) \((4, 2, 2, 1)\) in \(\mathbb{R}^5\)
(c) \((5, 5, 5)\) in \(\mathbb{R}^6\)
Random sampling techniques such as the least median estimate (LME) [Hampel, 1974, Rousseeuw, 1984] and random sampling consensus (RANSAC) [Fischler and Bolles, 1981] have been widely used in many engineering areas, especially in pattern recognition and computer vision [Stewart, 1999]. They are very effective when the model is relatively simple. However, as we have seen in this chapter, they have difficulties in dealing with more complicated models such as subspace arrangements.

5.6 Exercises
Part II

Applications in Image Processing & Computer Vision
Chapter 6
Image Representation & Segmentation

In this chapter, we demonstrate why subspace arrangements can be a very useful class of models for image processing and how the subspace-segmentation techniques may facilitate many important image processing tasks, such as image representation (compression), segmentation, and classification.

6.1 Lossy Image Representation

Researchers in image processing and computer vision have long sought for efficient and sparse representations of images. Except for a few image representations such as fractal-based approaches [Fisher, 1995], most existing sparse image representations use an effective linear transformation so that the energy of the (transformed) image will be concentrated in the coefficients of a small set of bases of the transformation. Computing such a representation is typically the first step of subsequent (lossy) compression of the image.¹ The result can also be used for other purposes such as image segmentation,² classification, and object recognition.

Most of the popular methods for obtaining a sparse representation of images can be roughly classified into two categories.

¹Which involves further quantization and entropy-coding of the so-obtained representation.
²As we will study in the next section.
1. Fixed-Basis Linear Transformations.

Methods of the first category seek to transform all images using a pre-fixed linear transformation. Each image is then represented as a superposition of a set of basis functions (specified by the transformation). These methods essentially all evolved from the classical Fourier Transform. One variation of the (discrete) Fourier Transform, the Discrete Cosine Transform (DCT), serves as the core of the JPEG standard [Wallace, 1991]. Due to the Gibbs’ phenomenon, DCT is poor at approximating discontinuities in the imagery signal. Wavelets [DeVore et al., 1992, Donoho et al., 1998, Mallat, 1999, Shapiro, 1993] have been developed to remedy this problem and have been shown to be optimal for representing 1-D signals with discontinuities. JPEG-2000 adopted wavelets as its standard. However, because wavelet transforms only deal with 1-D discontinuities, they are not well-suited to represent 2-D singularities along edges or contours. Anisotropic bases such as wedgelets [Donoho, 1999], curvelets [Candes and Donoho, 2002], contourlets [Do and Vetterli, 2002] and bandlets [LePennec and Mallat, 2005] have been proposed explicitly to capture different 2-D discontinuities. These x-lets have been shown to be (approximately) optimal for representing objects with singularities along \(C^2 \)-smooth edges.\(^3\)

However, natural images, especially images that have complex textures and patterns, do not consist solely of discontinuities along \(C^2 \)-smooth edges. This is probably the reason why these edge-based methods do not seem to outperform (separable) wavelets on complex images. More generally, one should not expect that a (fixed) “gold-standard” transformation would work optimally for all images (and signals) in the world. Furthermore, conventional image (or signal) processing methods are developed primarily for gray-scale images. For color images or other multiple-valued images, one has to apply them to each value separately (e.g., one color channel at a time). The strong correlation that is normally present among the multiple values or colors is unfortunately ignored.

2. Adaptive Transformations & Hybrid Models

Methods of the second category aim to identify the optimal (or approximately optimal) representation that is adaptive to specific statistics or structures of each image.\(^4\) The Karhunen-Loève transform (KLT) or principal component analysis (PCA) [Effros and Chou., 1995] identifies the optimal principal subspace from the statistical correlation of the imagery data and represents the image as a superposition of the basis of the subspace. In theory, PCA provides the optimal linear sparse representation assuming that the imagery data satisfy a uni-modal distribution. However in reality, this assumption is rarely true. Natural images typ-

\(^3\)Here, “optimality” means that the transformation achieves the optimal asymptotic for approximating the class of functions considered [DeVore, 1998].

\(^4\)Here, unlike in the case of prefixed transformations, “optimality” means the representation obtained is the optimal one within the class of models considered, in the sense that it minimizes certain discrepancy between the model and the data.
ically exhibit multi-modal statistics as they usually contain many heterogeneous regions with significantly different geometric structures or statistical characteristics (e.g. Figure 6.2). Heterogeneous data can be better-represented using a mixture of parametric models, one for each homogeneous subset. Such a mixture of models is often referred to as a hybrid model. Vector quantization (VQ) [Gersho and Gray, 1992] is a special hybrid model that assumes the imagery data are clustered around many different centers. From the dimension reduction point of view, VQ represents the imagery data with many 0-dimensional (affine) subspaces. This model typically leads to an excessive number of clusters or subspaces. The primal sketch model [Guo et al., 2003] is another hybrid model which represents the high entropy parts of images with Markov random fields [Zhu et al., 1998, Wu et al., 2000] and the low entropy parts with sketches. The result is also some kind of a “sparse” representation of the image as superposition of the random fields and sketches. However, the primary goal of primal sketch is not to authentically represent and approximate the original image. It is meant to capture the (stochastic) generative model that produces the image (as random samples). Therefore, this type of models are more suited for image parsing, recognition, and synthesis than approximation and compression. In addition, finding the sketches and estimating the parameters of the random fields are computationally expensive and therefore less appealing for developing efficient image representation and compression schemes.

In this chapter, we would like to show how to combine the benefits of PCA and VQ by representing an image with multiple (affine) subspaces – one subspace for one image segment. The dimension and basis of each subspace are pertinent to the characteristics of the image segment it represents. We call this a hybrid linear model and will show that it strikes a good balance between simplicity and expressiveness for representing natural images.

A Multi-Scale Hybrid Linear Model for Lossy Image Representation.

One other important characteristic of natural images is that they are comprised of structures at many different (spatial) scales. Many existing frequency-domain techniques harness this characteristic [Burt and Adelson, 1983]. For instance, wavelets, curvelets, and fractals have all demonstrated effectiveness in decomposing the original imagery signal into multiple scales (or subbands). As the result of such a multi-scale decomposition, the structures of the image at different scales (e.g., low v.s. high frequency/entropy) become better exposed and hence can be more compactly represented. The availability of multi-scale structures also significantly reduces the size and dimension of the problem and hence reduces the overall computational complexity.

5 Be aware that compared to methods in the first category, representations in the second category typically need additional memory to store the information about the resulting model itself, e.g., the basis of the subspace in PCA, the cluster means in VQ.
Therefore, in this chapter we introduce a new approach to image representation by combining the hybrid paradigm and the multi-scale paradigm. The result is a multi-scale hybrid linear model which is based on an extremely simple concept: Given an image, at each scale level of its down-sample pyramid, fit the (residual) image by a (multiple-subspace) hybrid linear model. Compared to the single-scale hybrid linear model, the multi-scale scheme can reduce not only the size of the resulting representation but also the overall computational cost. Surprisingly, as we will demonstrate, such a simple scheme is able to generate representations for natural images that are more compact, even with the overhead needed to store the model, than most state-of-the-art representations, including DCT, PCA, and wavelets.

6.1.1 A Hybrid Linear Model

In this section we introduce and examine the hybrid linear model for image representation. The relationship between hybrid linear models across different spatial scales will be discussed in Section 6.1.2.

An image I with width W, height H, and c color channels resides in a very high-dimensional space $\mathbb{R}^{W \times H \times c}$. We may first reduce the dimension by dividing the image into a set of non-overlapping b by b blocks. Each b by b block is then stacked into a vector $x \in \mathbb{R}^D$, where $D = b^2 c$ is the dimension of the ambient space. For example, if $c = 3$ and $b = 2$, then $D = 12$. In this way, the image I is converted to a set of vectors $\{x_i \in \mathbb{R}^D\}_{i=1}^N$, where $N = WH/b^2$ is the total number of vectors.

Borrowing ideas from existing unsupervised learning paradigms, it is tempting to assume the imagery data $\{x_i\}$ are random samples from a (non-singular) probability distribution or noisy samples from a smooth manifold. As the distribution or manifold can be very complicated, a common approach is to infer a best approximation within a simpler class of models for the distributions or manifolds. The “optimal” model is then the one that minimizes certain distance to the true model. Different choices of model classes and distance measures have led to many different learning algorithms developed in machine learning, pattern recognition, computer vision, and image processing. The most commonly adopted distance measure, for image compression, is the Mean Square Error (MSE) between the original image I and approximated image \hat{I},

$$
\epsilon_I^2 = \frac{1}{WHc} \|I - \hat{I}\|^2.
$$

(6.1)

Since we will be approximating the (block) vectors $\{x_i\}$ rather than the image pixels, in the following derivation, it is more convenient for us to define the Mean

\footnote{Therefore, b needs to be a common divisor of W and H.}
6.1. Lossy Image Representation

Square Error (MSE) per vector which is different from \(\epsilon_I^2 \) by a scale,

\[
\epsilon^2 = \frac{1}{N} \sum_{i=1}^{N} \| \hat{x}_i - x_i \|^2 = \frac{b^2}{WH} \sum_{i=1}^{N} \| \hat{x}_i - x_i \|^2 = \frac{b^2}{WH} \| \hat{I} - I \|^2 = (b^2 c) \epsilon_I^2. \tag{6.2}
\]

The Peak Signal to Noise Ratio (PSNR) of the approximated image is defined as,

\[
\text{PSNR} = -10 \log \epsilon_I^2 = -10 \log \frac{\epsilon^2}{b^2 c}. \tag{6.3}
\]

Linear Models.

If we assume that the vectors \(x \) are drawn from an anisotropic Gaussian distribution or a linear subspace, the optimal model subject to a given PSNR can be inferred by Principal Component Analysis (PCA) [Pearson, 1901, Hotelling, 1933, Jolliffe, 2002] or equivalently the Karhunen-Loève Transform (KLT) [Effros and Chou., 1995]. The effectiveness of such a linear model relies on the assumption that, although \(D \) can be large, all the vectors \(x \) may lie in a subspace of a much lower dimension in the ambient space \(\mathbb{R}^D \). Figure 6.1 illustrates this assumption.

![Figure 6.1](image.png)

Figure 6.1. In a linear model, the imagery data vectors \(\{x_i \in \mathbb{R}^D\} \) reside in an (affine) subspace \(S \) of dimension \(d \ll D \).

Let \(\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \) be the mean of the imagery data vectors, and \(X = [x_1 - \bar{x}, x_2 - \bar{x}, \ldots, x_N - \bar{x}] = U \Sigma V^T \) be the SVD of the mean-subtracted data matrix \(X \). Then all the vectors \(x_i \) can be represented as a linear superposition: \(x_i = \bar{x} + \sum_{j=1}^{D} \alpha_j^i \phi_j, i = 1, \ldots, N \), where \(\{\phi_j\}_{j=1}^{D} \) are just the columns of the matrix \(U \).

The matrix \(\Sigma = \text{diag}(\sigma_1, \sigma_2, \ldots, \sigma_D) \) contains the ordered singular values \(\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_D \). It is well known that the optimal linear representation of

7The peak value of the imagery data is normalized into 1.
subject to the MSE c^2 is obtained by keeping the first d (principal) components

$$\hat{x}_i = \bar{x} + \sum_{k=1}^{d} \alpha_i^k \phi_k, \quad i = 1, ..., N,$$

(6.4)

where d is chosen to be

$$d = \min(k), \quad \text{s.t.} \quad \frac{1}{N} \sum_{i=k+1}^{D} \sigma_i^2 \leq c^2. \quad (6.5)$$

The model complexity of the linear model, denoted as Ω, is the total number of coefficients needed for representing the model $\{\alpha_i^k, \phi_k, \bar{x}\}$ and subsequently a lossy approximation \hat{I} of the image I. It is given by

$$\Omega(N, d) = N d + d(D - d + 1), \quad (6.6)$$

where the first term is the number of coefficients $\{\alpha_i^k\}$ to represent $\{\hat{x}_i - \bar{x}\}_i^{N}$ with respect to the basis $\Phi = \{\phi_k\}_1^{D}$ and the second term is the number of Grassmannian coordinates needed for representing the basis Φ and the mean vector \bar{x}. The second term is often called overhead. Notice that the original set of vectors $\{x_i\}$ contain ND coordinate entries. If $\Omega \ll ND$, the new representation, although lossy, is more compact. The search for such a compact representation is at the heart of any (lossy) image compression method. When the image I is large and the block size b is small, N will be much larger than D so that the overhead will be much smaller than the first term. However, in order to compare fairly with other methods, in the subsequent discussions and experiments, we always count the total number of coefficients needed for the representation, including the overhead.

Hybrid Linear Models.

The linear model is very efficient when the target manifold or distribution function is indeed unimodal. However, if the image I contains several heterogeneous regions $\{I_j\}_1^{n}$, the data vectors x_i can be samples from a collection of subspaces of possibly different dimensions or from a mixture of multiple (Gaussian) distributions. Figure 6.2 shows the first three principal components of the data vector x_i (as dots in \mathbb{R}^3) of an image. Note the clear multi-modal characteristic in the data.

Suppose that a natural image I can be segmented into n disjoint regions $I = \bigcup_{j=1}^{n} I_j$ with $I_j \cap I_j' = \emptyset$ for $j \neq j'$. In each region I_j, we may assume the

1. Notice that to represent a d-dimensional subspace in a D-dimensional space, we only need to specify a basis of d linearly independent vectors for the subspace. We may stack these vectors as rows of a $d \times D$ matrix. Any nonsingular linear transformation of these vectors span the same subspace. Thus, without loss of generality, we may assume that the matrix is of the normal form $[I_d \times G]$ where G is a $d \times (D - d)$ matrix consisting of the so-called Grassmannian coordinates.

2. Notice that if one uses a pre-chosen basis such as discrete Fourier transform, discrete cosine transform (JPEG), and wavelets (JPEG-2000), there is no such overhead.
Figure 6.2. Left: The baboon image. Right: The coordinates of each dot are the first three principal components of the vectors \(\mathbf{x}_i \). There is a clear multi-modal structure in the data.

The linear model (6.4) is valid for the subset of vectors \(\{ \mathbf{x}_{j,i} \}_{i=1}^{N_j} \) in \(I_j \):

\[
\hat{x}_{j,i} = \bar{x}_j + \sum_{k=1}^{d_j} \alpha_{j,k} \phi_{j,k}, \quad i = 1, \ldots, N_j.
\]

(6.7)

Intuitively, the hybrid linear model can be illustrated by Figure 6.3.

Figure 6.3. In hybrid linear models, the imagery data vectors \(\{ \mathbf{x}_i \} \) reside in multiple (affine) subspaces which may have different dimensions.

As in the linear model, the dimension \(d_j \) of each subspace is determined by a common desired MSE \(\epsilon^2 \) using equation (6.5). The model complexity, i.e., the total number of coefficients needed to represent the hybrid linear model \(\{ \phi_{j,k}, \hat{x}_{j,i} \} \) is

\[
\Omega = \Omega(N_1, d_1) + \cdots + \Omega(N_n, d_n) = \sum_{j=1}^{n} (N_j d_j + d_j (D - d_j + 1)).
\]

(6.8)

Notice that \(\Omega \) is similar to the effective dimension (ED) of the hybrid linear representation defined in [Huang et al., 2004a]. Thus, finding a representation that

10We also need a very small number of binary bits to store the membership of the vectors. But those extra bits are insignificant comparing to \(\Omega \) and often can be ignored.
minimizes Ω is the same as minimizing the effective dimension of the imagery data set.11

Instead, if we model the union of all the vectors $\bigcup_{j=1}^{n} \{x_{j,i}\}_{i=1}^{N_j}$ with a single subspace (subject to the same MSE), the dimension of the subspace in general needs to be $d = \min\{d_1 + \cdots + d_n, D\}$. It is easy to verify from the definition (6.6) that under reasonable conditions (e.g., n is bounded from being too large), we have

$$\Omega(N, d) > \Omega(N_1, d_1) + \cdots + \Omega(N_n, d_n). \quad (6.9)$$

Thus, if a hybrid linear model can be identified for an image, the resulting representation will in general be much more compressed than that with a single linear or affine subspace. This will also be verified by experiments on real images in Section 6.1.3.

However, such a hybrid linear model alone is not able to generate a representation that is as compact as that by other competitive methods such as wavelets. There are at least two aspects in which the above model can be further improved. Firstly, we need to further reduce the negative effect of overhead by incorporating a pre-projection of the data onto a lower dimensional space. Secondly, we need to implement the hybrid linear model in a multi-scale fashion. We will discuss the former aspect in the remainder of this section and leave the issues with multi-scale implementation to the next section.

Dimension Reduction via Projection.

In the complexity of the hybrid linear model (6.8), the first term is always smaller than that of the linear model (6.6) because $d_j \leq d$ for all j and $\sum_{j=1}^{n} N_j = N$. The second overhead term however can be larger than in that of the linear model (6.6) because the bases of multiple subspaces now must be stored. We here propose a method to further reduce the overhead by separating the estimation of the hybrid model into two steps.

In the first step, we may project the data vectors $\{x_i\}$ onto a lower-dimensional subspace (e.g., via PCA) so as to reduce the dimension of the ambient space from D to D'. The justification for such a subspace projection has been discussed earlier in Section 3.2.2. Here, the dimension D' is chosen to achieve an MSE $\frac{1}{2} \epsilon^2$. The data vectors in the lower ambient space $\mathbb{R}^{D'}$ are denoted as $\{x'_i\}$. In the second step, we identify a hybrid linear model for $\{x'_i\}$ within the lower-dimension ambient space $\mathbb{R}^{D'}$. In each subspace, we determine the dimension d_j subject to the MSE $\frac{1}{2} \epsilon^2$. The two steps combined achieve an overall MSE ϵ^2, but they can actually reduce the total model complexity to

$$\Omega = \sum_{j=1}^{n} \left(N_j d_j + d_j \left(D' - d_j + 1\right)\right) + D(D' + 1). \quad (6.10)$$

11In fact, the minimal Ω can also be associated to the Kolmogorov entropy or to the minimum description length (MDL) of the imagery data.
This Ω will be smaller than the Ω in equation (6.8) because D' is smaller than D. The reduction of the ambient space will also make the identification of the hybrid linear model (say by GPCA) much faster.

If the number of subspaces, n, is given, algorithms like GPCA or EM can always find a segmentation. The basis $\{\phi_{j,k}\}$ and dimension d_j of each subspace are determined by the desired MSE ϵ^2. As n increases, the dimension of the subspaces may decrease, but the overhead required to store the bases may increase. The optimal n^* therefore can be found recursively by minimizing Ω for different n’s, as shown in Figure 6.4. From our experience, we found that n is typically in the range from 2 to 6 for natural images, especially in a multi-scale implementation that we will introduce next.

Algorithm 6.1 describes the pseudocode for estimating the hybrid linear model of an image I, in which the SubspaceSegmentation(\cdot) function is implemented (for the experiments in this chapter) using the GPCA algorithm given in earlier chapters. But it can also be implemented using EM or other subspace segmentation methods.

Example 6.1 (A Hybrid Linear Model for the Gray-Scale Barbara Image). Figure 6.5 and Figure 6.6 show intuitively a hybrid linear model identified for the 8×8 blocks of the standard 512×512 gray-scale Barbara image. The total number of blocks is $N = 4,096$. The GPCA algorithm identifies three subspaces for these blocks (for a given error tolerance), as shown in Figure 6.5. Figure 6.6 displays the three sets of bases for the three subspaces identified, respectively. It is worth noting that these bases are very consistent with the textures of the image blocks in the respective groups.

6.1.2 Multi-Scale Hybrid Linear Models

There are at least several reasons why the above hybrid linear model needs further improvement. Firstly, the hybrid linear model treats low frequency/entropy regions of the image in the same way as the high frequency/entropy regions, which
Algorithm 6.1 (Hybrid Linear Model Estimation).

1: function $\hat{I} = \text{HybridLinearModel}(I, \epsilon^2)$
2: $\{x_i\} = \text{StackImageIntoVectors}(I)$;
3: $\{x'_i\}, \{\phi_k\}, \{\alpha_k^i\} = \text{PCA}(\{x_i - \bar{x}\}, \frac{1}{2} \epsilon^2)$;
4: for each possible n do
5: $\{x'_{j,i}\} = \text{SubspaceSegmentation}(\{x'_i\}, n)$;
6: $\{x'_{j,i}\}, \{\phi_{j,k}\}, \{\alpha_{j,k}^i\} = \text{PCA}(\{x'_{j,i} - \bar{x}'_{j}\}, \frac{1}{2} \epsilon^2)$;
7: compute Ω_n;
8: end for
9: $\Omega_{opt} = \min(\Omega_n)$;
10: $\hat{I} = \text{UnstackVectorsIntoImage}(\{x'_{j,i}\} \text{ with } \Omega_{opt})$;
11: output $\{\alpha_k^i\}, \{\phi_k\}, \bar{x}, \{\alpha_{j,k}^i\}, \{\phi_{j,k}\}, \{x'_i\} \text{ with } \Omega_{opt}$;
12: return \hat{I}.

Figure 6.5. The segmentation of the 4,096 image blocks from the Barbara image. The image (left) is segmented into three groups (right three). Roughly speaking, the first subspace contains mostly image blocks with homogeneous textures; the second and third subspaces contain blocks with textures of different spatial orientations and frequencies.

is inefficient. Secondly, by treating all blocks the same, the hybrid linear model fails to exploit stronger correlations that typically exist among adjacent image blocks. Finally, estimating the hybrid linear model is computationally expensive when the image is large. For example, we use 2 by 2 blocks, a 512 by 512 color image will have $M = 65,536$ data vectors in \mathbb{R}^{12}. Estimating a hybrid linear model for such a huge number of vectors is difficult (if not impossible) on a regular PC. In this section, we introduce a multi-scale hybrid linear representation which is able to resolve the above issues.

The basic ideas of multi-scale representations such as the Laplacian pyramid [Burt and Adelson, 1983] have been exploited for image compression for decades (e.g., wavelets, subband coding). A multi-scale method will give a more compact representation because it encodes low frequency/entropy parts and high frequency/entropy parts separately. The low frequency/entropy parts are invariant

12 For instance, if we take all the b by b blocks and scramble them arbitrarily, the scrambled image would be fit equally well by the same hybrid linear model for the original image.
after low-pass filtering and down-sampling, and can therefore be extracted from the much smaller down-sampled image. Only the high frequency/entropy parts need to be represented at a level of higher resolution. Furthermore, the stronger correlations among adjacent image blocks will be captured in the down-sampled images because every four images blocks are merged into one block in the down-sampled image. At each level, the number of imagery data vectors is one fourth of that at one level above. Thus, the computational cost can also be reduced.

We now introduce a multi-scale implementation of the hybrid linear model. We use the subscript l to indicate the level in the pyramid of down-sampled images.13 The finest level (the original image) is indicated by $l = 0$. The larger is l, the coarser is the down-sampled image. We denote the highest level to be $l = L$.

Pyramid of Down-Sampled Images.

First, the level-l image I_l passes a low-pass filter F_1 (averaging or Gaussian filter, etc) and is down-sampled by 2 to get a coarser version image I_{l+1}:

$$I_{l+1} = F_1(I_l) \downarrow 2, \quad l = 0, ..., L - 1. \quad (6.11)$$

The coarsest level-L image I_L is approximated by \hat{I}_L using a hybrid linear model with the MSE ϵ_L^2. The number of coefficients needed for the approximation is Ω_L.

Pyramid of Residual Images.

At all other levels $l, l = 0, ..., L - 1$, we do not need to approximate the down-sampled image I_l because it has been roughly approximated by the image at level-$(l + 1)$ upsampled by 2. We only need to approximate the residual of this level, denoted as I'_l:

$$I'_l = I_l - F_2(\hat{I}_{l+1}) \uparrow 2, \quad l = 0, ..., L - 1, \quad (6.12)$$

13This is not to be confused with the subscript j used to indicate different segments of an image.
where the F_2 is an interpolation filter. Each of these residual images I'_l, $l = 0, ..., L - 1$ is approximated by \hat{I}'_l using a hybrid linear model with the MSE ϵ^2_l. The number of coefficients needed for the approximation is Ω_l, for each $l = 0, ..., L - 1$.

Pyramid of Approximated Images.

The approximated image at the level-l is denoted as \hat{I}_l:

\[
\hat{I}_l = I'_l + F_2(\hat{I}_{l+1}) \uparrow 2, \quad l = 0, ..., L - 1.
\] (6.13)

Figure 6.7 shows the structure of a three-level ($L = 2$) approximation of the image I. Only the hybrid linear models for \hat{I}_2, \hat{I}'_1, and \hat{I}'_0, which are approximations for I_2, I'_1, and I'_0, respectively, are needed for the final representation of the image.

Figure 6.8 shows the I_2, I'_1, and I'_0 for the baboon image.

The total number of coefficients needed for the representation will be

\[
\Omega = \sum_{l=0}^{L} \Omega_l.
\] (6.14)

MSE Threshold at Different Scale Levels.

The MSE thresholds at different levels should be different but related because the up-sampling by 2 will enlarge 1 pixel at level-$(l+1)$ into 4 pixels at level-l. If the MSE of the level-$(l+1)$ is ϵ^2_{l+1}, the MSE of the level-l after the up-sampling will become $4\epsilon^2_{l+1}$. So the MSE thresholds of level-$(l + 1)$ and level-l are related as

\[
\epsilon^2_{l+1} = \frac{1}{4} \epsilon^2_l, \quad l = 0, ..., L - 1.
\] (6.15)
Figure 6.8. Multi-scale representation of the Baboon image. Left: The coarsest level image I_2. Middle: The residual image I'_1. Right: The residual image I'_0. The data at each level are modeled as the hybrid linear models. The contrast of the middle and right images has been adjusted so that they are visible.

Usually, the user will only give the desired MSE for the approximation of original image which is ϵ^2. So we have

$$
\epsilon_i^2 = \frac{1}{4^l} \epsilon^2, \quad l = 0, ..., L.
$$

(6.16)

Vector Energy Constraint at Each Level.

At each level-l, $l = 0, ..., L - 1$, not all the vectors of the residual need to be approximated. We only need to approximate the (block) vectors $\{x_i\}$ of the residual image I'_l that satisfy the following constraint:

$$
\|x'_i\|^2 > \epsilon_i^2.
$$

(6.17)

In practice, the energy of most of the residual vectors is close to zero. Only a small portion of the vectors at each level-l need to be modeled (e.g. Figure 6.9). This property of the multi-scale scheme not only significantly reduces the overall representation complexity Ω but also reduces the overall computational cost as the number of data vectors processed at each level is much less than those of the original image. In addition, for a single hybrid linear model, when the image size increases, the computational cost will increase in proportion to the square of the image size. In the multi-scale model, if the image size increases, we can correspondingly increase the number of levels and the complexity increases only linearly in proportion to the image size.

The overall process of estimating the multi-scale hybrid linear model can be written as the recursive pseudocode in Algorithm 6.2.
Figure 6.9. The segmentation of (residual) vectors at the three levels—different subspaces are denoted by different colors. The black regions correspond to data vectors whose energy is below the MSE threshold \(\epsilon^2 \) in equation (6.17).

Algorithm 6.2 (Multi-Scale Hybrid Linear Model Estimation).

1: function \(\hat{I} = \text{MultiscaleModel}(I, \text{level}, \epsilon^2) \)
2: if \(\text{level} < \text{MAXLEVEL} \) then
3: \(I_{\text{down}} = \text{Downsample}(F_1(I)) \);
4: \(\hat{I}_{\text{nextlevel}} = \text{MultiscaleModel}(I_{\text{down}}, \text{level} + 1, \frac{1}{4} \epsilon^2) \);
5: end if
6: if \(\text{level} = \text{MAXLEVEL} \) then
7: \(I' = I \);
8: else
9: \(I_{\text{up}} = F_2(\text{Upsample}(\hat{I}_{\text{nextlevel}})) \);
10: \(I' = I - I_{\text{up}} \);
11: end if
12: \(\hat{I}' = \text{HybridLinearModel}(I', \epsilon^2) \);
13: return \(I_{\text{up}} + I' \).

6.1.3 Experiments and Comparisons

Comparison of Different Lossy Representations.

The first experiment is conducted on two standard images commonly used to compare image compression schemes: the 480 × 320 hill image and the 512 × 512 baboon image shown in Figure 6.10. We choose these two images because they are representative of two different types of images. The hill image contains large low frequency/entropy regions and the baboon image contains mostly high frequency/entropy regions. The size of the blocks \(b \) is chosen to be 2 and the level of the pyramid is 3 – we will test the effect of changing these parameters in
6.1. Lossy Image Representation

subsequent experiments. In Figure 6.11, the results of the multi-scale hybrid linear model are compared with several other commonly used image representations including DCT, PCA/KLT, single-scale hybrid linear model and Level-3 (Daubechies) biorthogonal 4.4 wavelets (adopted by JPEG-2000). The x-axis of the figures is the ratio of coefficients (including the overhead) kept for the representation, which is defined as,

$$\eta = \frac{\Omega}{WHc}. \quad (6.18)$$

The y-axis is the PSNR of the approximated image defined in equation (6.3). The multi-scale hybrid linear model achieves the best PSNR among all the methods for both images. Figure 6.12 shows the two recovered images using the same amount of coefficients for the hybrid linear model and the wavelets. Notice that in the area around the whiskers of the baboon, the hybrid linear model preserves...
the detail of the textures better than the wavelets. But the multiscale hybrid linear model produces a slight block effect in the smooth regions.

Figure 6.12. Left: The baboon image recovered from the multi-scale hybrid linear model using 7.5% coefficients of the original image. (PSNR=24.64). Right: The baboon image recovered from wavelets using the same amount of coefficients. (PSNR=23.94).

We have tested the algorithms on a wide range of images. We will summarize the observations in Section 6.1.4.

Effect of the Number of Scale Levels.

The second experiment shown in Figure 6.13 compares the multi-scale hybrid linear representation with wavelets for different number of levels. It is conducted on the hill and baboon image with 2 by 2 blocks. The performance increases while the number of levels increases from 3 to 4.

Figure 6.13. Top: Comparison of the multi-scale hybrid linear model with wavelets for level-3 and level-4 for the hill image. Bottom: The same comparison for the baboon image. The performance increases while the number of levels increases from 3 to 4.
shown in the figures) coincide with the level-4 curves. The performance cannot improve any more because the down-sampled images in the fifth level are so small that it is hard to be further compressed. Only when the image is large, can we use more levels of down-sampling to achieve a more compressed representation.

Effect of the Block Size.

The third experiment shown in Figure 6.14 compares the multi-scale hybrid linear model with different block sizes.

![Figure 6.14](image)

Figure 6.14. Comparison of the multi-scale hybrid linear model with different block sizes: 16, 8, 4, 2. The performance increases while the size of blocks decreases.

ear models with different block sizes from 2×2 to 16×16. The dimension of the ambient space of the data vectors x ranges from 12 to 192 accordingly. The testing image is the baboon image and the number of down-sampling levels is 3. For large blocks, the number of data vectors is small but the dimension of the subspaces is large. So the overhead would be large and seriously degrade the performance. Also the block effect will be more obvious when the block size is large. This experiment shows that 2 is the optimal block size, which also happens to be compatible with the simplest down-sampling scheme.

6.1.4 Limitations

We have tested the multi-scale hybrid linear model on a wide range of images, with some representative ones shown in Figure 6.15. From our experiments and experience, we observe that the multi-scale hybrid linear model is more suitable than wavelets for representing images with multiple high frequency/entropy regions, such as those with sharp 2-D edges and rich of textures. Wavelets are prone to blur sharp 2-D edges but better at representing low frequency/entropy regions. This probably explains why the hybrid linear model performs slightly worse than wavelets for the Lena and the monarch – the backgrounds of those two images are out of focus so that they do not contain much high frequency/entropy content.
Another limitation of the hybrid-linear model is that it does not perform well on gray-scale images (e.g., the Barbara image, Figure 6.5). For a gray-scale image, the dimension D of a 2×2 block is only 4. Such a low dimension is not adequate for any further dimension reduction. If we use a larger block size, say 8×8, the block effect will also degrade the performance.

Unlike pre-fixed transformations such as wavelets, our method involves identifying the subspaces and their bases. Computationally, it is more costly. With unoptimized MATLAB codes, the overall model estimation takes 30 seconds to 3 minutes on a Pentium 4 1.8GHz PC depending on the image size and the desired PSNR. The smaller the PSNR, the shorter the running time because the number of blocks needed to be coded in higher levels will be less.

6.2 Multi-Scale Hybrid Linear Models in Wavelet Domain

From the discussion in the previous section, we have noticed that wavelets can achieve a better representation for smooth regions and avoid the block artifacts.
Therefore, in this section, we will combine the hybrid linear model with the wavelet approach to build multi-scale hybrid linear models in the wavelet domain. For readers who are not familiar with wavelets, we recommend the books of [Vetterli and Kovacevic, 1995].

6.2.1 Imagery Data Vectors in Wavelet Domain

In the wavelet domain, an image is typically transformed into an octave tree of subbands by certain separable wavelets. At each level, the LH, HL, HH subbands contain the information about high frequency edges and the LL subband is further decomposed into subbands at the next level. Figure 6.16 shows the octave tree structure of a level-2 wavelet decomposition. As shown in the Figure 6.17, the vectors \(\{x_i \in \mathbb{R}^D \}_{i=1}^M \) are constructed by stacking the corresponding wavelet...
coefficients in the LH, HL, HH subbands. The dimension of the vectors is $D = 3c$ because there are c color channels. One of the reasons for this choice of vectors is because for edges along the same direction, these coefficients are linearly related and reside in a lower dimensional subspace. To see this, let us first assume that the color along an edge is constant. If the edge is along the horizontal, vertical or diagonal direction, there will be an edge in the coefficients in the LH, HL, or HH subband, respectively. The other two subbands will be zero. So the dimension of the imagery data vectors associated with such an edge will be 1. If the edge is not exactly in one of these three directions, there will be an edge in the coefficients of all the three subbands. For example, if the direction of the edge is between the horizontal and diagonal, the amplitude of the coefficients in the LH and HH subbands will be large. The coefficients in the HL subband will be insignificant relative to the coefficients in the other two subbands. So the dimension of the data vectors associated with this edge is approximately 2 (subject to a small error ϵ^2). If the color along an edge is changing, the dimension the subspace will be higher but generally lower than the ordinal dimension $D = 3c$. Notice that the above scheme is only one of many possible ways in which one may construct the imagery data vector in the wavelet domain. For instance, one may construct the vector using coefficients across different scales. It remains an open question whether such new constructions may lead to even more efficient representations than the one presented here.

6.2.2 Estimation of Hybrid Linear Models in Wavelet Domain

In the wavelet domain, there is no need to build a down-sampling pyramid. The multi-level wavelet decomposition already gives a multi-scale structure in the wavelet domain. For example, Figure 6.18 shows the octave three structure of a level-3 bior-4.4 wavelet transformation of the baboon image. At each level, we may construct the imagery data vectors in the wavelet domain according to the

Figure 6.18. The subbands of level-3 bior-4.4 wavelet decomposition of the baboon image.
previous section. A hybrid linear model will be identified for the so-obtained vectors at each level. Figure 6.19 shows the segmentation results using the hybrid linear model at three scale levels for the baboon image.

Vector Energy Constraint at Each Level. In the nonlinear wavelet approximation, the coefficients which are below an error threshold will be ignored. Similarly in our model, not all the vectors of the imagery data vectors need to be modeled and approximated. We only need to approximate the (coefficient) vectors \{x_i\} that satisfy the following constraint:

\[\|x_i\|^2 > \epsilon^2. \]

(6.19)

Notice that here we do not need to scale the error tolerance at different levels because the wavelet basis is orthonormal by construction. In practice, the energy of most of the vectors is close to zero. Only a small portion of the vectors at each level need to be modeled (e.g. Figure 6.19).

Figure 6.19. The segmentation of data vectors constructed from the three subbands at each level—different subspaces are denoted by different colors. The black regions correspond to data vectors whose energy is below the MSE threshold \(\epsilon^2\) in equation (6.19).

The overall process of estimating the multi-scale hybrid linear model in the wavelet domain can be summarized as the pseudocode in Algorithm 6.3.

6.2.3 Comparison with Other Lossy Representations

In this section, in order to obtain a fair comparison, the experimental setting is the same as that of the spatial domain in the previous section. The experiment is conducted on the same two standard images – the 480 × 320 hill image and the 512 × 512 baboon image shown in Figure 6.10.

The number of levels of the model is also chosen to be 3. In Figure 6.20, the results are compared with several other commonly used image representations including DCT, PCA/KLT, single-scale hybrid linear model and Level-3 biorthogonal 4.4 wavelets (JPEG 2000) as well as the multi-scale hybrid linear model in
Algorithm 6.3 (Multi-Scale Hybrid Linear Model: Wavelet Domain).

1: function $\hat{I} = \text{MultiscaleModel}(I, \text{level}, \epsilon^2)$
2: $\tilde{I} = \text{WaveletTransform}(I, \text{level})$
3: for each level do
4: \hspace{1em} $\hat{I}_{\text{level}} = \text{HybridLinearModel}(\tilde{I}_{\text{level}}, \epsilon^2)$
5: end for
6: $\hat{I} = \text{InverseWaveletTransform}(\hat{I}, \text{level})$
7: return \hat{I}.

Figure 6.20. Top: Comparison of several image representations for the hill image. Bottom: Comparison for the baboon image. The multi-scale hybrid linear model in the wavelet domain achieves better PSNR than that in the spatial domain.

the spatial domain. The multi-scale hybrid linear model in the wavelet domain achieves better PSNR than that in the spatial domain. Figure 6.21 shows the three recovered images using the same amount of coefficients for wavelets, the hybrid linear model in the spatial domain, and that in the wavelet domain, respectively. Figure 6.22 shows the visual comparison with the enlarged bottom-right corners of the images in Figure 6.21.

Notice that in the area around the baboon’s whiskers, the wavelets blur both the whiskers and the subtle details in the background. The multi-scale hybrid linear model (in the spatial domain) preserves the sharp edges around the whiskers but generates slight block artifacts in the relatively smooth background area. The multi-scale hybrid linear model in the wavelet domain successfully eliminates the block artifacts, keeps the sharp edges around the whiskers, and preserves more details than the wavelets in the background. Among the three methods, the multi-scale hybrid linear model in the wavelet domain achieves not only the highest PSNR, but also produces the best visual effect.

As we know from the previous section, the multi-scale hybrid linear model in the spatial domain performs slightly worse than the wavelets for the Lena and
6.2. Multi-Scale Hybrid Linear Models in Wavelet Domain 143

Figure 6.21. Visual comparison of three representations for the baboon image approximated with 7.5\% coefficients. Top-left: The original image. Top-right: The level-3 biorthogonal 4,4 wavelets (PSNR=23.94). Bottom-left: The level-3 multi-scale hybrid linear model in the spatial domain (PSNR=24.64). Bottom-right: The level-3 multi-scale hybrid linear model in the wavelet domain (PSNR=24.88).

monarch images (Figure 6.15). Nevertheless, in the wavelet domain, the multi-scale hybrid linear model can generate very competitive results, as shown in Figure 6.23. The multi-scale hybrid linear model in the wavelet domain achieves better PSNR than the wavelets for the monarch image. For the Lena image, the comparison is mixed and merits further investigation.

6.2.4 Limitations

The above hybrid linear model (in the wavelet domain) does not produce very competitive results for gray-scale images as the dimension of the vector is merely 3 and there is little room for further reduction. For gray-scale images, one may have to choose a slightly larger window in the wavelet domain or to construct the vector using wavelet coefficients across different scales. A thorough investigation of all the possible cases is beyond the scope of this book. The purpose here is
to demonstrate (using arguably the simplest cases) the vast potential of a new spectrum of image representations suggested by combining subspace methods with conventional image representation/approximation schemes. The quest for the more efficient and more compact representations for natural images without doubt will continue as long as the nature of natural images remains a mystery and the mathematical models that we use to represent and approximate images improve.

6.3 Image Segmentation

6.3.1 Hybrid Linear Models for Image Segmentation

Notice that for the purpose of image representation, we normally divide the image I into non-overlapping blocks (see the beginning of Section 6.1.1). The hybrid linear model fit to the block vectors $\{x_i\}$ essentially gives some kind of a seg-
6.3. Image Segmentation

Figure 6.23. Top: Comparison of multi-scale hybrid linear model in the wavelet domain with wavelets for the Lena image. Bottom: Comparison of multi-scale hybrid linear model in the wavelet domain with wavelets for the Monarch image. The multi-scale hybrid linear model in the wavelet domain achieves better PSNR than wavelets for a wide range of PSNR for these two images.

mentation of the image – pixels that belong to blocks in the same subspace are grouped into one segment. However, such a segmentation of the image has some undesirable features. If we choose a very large block size, then there will be severe “block effect” in the resulting segmentation, as all b^2 pixels of each block are always assigned into the same segment (see Figure 6.5). If we choose a small block size to reduce the block effect, then the block might not contain sufficient neighboring pixels that allow us to reliably extract the local texture.14 Thus, the resulting segmentation will very much be determined primarily by the color of the pixels (in each small block) but not the texture.

14Notice that a smaller block size is ok for compression as long as it can reduce the overhead and subsequently improve the overall compression ratio.
One way to resolve the above problems is to choose a block of a reasonable
size around each pixel and view the block as a (vector-valued) “label” or “feature”
attached to the pixel. In many existing image segmentation methods, the feature
(vector) is chosen instead to be the outputs of the block passing through a (pre-
fixed) bank of filters (e.g., the Garbor filters). That is, the feature is the block
transformed by a set of pre-fixed linear transformations. Subsequently, the image
is segmented by grouping pixels that have “similar” features.

From the lessons that we have learned from image representation in the previ-
ous section, we observe that the hybrid linear model may be adopted to facilitate
this approach of image segmentation in several aspects. Firstly, we can fit directly
a hybrid linear model to the un-transformed and un-processed block vectors, with-
out the need of choosing beforehand which filter bank to use. Secondly, the hybrid
linear model essentially chooses the linear transformations (or filters) adaptively
for different images and different image segments. Thirdly, once the hybrid linear
model is identified, there is no further need of introducing a similarity measure for
the features. Feature vectors (and hence pixels) that belong to the same subspace
are naturally grouped into the same image segment.

6.3.2 Dimension and Size Reduction

Mathematically, identifying such a hybrid linear model for image segmentation is
equivalently to that for image representation. However, two things have changed
from image representation and make image segmentation a computationally much
more challenging problem. First, the number of feature vectors (or blocks) is now
always the same as the number of pixels: \(N = WH \), which is larger than that
\((N = WH/b^2) \) in the case of image representation. For a typical 512 \(\times \) 512
image, we have \(N = 31,744 \). Second, the block size \(b \) now can be much larger
that in the case of image representation. Thus, the dimension of the block vector
\(D = b^2c \) is much higher. For instance, if we choose \(b = 10 \) and \(c = 3 \), then
\(D = 300 \). It is impossible to implement the GPCA algorithm on a regular PC
for 31,744 vectors in \(\mathbb{R}^{300} \), even if we are looking for up to only four or five
subspaces.\(^{15}\)

Dimension Reduction via Projection.

To reduce dimension of the data, we rely on the assumption (or belief) that “the
feature vectors lie on very low-dimensional subspaces in the high-dimensional
ambient space \(\mathbb{R}^D \)”. Then based on our discussion in Section 3.2.2, we can project
the data into a lower-dimensional space while still being able to preserve the sep-
aration of the subspaces. Principal component analysis (PCA) can be recruited for
this purpose as the energy of the feature vectors is mostly preserved by their first
few principal components. From our experience, in practice it typically suffice to
keep up to ten principal components. Symbolically, the process is represented by

\(^{15}\)The dimension of the Veronese embedding of degree 5 will be in the order of \(10^{10} \).
the following steps:

\[\{x_i\} \subset \mathbb{R}^D \xrightarrow{x_i' = \pi(x_i)} \{x_i'\} \subset \mathbb{R}^{D'} \xrightarrow{\text{GPCA}} \{x_i'\} \subset \bigcup_{j=1}^{n} S_j' \subset \mathbb{R}^{D'}, \]

where \(D' \ll D \) and \(i = 1, \ldots, N = WH \).

Data Size Reduction via Down-Sampling.

Notice that the number of feature vectors \(N = WH \) might be too large for all the data to be processed together since a regular PC has trouble in performing singular value decomposition (SVD) for tens of thousands of vectors.\(^\text{16}\) Thus, we have to down sample the data set and identify a hybrid linear model for only a subset of the data. The exact down-sampling scheme can be determined by the user. One can use periodic down-sampling (e.g., every other pixel) or random down-sampling. From our experience, we found periodic down-sampling often gives visually better segmentation results. The size of the down-sampled subset can be determined by the memory and speed of the computer the user has. Once the hybrid linear model is obtained, we may assign the remaining vectors to their closest subspaces. Of course, in practice, one may run the process on multiple subsets of the data and choose the one which gives the smallest fitting error for all the data. This is very much in the same spirit as the random sample consensus (RANSAC) method. Symbolically, the process is represented by the following steps:

\[\{x_i\} \xrightarrow{\text{sample}} \{x_i'\} \xrightarrow{\text{GPCA}} \{x_i'\} \subset \bigcup_{j=1}^{n} S_j \xrightarrow{\min d(x_i, S_j)} \{x_i\} \subset \bigcup_{j=1}^{n} S_j, \]

where \(\{x_i'\} \) is a (down-sampled) subset of \(\{x_i\} \).

6.3.3 Experiments

Figure 6.24 shows the results of applying the above schemes to the segmentation of some images from the Berkeley image database. A \(20 \times 20 \times 3 \) "feature" vector is associated with each pixel that corresponds to the color values in a \(20 \times 20 \) block. We first apply PCA to project all the feature vectors onto a 6-dimensional subspace. We then apply the GPCA algorithm to further identify subspace-structures of the features in this 6-dimensional space and to segment the pixels to each subspace. The algorithm happens to find three segments for all the images shown below. Different choices in the error tolerance, window size, and color space (HSV or RGB) may affect the segmentation results. Empirically, we find that HSV gives visually better segments for most images.

\(^{16}\)With the increase of memory and speed of modern computers, we hope this step will soon become unnecessary.
Figure 6.24. Image segmentation results obtained from the hybrid linear model. The dimension of the subspace (in homogeneous coordinates) associated with each segment is marked by the number to its right.

6.4 Bibliographic Notes

Image Representation and Compression.

There is a vast amount of literature on finding adaptive bases (or transforms) for signals. Adaptive wavelet transform and adapted wavelet packets have been extensively studied [Coifman and Wickerhauser, 1992, Ramchandran et al., 1996, Meyer, 2002, Meyer, 2000, Ramchandran and Vetterli, 1993, Delsarte et al., 1992, Pavlovic et al., 1998]. The idea is to search for an optimal transform from a limited (although large) set of possible transforms. Another approach is to find some universal optimal transform based on the signals [Effros and Chou, 1995, Rabiee et al., 1996, Delsarte et al., 1992, Pavlovic et al., 1998]. Spatially adapted bases have also been developed such as [Chen et al., 2003, Sikora and Makai, 1995, Muresan and Parks, 2003].

The notion of hybrid linear model for image representation is also closely related to the sparse component analysis. In [Olshausen and D.J.Field, 1996], the authors have identified a set of non-orthogonal base vectors for natural images such that the representation of the image is sparse (i.e., only a few components are needed to represent each image block). In the work
of [Donoho and Elad, 2002, Donoho, 1995, Donoho, 1998, Chen et al., 1998, Elad and Bruckstein, 2002, Feuer and Nemirovski, 2003, Donoho and Elad, 2003, Starck et al., 2003, Elad and Bruckstein, 2001], the main goal is to find a mixture of models such that the signals can be decomposed into multiple models and the overall representation of the signals is sparse.

Image Segmentation.

Image segmentation based on local color and texture information extracted from various filter banks has been studied extensively in the computer vision literature (see e.g., [Belongie et al., 1998, Kato and Pong, 2001, Deng and Manjunath, 2001]). In this chapter, we directly used the unfiltered pixel values of the image. Our segmentation is a byproduct of the global fitting of a hybrid linear model for the entire image. Since the image compression standard JPEG-2000 and the video compression standard MPEG-4 have started to incorporate texture segmentation [Ebrahimi, 1998], we expect that the method introduced in this chapter will be useful for developing new image processing techniques that can be beneficial to these new standards.
Chapter 7
2-D Motion Segmentation from Image Partial Derivatives

In the previous chapter, we studied how to use hybrid (linear) models to represent (static) images. The multiple (linear) components of a hybrid model were used to effectively account for the multi-modal characteristics of natural images, e.g., different textures. GPCA offers an efficient solution to the estimation of such a model from the image. In the next chapters, we will show how to apply the same techniques to the study of videos and in particular, how to model and extract multi-modal characteristics of the dynamics of a video sequence.

To understand the dynamics of a video sequence, we need to model how every pixel moves from one image to the next. One of the fundamental difficulties in modeling the motion of all the pixels is that pixels in different regions of the image may move differently from one region to another (which we will articulate soon). Therefore, quantitatively, we may need multiple parametric models to describe the motions of different regions. Sometimes the models needed for different regions may even belong to different classes of models. The problem of determining which models to use for different motions is further compounded with the fact that we normally do not know which pixels correspond to which motion model.

This is a challenging problem in the study of any dynamical visual data, whose mathematical nature depends largely on the type of image measurements (image derivatives, optical flows, point correspondences), camera models (orthographic, spherical, perspective), and motion models (translational, rigid, affine) that one adopts to describe such measurements.

Depending on whether one is interested in understanding the motion in the 2-D image, or the motion in 3-D space, the motion estimation and segmentation problem can be divided into two main categories. 2-D motion segmentation refers to the estimation of the 2-D motion field in the image plane (optical flow), while
3-D motion segmentation refers to the estimation of the 3-D motion (rotation and translation) of multiple rigidly moving objects relative to the camera.

When the scene is static, i.e., when either the camera or the 3-D world undergo a single 3-D motion, one can model the 2-D motion of the scene as a mixture of 2-D motion models such as translational, affine or projective. Even though a single 3-D motion is present, multiple 2-D motion models arise because of perspective effects, depth discontinuities, occlusions, transparent motions, etc. In this case, the task of 2-D motion segmentation is to estimate these models from the image data. When the scene is dynamic, i.e., when both the camera and multiple objects move, one can still model the scene with a mixture of 2-D motion models. Some of these models are due to independent 3-D motions, e.g., when the motion of an object relative to the camera can be well approximated by the affine motion model. Others are due to perspective effects and/or depth discontinuities, e.g., when some of the 3-D motions are broken into different 2-D motions. The task of 3-D motion segmentation is to obtain a collection of 3-D motion models, in spite of perspective effects and/or depth discontinuities.

![Figure 7.1. 2-D motion segmentation of the flower-garden sequence from http://www-bcs.mit.edu/people/jyawang/demos.](image)

7.1 An Algebraic Approach to Motion Segmentation

In the next two chapters, we present an algebraic framework for segmenting 2-D motion models from spatial-temporal image derivatives (Chapter 7) and 3-D motion models from point correspondences (Chapter 8). The key to this algebraic approach is to view the estimation of multiple motion models as the estimation of a single, though more complex, multibody motion model that is then factored into the original models. This is achieved by (1) algebraically eliminating the data segmentation problem, (2) fitting a single multibody motion model to all the image measurements, and (3) segmenting the multibody motion model into its individual components. More specifically, the approach proceeds as follows:

1. **Eliminate Data Segmentation**: Find algebraic equations that are satisfied by all the image measurements, regardless of the motion model associated with each measurement. For instance, if the ith motion model is defined by an algebraic equation of the form $f_j(x, M_j) = 0$, where x is a measurement,
Chapter 7. 2-D Motion Segmentation from Image Partial Derivatives

M_j represents the parameters of the jth motion model and $j = 1, \ldots, n$, then an algebraic equation that is satisfied by all the data is

$$g(x, M) = f_1(x, M_1) \cdot f_2(x, M_2) \cdots f_n(x, M_n) = 0. \quad (7.1)$$

This equation represents a single multibody motion model whose parameters M encode those of the original motion models $\{M_j\}_{j=1}^n$.

2. Multibody Motion Estimation: Estimate the parameters M of the multibody motion model from the given image measurements. For the motion models we will consider, M will correspond to the coefficients of a polynomial p_n of degree n. We will show that the number of motions n and the coefficients M can be obtained linearly after properly embedding the image measurements into a higher-dimensional space.

3. Motion Segmentation: Recover the parameters of the original motion models from the parameters of the multibody motion model M, that is,

$$M \rightarrow \{M_j\}_{j=1}^n. \quad (7.2)$$

We will show that the type of motion model can be determined from the rank of a matrix formed from the partial derivatives of p_n, while the individual motion parameters M_j can be computed from the first and second derivatives of p_n evaluated at a collection of n image measurements which can be obtained automatically from the data.

In this chapter, we concentrate on the problem of segmenting 2-D translational and 2-D affine motion models directly from the spatial-temporal image derivatives. In the case of 2-D translational motions, the resulting motion models are linear, hence the above framework reduces to GPCA. In the case of 2-D affine motions the resulting motion models are bilinear. The above problem becomes a particular case of quadratic surface analysis (QSA), to be studied in Chapter 12. In the case in which both 2-D translational and 2-D affine motion models are present, we develop new techniques to simultaneously recover the type of motion, the motion parameters, and the segmentation of the image measurements.

7.2 The Multibody Brightness Constancy Constraint

Consider a motion sequence taken by a moving camera observing an unknown number m of independently and rigidly moving objects. The 3-D motion of each object relative to the camera induces a 2-D motion field in the image plane called optical flow. Because of perspective effects, depth discontinuities, occlusions, transparent motions, etc., each 3-D motion induces one or more 2-D motions. Therefore, we assume that the optical flow of the scene is generated from an
unknown number \(n \geq m \) of 2-D motion models \(\{M_j\}_{j=1}^n \) of the form

\[
u(x) = \begin{cases}
 u_1(x) & \text{if } x \in R_1, \\
 u_2(x) & \text{if } x \in R_2, \\
 \vdots & \\
 u_n(x) & \text{if } x \in R_n,
\end{cases}
\] \tag{7.3}

where \(u(x) = [u, v, 1]^\top \in \mathbb{R}^2 \) is the optical flow of pixel \(x = [x_1, x_2, 1]^\top \in \mathbb{R}^2 \), and \(R_j \subset \mathbb{R}^2 \) is the region of the image where the \(j \)th motion model holds.

Assume now that each one of the surfaces in the scene is Lambertian. That is, if \(I(x(t), t) \) is the brightness of pixel \(x \) at time \(t \), then \(I(x(t), t) = I(x(t_0), t_0) \). In other words, the brightness of any 3-D point in any of the surfaces does not change as the surfaces and the camera move. Then, the optical flow \(u_j(x) \) at \(x \in R_j \) can be related to the spatial-temporal image derivatives \(y(x) = [I_{x_1}, I_{x_2}, I_t]^\top \in \mathbb{R}^3 \) at \(x \) by the well-known brightness constancy constraint (BCC) [Ma et al., 2003]

\[
BCC(x, y) = y^\top u_j(x) = I_{x_1}u + I_{x_2}v + I_t = 0. \tag{7.4}
\]

Thus, if \((x, y)\) is an image measurement associated with any of the \(n \) motion models, then there exists a motion model \(M_j \) whose optical flow \(u_j(x) \) is such that \(y^\top u_j(x) = 0 \). Therefore, the following multibody brightness constancy constraint (MBCC) must be satisfied by every pixel in the image

\[
MBCC(x, y) = \prod_{j=1}^n (y^\top u_j(x)) = 0. \tag{7.5}
\]

Notice that the MBCC clearly resembles the mathematical nature of the product polynomial (4.13) introduced in Section 4.1.3 for segmenting hyperplanes. In fact, if the optical flow \(u(x) \) is a piecewise constant function of \(x \), meaning that the optical flow of the \(j \)th region does not depend on the coordinates of \(x \), i.e., \(u_j(x) = u_j \), then according to (7.5) the image partial derivatives \(y \in \mathbb{R}^3 \) can be seen as data points lying in a union of planes in \(\mathbb{R}^3 \), \(H_j = \{ y \in \mathbb{R}^3 : y^\top u_j = 0 \} \), with normal vectors \(\{u_j\}_{j=1}^n \). Furthermore, if the optical flow \(u(x) \) is a piecewise affine function of \(x \), meaning that \(u_j(x) = A_j x \), where \(A_j \in \mathbb{R}^{3 \times 3} \), then it follows from (7.5) that the data \((x, y)\) lives in the union of \(n \) quadratic surfaces. These two observations establish a clear connection between the segmentation of 2-D translational models and hyperplane segmentation, and between the segmentation of 2-D affine motion models and the segmentation of quadratic surfaces.

In the following sections, we explore these connections further and show that the MBCC allows us to solve the 2-D motion segmentation problem in closed form for the class of 2-D translational and 2-D affine motion models. This is formulated as Problem 7.1.

For the sake of simplicity, we divide our analysis into three parts. In Section 7.3 we consider the particular case of purely translational motions, i.e., \(n = n_t \) and \(n_a = 0 \), and show that Problem 7.1 can be solved as a direct application of GPCA. In Section 7.4 we consider the particular case of purely affine motion models, i.e.,
Problem 7.1 (2-D Motion Segmentation from Image Partial Derivatives)

Given the spatial-temporal partial derivatives \(\{(I_{x_x}^j, I_{x_y}^j, I_{t}^j)\}_{j=1}^{N} \) of a motion sequence generated from \(n_a \) 2-D translational and \(n_t \) 2-D affine motion models \(\{M_j\}_{j=1}^{n_a+n_t} \), estimate the number of motion models \((n_a, n_t) \), the optical flow \(u(x) \) at each pixel \(x \), the type of motion model at each pixel, and the motion parameters of the \(n = n_a + n_t \) models, without knowing which image measurements correspond to which motion model.

\(n = n_a \) and \(n_t = 0 \), and show that Problem 7.1 can be solved by considering the first order partial derivatives of the MBCC. In Section 7.5 we consider the most general case of both 2-D translational and 2-D affine motion models, and show that Problem 7.1 can be solved by considering both first and second order partial derivatives of the MBCC.

Before proceeding further, we state a general property of the MBCC that will be used extensively in the remainder of the chapter.

Theorem 7.1 (Computing Optical Flow from the MBCC). Let \((x, y)\) be an image measurement associated to only one of the \(n = n_a + n_t \) motion models, i.e., there is a unique \(k = 1, \ldots, n \) such that \(y^\top u_j(x) = 0 \) for \(j \neq k \). Then the optical flow of a pixel \(x \) is given by

\[
 u(x) = \frac{\partial \text{MBCC}(x, y)}{\partial y} \bigg/ \left(e_3 \frac{\partial \text{MBCC}(x, y)}{\partial y} \right),
\]

where \(e_3 = [0, 0, 1]^\top \).

Proof. The partial derivative of the MBCC is given by

\[
 \frac{\partial \text{MBCC}(x, y)}{\partial y} = \sum_{j=1}^{n} u_j(x) \prod_{\ell \neq i} (y^\top u_\ell(x)).
\]

Since there is a unique \(k = 1, \ldots, n \) such that \(y^\top u_k(x) = 0 \) for \(j \neq k \), we have that \(\prod_{\ell \neq i} (y^\top u_\ell(x)) = 0 \) for all \(i \neq k \). After replacing this in (7.7), we obtain that the partial derivative of the MBCC with respect to \(y \) is proportional to \(u_k(x) \).

Since the last entry of \(u(x) \) is one, the result follows.

The importance of Theorem 7.1 is that it allows us to estimate the optical flow at a pixel without knowing either the type or the parameters of the motion model associated with \(x \). This offers an important advantage over existing methods for computing optical flow (see Section 7.7 for a brief review) which use the single body BCC on a local neighborhood of each pixel.

Remark 7.2. Notice that there are some pixels for which the optical flow cannot be computed as stated in Theorem 7.1. If a pixel \(x \) is such that its image measurement \(y \) happens to satisfy \(y^\top u_j(x) = y^\top u_k(x) = 0 \) for \(j \neq k \), then the MBCC has a repeated factor, hence its derivative is zero, and we cannot compute \(u(x) \) as before. These cases occur when the image measurements satisfy certain polynomial equations, thus they violate the non-degeneracy assumption.
7.3 Segmentation of 2-D Translational Motion Models

7.3.1 The Multibody Optical Flow

For the sake of simplicity, let us first assume that the 2-D motion of the scene is generated only from 2-D translational motions, i.e., \(n = n_t \) and \(n_a = 0 \). In this case, the optical flow \(\mathbf{u}(\mathbf{x}) = [u, v, 1]^T \in \mathbb{P}^2 \) at pixel \(\mathbf{x} = [x_1, x_2, 1]^T \in \mathbb{P}^2 \) can be described by the equations

\[
\begin{align*}
 u(x_1, x_2) &= u_1, \quad (7.8) \\
 v(x_1, x_2) &= u_2, \quad (7.9)
\end{align*}
\]

where \(u_1 \) and \(u_2 \) are the so-called translational motion parameters. Since the optical flow of the \(i \)th region, \(\mathbf{u}(\mathbf{x}) = \mathbf{u}_j \), does not depend on the pixel coordinates \(\mathbf{x} \), the MBCC takes the form of a homogeneous polynomial of degree \(n \) in \(\mathbf{y} \)

\[
\text{MBCC}(\mathbf{x}, \mathbf{y}) = \prod_{j=1}^{n} (\mathbf{y}^T \mathbf{u}_j) = \nu_n(\mathbf{y})^T \mathbf{U} = 0, \quad (7.10)
\]

where \(\nu_n : \mathbb{R}^3 \to \mathbb{R}^{M_n(3)} \) is the Veronese map of degree \(n \) defined in Section 4.2.2 and the multibody optical flow \(\mathbf{U} \in \mathbb{R}^{M_n(3)} \) is the vector of coefficients of the MBCC.

7.3.2 Computing the 2-D Translational Model Parameters

Thanks to the MBCC, the problem of segmenting 2-D translational motions is equivalent to the hyperplane segmentation problem described in Section 4.1.3. The points on the hyperplanes are the image partial derivatives \(\mathbf{y} \in \mathbb{R}^3 \) and the normal vectors to the hyperplanes are the optical flows \(\{\mathbf{u}_j\}_{j=1}^{n} \). Therefore, we can estimate the number of 2-D translational models and the parameters of the 2-D translational models by using the GPCA algorithm for hyperplanes (Algorithm 4.3), with minor modifications to account for the fact that the third entry of each \(\mathbf{u}_j \) is one. This leads to the following solution to Problem 7.1 in the case of 2-D translational motions.

1. Given \(N \geq M_n(3) - 1 \) image measurements \(\{\mathbf{y}_j\}_{j=1}^{N} \) in general configuration on the \(n \) hyperplanes, one can write the MBCC for all the measurements as the following relationship between the number of motions \(n \) and the multibody optical flow \(\mathbf{U} \)

\[
\mathbf{V}_n^\mathbf{U} \mathbf{U} = \left[\nu_n(\mathbf{y}_1), \nu_n(\mathbf{y}_2), \ldots, \nu_n(\mathbf{y}_N) \right]^T \mathbf{U} = 0. \quad (7.11)
\]

From this relationship, one can compute the number of motions as

\[
n = \min \{ j : \text{rank}(\mathbf{V}_j^\mathbf{U}) = M_j(3) - 1 \} \quad (7.12)
\]

where \(\mathbf{V}_j^\mathbf{U} \in \mathbb{R}^{N \times M_j(3)} \) is the matrix in (7.11), but computed with the Veronese map \(\nu_j \) of degree \(i \geq 1 \). Given \(n \), one can solve for \(\mathbf{U} \) uniquely
from the linear system (7.11) by enforcing the last entry of \(\mathcal{U} \) to be one. This additional equation results from the fact that the last entry of each \(u_j \) is one.

2. Given \(\mathcal{U} \) and \(n \), as per Theorem 7.1 one can compute the optical flow \(u(x) \) at each pixel \(x \) without knowing which motion model is associated with each pixel from the partial derivative of the MBCC with respect to \(y \) as

\[
 u(x) = \frac{\partial \text{MBCC}(x, y)}{\partial y} \left(e_3 \frac{\partial \text{MBCC}(x, y)}{\partial y} \right). \tag{7.13}
\]

3. Solve for the \(n \) 2-D translational motion models \(\{u_j\}_{j=1}^n \) by choosing one pixel per motion model \(\{x_j\}_{j=1}^n \) and then setting \(u_j = u(x_j) \), where \(u(x_j) \) is computed as in (7.6). Pixel \(x_j \) for \(j = n, n-1, \ldots, 1 \) is chosen so that \(y(x_j) \) minimizes the distance \(d_j \) to the \(i \)th motion model, where

\[
 d^2_n(x, y) = \frac{|\text{MBCC}(x, y)|^2}{\|\partial \text{MBCC}(x, y)/\partial y\|^2} \quad \text{and} \quad d^2_{j-1}(x, y) = \frac{|y^\top u(x_j)|^2}{\|u(x_j)\|^2}. \tag{7.14}
\]

Recall that for any surface \(f(y) = 0 \), a first order approximation to the geometric distance to the surface is given by \(|f(y)|/\|\nabla f(y)\| \). Notice that in choosing the points there is no optimization involved. We just need to evaluate the distance functions at each pixel and choose the one giving the minimum distance. Notice also that the distance functions are slightly different from the ones in Chapter 4, because we must enforce the additional constraint that the last entry of each \(u_j \) is one.

7.4 Segmentation of 2-D Affine Motion Models

Assume now that the 2-D motion of the scene is generated only from 2-D affine motions, i.e., \(n = n_a \) and \(n_t = 0 \). In this case, the optical flow \(u(x) = [u, v, 1]^\top \in \mathbb{P}^2 \) at pixel \(x = [x_1, x_2, 1]^\top \in \mathbb{P}^2 \) can be described by the equations

\[
 u(x_1, x_2) = a_{11}x_1 + a_{12}x_2 + a_{13}, \tag{7.15}
\]

\[
 v(x_1, x_2) = a_{21}x_1 + a_{22}x_2 + a_{23}, \tag{7.16}
\]

where \(a_{11}, \ldots, a_{23} \) are the so-called affine motion parameters. By combining equations (7.15) and (7.16) we see that the BCC for the affine model case takes the following form

\[
 y^\top A x = [I_{x_1}, I_{x_2}, I] \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ 1 \end{bmatrix} = 0, \tag{7.17}
\]

We shall refer to the above constraint as the affine constraint.

Remark 7.3. Notice that when \(a_{11} = a_{21} = a_{12} = a_{22} = 0 \), the affine motion model reduces to the translational motion model \(u = [a_{13}, a_{23}, 1]^\top \) discussed
in the previous subsection, and the affine constraint $y^T A x = 0$ reduces to the brightness constancy constraint $y^T u = 0$.

Unlike the 2-D translational model, in the case of 2-D affine motions the optical flow associated with the ith region, $u_i(x) = A_i x$, does depend on the pixel coordinates. Therefore, the MBCC (7.5) takes the form of a bi-homogeneous polynomial of degree n in (x, y)

$$\text{MBCC}(x, y) = \prod_{j=1}^{n} (y^T A_j x) = 0,$$

(7.18)

i.e., a homogeneous polynomial of degree n in either x or y. We call this constraint the \textit{multibody affine constraint}, since it is a natural generalization of the affine constraint valid for $n = 1$.

7.4.1 The Multibody Affine Matrix

The multibody affine constraint converts Problem 7.1 into one of solving for the number of affine motions n and the affine motion parameters $\{A_j\}_{j=1}^{n}$ from the polynomial equation (7.18). In principle, this problem is equivalent to segmenting data (x, y) living on a collection of n quadratic surfaces, thus we could solve the 2-D affine motion segmentation problem using the QSA algorithm described in Chapter 12. However, note that $y^T A_j x = 0$ is not a general quadratic surface, but rather a bilinear surface. Therefore, we propose to exploit this additional structure in order to obtain a motion segmentation algorithm which is simpler and more efficient than QSA.

To this end, notice that if we expand the polynomial in (7.18) as a sum of all the possible monomials of degree n in x and y, then we can write the MBCC as a bilinear expression in $(\nu_n(x), \nu_n(y))$ as stated by the following result.

Theorem 7.4 (The Bilinear Multibody Affine Constraint). The multibody affine constraint (7.18) can be written in bilinear form as

$$\nu_n(y)^T A \nu_n(x) = 0,$$

(7.19)

where each entry of $A \in \mathbb{R}^{M_n(3) \times M_n(3)}$ is multilinear on the matrices $\{A_j\}_{j=1}^{n}$.

Proof. Let $u_j = A_j x \in \mathbb{R}^3$, for $j = 1, \ldots, n$. Then, the multibody affine constraint is a homogeneous polynomial of degree n in $y = [y_1, y_2, y_3]^T$, i.e.,

$$\text{MBCC}(x, y) = \prod_{j=1}^{n} (y^T u_j) = \sum c_{n_1, n_2, n_3} y_1^{n_1} y_2^{n_2} y_3^{n_3} = \nu_n(y)^T c_n,$$

where $c_n \in \mathbb{R}^{M_n(3)}$ is the vector of coefficients. From the properties of polynomial multiplication, each entry of c_n, c_{n_1, n_2, n_3}, must be a symmetric multilinear function of (u_1, \ldots, u_n), i.e., it is linear in each u_j and $c_{n_1, n_2, n_3}(u_1, \ldots, u_n) = c_{n_1, n_2, n_3}(u_{\sigma(1)}, \ldots, u_{\sigma(n)})$ for all $\sigma \in \mathcal{S}_n$, where \mathcal{S}_n is the permutation group.
of n elements. Since each u_j is linear in x, then each c_{n_1,n_2,n_3} must be a homogeneous polynomial of degree n in x, i.e., $c_{n_1,n_2,n_3} = a_{n_1,n_2,n_3} \nu_n(x)$, where each entry of $a_{n_1,n_2,n_3} \in \mathbb{R}^{M_n(3)}$ is a symmetric multilinear function of the entries of the A_j’s. Letting

$$A := [a_{n,0,0}, a_{n-1,1,0}, \ldots, a_{0,0,n}]^T \in \mathbb{R}^{M_n(3) \times M_n(3)},$$

we obtain $MBCC(x, y) = \nu_n(y)^T A \nu_n(x) = 0$.

We call the matrix A the multibody affine matrix since it is a natural generalization of the affine matrix to the case of multiple affine motion models. Since equation (7.19) clearly resembles the bilinear form of the affine constraint for a single affine motion, we will refer to both equations (7.18) and (7.19) as the multibody affine constraint from now on.

7.4.2 Computing the Number of 2-D Affine Motion Models

Since the multibody affine constraint (7.19) is valid for each (x_j, y_j), one can write the MBCC for all the measurements as the following relationship between the number of motions and the stack of the columns of A, $\text{vec}(A)$

$$V_n^A a = [\nu_n(x_1) \otimes \nu_n(y_1), \ldots, \nu_n(x_N) \otimes \nu_n(y_N)]^T \text{vec}(A) = 0. \quad (7.20)$$

In order to determine n and A, we assume that a large enough number of image measurements are given and that such measurements are non-degenerate, i.e., they do not satisfy any homogeneous polynomial of degree less than or equal to n other than the MBCC. This assumption is analogous to the standard assumption in structure from motion that image measurements should not be images of 3-D points lying in a critical surface. Under this non-degeneracy assumption we have that

1. There is no polynomial of degree i less than n that is satisfied by every data point and so the data matrix of degree i, V_j^A, is of full column rank;
2. There is only one polynomial of degree n that is satisfied by all the data, and so V_n^A is of rank $M_n(3)^2 - 1$ respectively;
3. There are two or more polynomials of degree $i > n$, namely any multiple of the MBCC, that are satisfied by all the data points, hence the null space of V_j^A is at least two-dimensional.

This analysis imposes a rank constraints on V_n^A which allows us to determine the number of affine motion models from the given image intensities as stated by the following theorem.

Theorem 7.5 (Number of 2-D Affine Motion Models). Let $V_j^A \in \mathbb{R}^{N \times (M_j(3)^2)}$ be the matrix in (7.20), but computed with the Veronese map ν_j of degree $i \geq 1$. If $\text{rank}(A_j) \geq 2$ for all $j = 1, \ldots, n$, and a large enough set of N image
measurements in general configuration is given, then

\[\text{rank}(V^A_j) \begin{cases} > M_j(3)^2 - 1, & \text{if } i < n, \\ = M_j(3)^2 - 1, & \text{if } i = n, \\ < M_j(3)^2 - 1, & \text{if } i > n. \end{cases} \] (7.21)

Therefore, the number of affine motions \(n \) is given by

\[n = \min\{j : \text{rank}(V^A_j) = M_j(3)^2 - 1\}. \] (7.22)

Proof. Since each affine matrix \(A_j \) satisfies \(\text{rank}(A_j) \geq 2 \), the polynomial \(p_j = y^\top A_j x \) is irreducible over the real field \(\mathbb{R} \). Let \(Z_j \) be the set of \((x, y)\) that satisfy \(y^\top A_j x = 0 \). Then due to the irreducibility of \(p_j \), any polynomial \(p \) in \(x \) and \(y \) that vanishes on the entire set \(Z_j \) must be of the form \(p = p_j h \), where \(h \) is some polynomial. Therefore, if \(A_1, \ldots, A_n \) are different, a polynomial that vanishes on the set \(\bigcup_{j=1}^n Z_j \) must be of the form \(p = p_1 p_2 \cdots p_n h \) for some \(h \). Therefore, the only polynomial of minimal degree that vanishes on the same set is

\[p = p_1 p_2 \cdots p_n = (x_2^\top A_1 x_1) (x_2^\top A_2 x_1) \cdots (x_2^\top A_n x_1). \] (7.23)

Since the rows of \(V^A_n \) are of the form \((\nu_n(x) \otimes \nu_n(y))^\top\) and the entries of \(\nu_n(x) \otimes \nu_n(y) \) are exactly the independent monomials of \(p \) (as we will show shortly), this implies that if a large enough number of image pairs in general configuration is given, then:

1. There is no polynomial of degree \(2i < 2n \) whose coefficients are in the null space of \(V^A_j \), i.e., \(\text{rank}(V^A_j) = M_j^2 > M_j^2 - 1 \) for \(i < n \).
2. There is a unique polynomial of degree \(2n \), namely \(p \), whose coefficients are in the null space of \(V^A_n \), i.e., \(\text{rank}(V^A_n) = M_n^2 - 1 \).
3. There is more than one polynomial of degree \(2i > 2n \) (one for each independent choice of the \(2(i - n) \)-degree polynomial \(h \) in \(p = p_1 p_2 \cdots p_n h \)) with coefficients in the null space of \(V^A_j \), i.e., \(\text{rank}(V^A_j) < M_j^2 - 1 \) for \(j > n \).

The rest of the proof is to show that the entries of \(\nu_n(x) \otimes \nu_n(y) \) are exactly the independent monomials in the polynomial \(p \), which we do by induction. Since the claim is obvious for \(n = 1 \), we assume that it is true for \(n \) and prove it for \(n + 1 \). Let \(x = [x_1, x_2, x_3]^\top \) and \(y = [y_1, y_2, y_3]^\top \). Then the entries of \(\nu_n(x) \otimes \nu_n(y) \) are of the form \((y_{m_1}^{m_2} y_{m_3}^{m_4}) (x_1^{n_1} x_2^{n_2} x_3^{n_3})\) with \(m_1 + m_2 + m_3 = n_1 + n_2 + n_3 = n \), while the entries of \(x \otimes y \) are of the form \((y_1^{i_1} y_2^{i_2} y_3^{i_3}) (x_1^{j_1} x_2^{j_2} x_3^{j_3})\) with \(i_1 + i_2 + i_3 = j_1 + j_2 + j_3 = 1 \). Thus a basis for the product of these monomials is given by the entries of \(\nu_{n+1}(x) \otimes \nu_{n+1}(y) \).

Once \(n \) is known, we can solve for \(A \) uniquely from the linear system (7.20) by enforcing the \((M_n(3), M_n(3))\) entry of \(A \) to be one. This additional equation results from the fact that the \((3, 3)\) entry of each \(A_j \) is one.
7.4.3 Computing the 2-D Affine Motion Model Parameters

In this section, we exploit the geometric properties of \mathcal{A} to obtain the following purely geometric solution for computing $\{A_j\}_{j=1}^n$.

1. Compute derivatives of the MBCC with respect to x to obtain linear combinations of the rows of each A_j.

2. Obtain the rows of each A_j up to a scale factor from the cross products of these linear combinations.

3. Obtain the unknown scale factors of the rows of A_j from the optical flow.

For step 1, note that if the image measurement (x, y) comes from the ith motion model, i.e., if $y^T A_j x = 0$, then

$$\frac{\partial \text{MBCC}(x, y)}{\partial x} \sim y^T A_j.$$ \hspace{1cm} (7.24)

That is, the derivatives of the MBCC with respect to x give linear combinations of the rows of the affine model at x. Now, since the optical flow $u = [u, v, 1]^T$ at pixel x is can be computed as in equation (7.6), we can define the vectors $\tilde{y}_1 = [1, 0, -u]^T$ and $\tilde{y}_2 = [0, 1, -v]^T$. Although these vectors are not actual image measurements, they do satisfy $\tilde{y}_1 u = \tilde{y}_2 u = 0$. Hence we can use them to obtain the following linear combination of the rows of the affine model A_j at (x, y)

$$g_{j1} \sim a_{j1} - u e_3^T \quad \text{and} \quad g_{j2} \sim a_{j2} - v e_3^T,$$ \hspace{1cm} (7.25)

from the derivatives of the MBCC at (x, \tilde{y}_1) and (x, \tilde{y}_2), respectively.

For step 2, notice that since the 3-rd row of A_j is e_3^T, we can obtain two vectors b_{j1} and b_{j2} that are orthogonal to a_{j1} and a_{j2}, respectively, as $b_{j1} = g_{j1} \times e_3 \sim a_{j1} \times e_3$ and $b_{j2} = g_{j2} \times e_3 \sim a_{j2} \times e_3$. Although the pairs (b_{j1}, e_1) and (b_{j2}, e_2) are not actual image measurements, they do satisfy $e_1^T A_j b_{j1} = a_{j1}^T b_{j1} = 0$ and $e_2^T A_j b_{j2} = a_{j2}^T b_{j2} = 0$. Therefore we can immediately compute the rows of A_j up to a scale factor as

$$a_{j1}^T \sim \tilde{a}_{j1} = \frac{\partial \text{MBCC}(x, y)}{\partial x} \bigg|_{(x, y) = (b_{j1}, e_1)},$$ \hspace{1cm} (7.26)

$$a_{j2}^T \sim \tilde{a}_{j2} = \frac{\partial \text{MBCC}(x, y)}{\partial x} \bigg|_{(x, y) = (b_{j2}, e_2)}. \hspace{1cm} (7.27)$$

For step 3, we know the rows of A_j up to scale, i.e., $a_{j1} = \lambda_{j1} \tilde{a}_{j1}$ and $a_{j2} = \lambda_{j2} \tilde{a}_{j2}$, and the optical u flow at pixel x, i.e., $u = A_j x$. Therefore, $u = \lambda_{j1} \tilde{a}_{j1}^T x$ and $v = \lambda_{j2} \tilde{a}_{j2}^T x$, and so the unknown scales are automatically given by

$$\lambda_{j1} = u / (\tilde{a}_{j1}^T x) \quad \text{and} \quad \lambda_{j2} = v / (\tilde{a}_{j2}^T x).$$ \hspace{1cm} (7.28)

By applying steps 1-3 to all N pixels in the image, we can effectively compute one affine matrix A for each pixel, without yet knowing the segmentation of the
image measurements. Since in our model we only have \(n \ll N \) different affine matrices, we only need to apply steps 1-3 to \(n \) pixels corresponding to each one of the \(n \) models. We can automatically choose the \(n \) pixels at which to perform the computation using the same methodology proposed for 2-D translational motions. Once the \(\{ A_j \}^n_{j=1} \) are calculated we can cluster the data as

\[
i = \arg \min_{\ell=1,\ldots,n} \frac{\|y_j^\top A_\ell x_j\|^2}{\|A_\ell x_j\|^2},
\]

and then refine the affine motion model parameters by solving the linear equation

\[
y_j^\top A_j x = 0
\]

for each separate cluster.

7.5 Segmentation of Motions Models of Different Type

Consider now the most challenging case in which the 2-D motion of the scene is generated from \(n_t \) 2-D translational motion models \(\{ u_j \}^{n_t}_{j=1} \) and from \(n_a \) 2-D affine motion models \(\{ A_j \}^{n_a}_{j=1} \). Then, the MBCC (7.5) takes the form of a bi-homogeneous polynomial of degree \(n_a \) in \(x \) and \(n_a + n_t \) in \(y \)

\[
\text{MBCC}(x, y) = \prod_{j=1}^{n_t} (y_j^\top u_j) \prod_{j=1}^{n_a} (y_j^\top A_j x) = 0.
\]

Thanks to the MBCC, the problem of segmenting both 2-D translational and 2-D affine motion models is mathematically equivalent to segmenting data lying in a collection of both linear and quadratic surfaces. If we knew the type of motion model associated with each pixel (translational or affine), we could immediately separate the data into two groups and then apply the algorithms for 2-D translational and 2-D affine motions developed in the previous two sections to each one of the groups. Since in practice we do not know the type of motion associated with each pixel, one alternative is to treat this as a quadratic surface analysis problem to be studied in Chapter 12 for clustering both linear and quadratic surfaces. However, the fact that \(y_j^\top A_j x = 0 \) is not a general quadratic surface, but rather a bilinear surface, gives us some additional algebraic structure which we can exploit to solve the 2-D motion segmentation problem more efficiently, without resorting to a more general technique.

In the following subsections, we present an algebraic algorithm for segmenting 2-D translational and 2-D affine motion models. We first derive a rank constraint on the image measurements from which one can compute the number of translational and affine motion models using a simple one-dimensional search. We then demonstrate that a sub-matrix of the Hessian of the MBCC encodes information about the type of motion models: The matrix is rank-1 for 2-D translational models and rank-3 for 2-D affine models. Once the type of motion model has been identified, we show that the parameters of each motion model can be obtained by directly applying a subset of the algorithms described in the previous sections.
7.5.1 The Multibody Motion Matrix

Let \(U \in \mathbb{R}^{m_\nu(3)} \) be the multibody optical flow associated with \(\{ u_j \}_{j=1}^{n_t} \), \(A \in \mathbb{R}^{m_\nu(3) \times m_\nu(3)} \) be the multibody affine matrix associated with \(\{ A_j \}_{j=1}^{n_a} \), and \(a_{m_1,m_2,m_3} \) be the \((m_1,m_2,m_3)\)th row of \(A \). We can write the MBCC as

\[
\text{MBCC}(x, y) = (\nu_{n_a}(y)^\top U)(\nu_{n_a}(y)^\top A\nu_{n_a}(x)) = \sum_n y_1^n y_2^n y_3^n U_{n_1,n_2,n_3} \sum_m y_1^m y_2^m y_3^m a_{m_1,m_2,m_3}^\top \nu_{n_a}(x)
\]

\[
= \sum_m \sum_n y_1^{n_1+m_1} y_2^{n_2+m_2} y_3^{n_3+m_3} U_{n_1,n_2,n_3} a_{m_1,m_2,m_3}^\top \nu_{n_a}(x)
\]

\[
= \sum_k y_1^{k_1} y_2^{k_2} y_3^{k_3} m_{k_1,k_2,k_3}^\top \nu_{n_a}(x) = \nu_{n_a+n_1}(y)^\top M\nu_{n_a}(x) = 0,
\]

where \(m_{k_1,k_2,k_3} = \sum_n U_{n_1,n_2,n_3} a_{k_1-n_1,k_2-n_2,k_3-n_3}^\top \) is the \((k_1,k_2,k_3)\)th row of \(M \in \mathbb{R}^{m_\nu+n_1 \times m_\nu} \). The matrix \(M \) is called the multibody motion matrix and contains information about all the motion models \(\{ u_j \}_{j=1}^{n_t} \) and \(\{ A_j \}_{j=1}^{n_a} \). Note that when \(n_a = 0 \), \(M \) is equivalent to the multibody optical flow \(U \) and when \(n_t = 0 \), \(M \) is equivalent to the multibody affine matrix \(A \).

In order to compute \(M \), note that the MBCC holds at every image measurement \(\{(x_j,y_j)\}_{j=1}^{N} \). Therefore, if the number of translational and affine motions are known, we can compute \(M \) by solving the linear system,

\[
V_{n_a,n_1} m = 0, \quad (7.31)
\]

where the \(j \)th row of \(V_{n_a,n_1} \in \mathbb{R}^{N \times M_{n_a+n_1}} \) is given as \((\nu_{n_a}(x_j) \otimes \nu_{n_a+n_1}(y_j))^\top\) and \(m \) is the stack of the columns of \(M \). The scale of \(M \) is obtained by enforcing the additional constraint \(\text{rank}(M_{n_a+n_1,M_{n_a}}) = 1 \), because \(u_j(3) = A_j(3,3) = 1 \) for all \(j = 1, \ldots, n_t \) and \(j = 1, \ldots, n_a \).

7.5.2 Computing the Number of 2-D Motion Models

Note that in order to solve for \(M \) from the linear system \(V_{n_a,n_1} m = 0 \) we need to know the number of translational and affine models, \(n_t \) and \(n_a \), respectively. In order to determine the number of models, we assume that the image measurements are non-degenerate, i.e., they do not satisfy any homogeneous polynomial in \((x,y)\) of degree less than \(n_a \) in \(x \) or less than \(n_t + n_a \) in \(y \). This assumption is analogous to the standard assumption in structure from motion that image measurements should not live in a critical surface. Under this assumption we have the following result:

Theorem 7.6 (Number of Translational and Affine Models). Let \(V_{n_a',n_1'} \in \mathbb{R}^{N \times M_{n_a'+n_1'}} \) be the matrix in (7.31), but computed with the Veronese map of degree \(n_a' \) in \(x \) and \(n_a' + n_t' \geq 1 \) in \(y \). If \(\text{rank}(A_j) \geq 2 \) for all \(j = 1, \ldots, n_a \), and a large enough set of image measurements in general configuration is given,
then the number of affine and translational motions are, respectively, given by

\[n_a = \arg \min_{n_a} \{ n_a' : \exists n_t' \geq 0 : V_{n_a',n_t'} \text{ drops rank by 1} \}, \]

\[n_t = \arg \min_{n_t} \{ n_t' : V_{n_a,n_t'} \text{ drops rank by 1} \}. \]

(7.32)

Proof. From the non-degeneracy assumption we have that

1. If \(n'_a < n_a \) or \(n'_t + n'_a < n_t + n_a \), there is no polynomial of degree \(n'_a \) in \(\mathbf{x} \) or of degree \(n'_a + n'_t \) in \(\mathbf{y} \) fitting the data, hence \(V_{n_a,n_t} \) is of full column rank.

2. If \(n'_t + n'_a = n_t + n_a \) and \(n'_t \leq n_t \), there is exactly one polynomial fitting the data, namely \(V_{n_a,n_t} \) drops rank by 1. This is true for all \(n'_t \leq n_t \), given \(n'_t + n'_a = n_t + n_a \), because each translational motion model can also be interpreted as an affine motion model.

3. If \(n'_t + n'_a > n_t + n_a \) and \(n'_a \geq n_a \), there are two or more polynomials of degree \(n'_a \) in \(\mathbf{x} \) and \(n'_a + n'_t \) in \(\mathbf{y} \) that fit the data, namely any multiple of the MBCC. Therefore, the null space of \(V_{n_a',n_t'} \) is at least two-dimensional and \(V_{n_a',n_t'} \) drops rank by more than 1.

From the above cases, we conclude that there are multiple values of \((n'_a, n'_t) \) for which the matrix \(V_{n_a',n_t'} \) drops rank exactly by 1, i.e., whenever \(n'_t + n'_a = n_t + n_a \) and \(n'_t \leq n_t \). Therefore the correct number of motions \((n_a, n_t) \) can be obtained as in (7.32).

As a consequence of the theorem, we can immediately devise a strategy to search for the correct number of motions. We know that the correct number of motions \((n_a, n_t) \) occurs for the minimum value of \(n'_t \) such that \(n'_t + n'_a = n_t + n_a \) and \(V_{n_a',n_t'} \) drops rank by 1. Thus we can initially set \((n'_a, n'_t) = (0, 1) \) and if \(V_{n_a',n_t'} \) does not drop rank we can increase \(n'_a \) while keeping \(n'_a + n'_t \) constant until \(V_{n_a',n_t} \) drops rank. If \(V_{n_a',n_t'} \) does not drop rank for this value of \(n'_a + n'_t \), we increase \(n'_a + n'_t \) by one, reset \(n'_a = 0 \) and repeat the process until \(V_{n_a',n_t'} \) drops rank by 1 for the first time. This process will stop at the correct \((n_a, n_t) \).

Figure 7.2 illustrates our method for searching for the number of motions \((n_a, n_t) \) in the particular case of \(n_a = 3 \) affine motions and \(n_t = 2 \) translational motions. In this case, we search for the correct \((n_a, n_t) \) in the following order \((0, 1), (1, 0), (0, 2), (1, 1), (2, 0), (0, 3), \ldots, (0, 5), (1, 4), (2, 3), (3, 2)\).

Notice that the proposed search strategy will give the correct number of motions with perfect data, but will fail with noisy data, because the matrix \(V_{n_a',n_t'} \) will be full rank for all \((n_a', n_t') \). Inspired by the criterion (2.14) for determining the rank of a noisy matrix given in Chapter 2, we find \((n_a, n_t) \) as the pair that minimizes the cost function

\[\frac{\sigma^2_{M_{n_a+n_t} M_{n_a}^{-1} (V_{n_a',n_t'})} \sigma_\lambda^2 (V_{n_a',n_t'})}{\sum_{j=1}^{M_{n_a+n_t} M_{n_a}^{-1} \sigma_\lambda^2 (V_{n_a',n_t'})} + \kappa_1 (n'_a + n'_t) + \kappa_2 n'_a}. \]

(7.33)
Figure 7.2. Plot of the possible pairs of \((n'_a, n'_t)\) that give a unique solution for the MBCC. The actual pair is \((3, 2)\).

In (7.33) \(\sigma_j(L)\) is the \(j\)th singular value of \(L\), and \(\kappa_1\) and \(\kappa_2\) are parameters that penalize increasing the complexity of the multibody motion model \(M\), either by increasing the number of affine motions, or by increasing the total number of motions. As before, this two-dimensional optimization problem is reduced to a one-dimensional search by evaluating the cost function for values of \((n'_a, n'_t)\) chosen in the order \((0, 1), (1, 0), (0, 2), (1, 1), (2, 0), (0, 3), \ldots\).

7.5.3 Computing the Type of 2-D Motion at Each Pixel

Given the number of motion models \((n_a, n_t)\) and the multibody motion model \(M\), we now show how to determine the type of motion model associated with each pixel: 2-D translational or 2-D affine. As it turns out, this can be done in a remarkably simple way by looking at the rank of the matrix

\[
\mathcal{H}(x, y) = \frac{\partial \text{MBCC}(x, y)}{\partial y \partial x} \in \mathbb{R}^{3 \times 3}. \tag{7.34}
\]

For the sake of simplicity, consider a scene whose optical flow at every pixel can be modeled by one translational and one affine motion model, \(u\) and \(A\), respectively. In this case, the MBCC can be written as \(\text{MBCC}(x, y) = (y^\top u)(y^\top Ax)\), hence

\[
\mathcal{H}(x, y) = uy^\top A + (y^\top u)A. \tag{7.35}
\]

Therefore, if an image measurement comes from the translational motion model only, i.e., if \(y_j^\top u = 0\), then

\[
\mathcal{H}(x_j, y_j) = u(y_j^\top A) \implies \text{rank}(\mathcal{H}(x_j, y_j)) = 1. \tag{7.36}
\]
Similarly, if the image measurement comes from the affine motion model, i.e., if
\[y_j^T A x_j = 0, \]
then
\[H(x_j, y_j) = u(y_j^T A) + (y_j^T u)A \Rightarrow \text{rank}(H(x_j, y_j)) = 3. \] (7.37)

This simple observation for the case \(n_a = n_t = 1 \) generalizes to any value of \(n_a \) and \(n_t \) as stated in the following theorem.

Theorem 7.7 (Identification of the Motion Type). Let \(M \in \mathbb{R}^{M_{n_a+n_t}(3) \times M_{n_a}(3)} \) be the multibody motion model associated with \(n_t \) 2-D translational motions \(\{u_j\}_{j=1}^{n_t} \) and \(n_a \) 2-D affine motions \(\{A_j\}_{j=1}^{n_a} \). The type of motion model associated with an image measurement \((x, y)\) can be found as follows

1. 2-D translational if \(\text{rank}(H(x, y)) = 1 \).
2. 2-D affine if \(\text{rank}(H(x, y)) = 3 \).

Thanks to Theorem 7.7, we can automatically determine the type of motion model associated with each image measurement. In the case of noisy image data, we can use equation (2.14) to determine the rank of a matrix. As simpler method applicable in this particular case is to declare a model to be 2-D affine if
\[\frac{3\sqrt{\det(H(x_j, y_j))}}{\text{trace}(H(x_j, y_j))} > \epsilon. \] (7.38)
We have found a threshold of \(\epsilon = 0.03 \) to work well in all our experiments.

7.5.4 Computing the 2-D Motion Model Parameters

Given the number and types of motion models, and the multibody motion model \(M \), we now show how to compute the individual 2-D translational \(\{u_j\}_{j=1}^{n_t} \) and 2-D affine \(\{A_j\}_{j=1}^{n_a} \) motion models. One possible method is to simply separate the data into two groups, 2-D translational data and 2-D affine data, and then solve separately for the 2-D translational and 2-D affine motion models by using the algorithms in the previous two sections. This amounts to solving for the multibody optical flow \(U \) from (7.11) and the multibody affine matrix \(A \) from (7.20), and then applying polynomial differentiation to obtain \(\{u_j\}_{j=1}^{n_t} \) from \(U \) and \(\{A_j\}_{j=1}^{n_a} \) from \(A \).

However, at this point we already have the multibody motion \(M \) which is a matrix representation for \(U \otimes A + A \otimes U \). Having to recompute \(U \) and \(A \) would be extra unnecessary computation. Recall from Theorem 7.1 that one can compute the optical flow at each pixel \(x \) from the partial derivative of the MBCC with respect to \(y \) of \(\{u_j\}_{j=1}^{n_t} \) by applying steps 2 and 3 of the algorithm in Section 7.3 to the pixels obeying a 2-D translational motion model, as determined in the previous subsection.

In an entirely analogous fashion, recall from Section 7.4 that in the case of 2-D affine motion models the computation of the affine matrices \(\{A_j\}_{j=1}^{n_a} \) relies on the
fact that the derivatives of the MBCC with respect to x give a linear combination of the rows of A_j, where A_j is the affine model associated with x (see equation (7.24)). It is obvious from equation (7.30) that the vector of partial derivatives of the MBCC with respect to x is not affected by 2-D translational motions, because 2-D translational motions do not depend on x. Therefore, we can immediately obtain the 2-D affine motions $\{A_j\}_{j=1}^{n_a}$ by applying steps 1-3 of the algorithm in Section 7.4.3 to the pixels obeying a 2-D affine motion model, as determined in the previous subsection.

7.5.5 Algorithm Summary

We now summarize the discussions in sections 7.3-7.5 in the form of Algorithm 7.1. The algorithm outlines the steps to calculate the multibody motion parameters and the individual motion models and then segment the motion of the scene.

Notice that the minimum number of image measurements needed in order to compute the multibody motion model M is $N \geq n_a + n_t (3) - 1$. Table 7.1 gives numeric values of the minimum N as a function of the number of affine and translational models. Notice that in most cases less than 800 pixels are needed, which is feasible even with a 100×100 image.

<table>
<thead>
<tr>
<th>(n_a, n_t)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>5</td>
<td>9</td>
<td>14</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>15</td>
<td>27</td>
<td>42</td>
<td>60</td>
<td>81</td>
</tr>
<tr>
<td>2</td>
<td>24</td>
<td>48</td>
<td>78</td>
<td>114</td>
<td>156</td>
<td>204</td>
</tr>
<tr>
<td>3</td>
<td>64</td>
<td>114</td>
<td>174</td>
<td>244</td>
<td>324</td>
<td>414</td>
</tr>
<tr>
<td>4</td>
<td>139</td>
<td>229</td>
<td>334</td>
<td>454</td>
<td>589</td>
<td>739</td>
</tr>
</tbody>
</table>

7.6 Experimental Results

In this section, we evaluate the performance of Algorithm 7.1 for the 2-D affine motion models, as a function of the level of noise and the number of motion models using synthetically generated data. We compare the performance of the following algorithms

1. **Factorization**: given A, this algorithm solves for the affine motion parameters by bi-homogeneous polynomial factorization of the MBCC as described in [Vidal and Sastry, 2002].

2. **Differentiation**: given A, this algorithm solves for the affine motion parameters by polynomial differentiation of the MBCC as described in Section 7.4.
Algorithm 7.1 (2-D Motion Segmentation from Image Derivatives).

Given \(N \) image measurements \(\{(x_j, y_j)\}_{j=1}^{N} \) of a scene undergoing \(n_t \) 2-D translational and \(n_a \) 2-D affine motion models, recover the number of motion models \((n_a, n_t)\), the optical flow \(u(x) \) at each pixel \(x \), the type of motion model at each pixel, the parameters \(\{\mathcal{M}_j\}_{j=1}^{N} \) of the \(n = n_a + n_t \) motion models, and the model object associated with each image measurement as follows:

1: **Number of motion models**: Apply the Veronese map of various degrees to the data \(\{(x_j, y_j)\}_{j=1}^{N} \) to form the embedded data matrix \(V_{n_a, n_t}^{M} \) and compute the number of motions \((n_a, n_t) \) as in (7.33).

2: **Multibody motion model**: Compute \(\mathcal{M} \) from the singular vector of \(V_{n_a, n_t}^{M} \) associated with its smallest singular value and let

\[
\text{MBCC}(x,y) = v_{n_a+n_t}(y)^\top \mathcal{M} v_{n_a}(x).
\]

3: **Optical flow**: Compute the optical flow at each pixel as:

\[
u(x_j) = \frac{\partial \text{MBCC}(x_j, y_j)}{\partial y_j} / \left(e_3 \frac{\partial \text{MBCC}(x_j, y_j)}{\partial y_j} \right).
\]

4: **Motion type**: Assign point \((x_j, y_j)\) to the 2-D translational group \(G_t \) if \(\text{rank}(\mathcal{H}(x_j, y_j)) = 1 \) and to the 2-D affine group \(G_a \) if \(\text{rank}(\mathcal{H}(x_j, y_j)) = 3 \).

5: **Motion segmentation**:

6: **for all** \(j = n_t : 1 \) **do**
7: Select one representative optical flow \((x_j, u_j = u(x_j))\) per translational motion model according to (7.14).
8: **end for**

9: **for all** \(j = n_a : 1 \) **do**
10: Select one representative optical flow \((x_j, u_j = u(x_j))\) per affine motion model according to (7.14);

\[
\begin{align*}
\tilde{y}_{j1} &= [1, 0, -u_j]^\top; \\
\tilde{y}_{j2} &= [0, 1, -v_j]^\top; \\
b_{j1} &= e_3 \times \left. \frac{\partial \text{MBCC}}{\partial y} \right|_{(x_j, \tilde{y}_{j1})}; \\
b_{j2} &= e_3 \times \left. \frac{\partial \text{MBCC}}{\partial y} \right|_{(x_j, \tilde{y}_{j2})}; \\
\tilde{a}_{j1} &= \left. \frac{\partial \text{MBCC}}{\partial x} \right|_{(b_{j1}, e_1)}; \\
\tilde{a}_{j2} &= \left. \frac{\partial \text{MBCC}}{\partial x} \right|_{(b_{j2}, e_2)}; \\
A_j &= \begin{bmatrix} (e_3^\top u_j) \tilde{a}_{j1} & (e_3^\top u_j) \tilde{a}_{j2} \\ \tilde{a}_{j1} x_j & \tilde{a}_{j2} x_j \end{bmatrix} e_3^\top.
\end{align*}
\]
11: **end for**

12: **Feature segmentation**: Assign \((x_j, y_j)\) to group \(\arg \min_e |y_j^\top u_e(x_j)|^2 / \|u_e(x_j)\|^2 \).
13: **Refining the motion model parameters**: Given the clustering of the image measurements into \(n \) groups, refine the motion model parameters for each separate cluster by from all the points belonging to that particular cluster.
3. **Complex differentiation**: given the optical flow computed by the differentiation algorithm, this algorithm transforms the two equations (7.15) and (7.16) into a single equation in the complex domain. Taking the product of these equations for each one of the \(n \) models leads to a complex multibody affine model, \(A_c \in \mathbb{C}^{M_3(3)} \), from which the individual affine models are obtained by polynomial differentiation, similarly to the 2-D translational case described in Section 7.3.

4. **K-means**: starting from an initial set of affine matrices, this algorithm alternates between assigning points to clusters using the distance in (7.29) and computing (linearly) the affine models for each motion class.

5. **K-means + Differentiation**: we use our differentiation algorithm to initialize the K-means algorithm so that it has good estimates of the affine matrices to start with rather than choosing the initial values randomly.

We then present experimental results for various indoor and outdoor sequences for both, the translational and affine motion models. For the real sequences, we obtain the image derivatives at each frame using derivative of Gaussian filters of order 6 and then apply Algorithm 7.1 to each frame.

7.6.1 Simulation Results

We first test the algorithm on synthetic data. We randomly pick \(n = 2 \) collections of \(N = 200 \) pixel coordinates and apply a different (randomly chosen) affine motion model to each collection of pixels to generate their optical flow. From the optical flow associated with each pixel, we randomly choose a vector \(y \) of spatial and temporal image derivatives satisfying the brightness constancy constraint (7.4). The coordinates of \(y \) are constrained to be in \([-1, 1]\) to simulate image intensities in the \([0, 1]\) range. Zero-mean Gaussian noise with standard deviation \(\sigma \in [0, 0.05] \) is added to the partial derivatives \(y \). We run 1000 trials for each noise level. For each trial the error between the true affine motions \(\{A_j\}_{j=1}^n \) and the estimates \(\{\hat{A}_j\}_{j=1}^n \) is computed as

\[
\text{Affine error} = \frac{1}{n} \sum_{j=1}^{n} \frac{\|A_j - \hat{A}_j\|}{\|A_j\|} \quad (\%).
\]

(7.39)

Figure 7.3 plots the mean error and the mean percentage of correctly classified pixels as a function of \(\sigma \), by using the polynomial differentiation approach. In all trials the number of motions was correctly estimated from equation (7.33) as \(n = 2 \). Notice that K-means randomly initialized usually converges to a local minima. The average number of iterations is 20. The factorization algorithm performs better than K-means for a small level of noise, but its performance deteriorates quickly as noise increases. The differentiation algorithm’s estimates are

\(^1\) We use \(\kappa = 10^{-6} \) to determine the number of motions.
Figure 7.3. Error in the estimation of the affine model parameters and percentage of correctly classified points as a function of noise.

within 6% of the true affine motions, with a percentage of correct classification of over 90%, even for a noise level of 5% in the image derivatives. The best results are obtained by using the differentiation algorithm to initialize K-means. Then the error reduces to about 2%, the average number of iterations reduces to 5, and the percentage of correctly classified points increases to 95%.

7.6.2 2-D Translational Motions

Figure 7.4 shows segmentation results for a 240 × 320 sequence of a car leaving a parking lot. The top row shows the pixels associated with the camera’s downward motion and the bottom row shows the pixels associated with the car’s right-downward motion. In each row, pixels that do not correspond to the group are colored black. Figure 7.5 shows another example on the segmentation of a 240 × 320 sequence of a person’s head rotating from right to left in front of a lab background. The top row shows the pixels associated with the camera’s fronto-parallel motion and the bottom row shows the pixels associated with the head motion. In each row, pixels that do not corresponding to the group are colored red.

The results in Figure 7.4 and 7.5 were obtained by applying Algorithm 7.1 directly to all the image data, without any pre or post processing. Therefore, many pixels can be potentially misclassified, such as pixels in low textured regions, e.g., parts of the body of each car, the road, the wall in the lab, as well as pixels in highly specular regions where the BCC is not satisfied. In addition, nearby pixels need not belong to the same group, because motion is the only cue used for segmentation.

The segmentation results are encouraging. Although we are using a simple mixture of two 2-D translational motion models, i.e., the optical flow is assumed to be piecewise constant, most of the pixels corresponding to the moving car or the moving head are correctly segmented from those of the moving background. Most of the errors occur precisely at regions with low texture, such as the road in Figure 7.4 and the black sweater and white wall regions in Figure 7.5. Overall, about
85% of the image pixels are correctly classified with respect to ground truth manual segmentation. These results can be used as an initial segmentation for any more computationally intense nonlinear iterative refinement scheme.

7.6.3 2-D Affine Motions

Figure 7.6 shows an aerial view of a robot rotating and translating on the ground. The camera is fronto-parallel to the ground and undergoing both rotational and translational motion. Notice that various regions in the image correspond to pieces of the robots made of aluminum, which are highly specular and have little texture. Nevertheless, the algorithm correctly classifies about 85% of the pixels in the image with respect to ground truth manual segmentation.

7.6.4 2-D Translational and 2-D Affine Motions

Figure 7.7 shows segmentation results for a 240 × 320 sequence of a car leaving a parking lot. The sequence has 2 motions, the camera’s downward motion which can be modeled as an affine motion and the car’s right-downward motion which
can be modeled as a translation. The first and second columns in the figure show the segmentation obtained assuming that the scene has 2 translations and 2 affine motions, respectively. The third column is the segmentation obtained assuming that the scene has 1 translation and 1 affine motion. In each image, pixels that do not correspond to the group are colored black. Notice that when both the motion models are assumed to be translational, the segmentation of the car is noisy, and when both the motion models are assumed to be affine, a portion of the parking lot gets segmented along with the car.

Figure 7.8 shows another example of segmentation of a 240 × 320 sequence of a person’s head rotating from right to left in front of a lab background. This sequence too has 2 motions, the camera’s fronto-parallel motion which can be modeled as a translation and the motion of the head which can be modeled as an affine motion. The first and second columns in the figure show the segmentation obtained assuming that the scene has 2 translations and 2 affine motions respectively. The third column is the segmentation obtained assuming that the scene has 1 translation and 1 affine motion. In each row, pixels that do not correspond to the group are colored red. We see that using motion models of different type helps segment the head more cleanly as compared to using motion models of the same type.

Figure 7.9 shows the segmentation results of a 240 × 320 sequence of a helicopter landing. The sequence has 1 translational motion corresponding to the hovering motion of the helicopter and an affine motion corresponding to the fronto-parallel motion of the camera. The first column indicates pixels belonging to the motion of the camera and the second column indicates pixels belonging to the motion of the helicopter. In each image, pixels that do not correspond to the group are colored black. The results show that we obtain a very good segmentation of the helicopter, in spite of the fact that it constitutes a very small part of the image.

While applying Algorithm 7.1 to the sequences in Figure 7.9, we pre-assigned the type of motion model to the pixels corresponding to areas with low texture (i.e., pixels corresponding to the sky) from the prior knowledge of the type of motion model that they should obey. The idea behind this is that the matrix $\mathcal{H}(x, y)$ at such pixels would have rank 0 and this would result in their misclas-
sification as translational points. However, we would like to emphasize that the results show that Algorithm 7.1 does give good segmentation results in the other areas having texture variation.
7.7 Bibliographic Notes

Classical approaches to 2-D motion segmentation separate the image flow into different regions by looking for flow discontinuities [Spörrri and Ullman, 1987, Black and Anandan, 1991], fit a mixture of parametric models through successive computation of dominant motions [Irani et al., 1992] or use a layered representation of the motion field [Darrel and Pentland, 1991]. The problem has also
these approaches is that they are based on a local computation of 2-D motion, which is subject to the aperture problem and to the estimation of a single model across motion boundaries. Some of these problems can be partially solved by incorporating multiple frames and a local process that forces the clusters to be connected [Ke and Kanade, 2002]. The only existing algebraic solution to 2-D motion segmentation is based on bi-homogeneous polynomial factorization and can be found in [Vidal and Sastry, 2002].

Classical approaches to 2-D motion segmentation are based on separating the image flow into different regions by looking for flow discontinuities [Spoerri and Ullman, 1987]. Due to the aperture problem, such techniques have trouble dealing with noisy flow estimates, especially in regions with low texture. [Black and Anandan, 1991] deal with this problem by using some regularity constraints to interpolate the flow field. However, since the location of motion discontinuities and occlusion boundaries is unknown, these techniques often have the problem of smoothing across motion boundaries.

Alternative approaches model the scene as a mixture of 2-D parametric motion models, such as translational, affine or projective. [Irani et al., 1992] propose to estimate such motion models through successive computation of dominant motions. That is, they use all the image data to first extract one motion model (the dominant motion) using a least squares technique. Then, they subdivide the misaligned regions by computing the next dominant motion and so on. Although this technique can be improved by using robust M-estimators [Black and Anandan, 1996] and intensity information [Ayer et al., 1994], it has the disadvantage of erroneously assigning data to models, especially when there is no such a dominant motion in the scene. It also fails in the presence of transparent motions.

To deal with this difficulties, [Darrel and Pentland, 1991] propose a new representation, the so-called layered representation, based on multiple motion models with different layers of support. They compute a translational model for each layer using robust M-estimation. Then they update the regions of support based on the current estimation of the motion models. The number of layers is obtained by minimizing a minimum description length (MDL)–like function.

The layered representation has also been formalized as a maximum likelihood estimation problem by modeling the scene as a mixture of probabilistic motion models [Jepson and Black, 1993, Ayer and Sawhney, 1995, Weiss, 1996, Weiss, 1997, Torr et al., 2001]. The estimation of the models and their regions of support is usually done using an iterative process, the so-called Expectation Maximization (EM) algorithm, that alternates between the segmentation of the image measurements (E-step) and the estimation of the motion model parameters (M-step). [Jepson and Black, 1993] assume that the number of models is known and estimate the motion parameters using least squares. Ayer and Sawhney [Ayer and Sawhney, 1995] use MDL to determine the number of models and robust M-estimation to estimate the motion parameters. Weiss [Weiss, 1996] incorporates spatial constraints in the E-step via a mean field approximation of a Markov random field (MRF). The number of models is automatically esti-
mated by initializing the algorithm with more models than will be needed and then decreasing the number of models whenever two models are similar. Weiss [Weiss, 1997] and Torr et al. [Torr et al., 2001] noticed that the assumption of a parametric motion model (translational, affine or projective) is too restrictive for scenes which are non-planar. Weiss, 1997] proposes a non-parametric mixture model based on a probability distribution that favors smooth motion fields. [Torr et al., 2001] proposes a parametric model that includes some 3-D information by associating a disparity with each pixel, similar to the plane+parallax model [Irani and Anandan, 1999]. The model is initialized using a Bayesian version of RANSAC.

While EM-like approaches have the advantage of providing robust motion estimates by combining information over large regions in the image, they suffer from the disadvantage that then convergence to the optimal solution strongly depends on correct initialization [Shi and Malik, 1998, Torr et al., 2001]. To deal with the initialization problem, various techniques have been proposed. [Wang and Adelson, 1993] divides the image in small patches and estimates an affine motion model for each patch using the optical flow of the patch. The parameters of the affine models are then clustered using the K-means algorithm and the regions of support of each motion model are computed by comparing the optical flow at each pixel with that generated by the “clustered” affine motion models. The drawbacks of this algorithm is that it is based on a local computation of optical flow which is subject to the aperture problem and to the estimation of a single affine model across motion boundaries. Some of these problems can be partially solved by incorporating multiple frames and a local process that forces the clusters to be connected [Ke and Kanade, 2002].

Alternative approaches are based on first clustering the image data by using local features that incorporate spatial and temporal motion information. Once the segmentation of the pixels has been obtained, one can estimate a motion model for each cluster using, for example, the so-called direct methods [Irani and Anandan, 1999]. Shi and Malik [Shi and Malik, 1998] propose the so-called motion profile as a measure of the probability distribution of the image velocity at a given pixel. Such a motion profile is used to build a similarity matrix from which pixels are clustered in two groups using the normalized cuts (Ncut) algorithm. Each group is then further partitioned using recursive Ncuts. The drawback of this approach are that it is unclear when to stop subdividing the clusters and that the two-way partitioning is inappropriate in the presence of multiple motions, especially when no dominant motion is present.
7.8 Exercises

Exercise 7.1 Show that in the case of \(n = 2 \) affine motions \(A_1 = [b_{ij}] \in \mathbb{R}^{3 \times 3} \) and \(A_2 = [c_{ij}] \in \mathbb{R}^{3 \times 3} \), the multibody affine motion \(\mathcal{A} \in \mathbb{R}^{6 \times 6} \) is given by:

\[
\mathcal{A} = \begin{bmatrix}
 b_{11}c_{11} & b_{11}c_{12} + b_{13}c_{11} & b_{12}c_{12} + b_{13}c_{12} & b_{13}c_{13} \\
 A_{21} & A_{22} & A_{23} & A_{24} & A_{25} & A_{26} \\
 0 & 0 & 0 & 0 & b_{12} + b_{22} & b_{23} + b_{23} \\
 b_{21}c_{21} & b_{21}c_{22} + b_{23}c_{21} & b_{22}c_{22} + b_{23}c_{22} & b_{23}c_{23} & b_{24}c_{23} & b_{25}c_{25} \\
 0 & 0 & 0 & 0 & 0 & 1 \\
\end{bmatrix},
\]

where

\[
A_{12} = b_{11}c_{12} + b_{12}c_{11}, \quad A_{42} = b_{21}c_{22} + b_{22}c_{21},
\]
\[
A_{22} = b_{11}c_{22} + b_{12}c_{21} + b_{13}c_{21}, \quad A_{21} = b_{11}c_{21} + b_{12}c_{11},
\]
\[
A_{23} = b_{11}c_{23} + b_{12}c_{21} + b_{13}c_{21}, \quad A_{24} = b_{12}c_{22} + b_{22}c_{12},
\]
\[
A_{25} = b_{12}c_{23} + b_{13}c_{22} + b_{13}c_{22} + b_{13}c_{23}, \quad A_{26} = b_{13}c_{23} + b_{13}c_{23}.
\]

Exercise 7.2 Let \(\{A_j\}_{j=1}^n \) be a collection of \(n \) 2-D affine motion models, and recall that the entries \((3,1)\) and \((3,2)\) of each affine matrix \(A_j \) are zero.

1. Show that the entries \((n_1, n_2, n_3)\), \((m_1, m_2, m_3)\) of the multibody affine matrix \(\mathcal{A} \), with \(0 \leq m_3 < n_3 \leq n \), are zero as well.
2. Show that the number of zeros in the multibody affine matrix is given by

\[
Z_n = n(n+1)(n+2)(3n+5)/24.
\]

3. Let \(\mathcal{V}_n^A \in \mathbb{R}^{N \times M_n(3)^2} \) and \(\mathcal{a} \in \mathbb{R}^{M_n(3)^2} \) be defined as in (7.20). Show that by enforcing the fact that \(Z_n \) entries of \(\mathcal{A} \) are zero one can solve for the entries of the multibody affine matrix \(\mathcal{A} \) from

\[
\mathcal{V}_n^A \mathcal{a} = 0, \quad (7.40)
\]

where \(\mathcal{a} \in \mathbb{R}^{M_n(3)^2 - Z_n} \) is the same as \(\mathcal{a} \), but with the zero entries removed, and \(\mathcal{V}_n^A \in \mathbb{R}^{N \times (M_n(3)^2 - Z_n)} \) is the same as \(\mathcal{V}_n^A \in \mathbb{R}^{N \times M_n(3)^2} \), but with the corresponding \(Z_n \) columns removed.

4. Show that the number of affine motions \(n \) can also be computed as

\[
n \doteq \min\{j : \text{rank}(\mathcal{V}_j^A) = M_j(3)^2 - 1\}. \quad (7.41)
\]

Exercise 7.3 Let \(\{u_j\}_{j=1}^{n_u} \) and \(\{A_j\}_{j=1}^{n_a} \) be a collection of \(n_u \) 2-D affine motion and \(n_a \) 2-D translational motion models, and recall that the entries \((3,1)\) and \((3,2)\) of each affine matrix \(A_j \) are zero. If \(n_u > 0 \), show that \(Z_{n_a, n_u} \) entries of the multibody motion matrix \(\mathcal{M} \) are zero. Find the number and location of such zero entries. Let \(\mathcal{V}_n \) and \(\mathcal{m} \) be defined as in 7.31. Show that one can solve for \(\mathcal{M} \) from

\[
\mathcal{V}_{n_a, n_n} \mathcal{m} = 0, \quad (7.42)
\]

where \(\mathcal{m} \in \mathbb{R}^{M_n + n_u M_{n_a, n_n} - Z_{n_u, n_n}} \) is the same as \(\mathcal{m} \), but with the \(Z_{n_u, n_n} \) zero entries removed, and \(\mathcal{V}_{n_a, n_n} \in \mathbb{R}^{N \times (M_{n_a, n_n} M_n - Z_{n_u, n_n})} \) is the same as \(\mathcal{V}_{n_a, n_n} \), but with the corresponding \(Z_{n_u, n_n} \) columns removed.
Chapter 8
3-D Motion Segmentation from Point Correspondences

A classic problem in visual motion analysis is to estimate a motion model for a set of 2-D feature points as they move in a video sequence. When the scene is static, i.e., when either the camera or a single object move, the problem of fitting a 3-D model compatible with the structure and motion of the scene is well understood [Hartley and Zisserman, 2000, Ma et al., 2003]. For instance, it is well-known that two perspective views of a scene are related by the epipolar constraint [Longuet-Higgins, 1981] and that multiple views are related by the multilinear constraints [Heyden and Åström, 1997]. These constraints can be used to estimate a motion model for the scene using linear techniques such as the eight-point algorithm and its generalizations.

However, these techniques cannot deal with dynamic scenes in which both the camera and an unknown number of objects with unknown 3-D structure move independently. In principle, one could model such scenes with a collection of 2-D motion models and segment them using the 2-D motion segmentation techniques developed in the previous chapter. However, because of depth discontinuities, perspective effects, etc, 2-D techniques would tend to interpret a single 3-D motion as multiple 2-D motions, which would result in over segmentation of the scene.

In this chapter, we develop techniques for segmentation of 3-D motion models. In particular, we consider the segmentation of three types of models of increasing complexity: linear, bilinear and trilinear. The segmentation of linear models shows up in motion segmentation from multiple affine views, and can be solved using the GPCA algorithm presented in Chapter 4. The segmentation of bilinear and trilinear models shows up in motion segmentation from point correspondences in two and three perspective views, respectively, and will require the development of extensions of GPCA to certain classes of bilinear and trilinear surfaces.
8.1 The Motion Estimation Problem

Before delving into the details of segmentation of multiple 3-D motion models, we present a brief overview of the classical 3-D motion estimation problem from point correspondences. Sections 8.1.2 and 8.1.3 review the two-view geometry of non-planar and planar scenes, respectively, and Section 8.1.4 reviews the three view geometry of non-planar scenes. We refer the readers to [Hartley and Zisserman, 2000, Ma et al., 2003] for further details.

8.1.1 Rigid-Body Motions and Camera Projection Models

Consider a video sequence taken by a moving camera observing a static scene. We assume that the camera is moving rigidly, so that its pose at frame $f = 1, \ldots, F$ can be expressed as $(R_f, T_f) \in SE(3)$, where $R_f \in SO(3)$ is the camera rotation and $T_f \in \mathbb{R}^3$ is the camera translation. Without loss of generality, we assume that the first camera frame coincides with the world frame, so that $(R_1, T_1) = (I, 0)$.

Consider a generic point p, with coordinates $X_1 = (X_1, Y_1, Z_1)^\top \in \mathbb{R}^3$ relative to the world reference frame. As illustrated in Figure 8.1, the coordinates $X_f = (X_f, Y_f, Z_f)^\top \in \mathbb{R}^3$ of the same point p relative to the fth camera frame are given the rigid-body transformation (R_f, T_f) of X_1:

$$X_f = R_f X_1 + T_f \in \mathbb{R}^3. \quad (8.1)$$

Adopting the pinhole camera model shown in Figure 8.2 with focal length $d(f)$, the point p with coordinates X_f is projected onto the image plane at the point

$$\begin{bmatrix} x_f \\ y_f \\ 1 \end{bmatrix} = \frac{1}{Z_f} \begin{bmatrix} d(f) & 0 & 0 \\ 0 & d(f) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X_f \\ Y_f \\ Z_f \end{bmatrix}. \quad (8.2)$$

The projection model (8.2) is specified relative to a very particular reference frame centered at the optical center with one axis aligned with the optical axis. In
180 Chapter 8. 3-D Motion Segmentation from Point Correspondences

Figure 8.2. Frontal pinhole imaging model: the image of a 3-D point p is the point x at the intersection of the ray going through the optical center o and the image plane at a distance $d(f)$ in front of the optical center.

practice, when one captures digital images the measurements are obtained in pixel coordinates, which are related to the image coordinates by the transformation

$$x_f = \begin{bmatrix} s_x & s_\theta & o_x \\ 0 & s_y & o_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_f \\ y_f \\ 1 \end{bmatrix},$$

(8.3)

where (s_x, s_y) is a scale factor, s_θ is a skew factor and (o_x, o_y) is a translation so that the origin is in the upper-left corner of the image.

Combining the camera motion model (8.1), the camera projection model (8.2) and the camera calibration model (8.3), leads to the following camera model:

$$\lambda_f x_f = \begin{bmatrix} s_x & s_\theta & o_x \\ 0 & s_y & o_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} d(f) & 0 & 0 \\ 0 & d(f) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} R_f & T_f \end{bmatrix} \begin{bmatrix} X_1 \\ Y_1 \\ Z_1 \\ 1 \end{bmatrix},$$

(8.4)

where $\lambda_f = Z_f$ and K_f are, respectively, the depth of the point and the camera calibration matrix in the fth frame. When $K_f = I$, we say that the camera is calibrated. We call the 3×4 matrix $\Pi_f = K_f[R_f T_f]$ the projection matrix.

8.1.2 The Fundamental Matrix

Let x_1 and x_2 be images of point p in the first and second frames of a video sequence consisting of $F = 2$ frames. As illustrated in Figure 8.3, the vectors X_2, T_2 and $R_2 X_1$ must be coplanar, hence their triple product must be zero, i.e.,

$$X_2 \cdot (T_2 \times R_2 X_1) = 0 \iff X_2^T \hat{T}_2 R_2 X_1 = 0.$$

(8.5)

where $\hat{T}_2 \in so(3)$ is a skew-symmetric matrix generating the cross product by T_2.
8.1. The Motion Estimation Problem

The Motion Estimation Problem

181

\[
\ell_1 = o_1, \quad \ell_2 = o_2
\]

It follows from equation (8.4) that \(\lambda_1 x_1 = K_1 X_1 \) and \(\lambda_2 x_2 = K_2 X_2 \). Therefore, the following epipolar constraint [Longuet-Higgins, 1981] must be satisfied by the relative camera motion \((R_2, T_2)\) and the image pair \((x_1, x_2)\)

\[
x_2^T K_2^{-T} \hat{T}_2 R_2 K_1^{-1} x_1 = 0 \iff x_2^T F x_1 = 0.
\]

The matrix \(F = K_2^{-T} \hat{T}_2 R_2 K_1^{-1} \in \mathbb{R}^{3 \times 3} \) is called the fundamental matrix and is defined up to an indeterminate scale. By construction, \(F \) is a rank-2 matrix having \(e_1 = R_2^T K_1 T_2 \) and \(e_2 = K_2 T_2 \) as its right and left null spaces. The vectors \(e_1 \) and \(e_2 \) are known as the epipoles in the first and second view, respectively.

Since there are 9 unknowns in the fundamental matrix \(F \) (up to a scale), one can linearly solve for \(F \) from the epipolar constraint (8.6) from \(N \geq 8 \) point correspondences \(\{(x_{1i}, x_{2i})\}_{i=1}^{N} \) in general configuration. Given some additional knowledge about the camera calibration \(K_1 \) and \(K_2 \), one can solve for the camera motion \((R_2, T_2)\) from \(F \) using the eight-point algorithm [Longuet-Higgins, 1981].

8.1.3 The Homography Matrix

The motion estimation scheme described in the previous subsection assumes that the displacement of the camera between the two views is nonzero, i.e., \(T_2 \neq 0 \), otherwise the fundamental matrix \(F = K_2^{-T} \hat{T}_2 R_2 K_1^{-1} \) would be zero. Furthermore, it also requires that the 3-D points be in general configuration, otherwise one cannot uniquely recover \(F \) from the epipolar constraint [Hartley and Zisserman, 2000]. The latter case occurs, for example, when the 3-D points lie in a plane \(N^T X_1 = d \), where \(N \in \mathbb{S}^2 \) is the normal to the plane and \(d \) is the distance from the plane to the origin of the first view. It follows from the equations \(X_2 = R_2 X_1 + T_2, \ N^T X_1 = d, \lambda_1 x_1 = K_1 X_1 \) and \(\lambda_2 x_2 = K_2 X_2 \).
that the following homography constraint holds
\[X_2 = \left(R_2 + \frac{1}{d} T_2 N^T \right) X_1 \implies x_2 \sim K_2 \left(R_2 + \frac{1}{d} T_2 N^T \right) K_1^{-1} x_1 \quad (8.7) \]

The matrix \(H = K_2(R_2 + \frac{1}{d} T_2 N^T)K_1^{-1} \) is called the homography matrix and is, in general, defined up to an indeterminate scale. Notice that the homography constraint \(x_2 \sim H x_1 \) also holds for non-planar scenes undergoing pure rotation. In this case we simply have \(H = K_2 R_2 K_1^{-1} \). Since there are 9 unknowns in the homography matrix \(H \) (up to a scale), one can linearly solve for \(H \) from the homography constraint (8.7) from \(N \geq 8 \) point correspondences \(\{(x_{1i}, x_{2i})\}_{i=1}^N \).

Given some additional knowledge about the camera calibration \(K_1 \) and \(K_2 \), one can solve for the camera motion \((R_2, T_2)\) from \(F \) using linear methods.

8.1.4 The Trifocal Tensor

Let \(x_1 \leftrightarrow x_2 \leftrightarrow x_3 \) be a point correspondence in three perspective views with 3 \(\times \) 4 camera matrices
\[\Pi_1 = [K_1 \ 0], \quad \Pi_2 = [K_2 R_2 \ e_2] \quad \text{and} \quad \Pi_3 = [K_3 R_3 \ e_3], \quad (8.8) \]
where \(e_2 \in \mathbb{P}^2 \) and \(e_3 \in \mathbb{P}^2 \) are the epipoles in the 2nd and 3rd views, respectively. Let \(\ell_2 \) be any line passing through \(x_2 \), i.e., \(\ell_2^T x_2 = 0 \), and \(\ell_3 \) be any line passing through \(x_3 \), i.e., \(\ell_3^T x_3 = 0 \). Then, the multiple view matrix [Ma et al., 2004]
\[
\begin{bmatrix}
\ell_2^T K_2 R_2 x_1 & \ell_2^T e_2 \\
\ell_3^T K_3 R_3 x_1 & \ell_3^T e_3
\end{bmatrix} \in \mathbb{R}^{2 \times 2} \quad (8.9)
\]
must have rank 1, hence its determinant must be zero, i.e.,
\[\ell_2^T (K_2 R_2 x_1 e_3^T - e_2 x_1^T R_3 K_3^T) \ell_3 = 0. \quad (8.10) \]
This is the well-known point-line-line trilinear constraint among the three views [Hartley and Zisserman, 2000], which we will denote as
\[T(x_1, \ell_2, \ell_3) = \sum_{p,q,r} T_{pqr} x_{1p} \ell_{2q} \ell_{3r} = 0 \quad (8.11) \]
where \(T \in \mathbb{R}^{3 \times 3 \times 3} \) is the so-called trifocal tensor.

Computing the trifocal tensor

Since there are 27 unknowns in the trifocal tensor \(T \) (up to a scale factor), one can linearly solve for \(T \) from the trilinear constraint (8.11) given at least 26 point-line-line correspondences. However, if we are given point-point-point correspondences, then for each point in the 2nd view \(x_2 \), we can obtain two lines \(\ell_{21} \) and \(\ell_{22} \) passing through \(x_2 \), and similarly for the 3rd view. Therefore, each point correspondence gives \(2^2 = 4 \) linearly independent equations on \(T \) and we only need 7 point correspondences to linearly estimate \(T \).
Computing epipoles, epipolar lines and camera matrices

Given the trifocal tensor T, it is well known how to compute the epipolar lines in the 2nd and 3rd views of a point x_1 in the 1st view [Hartley and Zisserman, 2000]. Specifically, notice from (8.11) that the matrix

$$\begin{pmatrix} K_2 R_2 x_1 e_3^\top - e_2 x_1^\top R_3^\top K_3^\top \end{pmatrix} \in \mathbb{R}^{3 \times 3}$$

(8.12)

has rank 2. In fact its left null-space is $\ell_2(x_1) = e_2 \times K_2 R_2 x_1$ and its right null-space is $\ell_3(x_1) = e_3 \times K_3 R_3 x_1$, i.e., the epipolar lines of x_1 in the second and third views, respectively.

The epipoles in the second and third views e_2 and e_3 must lie in the epipolar lines in the second and third views, $\{\ell_2(x_{1i})\}_{i=1}^N$ and $\{\ell_3(x_{1i})\}_{i=1}^N$, respectively. Thus we can obtain the epipoles from

$$e_2^\top [\ell_2(x_{11}), \ldots, \ell_2(x_{1N})] = 0 \quad \text{and} \quad e_3^\top [\ell_3(x_{11}), \ldots, \ell_3(x_{1N})] = 0. \quad \text{(8.13)}$$

Clearly, we only need 2 epipolar lines to determine the epipoles, hence we do not need to compute the epipolar lines for all points in the first view. However, it is better to use more than two lines in the presence of noise.

Finally, given T, e_2 and e_3, one can solve for the camera matrices Π_1, Π_2 and Π_3 using linear techniques [Hartley and Zisserman, 2000].

8.2 The Motion Segmentation Problem

Consider a moving camera with pose $g_0(t) \in SE(3)$ at time t observing a scene containing n moving objects with poses $\{g_j(t) \in SE(3)\}_{j=1}^n$ at time t. The motion of object j relative to the camera between the zeroth and fth frame is given by $(R_{jf}, T_{jf}) = g_j(f) g_0(f)^{-1} g_0(0) g_j(0)^{-1} \in SE(3)$. Let $\{X_i \in \mathbb{R}^3\}_{i=1}^N$ be a collection of points in 3-D space lying in the n moving objects. The projection of a point X_i lying in the jth object onto the fth camera frame is given by

$$x_{fi} = \pi_f(R_{jf} X_i + T_{jf}), \quad \text{(8.14)}$$

where $\pi_f : \mathbb{R}^3 \mapsto I$ is the camera projection model (orthographic, perspective, etc.). In this chapter, we will consider the following problem.

Problem 8.1 (3D Motion Segmentation from Point Correspondences)

Given N image points $\{x_{fi}\}_{i=1,...,N}$ taken from F views of a motion sequence related by a collection of n 3-D motion models, estimate the number of motion models n and their parameters $\{M_j\}_{j=1}^n$ without knowing which measurements correspond to which motion model.

In some cases, the camera model is such that the 3-D motion models are linear on the image measurements, thus Problem 8.1 is a direct application of GPCA. In other cases, the motion models are more complex, e.g., bilinear or trilinear. We develop extensions of GPCA to deal with such classes of segmentation problems.
8.3 Segmentation of Linear Motion Models

In this section, we consider the 3-D motion segmentation problem (Problem 8.1) in cases in which the projection model is such that the resulting 3-D motion model is linear in the image measurements. In particular, we consider the segmentation of rigid-body motions from point correspondences in multiple affine views and show that the motion segmentation problem boils down to segmenting low-dimensional subspaces of a high-dimensional space.

8.3.1 The Affine Motion Subspaces

Let \(\{x_{fi} \in \mathbb{R}^2\}_{i=1,...,N} \) be the images of \(N \) 3-D points \(\{X_i \in \mathbb{P}^3\}_{i=1,...,N} \) seen by a rigidly moving camera in \(F \) frames. Under the affine projection model, which generalizes orthographic, weak perspective, and paraperspective projection [Hartley and Zisserman, 2000], the images satisfy the equation

\[
x_{fi} = A_f X_i,
\]

where \(A_f = K_f \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} R_f & T_f \end{bmatrix} \in \mathbb{R}^{2 \times 4} \) is the so-called affine camera matrix at frame \(f \) and depends on the pose of the camera relative to the world \((R_f, T_f) \in SE(3) \) and the internal camera calibration parameters \(K_f \in SL(2) \).

When the set of points \(\{X_i\}_{i=1,...,N} \) all correspond to a single rigidly moving object, we can stack all the image measurements \(\{x_{fi}\} \) into a \(2F \times N \) matrix \(W \), which can be decomposed into a motion matrix \(M \) and structure matrix \(S \) as

\[
W = MS
\]

\[
\begin{bmatrix}
 x_{11} & \cdots & x_{1N} \\
 \vdots & \ddots & \vdots \\
 x_{FN} & \cdots & x_{FN}
\end{bmatrix}_{2F \times N} = \begin{bmatrix}
 A_1 \\
 \vdots \\
 A_F
\end{bmatrix}_{2F \times 4}
\begin{bmatrix}
 X_1 & \cdots & X_N
\end{bmatrix}_{4 \times N}.
\]

It follows from equation (8.16) that \(\text{rank}(W) \leq 4 \). In addition, notice that the two rows of each \(A_f \) are linear combinations of the first two rows of a rotation matrix \(R_f \), hence \(\text{rank}(W) \geq \text{rank}(A_f) \geq 2 \). Therefore, the 2-D point trajectories of 3-D points lying in a single rigidly moving object (the columns of the data matrix \(W \)) live in a subspace of \(\mathbb{R}^{2F} \) of dimension \(d = 2, 3 \) or 4.1

Consider now the case in which the set of points \(\{X_i\}_{i=1,...,N} \) corresponds to \(n \) rigid objects moving independently. It follows from our analysis in the previous section that, if we knew the segmentation of the feature points, then we could write the measurement matrix as \(W = [W_1, W_2, \ldots, W_n] \), where the columns of \(W_j \in \mathbb{R}^{2F \times N_j} \) are the \(N_j \) measurements associated with the \(j \)th moving object, so that \(\sum_{j=1}^{n} N_j = N \). It also follows from our analysis in the previous section

1This rank constraint was derived in [Tomasi and Kanade, 1992], and was used to propose the first multi-frame algorithm for estimating the motion of an affine camera observing a static scene.
8.3. Segmentation of Linear Motion Models

that each measurement matrix W_j satisfies

$$W_j = M_j S_j \quad j = 1, \ldots, n,$$

where $M_j \in \mathbb{R}^{2F \times 4}$ and $S_j \in \mathbb{R}^{4 \times N_i}$ are, respectively, the motion and structure matrices associated with the jth moving object.

8.3.2 Segmenting Affine Motion Subspaces

In reality, the segmentation of the feature points is unknown, and so the measurement matrix is given by $W = [W_1, W_2, \ldots, W_n]P$, where $P \in \mathbb{R}^{N \times N}$ is an unknown permutation matrix. Nevertheless, the columns of W still live in a union of n motion subspaces $\{S_j \subset \mathbb{R}^{2F}\}_{j=1}^n$ of dimensions $d_j \in \{2, 3, 4\}$ for $j = 1, \ldots, n$.

It is worth noting that, under certain additional assumptions, the problem of segmenting the motion subspaces can be solved using a simpler algorithm that depends only on the SVD of the data matrix $W = U \Sigma V^T$. For example, when the motion subspaces are fully dimensional, i.e., $\dim(S_j) = 4$, and fully independent, i.e.,

$$\dim(S_1 \cup S_2 \cup \cdots \cup S_n) = \dim(S_1) + \dim(S_2) + \cdots + \dim(S_n),$$

or equivalently $S_j \cap S_k = \{0\}$ for all $j \neq k$, one can apply the Costeira and Kanade (CK) algorithm [Costeira and Kanade, 1998a] to segment the n motion subspaces. The CK algorithm is based on thresholding the entries of the so-called shape interaction matrix

$$Q = V(1:4)V(1:4)^T \in \mathbb{R}^{N \times N},$$

where $V(1:4)$ contains the first four columns of V. The matrix Q has the property that [Kanatani, 2001]

$$Q_{ij} = 0 \quad \text{if} \quad i \text{ and } j \text{ correspond to different motions.}$$

This property has been the basis for most existing motion segmentation algorithms, such as [Costeira and Kanade, 1998a, Kanatani, 2001, Kanatani, 2002, Kanatani and Matsunaga, 2002b, Wu et al., 2001].

In general, however, the motions need not be fully free. For example, the motion of ground automobiles relative to a camera is constrained to be planar, which reduces the dimension of the motion subspaces to $d = 3$. In addition, the motion subspaces may be partially dependent, i.e., $\max\{\dim(S_j), \dim(S_k)\} < \dim(S_j \cup S_k) < \dim(S_j) + \dim(S_k)$ or equivalently $S_j \cap S_k \neq \{0\}$, $S_j \cap S_k \neq S_j$ and $S_j \cap S_k \neq S_k$, which happens for instance when two objects move with the same rotation but different translation relative to the camera. As reported in [Zelnik-Manor and Irani, 2003, Kanatani and Sugaya, 2003, Vidal and Hartley, 2004], most existing motion segmentation algorithms show poor performance in the presence of degenerate or partially dependent motions, because they cannot deal with subspaces that have nontrivial intersection and have different dimensions.
Nevertheless, the GPCA algorithm discussed in Chapter 4 does not impose any restriction on either the intersection or the dimensionality of the subspaces, hence it can deal with all the spectrum of affine motions: from two-dimensional and partially dependent to four-dimensional and fully independent. Segmentation of 3-D motions from point correspondences in multiple affine views is equivalent to segmenting subspaces of \mathbb{R}^{2F} of dimensions $d_1, \ldots, d_n \leq d_{\text{max}} = 4$. As discussed in Chapter 4, we can solve this problem by applying GPCA to the 2F-dimensional point trajectories projected onto a subspace of dimension $D = d_{\text{max}} + 1 = 5$ in \mathbb{R}^{2F}. That is, if $W = U\Sigma V^\top$ is the SVD of the data matrix, then we can solve the motion segmentation problem by applying GPCA (Algorithm 4.4) to the first 5 columns of V.

8.3.3 Experimental Results

We tested the GPCA algorithm on three different sequences shown in Figure 8.4. The data for these sequences consist of point correspondences in multiple views, which are available at http://www.suri.it.okayama-u.ac.jp/data.html. Sequence A consists of 30 frames of an outdoor sequence taken by a moving camera tracking a car moving in front of a parking lot. Sequence B consists of 17 frames of an outdoor sequence taken by a moving camera tracking a car moving in front of a building. Sequence C consists of 100 frames of an indoor sequence taken by a moving camera tracking a person moving his head.

For all sequences, we first projected the point trajectories onto a 5-dimensional subspace of \mathbb{R}^{2F}, where F is the number of frames in the sequence. We assumed that the motion subspaces are 4-dimensional, so that the motion segmentation problem is reduced to segmenting 4-dimensional hyperplanes in \mathbb{R}^5. The number of motions is correctly estimated from (4.16) as $n = 2$. We used the criterion (2.14) with $\kappa \in [2, 20]$ 10^{-7} to determine the rank of the embedded data matrix.

As shown in Table 8.1, GPCA gives a percentage of correct classification of 100.0% for all three sequences. The table also shows results reported in [Kanatani and Sugaya, 2003] from existing multiframe algorithms for motion segmentation. The only algorithm having a comparable performance to GPCA is Kanatani’s multi-stage optimization algorithm, which is based on solving a series of EM-like iterative optimization problems, at the expense of a significant increase in computation.

8.4 Segmentation of Bilinear Motion Models

In this section, we consider the 3-D motion segmentation problem (Problem 8.1) in cases in which the projection model is such that the resulting 3-D motion model is bilinear in the image measurements. In particular, we consider the segmentation of rigid-body motions from point correspondences in two perspective views of nonplanar (Section 8.4.1) and planar (Section 8.4.2) scenes. In both cases, we
8.4. Segmentation of Bilinear Motion Models

Figure 8.4. Segmenting the point correspondences of sequences A (left), B (center) and C (right) in [Kanatani and Sugaya, 2003] by clustering subspaces in \(\mathbb{R}^5 \). First row: first frame of the sequence with point correspondences superimposed. Second row: last frame of the sequence with point correspondences superimposed.

Table 8.1. Classification rates given by various subspace segmentation algorithms for sequences A, B, C in [Kanatani and Sugaya, 2003].

<table>
<thead>
<tr>
<th>Sequence</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of points</td>
<td>136</td>
<td>63</td>
<td>73</td>
</tr>
<tr>
<td>Number of frames</td>
<td>30</td>
<td>17</td>
<td>100</td>
</tr>
<tr>
<td>Costeira-Kanade</td>
<td>60.3%</td>
<td>71.3%</td>
<td>58.8%</td>
</tr>
<tr>
<td>Ichimura</td>
<td>92.6%</td>
<td>80.1%</td>
<td>68.3%</td>
</tr>
<tr>
<td>Kanatani: subspace separation</td>
<td>59.3%</td>
<td>99.5%</td>
<td>98.9%</td>
</tr>
<tr>
<td>Kanatani: affine subspace separation</td>
<td>81.8%</td>
<td>99.7%</td>
<td>67.5%</td>
</tr>
<tr>
<td>Kanatani: multi-stage optimization</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>GPCA</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

show that the motion segmentation problem can be solved using extensions of GPCA to certain classes of bilinear surfaces.

8.4.1 Segmenting Fundamental Matrices

In this subsection, we consider the problem of segmenting \(n \) 3-D rigid-body motions \(\{ (R_i, T_i) \in SE(3) \}_{j=1}^n \) from point correspondences in two perspective views. We assume that the 3-D scene is nonplanar and that the individual translations \(T_i \) are all nonzero. In this case, the motion of the objects relative to the camera between the two views can be modeled as a mixture of fundamental matrices \(\{ F_j \}_{j=1}^n \). In order for the problem to be well posed, we assume that the fundamental matrices are different from each other (up to a scale factor).
The multibody epipolar constraint and the multibody fundamental matrix

As shown in Section 8.1.2, if \((x_1, x_2)\) is an image pair associated with any of the \(n\) moving objects, then exists a fundamental matrix \(F_j\) such that \(x_2^T F_j x_1 = 0\). Therefore, the following multibody epipolar constraint must be satisfied by the number of independent motions \(n\), the fundamental matrices \(\{F_j\}_{j=1}^n\) and the image pair \((x_1, x_2)\), regardless of which motion is associated with the image pair \(p_n(x_1, x_2) \doteq \prod_{j=1}^n (x_2^T F_j x_1) = 0\). \hspace{1cm} (8.20)

The multibody epipolar constraint (8.20) and the multibody brightness constancy constraint (MBCC) for affine motions (7.18) are both homogeneous polynomials of degree \(n\) that factor as a product of \(n\) bilinear forms. Therefore, as shown in Theorem 7.4, the multibody epipolar constraint can be written in bilinear form as

\[
\prod_{j=1}^n (x_2^T F_j x_1) = \nu_n(x_2)^T F \nu_n(x_1) = 0.
\hspace{1cm} (8.21)
\]

We call the matrix \(F \in \mathbb{R}^{M_n(3) \times M_n(3)}\) the multibody fundamental matrix as it is a natural generalization of the fundamental matrix to the case of multiple moving objects. Also, since equation (8.21) clearly resembles the bilinear form of the epipolar constraint for a single rigid-body motion, we will refer to both equations (8.20) and (8.21) as the multibody epipolar constraint from now on.

Although the multibody fundamental matrix \(F\) seems a complicated mixture of all the individual fundamental matrices \(F_1, \ldots, F_n\), it is still possible to recover all the individual fundamental matrices from \(F\), under some mild conditions (e.g., the \(F_j\)'s are different). The rest of the section is devoted to providing a constructive proof for this. We first show how to recover \(n\) and \(F\) from data, and then show how to recover \(\{F_j\}_{j=1}^n\) from \(F\).

Estimating the number of motions \(n\) and the multibody fundamental matrix \(F\)

Both the MBCC for affine motions (7.19) and the multibody epipolar constraint (8.21) are bilinear expressions on the embedded image measurements and linear expressions on the multibody motion parameters. Therefore, given \(N \geq M_n(3)^2 - 1 \sim O(n^4)\) generic point correspondences \(\{(x_{1i}, x_{2i})\}_{i=1}^N\), we can solve for the stack of the columns of the multibody fundamental matrix \(F\), \(\vec{\nu}(F) \in \mathbb{R}^{M_n(3)^2}\), from the linear system (see equation (7.20))

\[
V_n^F \vec{\nu}(F) \doteq \left[\nu_n(x_{11}) \otimes \nu_n(x_{21}), \ldots, \nu_n(x_{1N}) \otimes \nu_n(x_{2N}) \right]^T \vec{\nu}(F) = 0,
\hspace{1cm} (8.22)
\]

and for the number of independent motions \(n\) from (see Theorem 7.5)

\[
n \doteq \min\{j : \text{rank}(V_j^F) = M_j(3)^2 - 1\}.
\hspace{1cm} (8.23)
\]
Factorization of the multibody fundamental matrix

Given the multibody fundamental matrix F and the number of independent motions n, we now show how to recover the fundamental matrices and the segmentation of the image points. We first show that the gradients of the multibody epipolar constraint at the point correspondences lie in a collection of hyperplanes in \mathbb{R}^3 whose normal vectors are the n epipoles. Therefore, one can apply GPCA to these gradients in order to obtain the epipoles as well as the segmentation of the data. Once the data has been segmented, computing a fundamental matrix for each group is a linear problem.

1. Given an image pair (x_1, x_2) associated with the jth motion, its epipolar line in the second view (see Figure 8.3) is defined as $\ell_j = F_j x_1 \in \mathbb{P}^2$. Since $x_1^T F_j x_1 = 0$, we can compute ℓ_j as the partial derivative of the multibody epipolar constraint with respect to x_2 evaluated at (x_1, x_2), because

 $\frac{\partial}{\partial x_2} (\nu_n(x_2)^T F_n(x_1)) = \sum_{j=1}^{n} \prod_{k \neq j} (x_1^T F_k x_1)(F_j x_1) (8.24)$

 $= \prod_{k \neq j} (x_1^T F_k x_1)(F_j x_1) \sim \ell_j. \quad (8.25)$

 Therefore, given a set of point correspondences $\{(x_{1i}, x_{2i})\}_{i=1}^N$, we can compute its associated set of epipolar lines $\{\ell_i\}_{i=1}^N$ as the gradient of the multibody epipolar constraint at the correspondences.

2. Given an epipolar line ℓ associated with the jth motion, there exists an epipole e_j such that $e_j^T \ell = e_j^T F_j x_1 = 0$, because e_j is the left null space of F_j. Therefore, the set of N epipolar lines can be interpreted as a set of points in \mathbb{R}^3 lying in n hyperplanes with normal vectors $\{e_j\}_{j=1}^n$. We can apply the GPCA algorithm (Algorithm 4.4) to estimate the n epipoles $\{e_j\}_{j=1}^n$ up to a scale factor. If the n epipoles are different, we can immediately segment the data into n groups by assigning the image pair (x_{1i}, x_{2i}) to group j if

 $j = \arg \min_{k=1,\ldots,n} (e_k^T \ell_i)^2 \quad (8.26)$

3. Once the data has been clustered, solving for the fundamental matrix F_j from the epipolar constraint $x_1^T F_j x_1 = 0$ is a linear problem of the form (see equation (8.22))

 $[w_1 x_{11} \otimes x_{21}, w_2 x_{12}, \ldots, w_N x_{1N} \otimes x_{2N}]^T \text{vec}(F_i) = 0, \quad (8.27)$

2This is not a strong assumption. If two individual fundamental matrices share the same (left) epipoles, one can consider the right epipoles (in the first image frame) instead, because it is extremely rare that two motions give rise to the same left and right epipoles. In fact, this happens only when the rotation axes of the two motions are equal to each other and parallel to the translation direction [Vidal et al., 2006].
where \(w_{ij} = 1 \) if the \(i \)th point belongs to the \(j \)th group, and \(w_{ij} = 0 \) otherwise.

Algorithm 8.1 summarizes the algorithm for segmenting \(n \) fundamental matrices. Table 8.2 gives the minimum number of point correspondences required by the algorithm as a function of the number of motions.

Algorithm 8.1 (Segmentation of Fundamental Matrices).

Given two perspective views \(\{(x_{1i}, x_{2i})\}_{i=1}^{N} \) of a set of \(N \) 3-D points undergoing \(n \) different rigid-body motions, recover the number of independent motions \(n \), the fundamental matrix \(F_j \) associated with each motion, and the motion model associated with each image pair as follows:

1. **Number of motions:** Form the embedded data matrix of degree \(j \geq 1 \), \(V^F_j \in \mathbb{R}^{N \times M_j(3)} \), as in (8.22). Compute the number of independent motions \(n \) from (8.23) or else from
 \[
 n = \arg \min _{j \geq 1} \frac{\sigma^2_{M_j(3)}(V^F_j)}{\sum_{k=1}^{M_j(3)^2 - 1} \sigma^2_{k}(V^F_j)} + \mu M_j(3)^2.
 \]
 (8.28)

2. **Multibody fundamental matrix:** Compute the multibody fundamental matrix \(F \) as the least-squares solution to the linear system \(V^F_n \text{vec}(F) = 0 \) in (8.22), where \(V^F_n \) is computed using the Veronese map \(\nu_n \) of degree \(n \).

3. **Epipolar lines:** Compute the epipolar lines \(\{\ell_i\}_{i=1}^{N} \) in the second view associated with each image pair \(\{(x_{1i}, x_{2i})\}_{i=1}^{N} \) as the gradient of the multibody epipolar constraint with respect to \(x_{2} \) evaluated at each image pair.

4. **Epoles:** Apply GPCA to the epipolar lines \(\{\ell_i\}_{i=1}^{N} \) to obtain the individual epipoles \(\{e_j\}_{j=1}^{n} \).

5. **Feature segmentation:** Assign image pair \((x_{1i}, x_{2i}) \) to motion \(j = \arg \min _{k=1, \ldots, n} (e_i^T \ell_k)^2 \).

6. **Fundamental matrices:** Obtain the individual fundamental matrices \(\{F_j\}_{j=1}^{n} \) by applying the eight-point algorithm to each group.

Simulation and experimental results

We first test Algorithm 8.1 on synthetic data. We randomly pick \(n = 2 \) collections of \(N = 100n \) feature points and apply a different (randomly chosen) rigid body motion \((R_i, T_i) \in SE(3) \), with \(R_i \in SO(3) \) the rotation and \(T_i \in \mathbb{R}^3 \) the translation. We add zero-mean Gaussian noise with standard deviation (STD) from 0 to 1 pixels to the images \(x_1 \) and \(x_2 \). The image size is \(1000 \times 1000 \) pixels. We run 1000 trials for each noise level. For each trial, the classification error is computed as the percentage of misclassified points, and the error between the true motions
Segmentation of Bilinear Motion Models

\[\{(R_i, T_i)\}_{i=1}^n\] and their estimates \[\{\hat{(R_i, T_i)}\}_{i=1}^n\] are computed as

\[
\text{Rotation error} = \frac{1}{n} \sum_{i=1}^{n} \cos\left(\frac{\text{trace}(R_i \hat{R}_i^T) - 1}{2}\right) \quad \text{(degrees)}.
\]

\[
\text{Translation error} = \frac{1}{n} \sum_{i=1}^{n} \cos\left(\frac{T_i^T \hat{T}_i}{||T_i|| ||\hat{T}_i||}\right) \quad \text{(degrees)}.
\]

Figure 8.5 plots the mean classification error (%), the rotation error (degrees) and the translation error (degrees) as a function of noise. In all trials the number of motions was correctly estimated from equation (8.23) as \(n = 2\). The mean classification error is less than 7% using an assignment based on epipoles and epipolar lines, and can be reduced to about 3.25% using an assignment based on the Sampson error. The rotation error is less than 0.38° and the translation error is less than 0.83°.

![Figure 8.5. Percentage of misclassification and error in the estimation of rotation and translation (in degrees) as a function of the level of noise for \(n = 2\) moving objects.](image)

We also tested the proposed approach by segmenting a real sequence in which a moving camera observes a can moving in front of a static background consisting of a T-shirt and a book. We manually extracted a total of \(N = 170\) correspondences: 70 for the can and 100 for the background. For comparison purposes, we estimated the ground truth motion \((R_i, T_i)\) by applying the eight-point algorithm to manually segmented correspondences.

Figure 8.6 shows the first frame of the sequence as well as the relative displacement of the correspondences between the two frames. We applied Algorithm 8.1 to estimate the number of motions as \(n = 2\). We obtained a misclassification error of 5.88% when the clustering is obtained using epipolar lines and epipoles only. We used this segmentation to obtain the motion parameters for each group.

\[3\] We use \(\kappa = 5 \times 10^{-3}\) in equation (2.14) for computing the number of motions.

\[4\] We use \(\kappa = 5 \times 10^{-3}\) in equation (2.14) for computing the number of motions.
The error in rotation was 0.07° for the background and 4.12° for the can. The error in translation was 0.21° for the background and 4.51° for the can. Given the motion parameters for each group, we re-clustered the features using the Sampson error (??). The misclassification error reduced to 0%.

![First frame of the sequence](image1.png)

![2-D displacement between two frames](image2.png)

![Segmentation based on epipolar lines](image3.png)

![Segmentation based on Sampson error](image4.png)

Figure 8.6. Segmenting two frames of a video sequence with two different rigid-body motions – the can and the background. (a) First frame of the sequence. (b) 2-D displacements of the 170 correspondences from the first view ('o') to the second ('→'). (c) Segmentation of the 170 correspondences using epipoles and epipolar lines. (d) Segmentation of the 170 correspondences using Sampson distance.

8.4.2 Segmenting Homography Matrices

The motion segmentation scheme described in the previous subsection assumes that the displacement of each object between the two views relative to the camera is nonzero, i.e., $T \neq 0$, otherwise the individual fundamental matrices $F = \hat{T}R$ would be zero. Furthermore, it also requires that the 3-D points be in general configuration, otherwise one cannot uniquely recover each fundamental matrix from
its epipolar constraint. The latter case occurs, for example, in the case of planar structures, i.e., when the 3-D points lie in a plane [Hartley and Zisserman, 2000].

Both in the case of purely rotating objects (relative to the camera) or in the case of a planar 3-D structure, the motion \((R, T)\) between the two views \(x_1 \in \mathbb{P}^2\) and \(x_2 \in \mathbb{P}^2\) is described by a homography matrix \(H \in \mathbb{R}^{3 \times 3}\). If \(N \in \mathbb{R}^3\) is the (unit) normal to the plane and \(d\) is the distance from the plane to the origin, the homography matrix \(H = R + \frac{1}{d}TN^\top\) is such that [Hartley and Zisserman, 2000]

\[
 x_2 \sim Hx_1 = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} x_1.
\]

When the camera calibration \(K \in \mathbb{R}^{3 \times 3}\) is also unknown, the homography matrix is written as \(H = K(R + \frac{1}{d}TN^\top)K^{-1}\).

The multibody homography

Consider now a scene that can be modeled with \(n\) different homographies \(\{H_j\}_{j=1}^n\). Note that the \(n\) homographies do not necessarily correspond to \(n\) different rigid-body motions, as one rigidly moving object could consist of two or more planes whose motion is described by two or more homographies. Therefore, the \(n\) homographies can represent anything from 1 up to \(n\) rigid-body motions.

It is evident from the form of equation (8.29) that in order to eliminate the segmentation of the data we cannot take the product of all the equations, as we did with the epipolar constraints, because in this case we have two linearly independent equations per image pair. In Chapter 4 we dealt with this issue by using multiple polynomials to represent multiple subspaces of co-dimension more than one. In the case of homographies, one can avoid using multiple polynomials by exploiting properties of the cross product in \(\mathbb{R}^3\), as we show now.

We start by noticing that if \(\ell\) is a line passing through \(x_2\), i.e., \(\ell\) is such that \(\ell^\top x_2 = 0\), then it follows from (8.29) that there is a motion \(i\) such that \(\ell^\top H_j x_1 = 0\). Therefore, the following multibody homography constraint must hold

\[
 p_n(x_1, \ell) = \prod_{j=1}^n (\ell^\top H_j x_1) = \nu_n(\ell)^\top \mathcal{H} \nu_n(x_1) = 0.
\]

We call the matrix \(\mathcal{H} \in \mathbb{R}^{M_n(3) \times M_n(3)}\) the multibody homography. Notice that \(\mathcal{H}\) plays the analogous role of the multibody affine matrix \(\mathcal{A}\), or the multibody fundamental matrix \(\mathcal{F}\).

Computing the number of homographies \(n\) and the multibody homography \(\mathcal{H}\)

In order to compute \(n\) and \(\mathcal{H}\) from a given a set of point \(P\) correspondences \(\{(x_{1p}, x_{2p})\}_{p=1}^P\), notice that given an image pair \((x_1, x_2)\), we can generate two linearly independent lines \(\ell_1\) and \(\ell_2\) passing through \(x_2\). This may lead us to conclude that each correspondence gives two linearly independent constraints on the entries of \(\mathcal{H}\). In reality, each correspondence gives \(n + 1\) constraints on \(\mathcal{H}\).
To see this, notice that equation (8.30) must hold for any line passing through \(x_2\). Since the family of lines \(\alpha \ell_1 + \ell_2\) passes through \(x_2\) for all \(\alpha \in \mathbb{R}\), we have

\[
q(\alpha) = \prod_{j=1}^{n}((\alpha \ell_1 + \ell_2)^\top H_j x_1) = \nu_n(\alpha \ell_1 + \ell_2)^\top \mathcal{H}_n(x_1) = 0. \tag{8.31}
\]

One can show that (see Exercise 8.2)

\[
\nu_n(\alpha \ell_1 + \ell_2) = \sum_{j=0}^{n} \alpha^j f_j(\ell_1, \ell_2), \tag{8.32}
\]

where \(f_j(\ell_1, \ell_2) \in \mathbb{R}^{M_n(3)}\) a polynomial of degree \(i\) in \(\ell_1\) and \((n-i)\) in \(\ell_2\) for \(j = 0, \ldots, n\). Therefore, \(q(\alpha)\) is a polynomial of degree \(n\) in \(\alpha\) such that \(q(\alpha) = 0\) for all \(\alpha\), and so each one of its \(n+1\) coefficients must be zero, i.e.,

\[
f_j(\ell_1, \ell_2)^\top \mathcal{H}_n(x_1) = 0, \quad j = 0, \ldots, n. \tag{8.33}
\]

This gives \(n+1\) constraints per point correspondence on the entries of \(\mathcal{H}\). Therefore, given \(P \geq \frac{M_n(3)^2 - 1}{n+1} \sim O(n^3)\) generic point correspondences \(\{(x_{1p}, x_{2p})\}_{p=1}^{P}\), we can solve for the stack of the columns of the multibody homography \(\mathcal{H}\), \(h \in \mathbb{R}^{M_n(3)^2}\), from the linear system

\[
V_n^\mathcal{H} h = 0, \tag{8.34}
\]

where the \(i\)th row of \(V_n^\mathcal{H} \in \mathbb{R}^{P(n+1) \times M_n(3)^2}\) is given by \(\nu_n(x_1) \otimes f_j(\ell_1, \ell_2)\).

Finally, similarly to (7.22) and (8.23), the number of homographies is given by

\[
n \doteq \min \{ j : \text{rank}(V_j^\mathcal{H}) = M_j(3)^2 - 1 \}. \tag{8.35}
\]

Factorization of the multibody homography

Once \(\mathcal{H}\) is known, computing the homographies \(\{H_j\}_{j=1}^{n}\) is equivalent to factorizing the multibody homography constraint (8.30) into a product of \(n\) bilinear factors. In general, solving such a factorization problem is difficult, unless some structure about the matrices \(H_j\) is known. In the case of fundamental matrices discussed in Section 8.4.1, we exploited the fact that epipoles are the left null spaces of the fundamental matrices. In the case of affine matrices discussed in Section 7.4, we exploited the fact that the 3rd row of each affine matrix is known.

Unfortunately, homographies are usually full rank and none of their rows are known. Hence, the factorization of \(\mathcal{H}\) is more challenging than the factorization of the multibody affine matrix \(A\) or the multibody fundamental matrix \(F\). In fact, we will show that the factorization of \(\mathcal{H}\) requires a combination of the methods for factorizing \(A\) and \(F\), according to the following four steps:

1. Compute derivatives of \(p_n(x_1, \ell)\) with respect to \(x_1\) to obtain linear combinations of the rows of each \(H_j\).

2. Obtain three vectors orthogonal to the three pairs of rows of each \(H_j\) by solving three hyperplane clustering problems.
3. Obtain the rows of each H_j up to a scale factor from the cross products of these vectors.

4. Solve linearly for the unknown scales of the rows of H_j from the homography constraint.

For step 1, notice from (7.24) that if the image pair (x_1, x_2) is associated with the ith motion and ℓ is any line passing through x_2, then the derivative of $p_n(x_1, \ell)$ with respect to x_1 at (x_1, ℓ) gives $\ell^T H_j$. Thus, by properly choosing ℓ we can get different linear combinations of the rows of $H_j = [h_{ij} h_{ij} h_{ij}]^T$. If we choose $\ell_{12} = (y_2, -x_2, 0)$, $\ell_{23} = (0, 1, -y_2)$ and $\ell_{31} = (1, 0, -x_2)$ as three lines passing through $x_2 = (x_2, y_2, 1)$, we can compute the vectors

$$g_{12} \sim y_2h_{1j} - x_2h_{2j}, \quad g_{23} \sim h_{2j} - y_2h_{3j}, \quad g_{31} \sim h_{3j} - x_1h_{3j}$$

(8.36)

from the derivatives of p_n at (x_1, ℓ_{12}), (x_1, ℓ_{23}) and (x_1, ℓ_{31}), respectively.

For step 2, notice that g_{12} lives in the plane spanned by h_{1j} and h_{2j}, whose normal vector is $b_{12j} = h_{1j} \times h_{2j}$. Therefore, if we evaluate g_{12} at all the given point correspondences, we obtain a set of N vectors $\{g_{12j}\}_{i=1}^N$ lying in a union of n planes with normal vectors $\{b_{12j}\}_{j=1}^n$. Similarly, the vectors $\{b_{23j}\}_{j=1}^n$, $\{b_{31j}\}_{j=1}^n$ lie in a union of n planes with normal vectors $\{b_{23j}\}_{j=1}^n$ and $\{b_{31j}\}_{j=1}^n$, respectively. In principle we can obtain the vectors $\{b_{12j}\}_{j=1}^n$, $\{b_{23j}\}_{j=1}^n$ and $\{b_{31j}\}_{j=1}^n$ by applying the GPCA algorithm (Algorithm 4.4) to each one of the three sets of points $\{g_{12j}\}$, $\{g_{23j}\}$ and $\{g_{31j}\}$ separately. However, if we do so we would not know which b_{12j} correspond to which b_{13j}. Exercise 4.5 shows how to resolve this difficulty by exploiting the fact that the correspondences among the data points $\{g_{12j}\}$, $\{g_{23j}\}$ and $\{g_{31j}\}$ are known, because these three vectors are computed as a triplet associated with the same point correspondence (x_1, x_2). The main idea is to compute three polynomials p_{12}, p_{23} and p_{31} fitting the points $\{g_{12j}\}$, $\{g_{23j}\}$ and $\{g_{31j}\}$, respectively, and then obtain the normal vector for the jth group from the gradients of these polynomials. In order for the normal vectors b_{12j}, b_{23j} and b_{31j} to correspond, we can choose the points at which the gradients by minimizing the sum of the squared distances to all hyperplanes, i.e., we compute the normal vectors as

$$b_{12j} \sim \nabla p_{12}(g_{12i}), \quad b_{23j} \sim \nabla p_{23}(g_{23i}), \quad b_{31j} \sim \nabla p_{31}(g_{31i}),$$

(8.37)

where

$$i_j = \arg\min_{j=1, \ldots, N} \frac{|p_{12}(g_{12i})|}{\|\nabla p_{12}(g_{12i})\|} + \frac{|p_{23}(g_{23i})|}{\|\nabla p_{23}(g_{23i})\|} + \frac{|p_{31}(g_{31i})|}{\|\nabla p_{31}(g_{31i})\|}. \quad (8.38)$$

For step 3, given $b_{12} = h_{i1} \times h_{i2}$, $b_{23} = h_{i2} \times h_{i3}$ and $b_{31} = h_{i3} \times h_{i1}$, we can immediately obtain the rows of H_j up to a scale factor as

$$h_{i1} \sim h_{i1} \sim b_{12} \times b_{31}, h_{i2} \sim h_{i2} \sim b_{23} \times b_{12}, h_{i3} \sim h_{i3} \sim b_{31} \times b_{23}.$$

(8.39)
For step 4, we know that \(\mathbf{x}_2 \sim H_j \mathbf{x}_1 \). Therefore, we can obtain the homographies as:

\[
H_j = \begin{bmatrix}
\frac{x_2}{h_{j1, x_1}} & \frac{y_2}{h_{j2, x_1}} & \frac{z_2}{h_{j3, x_1}} & 1
\end{bmatrix}^\top, \quad j = 1, \ldots, n.
\]

(8.40)

Algorithm 8.2 summarizes the algorithm for segmenting homography matrices. Table 8.2 gives the minimum number of point correspondences required by the algorithm as a function of the number of motions.

Experimental results

We applied Algorithm 8.2 to segment two frames of a 2048 × 1536 video sequence, shown in Figure 8.7(a)-(b), with two moving objects – a cube and a checkerboard. Notice that although there are only two rigid-body motions, the scene contains three different homographies, each one associated with each one of the three visible planar structures. Furthermore, notice that the top side of the cube and the checkerboard have approximately the same normals. We manually tracked a total of \(N = 147 \) features: 98 in the cube (49 in each of the two visible sides) and 49 in the checkerboard. We applied Algorithm 8.2 to segment the image data and obtained a 97% of correct classification, as shown in Figure 8.7(c).

We then added zero-mean Gaussian noise with standard deviation between 0 and 1 pixels to the features, after rectifying the features in the second view in order to simulate the noise free case. Figure 8.7(c) shows the mean percentage of correct classification for 1000 trials per level of noise. The percentage of correct classification of our algorithm is between 80% and 100%, which gives a very good initial estimate for any of the existing iterative/optimization/EM based motion segmentation schemes.

8.5 Segmentation of Trilinear Motion Models

In this section, we consider the problem of segmenting \(n \) 3-D rigid-body motions \(\{(R_j, T_j) \in SE(3)\}_{j=1}^n \) from point correspondences in three perspective views. As shown in Section 8.1.4, in this case the motion of the each object relative to the camera among the three views can be modeled as a mixture of trifocal tensors \(\{T_j \in \mathbb{R}^{3 \times 3 \times 3}\}_{j=1}^n \) relating a point, a line and a line in the first, second and third views. To avoid degenerate situations, we assume that the 3-D scene is nonplanar and that the trifocal tensors are different from each other (up to a scale factor).

8.5.1 The Multibody Trifocal Tensor

The multibody trilinear constraint and the multibody trifocal tensor

Let \(\mathbf{x}_1 \leftrightarrow \mathbf{x}_2 \leftrightarrow \mathbf{x}_3 \) be an arbitrary point correspondence. Then, there exists a trifocal tensor \(T_j \) that relates the point in the first view \(\mathbf{x}_1 = (x_{11}, x_{12}, x_{13})^\top \), a line in the second view \(\ell_2 = (\ell_{21}, \ell_{22}, \ell_{23})^\top \) passing through \(\mathbf{x}_2 \) and a line in the
Algorithm 8.2 (Segmentation of Homography Matrices).

Given two perspective views \(\{ \{ x_{1i}, x_{2i} \} \}_{i=1}^N \) of a set of \(N \) 3-D points whose motion can be modeled with \(n \) homography matrices \(\{ H_j \}_{j=1}^n \), recover the number of independent motions \(n \), the homography matrix \(\{ H_j \}_{j=1}^n \) associated with each motion, and the motion model associated with each image pair as follows:

1: **Number of motions:** Compute two lines \((\ell_{21i}, \ell_{22i}) \) passing through \(x_{2i} \). Form the embedded data matrix of degree \(j \geq 1 \), \(V_j^N \in \mathbb{R}^{N(j+1) \times M_j(n,3)} \), as in (8.34). Compute the number of motions from (8.35), or else from

\[
\begin{align*}
 n &= \arg \min_{\gamma \geq 1} \frac{\sigma_j^2(V_j^N)}{\sum_{k=1}^{M_j(n,3) - 1} \sigma_j^2(V_j^N)} + \mu M_j(3)^2. \\
\end{align*}
\]

(8.41)

2: **Multibody homography matrix:** Compute the multibody homography matrix \(\mathcal{H} \) as the least-squares solution to the linear system \(V_n^N \text{vec}(\mathcal{H}) = 0 \) in (8.34), and let

\[
p_n(x_1, \ell) = v_n(\ell)^\top \mathcal{H} v_n(x_1).
\]

3: **Homography matrices:**

 1. For all \(i = 1, \ldots, N \), let \(\ell_{12i} = (y_{2i}, -x_{2i}, 0)^\top \), \(\ell_{23i} = (0, 1, y_{2i})^\top \) and \(\ell_{31i} = (1, 0, -x_{2i})^\top \) be three lines passing through \(x_{2i} = (x_{2i}, y_{2i}, 1)^\top \). Compute a linear combination of rows 1 & 2, 2 & 3, and 3 & 1 of the homography matrix at each point correspondence as

\[
g_{12i} = \frac{\partial p_n}{\partial x_1}(x_{1i}, \ell_{12i}); \\
g_{23i} = \frac{\partial p_n}{\partial x_1}(x_{1i}, \ell_{23i}); \\
g_{31i} = \frac{\partial p_n}{\partial x_1}(x_{1i}, \ell_{31i}).
\]

2. Solve for the coefficients \(c_{ijk} \) of the polynomials \(p_{12}(g) = c_{12}^n v_n(g) \), \(p_{23}(g) = c_{23}^n v_n(g) \) and \(p_{31}(g) = c_{31}^n v_n(g) \), from the linear system

\[
[v_n(g_{j1k}), v_n(g_{j2k}), \ldots, v_n(g_{jkn})]^\top c_{jk} = 0.
\]

3. Compute the homography matrices from the cross products of the gradients of \(p_{12}, p_{23} \) and \(p_{31} \) as follows:

 for all \(j = n : 1 \) do
 \[
 \begin{align*}
 i_j &= \arg \min_{j=1, \ldots, N} \frac{|p_{12}(g_{12i})|}{\prod_{k=1}^{k=n} |b_{12k} g_{12j}|} + \frac{|p_{23}(g_{23i})|}{\prod_{k=1}^{k=n} |b_{23k} g_{23j}|} + \frac{|p_{31}(g_{31i})|}{\prod_{k=1}^{k=n} |b_{31k} g_{31j}|}; \\
 b_{12j} &= \nabla p_{12}(g_{12i}); \\
 b_{23j} &= \nabla p_{23}(g_{23i}); \\
 b_{31j} &= \nabla p_{31}(g_{31i}); \\
 H_j &= \begin{bmatrix}
 x_{1i} (b_{12j} \times b_{12i}) & y_{1i} (b_{12j} \times b_{12i}) & \|b_{12j} \times b_{12i}\| \\
 x_{1i} (b_{23j} \times b_{23i}) & y_{1i} (b_{23j} \times b_{23i}) & \|b_{23j} \times b_{23i}\| \\
 x_{1i} (b_{31j} \times b_{31i}) & y_{1i} (b_{31j} \times b_{31i}) & \|b_{31j} \times b_{31i}\|
 \end{bmatrix}^\top.
 \end{align*}
 \]
 end for

4: **Feature segmentation:** Assign the image pair \((x_{1i}, x_{2i}) \) to group \(j \) if \(j = \arg \min_{i=1, \ldots, n} \|x_2 - \frac{H_{ij} x_1}{H_{ij}^\top H_{ij}}\|^2 \).

8.5. Segmentation of Trilinear Motion Models 197
third view $\ell_3 = (\ell_{31}, \ell_{32}, \ell_{33})^T$ passing through x_3 via the \textit{trilinear constraint}:

\begin{equation}
T_j(x_1, \ell_2, \ell_3) = \sum_{p,q,r} T_{j,pqr} x_1^p \ell_2^q \ell_3^r = 0. \tag{8.42}
\end{equation}

Therefore, regardless of which motion is associated with the correspondence, the following constraint must be satisfied by the number of independent motions n, the trifocal tensors $\{T_j\}_{j=1}^n$ and the point-line-line correspondence $x_1 \leftrightarrow \ell_2 \leftrightarrow \ell_3$

\begin{equation}
\prod_{j=1}^n T_j(x_1, \ell_2, \ell_3) = 0. \tag{8.43}
\end{equation}

This multibody constraint is a homogeneous polynomial of degree n in each of x_1, ℓ_2 or ℓ_3. Thus, we can write it as a sum of monomials of degree n in each of x_1, ℓ_2 and ℓ_3. By collecting the coefficients of these monomial in a 3-dimensional tensor $T \in \mathbb{R}^{M_n(3) \times M_n(3) \times M_n(3)}$, we can write the constraint (8.43) as

\begin{equation}
T(\nu_n(x_1), \nu_n(\ell_2), \nu_n(\ell_3)) = 0. \tag{8.44}
\end{equation}
8.5. Segmentation of Trilinear Motion Models

We call the array T the **multibody trifocal tensor** and equation (8.44) the **multibody trilinear constraint**, as they are natural generalizations of the trifocal tensor and the trilinear constraint, respectively, valid for $n = 1$.

Computing the number of motions and the multibody trifocal tensor

Notice that, although (8.44) has degree n in the entries of x_1, ℓ_2 and ℓ_3, it is in fact linear in the entries of $\nu_n(x)$, $\nu_n(\ell_2)$ and $\nu_n(\ell_3)$. Hence, given a point-line-line correspondence $x_1 \leftrightarrow \ell_2 \leftrightarrow \ell_3$, we can compute the entries of the vectors $\nu_n(x)$, $\nu_n(\ell_2)$ and $\nu_n(\ell_3)$ and use the multibody trilinear constraint (8.44) to obtain a linear relationship in the entries of T. Therefore, we may estimate T linearly from $M_n(3)^3 - 1 \sim O(n^6)$ point-line-line correspondences. That is 26 correspondences for one motion, 215 for two motions, 999 for three motions, etc.

Fortunately, as in the case of $n = 1$ motion, one may significantly reduce the data requirements by working with point-point-point correspondences $x_1 \leftrightarrow x_2 \leftrightarrow x_3$. Since each point in the second view x_2 gives two independent lines ℓ_{21} and ℓ_{22} passing through it and each point in the third view x_3 gives two independent lines ℓ_{31} and ℓ_{32} passing through it, a naive calculation would give $2^2 = 4$ constraints per point-point-point correspondence. However, due to the algebraic properties of the Veronese map, each correspondence provides in general $(n + 1)^2$ independent constraints on the multibody trifocal tensor.

To see this, remember from Section 8.1.4 that the trilinear constraint is satisfied by all lines $\ell_2 = \alpha \ell_{21} + \ell_{22}$ and $\ell_3 = \beta \ell_{31} + \ell_{32}$ passing through x_2 and x_3, respectively. Therefore, for all $\alpha \in \mathbb{R}$ and $\beta \in \mathbb{R}$ we must have

$$\prod_{j=1}^{n} T_j(x_1, \alpha \ell_{21} + \ell_{22}, \beta \ell_{31} + \ell_{32}) = 0. \quad (8.45)$$

The above equation, viewed as a function of α, is a polynomial of degree n, hence its $n + 1$ coefficients must be zero. Each coefficient is in turn a polynomial of degree n in β, whose $n + 1$ coefficients must be zero. Therefore, each point-point-point correspondence gives $(n + 1)^2$ constraints on the multibody trifocal
tensor T, and we need only $(M_3(3)^3 - 1)/(n + 1)^2 \sim O(n^4)$ point-point-point correspondences to estimate T. That is, 7, 24 and 63 correspondences for one, two and three motions, respectively. This reduction on the number of required correspondences represents a significant improvement, not only with respect to the case of point-line-line correspondences, as explained above, but also with respect to the case of two perspective views. As discussed in Section 8.4.1, one needs $M_3(3)^2 - 1$ point-point-point correspondences for linearly estimating the multibody fundamental matrix F, i.e., 8, 35 and 99 correspondences for one, two and three motions, respectively, as shown in Table 8.2.

Given a correspondence $x_1 \leftrightarrow x_2 \leftrightarrow x_3$, we generate the $(n + 1)^2$ linear equations in the entries of T by choosing $\ell_{21}, \ell_{22}, \ell_{31}$ and ℓ_{32} passing through x_2 and x_3, respectively, and then computing the coefficient of $\alpha_j^\beta_k$ in (8.45). As shown in Exercise 8.3, these $(n + 1)^2$ coefficients are given by

$$T(\nu_n(\mathbf{x}_1), f_j(\ell_{21}, \ell_{22}), f_k(\ell_{31}, \ell_{32})) = (\nu_n(\mathbf{x}_1) \otimes f_j(\ell_{21}, \ell_{22}) \otimes f_k(\ell_{31}, \ell_{32}))^\top \text{vec}(T), \quad j, k = 1, \ldots, n,$$

where $\text{vec}(T) \in \mathbb{R}^{M_3(3)^3}$ is the stack of all the entries of T and f_j is defined in (8.32). Therefore, we can solve for T from the linear system

$$V_n^T \text{vec}(T) = 0, \quad (8.46)$$

where the rows of the matrix $V_n^T \in \mathbb{R}^{(n+1)^2 \times M_3(3)^3}$ are of the form $\nu_n(\mathbf{x}_{1i}) \otimes f_j(\ell_{21i}, \ell_{22i}) \otimes f_k(\ell_{31i}, \ell_{32i})$, for $j, k = 1, \ldots, n$ and $i = 1, \ldots, N$.

Finally, similarly to (7.22), (8.23) and (8.35), the number of trifocal tensors can be computed from

$$n = \min\{j : \text{rank}(V_j^T) = M_j(3)^3 - 1\}. \quad (8.47)$$

8.5.2 Segmenting Trifocal Tensors

Computing the epipolar lines

Given the trifocal tensor T, it is well known how to compute the epipolar lines $\ell_2(x_1)$ and $\ell_3(x_1)$ in the 2nd and 3rd views associated with a point x_1 in the 1st view. For example, as shown in Section 8.1.4, the epipolar line in the second view $\ell_2(x_1)$ must satisfy the relationship

$$\forall \ell_3 \in \mathbb{R}^3 \quad T(x_1, \ell_2(x_1), \ell_3) = 0. \quad (8.48)$$

In the case of multiple motions, we are faced with the more challenging problem of computing the epipolar lines $\ell_2(x_1)$ and $\ell_3(x_1)$ without knowing the individual trifocal tensors $\{T_j\}_{j=1}^n$ or the segmentation of the correspondences. The question is then how to compute such epipolar lines from the multibody trifocal tensor T. To this end, notice that with each point in the first view x_1 we can associate n epipolar lines corresponding to the n motions between the 1st and 2nd views. If $\ell_2(x_1)$ is an epipolar line of x_1 according to the jth motion, then
from equation (8.48) we have that for all \(\ell_3 \in \mathbb{R}^3 \), \(T_j(x_1, \ell_2(x_1), \ell_3) = 0 \). This implies that

\[
\forall \ell_3 \in \mathbb{R}^3 \prod_{j=1}^n T_j(x_1, \ell_2(x_1), \ell_3) = T(\nu_n(x_1), \nu_n(\ell_2(x_1)), \nu_n(\ell_3)) = 0. \tag{8.49}
\]

As this equation holds for any of the \(n \) epipolar lines, the question of determining the epipolar line of a point \(x_1 \) is not well posed as such, because the epipolar line depends on which of the \(n \) motions the point \(x_1 \) belongs to, which cannot be determined without additional information. We therefore pose the question a little differently, and suppose that we know the point \(x_2 \) in the second view corresponding to \(x_1 \). Since the epipolar line \(\ell_2(x_1) \) must of course pass through \(x_2 \), we can parameterize it as

\[
\ell_2(x_1) = \alpha \ell_{21} + \ell_{22}, \tag{8.50}
\]

where, as before, \(\ell_{21} \) and \(\ell_{22} \) are two different lines passing through \(x_2 \). Replacing (8.50) in equation (8.49) gives

\[
\forall \ell_3 \in \mathbb{R}^3 \ T(\nu_n(x_1), \nu_n(\alpha \ell_{21} + \ell_{22}), \nu_n(\ell_3)) = 0. \tag{8.51}
\]

As \(\ell_3 \) ranges over all of \(\mathbb{R}^3 \), this gives a total of up to \(M_n(3) \) linearly independent equations. Each one of such equations is a polynomial of degree \(n \) in \(\alpha \). These polynomials must have a common root \(\alpha^* \) for which all the polynomials vanish. The epipolar line of \(x_1 \) in the second view is then \(\ell_2(x_1) = \alpha^* \ell_{21} + \ell_{22} \). The epipolar line of \(x_1 \) in the third view can be obtained in an analogous fashion.

We may apply this process to all \(N \) correspondences \(\{x_{1i} \leftrightarrow x_{2i} \leftrightarrow x_{3i}\}_{i=1}^N \) to obtain the set of all \(N \) epipolar lines in the second and third views, \(\{\ell_2(x_{1i})\}_{i=1}^N \) and \(\{\ell_3(x_{1i})\}_{i=1}^N \), respectively, by solving the linear systems

\[
e_2^T [\ell_2(x_{11}), \ldots, \ell_2(x_{1N})] = 0^T \quad \text{and} \quad e_3^T [\ell_3(x_{11}), \ldots, \ell_3(x_{1N})] = 0^T. \tag{8.52}
\]

In the case of \(n \) motions there exist \(n \) epipole pairs, \(\{(e_{2j}, e_{3j})\}_{j=1}^n \), where \(e_{2j} \) and \(e_{3j} \) are epipoles in the second and third views corresponding to the \(j \)th motion. Given a set of correspondences \(\{x_{2i} \leftrightarrow x_{3i} \leftrightarrow x_{3i}\} \) we may compute the multibody trifocal tensor \(T \) and determine the epipolar lines \(\ell_2(x_{1i}) \) and \(\ell_3(x_{1i}) \) associated with each correspondence by the method described in the previous subsection. Then, for each pair of epipolar lines \((\ell_2(x_{1i}), \ell_3(x_{1i})) \) there exists an epipole pair \((e_{2j}, e_{3j}) \) such that

\[
e_{2j}^T \ell_2(x_{1i}) = 0 \quad \text{and} \quad e_{3j}^T \ell_3(x_{1i}) = 0. \tag{8.53}
\]
Therefore, the problem of finding the epipole pairs \(\{(e_{2j}, e_{3j})\}_{j=1}^n \) is equivalent to one of segmenting two sets of points lying in two collections of hyperplanes whose normal vectors are the epipole pairs.

Exercise 4.5 provides a solution to this problem based on a simple extension of the GPCA (Algorithm 4.4). The first step is to fit two polynomials,

\[
\begin{align*}
 p_2(\ell_2) &= \prod_{j=1}^n (e_{2j}^\top \ell_2) = c_2^\top \nu_n(\ell_2) = 0, \\
 p_3(\ell_3) &= \prod_{j=1}^n (e_{3j}^\top \ell_3) = c_3^\top \nu_n(\ell_3) = 0,
\end{align*}
\]

(8.54)

to the epipolar lines \(\{\ell_2(x_{1i})\}_{i=1}^N \) and \(\{\ell_3(x_{1i})\}_{i=1}^N \), respectively. Similarly to (8.52), we may find the coefficients of \(p_2 \) and \(p_3 \) by solving the linear systems

\[
\begin{align*}
 c_2^\top [\nu_n(\ell_2(x_{11})), \ldots, \nu_n(\ell_2(x_{1N})]) &= 0^\top, \\
 c_3^\top [\nu_n(\ell_3(x_{11})), \ldots, \nu_n(\ell_3(x_{1N})]) &= 0^\top.
\end{align*}
\]

(8.55)

The second step is to compute the epipoles as the gradients of these polynomials at a collection of \(n \) pairs of epipolar lines \(\{(\ell_2, \ell_3)\}_{j=1}^n \) passing through each one of the epipole pairs, i.e.,

\[
e_{2j} \sim \nabla p_2(\ell_2) \quad \text{and} \quad e_{3j} \sim \nabla p_3(\ell_3), \quad j = 1, \ldots, n.
\]

(8.56)

The pairs of epipolar lines \(\{(\ell_2, \ell_3)\}_{j=1}^n \) are chosen as the \(n \) pairs of epipolar lines in \(\{(\ell_3(x_{1i}), \ell_3(x_{1i}))\}_{i=1}^N \) that minimize a certain distance to their respective epipoles. More specifically, for \(j = n, \ldots, 2, 1 \) set \(\ell_{2j} = \ell_2(x_{1i}) \) and \(\ell_{2j} = \ell_2(x_{1i}) \), where

\[
i_j = \arg \min_{i=1, \ldots, N} \frac{p_2(\ell_2(x_{1i}))^2}{\|\nabla p_2(\ell_2(x_{1i}))\|^2} \frac{p_3(\ell_3(x_{1i}))^2}{\|\nabla p_3(\ell_3(x_{1i}))\|^2} \frac{p_3(\ell_3(x_{1i}))^2}{\|\nabla p_3(\ell_3(x_{1i}))\|^2} \frac{p_3(\ell_3(x_{1i}))^2}{\|\nabla p_3(\ell_3(x_{1i}))\|^2}.
\]

(8.57)

Computing the trifocal tensors

Once the \(n \) epipole pairs \(\{(e_{2j}, e_{3j})\}_{j=1}^n \) have been computed, we can segment the data into \(n \) groups by assigning the image pair \((x_{1i}, x_{2i}) \) to group \(j \) if

\[
j = \arg \min_{k=1, \ldots, n} (e_{2j}^\top \ell_2(x_{1i}))^2 + (e_{3j}^\top \ell_3(x_{1i}))^2
\]

(8.58)

provided that the \(n \) epipoles pairs are different. Given the segmentation of the correspondences, one may obtain trifocal tensors, fundamental matrices and camera matrices using the algebraic methods described in Section 8.1.4.

Algorithm summary

Algorithm 8.3 summarizes the main steps of the algorithm for segmenting trifocal tensors described in this section. Table 8.2 gives the minimum number of point correspondences required by the algorithm as a function of the number of motions.
Algorithm 8.3 (Segmentation of Trifocal Tensors).

Given a set of points \(\{(x_{1i}, x_{2i}, x_{3i})\}_{i=1}^{N} \) corresponding to \(N \) points undergoing \(n \) different rigid-body motions relative to a moving perspective camera, recover the number of independent motions \(n \), the trifocal tensors \(\{T_j\}_{j=1}^{n} \) associated with each motion, and the motion associated with each correspondence as follows:

1. **Number of motions**: Compute two lines \((\ell_{21i}, \ell_{32i})\) passing through \(x_{2i} \), and two lines \((\ell_{31i}, \ell_{32i})\) passing through \(x_{3i} \). Form the embedded data matrix of degree \(j = 1, \ldots, n \), \(V_j^T \in \mathbb{R}^{N(j+1)^2 \times M_j(3)^3} \), as defined in (8.46). Compute the number of independent motions \(n \) from
 \[
 n = \arg \min_{j \geq 1} \frac{\sigma^2_{M_j(3)^3}(V_j^T)}{\sum_{k=1}^{M_j(3)^3} \sigma^2(V_j^T)} + \mu M_j(3)^3. \tag{8.59}
 \]

2. **Multibody trifocal tensor**: Compute the multibody trifocal tensor \(T \) as the least-squares solution to the linear system \(V_n^T \operatorname{vec}(T) = \mathbf{0} \) in (8.46).

3. **Epipolar lines**: For all \(i = 1, \ldots, N \), compute the epipolar lines of \(x_{1i} \) in the second and third views, \(\ell_2(x_{1i}) \) and \(\ell_3(x_{1i}) \), as follows:
 - Let \(q_k(\alpha) = \sum_{j=0}^{n} T(v_n(x_{1i}), f_j(\ell_{21i}, \ell_{32i}), e_k)\alpha^j \), for all \(k = 1, \ldots, M_n(3) \). Compute the common root \(\alpha^* \) of these \(M_n(3) \) polynomials as the value of \(\alpha \) that minimizes \(q(\alpha) = \sum_{k=1}^{M_n(3)} q_k(\alpha)^2 \). The epipolar line of \(x_{1i} \) in the second view is \(\ell_2(x_{1i}) = \alpha^* \ell_{21i} + \ell_{22i} \).
 - Compute the epipolar line of \(x_{1i} \) in the third view as \(\ell_3(x_{1i}) = \beta^* \ell_{31i} + \ell_{32i} \), where \(\beta^* \) is the common roots of the polynomials \(q_k(\beta) = \sum_{j=0}^{n} T(v_n(x_{1i}), e_k, f_j(\ell_{31i}, \ell_{32i}))\beta^j \).

4. **Epipoles**: Given a set of epipolar lines \(\{(\ell_2(x_{1i}), \ell_3(x_{1i}))\}_{i=1}^{N} \),
 - Compute the multibody epipoles \(c_2 \in \mathbb{R}^{M_n(3)} \) and \(c_3 \in \mathbb{R}^{M_n(3)} \) from (8.55), and let \(p_2(\ell_2) = c_2^T v_n(\ell_2) \) and \(p_3(\ell_3) = c_3^T v_n(\ell_3) \).
 - Compute the epipole pairs from the gradients of \(p_2 \) and \(p_3 \) as follows:
 - for all \(j = n : 1 \) do
 \[
 i_j = \arg \min_{i=x_{1j}}^{N} \frac{|p_2(\ell_2(x_{1i}))|}{\|
 \n p_2(\ell_2(x_{1i}))\|} \quad \text{and} \quad e_{2j} \sim \nabla p_2(\ell_2(x_{1i})) \quad \text{and} \quad e_{3j} \sim \nabla p_3(\ell_3(x_{1i})).
 \]
 - end for

5. **Feature segmentation**: Assign point correspondence \((x_{1i}, x_{2i}, x_{3i})\) to motion \(j = \arg \min_{k=1, \ldots, n} (e_{2k}^T \ell_2(x_{1i}))^2 + (e_{3k}^T \ell_3(x_{1i}))^2 \).

6. **Trifocal tensors**: Obtain the individual trifocal tensors \(\{T_j\}_{j=1}^{n} \) from the trilinear constraint for each group.

8.6 Bibliographical Notes

3-D motion estimation and segmentation has been an active topic of research in the computer vision community over the past few years. Earlier work [Feng and Perona, 1998] solves this problem by first clustering the features cor-
Table 8.2. Number of correspondences required to linearly solve for the different multibody motion models.

<table>
<thead>
<tr>
<th>Correspondence</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multibody fundamental matrix \mathcal{F}</td>
<td>8</td>
<td>35</td>
<td>99</td>
</tr>
<tr>
<td>Multibody homography matrix \mathcal{H}</td>
<td>4</td>
<td>12</td>
<td>25</td>
</tr>
<tr>
<td>Multibody trifocal tensor \mathcal{T} point-point-point</td>
<td>7</td>
<td>24</td>
<td>63</td>
</tr>
<tr>
<td>Multibody trifocal tensor \mathcal{T} point-line-line</td>
<td>26</td>
<td>215</td>
<td>999</td>
</tr>
</tbody>
</table>

responding to the same motion using e.g., K-means or spectral clustering, and then estimating a single motion model for each group. This can also be done in a probabilistic framework [Torr, 1998b] in which a maximum-likelihood estimate of the parameters of each motion model is sought by alternating between feature clustering and single-body motion estimation using the Expectation Maximization (EM) algorithm. However, the convergence of EM to the global maximum depends strongly on initialization [Torr et al., 2001].

In order to deal with the initialization problem of EM-like approaches, recent work has concentrated on the study of the geometry of dynamic scenes, including the analysis of multiple points moving linearly with constant speed [Han and Kanade, 2000, Shashua and Levin, 2001] or in a conic section [Avidan and Shashua, 2000], multiple points moving in a plane [Sturm, 2002], multiple translating planes [Wolf and Shashua, 2001a], self-calibration from multiple motions [Fitzgibbon and Zisserman, 2000, Han and Kanade, 2001], multiple moving objects seen by an affine camera [Boult and Brown, 1991, Kanatani, 2001, Wu et al., 2001, Kanatani and Matsunaga, 2002b, Zelnik-Manor and Irani, 2003, Kanatani and Sugaya, 2003, Vidal and Hartley, 2004], and two-object segmentation from two perspective views [Wolf and Shashua, 2001b]. The case of multiple moving objects seen by two perspective views was recently studied in [Vidal et al., 2002b, Vidal and Sastry, 2003, Vidal and Ma, 2004, Vidal et al., 2006], and has been extended to three perspective views via the so-called multibody trifocal tensor [Hartley and Vidal, 2004]. Such works have been the basis for the material presented in this chapter. Recent extensions omnidirectional cameras can be found in [Shakernia et al., 2003, ?].

8.7 Exercises

Exercise 8.1 Motion Segmentation from Optical Flow in Multiple Perspective Views.

Let $\Omega_f = (\omega_{1f}, \omega_{2f}, \omega_{3f})^\top$ and $V_f = (v_{1f}, v_{2f}, v_{3f})^\top$ be, respectively, the rotational and translational velocities of one a moving object relative to the camera at frame $f = 1, \ldots, F$. Under the perspective projection model, the projection of point $X_p = (X_p, Y_p, Z_p, 1)^\top \in \mathbb{R}^3$ on the zeroth frame is $(x_p, y_p)^\top = (X_p, Y_p)^\top / Z_p$. Show that the optical flow $u_{fp} \in \mathbb{R}^2$ of point p in the fth frame relative to the zeroth is:

$$u_{fp} = \begin{bmatrix} x_p y_p & -(1 + x_p^2) - y_p / Z_p & 0 & x_p / Z_p \\ (1 + y_p^2) & -x_p y_p & x_p & 0 \end{bmatrix} \begin{bmatrix} \omega_f \\ V_f \end{bmatrix}.$$
Given measurements for the optical flow \(\{ u_f \} \) of \(P \) pixels in \(F \) frames, define the matrix of image measurements as

\[
W = \begin{bmatrix}
 u_{11} & \cdots & u_{1F} \\
 \vdots & & \vdots \\
 u_{PF} & \cdots & u_{FP}
\end{bmatrix}_{2F \times P}
\] \hspace{1cm} (8.60)

Show that \(W \) can be factored into its motion and structure components as \(W = MS^T \), where

\[
M = \begin{bmatrix}
 \omega_{11} & \omega_{21} & -\omega_{31} & 0 & 0 & v_{11} & v_{31} & 0 \\
 -\omega_{21} & 0 & 0 & \omega_{11} & \omega_{31} & v_{21} & 0 & v_{31} \\
 \vdots & \vdots \\
 \omega_{1F} & \omega_{2F} & -\omega_{3F} & 0 & 0 & v_{1F} & v_{3F} & 0 \\
 -\omega_{2F} & 0 & 0 & \omega_{1F} & \omega_{3F} & v_{2F} & 0 & v_{3F}
\end{bmatrix}_{2F \times 8}
\] \hspace{1cm} (8.61)

\[
S = \begin{bmatrix}
 x_1y_1 & z_1 - x_1^2 & y_1^2 - z_1 & x_1 & x_1 \frac{y_1}{x_1} & \frac{z_1}{x_1} & \frac{y_1^2}{x_1} & \frac{z_1}{x_1} \\
 \vdots & \vdots \\
 x_Fy_F & z_F - x_F^2 & y_F^2 - z_F & x_F & x_F \frac{y_F}{x_F} & \frac{z_F}{x_F} & \frac{y_F^2}{x_F} & \frac{z_F}{x_F}
\end{bmatrix}_{P \times 8}
\]

Exercise 8.2 Show that for all \(\ell_1, \ell_2 \in \mathbb{R}^3 \) and \(\alpha \in \mathbb{R} \)

\[
\nu_n(\alpha \ell_1 + \ell_2) = \sum_{i=0}^{n} \alpha^i f_i(\ell_1, \ell_2),
\] \hspace{1cm} (8.62)

where \(f_i(\ell_1, \ell_2) \in \mathbb{R}^{M_n(3)} \) is a bi-homogeneous polynomial of degree \(i \) in \(\ell_1 \) and \((n-i) \) in \(\ell_2 \) for \(i = 0, \ldots, n \).

Exercise 8.3 Show that

\[
T(\nu_n(\ell_1), \nu_n(\alpha \ell_{21} + \ell_{22}), \nu_n(\beta \ell_{31} + \ell_{32}))
\]

\[
= T(\nu_n(\ell_1), \sum_{i=0}^{n} \alpha^i f_i(\ell_{21}, \ell_{22}), \sum_{j=0}^{n} \beta^j f_j(\ell_{31}, \ell_{32}))
\]

\[
= \sum_{i=0}^{n} \sum_{j=0}^{n} \alpha^i \beta^j T(\nu_n(\ell_1), f_i(\ell_{21}, \ell_{22}), f_j(\ell_{31}, \ell_{32}))
\] \hspace{1cm} (8.63)

Exercise 8.4 In this exercise and next few exercises, we investigate yet another algebraic technique that allows us to segment multiple homographies. We may interpret the second image \(x_2 \in \mathbb{P}^2 \) as a point in \(\mathbb{CP} \) by considering the first two coordinates in \(x_2 \) as a complex number and appending one to it. However, we still think of \(x_1 \) as a point in \(\mathbb{P}^2 \). With this interpretation, we can rewrite (8.29) as

\[
x_2 \sim Hx_1 \equiv \begin{bmatrix}
 h_{11} + h_{21} \sqrt{-1} & h_{12} + h_{22} \sqrt{-1} & h_{13} + h_{23} \sqrt{-1} \\
 h_{31} & h_{32} & h_{33}
\end{bmatrix}_{2 \times 3}
\] \hspace{1cm} (8.64)

where \(H \in \mathbb{C}^{2 \times 3} \) now represents a complex homography. Let \(w_2 \) be the vector in \(\mathbb{CP} \) perpendicular to \(x_2 \), i.e., if \(x_2 = [z, 1]^T \) then \(w_2 = [1, -z]^T \). Then we can rewrite (8.64)
206 Chapter 8. 3-D Motion Segmentation from Point Correspondences

as the following complex bilinear constraint

\[\mathbf{w}_2^T H \mathbf{x}_1 = 0, \]

(8.65)

which we call the complex homography constraint. We can therefore interpret the motion segmentation problem as one in which we are given image data \(\{\mathbf{x}_j \in \mathbb{P}^2\}_{j=1}^N \) and \(\{\mathbf{w}_j \in \mathbb{C}P^1\}_{j=1}^N \) generated by a collection of \(n \) complex homographies \(\{H_i \in \mathbb{C}^{2 \times 3}\}_{i=1}^n \). Then each image pair \((\mathbf{x}_1, \mathbf{w}_2) \) has to satisfy the multibody homography constraint

\[p(\mathbf{x}_1, \mathbf{w}_2) = \prod_{i=1}^n (\mathbf{w}_2^T H_i \mathbf{x}_1) = \nu_0 (\mathbf{w}_2)^T \mathcal{H} \nu_0 (\mathbf{x}_1) = 0, \]

(8.66)

regardless of which one of the \(n \) complex homographies is associated with the image pair. We call the matrix \(\mathcal{H} \in \mathbb{C}^{M_n(2) \times M_n(3)} \) the multibody homography. Now, since the multibody homography constraint (8.66) is linear in the multibody homography \(\mathcal{H} \), we can linearly solve for \(\mathcal{H} \) from (8.66) given \(N \geq M_n(2)M_n(3) - (M_n(3) + 1)/2 \sim O(n^3) \) image pairs in general position\(^6\) with at least 4 pairs per moving object.

1. Show that given a pair of images \((\mathbf{x}_1, \mathbf{w}_2) \) associated with the \(i \)th homography \(H_i \), the partial derivative \(\frac{\partial p(\mathbf{x}_1, \mathbf{w}_2)}{\partial \mathbf{x}_1} \) is perpendicular to the (right) null space of \(H_i \).

2. Use the above fact and show how to use GPCA to obtain the null spaces of all \(H_i \) simultaneously from the derivatives.

3. Use the above fact to contrive a scheme to segment (image pairs associated with) the \(n \) homographies.

Exercise 8.5 There is yet another way to retrieve individual \(H_i \) from \(\mathcal{H} \) without segmenting the image pairs first. The right null space of the complex homography matrix \(H_i \) defined in the previous exercise is called the complex epipole of \(H_i \), denoted as \(\mathbf{e}_i \).

1. Show that, once \(\mathbf{e}_i \) is known, the partial derivative \(\frac{\partial p(\mathbf{x}_1, \mathbf{w}_2)}{\partial \mathbf{x}_1} \bigg|_{\mathbf{x}_1=(\mathbf{e}_i, \mathbf{w}_2)} \) is a linear combination of the rows of \(H_i \) (up to scale).

2. Show that, by properly evaluating the derivative at different values of \(\mathbf{w}_2 \), one can retrieve \(H_i \).

Exercise 8.6 In the above exercises, we have implicitly assumed that the complex epipoles are different. Show that, under mild conditions, e.g., the third rows of each \(H_i \) are different, the null spaces of the corresponding complex homographies are indeed different for different real homographies.\(^7\)

Exercise 8.7 A homography is typically of the form \(H = R + T \pi^T \) where \(\pi \) is the plane normal and \((R, T) \) are the rotation and translation of the camera. If the homographies come from different planes (different \(\pi \)) undergoing the same rigid-body motion, show that the epipoles of the corresponding complex homographies are different too.

\(^6\)The multibody homography constraint gives two equations per image pair, and there are \((M_n(2) - 1)M_n(3) \) complex entries in \(\mathcal{H} \) and \(M_n(3) \) real entries (the last row).

\(^7\)In fact, one can further show that the set of complex homographies that share the same null space is a five-dimensional subset (hence a zero-measure subset) of all real homography matrices. Furthermore, one can complexify any other two rows of \(H \) instead of the first two. As long as two homography matrices are different, one of the complexifications will give different complex epipoles.
Exercise 8.8 (Trifocal tensors from second order derivatives of the multibody trilinear constraint) Let \(x \) be an arbitrary point in \(\mathbb{R}^2 \) (not necessarily a point in the first view) and let \((e'_i, e''_i)\) be the \(i \)th epipole pair.

1. Given \(e'_i \), propose a method to compute the epipolar line of \(x \) in the second view \(\ell'_i x \) according to the \(i \)th motion. Show also how to compute the epipolar line of \(x \) in the third view \(\ell''_i x \), given \(e''_i \).

2. Show that the slices of the trifocal tensor \(T_i \) can be expressed in terms of the second derivative of the multibody epipolar constraint, as follows:

\[
\frac{\partial^2 (\overline{x \ell'} \ell'' T)}{\partial \ell' \partial \ell''} \bigg|_{(x, e'_i, e''_i)} = M_{ix} \sim x T_i \in \mathbb{R}^{3 \times 3}.
\] (8.67)
Chapter 9
Spatial and Temporal Segmentation of Videos

In the previous two chapters, we have studied how to segment and reconstruct a dynamic scene consisting of multiple rigidly moving objects using GPCA and its extensions to bilinear and trilinear varieties. In our development, we assumed that the scene is Lambertian, so that the brightness of a 3-D point does not change with the viewpoint. This brightness constancy constraint (BCC) was the basis to all 2-D motion segmentation algorithms discussed in Chapter 7. The BCC was also used for establishing the point correspondences needed by the 3-D motion segmentation algorithms presented in Chapter 8.

While dynamic scenes may include multiple (planar or nonplanar) Lambertian objects moving rigidly, most real world scenes are neither Lambertian, nor rigid, nor piece-wise planar. For instance, video sequences may contain multiple articulated objects, e.g., people. In such cases, the epipolar, homographic, or multilinear constraints used in Chapter 8 no longer hold. Likewise, video sequences may contain dynamic textures, such as water, fire or smoke. In such cases the intensity of a point varies as a function of time, even if the observer does not move, hence one cannot use the BCC to compute camera motion. Also, the 3-D structure of a dynamic texture is nowhere rigid.

In this chapter, we look at the problem of segmenting dynamic scenes containing multiple dynamic textures in space and multiple events in time. We model the temporal evolution of such scenes as the output of a mixture of linear dynamic systems exhibiting changes both in space (due to the presence of multiple dynamic textures in different regions of an image) and in time (due to multiple events occurring at different times). In systems theory, such a mixture of linear systems is known as a hybrid linear dynamical system. As we will show in great detail in Chapter 10 and 11, the input-output data generated by a hybrid linear
dynamical system live in a union of multiple subspaces – one subspace per linear system. This implies that the trajectories of the image intensities (as the output of an underlying hybrid dynamical system) live in a union of multiple spatial and temporal subspaces. The dimensions of the subspaces depend on the orders of the corresponding dynamical systems, which in turn depend on the level of nonrigidity and complexity of the different portions of the scene. We cast the segmentation of this class of dynamic scenes as the problem of simultaneously clustering trajectories lying in multiple subspaces in space and in time. We develop extensions of GPCA to time-series data for solving this problem.

9.1 Modeling Dynamic Scenes by Linear Dynamical Systems

Time invariant linear dynamical systems (LDSs) have been successfully used for modeling, synthesis and recognition of certain classes of dynamic scenes. For example, in [Bissacco et al., 2001] LDSs are used for recognizing human gaits such as walking, running, etc (see Figure 9.1). Likewise, in [Doretto et al., 2003a] LDSs are used for modeling complex and seemingly random dynamics of nonrigid objects such as water, fire, etc, called dynamic textures (see Figure 9.2).

In this section, we show how to model such dynamic scenes with linear dynamical systems. We first introduce a simple linear model for images of a static texture under varying illumination conditions. We then extend this model to video
sequences of dynamic textures by allowing the coefficients of the model to vary as a function of time according to a linear dynamical system.

9.1.1 A Linear Model for Textured Images

Let \(I(x, y) \) be an image of a static texture, e.g., the image of someone’s face. A simple model for the appearance of the texture is to assume that the image can be written as a linear combination of \(d \) basis textures \(\{C_i\}_{i=1}^d \) with coefficients \(z_i \) as

\[
I(x, y) = \sum_{i=1}^d C_i(x, y)z_i + w(x, y), \tag{9.1}
\]

where \(w(x, y) \sim N(0, \sigma_w^2) \) is the measurement noise at pixel \((x, y)\). We write (9.1) in vector notation as \(I = Cz + w \), where \(I \in \mathbb{R}^P \), \(C \in \mathbb{R}^{P \times d} \), \(z \in \mathbb{R}^d \) and \(w \in \mathbb{R}^P \), with \(P \) the number of pixels and \(d \) the number of basis elements. By an abuse of notation, we denote the row corresponding to pixel \((x, y)\) as \(C(x, y) \in \mathbb{R}^1 \times d \), so that we can write \(I(x, y) = C(x, y)z + w(x, y) \).

Note that the model in (9.1) is simply a particular case of the models used in Chapter 6, where we expressed image patches as a linear combination of some basis elements for the purposes of image representation and compression. In here, we are interested in modeling the whole image as a linear combination of basis. In the face example introduced in Chapter 1, for instance, the elements of the texture basis \(\{C_i\}_{i=1}^d \) could represent images of the same face under different illumination conditions. By varying the coefficients \(z \), we can synthesize new images \(I \) of the same face under different illumination conditions.

9.1.2 A Linear Dynamical Model for Dynamic Textures

Let us now consider a video sequence \(\{I(x, y, t)\}_{t=1}^F \) of a dynamic texture seen by a static camera, e.g., a video of water. As proposed in [Doretto et al., 2003a], the appearance of each frame can also be modeled as a linear combination of certain basis elements. The main difference is that now the coefficients \(z \) are time-varying. More specifically, the intensity of pixel \((x, y)\) at frame \(t \) is given by

\[
I(x, y, t) = C(x, y)z(t) + w(x, y, t). \tag{9.2}
\]

In vector notation we write \(I(t) = Cz(t) + w(t) \).

The temporal evolution of vector \(z(t) \) is modeled by a first-order LDS driven by white noise \(v(t) \in \mathbb{R}^{d_v} \), i.e.,

\[
z(t+1) = Az(t) + Bv(t), \tag{9.3}
\]

where \(A \in \mathbb{R}^{d \times d} \) and \(B \in \mathbb{R}^{d \times d_v} \). Note that the number of basis elements \(d \) is assumed to be the same as the order of the LDS in this model. Therefore, the Auto-Regressive Moving Average (ARMA) model for a dynamical texture is written
by
\[z(t + 1) = Az(t) + Bv(t), \quad v(t) \sim N(0, I), \quad z(0) \text{ unknown}, \]
\[I(t) = Cz(t) + w(t), \quad w(t) \sim N(0, \Sigma_w). \quad (9.4) \]

Note that in the model (9.4), the parameter \(A \) does not depend on the pixel coordinates \((x, y)\). Therefore, \(A \) can only capture the dynamics of the texture, but not the appearance. The parameter \(C \), on the other hand, depends explicitly on the pixel coordinates, thus it captures the appearance of the scene.

Note also that one can make the dynamic texture model more general by replacing the output of the LDS, \(I(t) \), by any vector of features directly extracted from the images. In the gait example, these features could be the image position and velocities of the human joints. For the sake of simplicity, in the remainder of the chapter we will restrict our attention to the simplest case in which the extracted features are directly the image intensities.

9.1.3 Identification of Linear Dynamical Models

Learning a model for a dynamic texture from a video sequence \(\{I(t)\}_{t=1}^F \) amounts to identifying the ARMA parameters \((A, B, C)\), the initial state \(z(0) \) and the noise covariance matrix \(\Sigma_w \). Notice that these parameters are not uniquely defined, because the models \((A, B, C, z(0), \Sigma_w)\) with state \(z(t) \) and \((LAL^{-1}, LB, C\Lambda^{-1}, Lz(0), \Sigma_w)\) with state \(Lz(t) \) are equivalent\(^1\) for all invertible linear transformations \(L \in \mathbb{R}^{d \times d} \).

In order to obtain a unique solution, one typically enforces the additional constraint that \(C^\top C = 1_{d \times d} \). With this additional constraint, the identification problem can be solved optimally and in closed form using subspace identification techniques [Moor et al., 1990] (see Chapter 11 for more discussion). However, such techniques are computationally very intense when applied to video sequences, because the number of pixels is typically very large.

A Sub-Optimal Solution.

A sub-optimal solution can be obtained by noticing that when \(v = 0 \) and \(w = 0 \) the video sequence can be stacked into a matrix \(W \in \mathbb{R}^{P \times F} \) which can be written as
\[W = \begin{bmatrix} I(1) & I(2) & \cdots & I(F) \end{bmatrix} = C \begin{bmatrix} z(1) & \cdots & z(F) \end{bmatrix} = Cz. \quad (9.5) \]

Since typically \(P, F \gg d \), we have that \(\text{rank}(W) \leq d \), hence each row of \(W \)
\[r(x, y) = \begin{bmatrix} I(x, y, 1) & I(x, y, 2) & \cdots & I(x, y, F) \end{bmatrix}^\top \in \mathbb{R}^F \quad (9.6) \]
lives in a subspace of \(\mathbb{R}^F \) of dimension at most \(d \).

\(^1\)That is, both systems have exactly the same input-output relationship.
In Section 8.3 we showed that the 3-D affine motion estimation problem can be solved by factorizing a matrix of point correspondences $W \in \mathbb{R}^{2F \times P}$ into a motion matrix $M \in \mathbb{R}^{2F \times 4}$ and a shape matrix $S \in \mathbb{R}^{4 \times P}$. Notice that the estimation of an ARMA model is entirely analogous, as it can be solved by factorizing the matrix of image measurements $W \in \mathbb{R}^{P \times F}$ as the product of an appearance matrix $C \in \mathbb{R}^{P \times d}$ and a dynamics matrix $Z \in \mathbb{R}^{d \times F}$. As usual, we can compute C and Z up to a change of basis from the SVD of $W = U \Sigma V^\top$, as $C = U (:, 1 : d)$ and $Z = \Sigma (1 : d, 1 : d) V (:, 1 : d)^\top$.

Given Z, solving for A is a linear problem of the form

$$A \begin{bmatrix} z(1) & z(2) & \cdots & z(F - 1) \end{bmatrix} = \begin{bmatrix} z(2) & z(3) & \cdots & z(F) \end{bmatrix}. \quad (9.7)$$

Given A, we can compute $B v(t)$ as $z(t + 1) - A z(t)$ and form the matrix $V = B \begin{bmatrix} v(1) & v(2) & \cdots & v(F - 1) \end{bmatrix}$. \quad (9.8)

Since $E[v(t)v(t)^\top] = I$, we have $VV^\top = B \sum_{t=1}^{F-1} v(t)v(t)^\top B^\top \approx (F-1)BB^\top$.

Thus we may estimate B as

$$B = \frac{1}{\sqrt{F-1}} U_v (:, 1 : d_v) \Sigma_v (1 : d_v, 1 : d_v) \quad (9.9)$$

where U_v, Σ_v, V_v^\top is the SVD of V.

Figure 9.3 gives a MATLAB implementation of this sub-optimal algorithm for learning dynamic textures. We refer the reader to [Soatto et al., 2001] for more details about this sub-optimal solution.

Observability Subspace.

A disadvantage of this sub-optimal method is that it computes the appearance of the scene, encoded by the matrix C, separately from the dynamics of the scene, encoded by the matrix A. In fact, when factoring the matrix W in (9.5) the fact that the columns of Z are related by the A matrix is ignored, and the subspace to which the columns of the matrix W belong to is defined by the appearance matrix only. One way of partially incorporating the effect of A in the estimation of C, when the number of pixels is not too large, is to consider the following alternative measurement matrix $W \in \mathbb{R}^{P(d+1) \times (F-d)}$ whose columns are formed from a time-series of image intensities

$$W = \begin{bmatrix} I(1) & I(2) & \cdots & I(F - d) \\ I(2) & I(3) & \cdots & I(F - d + 1) \\ \vdots & \vdots & \ddots & \vdots \\ I(d + 1) & I(d + 2) & \cdots & I(F) \end{bmatrix}. \quad (9.10)$$
function [x0,Ymean,Ahat,Bhat,Chat,Xhat]=dytex(Y,n,nv)
% Suboptimal Learning of Dynamic Textures;
% (c) UCLA, March 2001

tau=size(Y,2);Ymean=mean(Y,2);
[U,S,V]=svd(Y-Ymean*ones(1,tau),0);
Chat=U(:,1:n);Xhat=S(1:n,1:n)*V(:,1:n)';
x0=Xhat(:,1);
Ahat=Xhat(:,2:tau)*pinv(Xhat(:,1:(tau-1)));
Vhat=Xhat(:,2:tau)-Ahat*Xhat(:,1:(tau-1));
[Uv,Sv,Vv]=svd(Vhat,0);
Bhat=Uv(:,1:nv)*Sv(1:nv,1:nv)/sqrt(tau-1);

function [I,X]=synth(x0,Ymean,Ahat,Bhat,Chat,tau)
% Synthesis of Dynamic Textures;
% (c) UCLA, March 2001

[n,nv]=size(Bhat);
X(:,1)=x0;
for t=1:tau
 X(:,t+1)=Ahat*X(:,t)+Bhat*randn(nv,1);
 I(:,t)=Chat*X(:,t)+Ymean;
end;

Figure 9.3. Matlab code implementation of the closed-form suboptimal learning algorithm proposed in [Doretto et al., 2003a] (function dytex), and the synthesis stage (function synth). In order to perform stable simulations, the synthesis function assumes that the poles of the linear system (i.e. the eigenvalues of Ahat) are within the unit circle.

As before, if we assume $v = 0$ and $w = 0$, W can be factorized as

$$
W = \begin{bmatrix}
C \\
CA \\
\vdots \\
CA^{d-1}
\end{bmatrix}
\begin{bmatrix}
z(1) \\
z(2) \\
\vdots \\
z(F-d)
\end{bmatrix} = OZ.
$$

Therefore, rank(W) $\leq d$ and the columns of W also live in a subspace of dimension at most d. The main difference is that the subspace is spanned not only by the columns of the appearance matrix C, but rather by the observability matrix O, which depends on both C and A. As before, one may compute O and Z from the SVD of W. Given O, one may automatically obtain C from the first P columns of O, and A by solving a linear system.

The notion of observability subspaces is important in the context of dynamic textures. Because it allows one to compare two dynamic textures based on not only on their appearances (captured by C) but also on their underlying driving dynamics (captured by A). Thus, we may compare two dynamic systems by computing the subspace angles among the corresponding observability subspaces [Cock and Moor, 2000].
Given two dynamical systems with parameters \((A_1, C_1)\) and \((A_2, C_2)\), one can compute the corresponding observability matrices \(O_1\) and \(O_2\). Let \(\{\lambda_i\}_{i=1}^d\) be the singular values of \(U_1^T U_2\), where \(U_1 S_1 V_1^T\) and \(U_2 S_2 V_2^T\) are the SVDs of \(O_1\) and \(O_2\), respectively. The subspace angles \(\{\theta_i\}_{i=1}^d\) between the column spaces of \(O_1\) and \(O_2\) are defined by the equations

\[
\cos(\theta_i) = \lambda_i, \quad i = 1, \ldots, n. \tag{9.12}
\]

One can use the subspace angles to define a notion of “distance” between ARMA models. Two popular distances are the Weinstein distance

\[
d_W = \theta_1, \tag{9.13}
\]

where \(\theta_1\) is the smallest non-zero singular value, and the Martin distance [Martin, 2000]

\[
d_M = \sqrt{-\log \left(\prod_{i=1}^d \cos(\theta_i)^2 \right)}. \tag{9.14}
\]

The notion of distance is very important if our goal is not only to identify and synthesize a single dynamic textures but also to distinguish and recognize multiple dynamic textures.

9.1.4 Synthesis and Recognition of Dynamic Textures.

Once the parameters \((A, B, C, z(0))\) have been identified, one can use them to generate novel synthetic sequences [Soatto et al., 2001], manipulate real ones [Doretto and Soatto, 2003], recognize one from another [Saisan et al., 2001], etc.

Figure 9.4 show synthesis results from [Doretto et al., 2003a] on four different video sequences of a fountain, plastic, river and smoke. For each sequence, an ARMA model \((A, B, C, z(0))\) is identified using the sub-optimal procedure of [Soatto et al., 2001]. Given the model, a novel sequence is synthesized by simulating the equations in (9.4) with \(v(t) \sim N(0, I)\) and \(w(t) = 0\). The code in Figure 9.3 gives details about the synthesis process.

Figure 9.5 shows recognition results on a subset of the UCLA Dynamic Texture database that consists of 200 subsequences of 50 different kinds of dynamic textures, each of them represented by 4 distinct instances. Each subsequence is filtered and sub-sampled from \(220 \times 320\) to \(110 \times 160\) pixels and then a \(48 \times 48\)-patch is manually chosen. Finally, the color data is transformed to 256 gray levels. For each such subsequence, an ARMA model \((A, B, C, z(0))\) is identified using the sub-optimal procedure of [Soatto et al., 2001]. The parameters \((A, C)\) associated with each subsequence in the test set are compared with the parameters associated with all subsequences in the training set using the largest subspace angle between the observability subspaces of the corresponding ARMA models. Figure 9.5 reports the first three nearest neighbors for 8 sequences in the test set.
9.2 Spatial Segmentation of Videos

9.2.1 A Hybrid Linear Model for Multiple Dynamic Textures

Consider now a scene consisting of multiple dynamic textures occurring at the same time, but in different stationary regions in the image. We can model the
Figure 9.5. Results of the nearest neighbor computation using the largest subspace angle. The first column shows a sample from one of the original subsequences. The distance from the model of this subsequence to every other subsequence is computed, and a sample of the sequence closest to the test is shown in the second column. The third column shows the second closest sequence and so on.
there exists a j LDSs without knowing which pixels obey which LDS. Instead, we measure the vector of all image intensities I dynamic textures and the linear system (9.4) for a single dynamic texture, is that we do not measure the vector of image intensities in \mathbb{R}^P we could build the matrix of image intensities for each group of pixels $I(x, y, t) = A_j z_j(t) + B_j v_j(t)$, $z_j(0)$ unknown, $j = 1, \ldots, n$,

$$
I(x, y, t) = \begin{cases}
C_1(x, y) z_1(t) + w_1(x, y, t) & \text{if } (x, y) \in R_1 \\
C_2(x, y) z_2(t) + w_2(x, y, t) & \text{if } (x, y) \in R_2 \\
\vdots & \\
C_n(x, y) z_n(t) + w_n(x, y, t) & \text{if } (x, y) \in R_n,
\end{cases}
$$

(9.15)

where $R_j \subset \mathbb{R}^2$ is the region of the image where the jth LDS holds, $A_j \in \mathbb{R}^{d_j \times d_j}$, $B_j \in \mathbb{R}^{d_j \times d_v}$ and $C_j \in \mathbb{R}^{P_j \times d_j}$ are the parameters of the dynamical model associated with R_j. d_j is the order of the jth model, d_v is the dimension of the input v_j, and P_j is the number of pixels in R_j. In vector notation we write the vector of image intensities in R_j at time t as $I_j(t) = C_j z_j(t) + w_j(t) \in \mathbb{R}^{P_j}$.

9.2.2 Dynamic Texture Segmentation using GPCA

Note that a key difference between the hybrid linear system (9.15) for multiple dynamic textures and the linear system (9.4) for a single dynamic texture, is that we do not measure $I_j(t) \in \mathbb{R}^{P_j}$ directly, because we do not know which pixels correspond to which region. Instead, we measure the vector of all image intensities $I(t) \in \mathbb{R}^P$. Therefore, the challenge is to identify the parameters of all the LDSs without knowing which pixels obey which LDS.

To this end, notice that if we knew which pixels belonged to which model, we could build the matrix of image intensities for each group of pixels $W_j = [I_1(1) \cdots I_j(F)]$. After stacking these matrices into a single matrix of image measurements

$$
W = \begin{b matrix}
I_1(1) & \cdots & I_1(F) \\
\vdots & & \vdots \\
I_n(1) & \cdots & I_n(F)
\end{b matrix} = \begin{b matrix}
C_1 & \cdots & \cdots \\
\vdots & \ddots & \vdots \\
\vdots & \cdots & C_n
\end{b matrix} \begin{b matrix}
z_1(1) & \cdots & z_1(F) \\
\vdots & \ddots & \vdots \\
z_n(1) & \cdots & z_n(F)
\end{b matrix} = CZ.
$$

(9.16)

where C is a $P \times \sum_{j=1}^n d_j$ matrix and Z a $\sum_{j=1}^n d_j \times F$ matrix, we see that (as before) W can be factorized into the product of an appearance matrix C and a dynamics matrix Z.

Since in reality we do not know the spatial segmentation of the data, we cannot order the rows of W according to the segmentation of the image measurements. Nevertheless, we still know that for each row of W

$$
r(x, y) = [I(x, y, 1) \hspace{0.5cm} I(x, y, 2) \hspace{0.5cm} \cdots \hspace{0.5cm} I(x, y, F)]^\top \in \mathbb{R}^F
$$

(9.17)

there exists a $j \in \{1, 2, \ldots, n\}$ such that r lives in a subspace of \mathbb{R}^F of dimension d_j spanned by the rows of $[z_j(1) \cdots z_j(F)]$. Furthermore, all the rows of W
that correspond to the same group belong to the same subspace. Therefore, the rows of \(W \) live in a union of \(n \) subspaces of dimensions \(\{d_j\}_{j=1}^n \). We can apply GPCA to the data points \(\{r(x_i, y_i)\}_{i=1}^P \) to segment the image measurements into \(n \) regions and subsequently estimate one dynamical model for each region.

9.2.3 Experimental Results

Figure 9.6 (a) shows an example of a video sequence with two dynamic textures (ocean and steam) taken from [Doretto et al., 2003b]. The sequence has \(F = 140 \) frames and \(m = 220 \times 220 \) pixels. The segmentation is obtained by applying GPCA to the first few principal components of the image intensities in homogenous coordinates. The additional coordinate is chosen as \(1/\sqrt{P} \) rather than 1 to keep the data numerically balanced. Figures 9.6 (b)-(g) shows the segmentation results for a varying number of principal components. As the number of principal components increases from 1 to 5, the segmentation improves. However, there is no significant improvement beyond 5 principal components. Notice also that the final segmentation is not perfect, because GPCA does not enforce that nearby pixels should belong to the same group. Nevertheless, a good initial segmentation of the two textures is obtained, which can easily be improved by iterative refinement.

9.3 Temporal Segmentation of Videos

The dynamical models described in the previous section can describe a video sequence consisting of dynamical textures that are stationary in time (as random processes). In this section, we consider a non-stationary video sequence that may consist of multiple segments, or “events,” in the temporal domain and each segment can be treated as relatively stationary. In this case, we want to learn one dynamical model for each segment of the video, and detect the frames at which the dynamics of the video “switches” from one event to the other. We will refer to this task as **temporal video segmentation**.

9.3.1 A Hybrid Linear Model for Multiple Video Events

It is clear that modeling a dynamic scene consisting of multiple events separated in time with a single LDS is rather restrictive, because the dynamics and appearances of the scene are unlikely to be stationary. In order to be able to model sudden changes of dynamics and appearances, we assume that the temporal evolution of the image intensities can be modeled are the output of a **Hybrid Linear System** (HLS), i.e., a concatenation of multiple LDSs in time:

\[
\begin{align*}
z(t + 1) &= A_{\lambda, t} z(t) + B_{\lambda, t} v(t), \\
I(t) &= C_{\lambda, t} z(t) + w(t),
\end{align*}
\]

(9.18)
9.3. Temporal Segmentation of Videos 219

Figure 9.6. Using GPCA to segment a video sequence containing two dynamical textures: ocean and steam. (a) shows the first frame of the sequence (b)-(g) show segmentation results using GPCA applied to the first few principal components of the image intensities in homogeneous coordinates.

which switches among a number of discrete states \(\{ \lambda_t, \ t \in \mathbb{Z} \} \) that take values in a finite set, say \(\lambda_t \in \{1, 2, \ldots, n\} \).

The evolution of \(\{ \lambda_t \} \) can be modeled as a deterministic but unknown input that is piecewise constant, i.e. as a jump linear systems (JLS), as an irreducible Markov chain governed by the transition map \(\pi \), \(P(\lambda_{t+1} | \lambda_t) = \pi_{t+1,t} \) i.e. as a "jump Markov linear system" (JMLS), or as a function of the continuous state \(\lambda_t = f(z(t)) \). In what follows, we will consider \(\lambda_t \) as an exogenous input, as sudden changes in the dynamics of a video sequence can occur at any time.
9.3.2 Video Segmentation via Hybrid System Identification

Unfortunately, identification of hybrid linear models is a problem that is not as well understood as in the case of linear systems. The main challenge in hybrid system identification is that the estimation of the model parameters is strongly coupled to the estimation of the discrete state. Therefore, most existing methods [Bemporad et al., 2001, Bemporad et al., 2003, Ferrari-Trecate et al., 2003] iterate between parameter identification and discrete state estimation. We now show that for certain classes of hybrid linear models one can decouple the estimation of the model parameters from the estimation of the hybrid state using GPCA.

The key observation under our approach is that for each discrete state λ, the data lives in the observability subspace O_λ associated with the model parameters (A_λ, C_λ). Hence the identification problem is very much related, though not completely equivalent, to clustering data living on a collection of subspaces $\{O_1, \ldots, O_n\}$ of possibly different dimensions. The switches among the discrete states, or the changes of events, can then be subsequently determined once these subspaces are known. We refer the reader to Chapter 11 for further details.

9.3.3 Experimental Results

Segmentation of News Video.

Figure 9.7 shows an example taken from [Vidal et al., 2005] in which GPCA is used to effectively segment the dynamics of video sequences containing multiple events separated in time, such as a news sequence where the host is interviewing a guest and the camera is switching between the host, the guest and both of them.

2 Data points around switching times do not belong to any of the observability subspaces.

3 The dimension of the observability subspace is the order of the linear system.
9.4 Bibliographical Notes

Segmentation of Traffic Video.

Figure 9.8 shows a video sequence that monitors the traffic of the Springfield avenue in Champaign. As we see that the GPCA algorithm segments the video whenever there is a car entering or leaving the field of view of the camera.

![Figure 9.8](image)

Figure 9.8. Clustering frames of a traffic video sequence into groups of scenes by modeling each group with a linear dynamical system.

Segmentation of Sports Video.

Figure 9.9 shows an example on a ping-pong sequence. The algorithm is able to successfully detect changes in the video sequence that are caused either by a switching of scene or the camera rooming out or changing the viewing angle.

9.4 Bibliographical Notes

[Doretto et al., 2003a, Yuan et al., 2004] deal with scenes in which a static camera observes a single dynamical texture. They show that by modeling the temporal evolution of the image intensities as the output of a time-invariant linear dynamical system (LDS), it is possible to jointly recover a model for the appearance and dynamics of the scene using classical system identification techniques [Moor et al., 1990]. Once these models have been learnt, one can use them to generate novel synthetic sequences [Soatto et al., 2001], manipulate real ones [Doretto and Soatto, 2003], and recognize one from another [Saisan et al., 2001, Doretto et al., 2003a]. [Doretto et al., 2003b] deals with scenes in which a static camera observes multiple dynamic textures. It proposes a level set-based technique to segment the scene into multiple regions, each one represented with
a LDS. As with most level set-based techniques, the method is very computationally intense. More recent work has looked at scenes containing a dynamical texture observed by a moving camera. [Fitzgibbon, 2001] introduces the concept of stochastic rigidity which searches for the camera motion that leads to the LDS of minimum order. The work of [Vidal and Ravichandran, 2005] is the first one to deal with scenes having multiple moving dynamic textures. The camera motion is computed from the so-called dynamic texture constancy constraint (DTCC), while the segmentation of the scene is obtained by applying GPCA [Vidal et al., 2004] to a moving window of frames.

9.5 Exercises

Exercise 9.1 Imagine we would like to model a dynamic texture with an ARX model of the form

\[I(x, y, t) = \sum_{i=1}^{d} a_i I(x, y, t - i) + \sum_{i=1}^{d} c_i(x, y)w(x, y, t - i). \]

(9.19)

Compute the parameters \(A, B, C \) of an ARMA model for the dynamic texture.

Exercise 9.2 Imagine we would like to model a dynamic texture with an ARX model of the form

\[I(x, y, t) = \sum_{i=1}^{d} a_i I(x, y, t - i) + \sum_{i=1}^{d} c_i(x, y)w(x, y, t - i). \]

(9.20)
Propose a method to identify the parameters \(\{a_i\}_{i=1}^{d} \) and \(\{c_i(x, y)\}_{i=1}^{d} \).
Part III

Extensions to Dynamical and Nonlinear Models
Chapter 10
Switched ARX Systems

Hybrid systems are mathematical models that are used to describe continuous processes that occasionally exhibit discontinuous behaviors due to sudden changes of dynamics. For instance, the continuous trajectory of a bouncing ball results from alternating between a free fall and an elastic contact with the ground. However, hybrid systems can also be used to describe a complex process or time series that does not itself exhibit discontinuous behaviors, by approximating the process or series with a simpler class of dynamical models. For example, a nonlinear dynamical system can be approximated by switching among a set of linear systems, each approximating the nonlinear system in a subset of its state space. As another example, a video sequence can be segmented to different scenes by fitting a piecewise linear dynamical model to the entire sequence.

In recent years, there has been significant interest and progress in the study of the analysis, stability, and control of hybrid systems. Knowing the system parameters, many successful theories have been developed to characterize the behaviors of hybrid systems under different switching mechanisms. However, in practice, the parameters and the switching mechanism of a hybrid system are often not known or derivable from first principles. We are faced with the task of identifying the system from its input and output measurements.

In this chapter, we show how to apply the GPCA method to the problem of identifying a class of discrete-time hybrid systems known as hybrid Auto Regres-
We know from classic identification theory of linear systems that the configuration space of the input/output data generated by a single ARX system, say

\[y_t = \sum_{j=1}^{n_a} a_j y_{t-j} + \sum_{j=1}^{n_c} c_j u_{t-j} + w_t, \quad y_t, u_t, w_t \in \mathbb{R}, \]

is a linear subspace. The problem of identifying the system is equivalent to identifying this subspace from a finite number of samples on the subspace (as we will review briefly in Section 10.2). Unfortunately, for a hybrid system that switches among multiple ARX systems, as shown in Figure 10.1, when the orders of the constituent systems are different, depending on the switching sequence \(\lambda_t \), the configuration space of the hybrid ARX system might not simply be a union of the configuration spaces of the constituent ARX systems. Therefore, the problem of identifying the hybrid ARX system is not a trivial subspace segmentation problem.

\[y_t = \sum_{j=1}^{n_a} a_j y_{t-j} + \sum_{j=1}^{n_c} c_j u_{t-j} + w_t, \quad y_t, u_t, w_t \in \mathbb{R}, \]

Figure 10.1. The input/output diagram of a hybrid system switching among \(n \) constituent systems. The identification problem requires to infer what is in the black box (including the \(n \) systems and the switching mechanism \(\lambda_t \)) from its input \(u_t \) and output \(y_t \).

In this chapter, we show how to incorporate some special (algebraic and dynamical) structures of a hybrid ARX system so that the identification problem can still be solved by a special version of the GPCA method. In particular, we will show that a hybrid ARX system can still be correctly identified from a special polynomial \(p \) that fits the input/output data of the hybrid ARX system – the last nonzero term of \(p \) has the lowest degree-lexicographic order in the ideal \(\mathfrak{a} \) of polynomials. This polynomial is unique, factorable, and independent of the switching sequence. The non-repeated factors of this polynomial correspond to the constituent ARX systems, hence the number of systems is given by the number of non-repeated factors (Section 10.3).

Although the analysis and algorithm will be developed primarily in a noise-free algebraic setting, the GPCA-based identification algorithm is numerically stable, although algebraic computations can be performed in a noise-free algebraic setting.

\[^{1}\text{ARX systems are an extremely popular class of dynamical models that are widely used in control, signal processing, communications, and economics. In image/video processing, they can be used to model videos of dynamical scenes.}\]
stable and works with moderate noises. Simulation and experimental results show that the algorithm performs extremely well for both synthetic and real data, in comparison with the existing iterative (e.g., EM-based) identification algorithms (Section 10.4).

10.1 Problem Statement

Now let us consider a hybrid ARX system – a system that switches among multiple, say \(n \), ARX systems of the type (10.1). Mathematically, such a system can be described as

\[
y_t = \sum_{j=1}^{n_a(\lambda_t)} a_j(\lambda_t) y_{t-j} + \sum_{j=1}^{n_c(\lambda_t)} c_j(\lambda_t) u_{t-j} + w_t,
\]

where \(u_t \in \mathbb{R} \) is the input, \(y_t \in \mathbb{R} \) is the output, \(\lambda_t \in \{1, 2, \ldots, n\} \) is the discrete state, and \(n_a(i), n_c(i), \{a_j(i)\}_{j=1}^{n_a(i)} \) and \(\{c_j(i)\}_{j=1}^{n_c(i)} \) are, respectively, the orders and the system parameters of the \(i \)-th ARX system for \(i = 1, \ldots, n \). The last term \(w_t \) is zero for a deterministic ARX system and a white-noise random process for a stochastic system. The purpose of this paper is to provide an analytic solution to the deterministic case, which approximates the stochastic case when \(w_t \) is small.

The discrete state \(\lambda_t \), also called the mode of the system, can evolve due to a variety of mechanisms. In the least restrictive case, \(\{\lambda_t\} \) is a deterministic but unknown sequence that can take a finite number of possible values, which we can assume to coincide with a collection of integers:

\[
\lambda : t \in \mathbb{Z} \mapsto \lambda_t \in \{1, 2, \ldots, n\}.
\]

One can further restrict the set of switching sequences by assuming that \(\lambda_t \) is a realization of an irreducible Markov chain, governed by transition probabilities

\[
\pi(i, j) \doteq P(\lambda_{t+1} = j | \lambda_t = i).
\]

In this case, the system (10.2) is often called a “Jump-Markov Linear System” (JMLS). Alternatively, one can assume that \(\lambda_t \) is a piecewise constant function of the “continuous states” of the system (10.2),

\[
\lambda : (y_{t-1}, \ldots, y_{t-n_a}) \in \mathbb{R}^{n_a} \mapsto \lambda_t \in \{1, 2, \ldots, n\}.
\]

In this case, the system (10.2) is often called a “PieceWise ARX” (PW ARX) system.

In this chapter we will consider the first scenario, so that our results also apply to other switching mechanisms if that information becomes available. Therefore, our method does not depend on any particular switching mechanism. Once the switching sequence has been identified, the switching mechanism can be further retrieved.

The following problem summarizes the goal of this chapter. In the sequel

Given input/output data \(\{ u_t, y_t \}_{t=0}^{\infty} \) generated by an HARX system such as (10.2), identify the number of constituent systems \(n \), the orders of each ARX system \(\{ n_a(i), n_e(i) \}_{i=1}^{n} \), the system parameters \(\{ a_j(i) \}_{j=1}^{n_a(i)} \) and \(\{ c_j(i) \}_{j=1}^{n_e(i)} \), and the discrete states \(\{ \lambda_t \} \).

we characterize a set of (sufficient) conditions that allow one to solve the above problem as well as develop an efficient algorithm for it.

10.2 Identification of a Single ARX System

For the sake of completeness and comparison, let us first review some classic results for the identification of a single discrete-time ARX system

\[
y_t = a_1 y_{t-1} + \cdots + a_{n_a} y_{t-n_a} + c_1 u_{t-1} + \cdots + c_{n_e} u_{t-n_e}.
\]

(10.3)

The transfer function \(\hat{H}(z) = \hat{y}(z)/\hat{u}(z) \) of the system (10.3) is given by:

\[
\hat{H}(z) = z^{\max(n_a - n_e, 0)} \tilde{H}(z) = \frac{z^{\max(n_a - n_e, 0)}(z^{n_a-1}c_1 + z^{n_a-2}c_2 + \cdots + c_{n_e})}{z^{\max(n_e - n_a, 0)}(z^{n_a} - z^{n_a-1}a_1 - z^{n_a-2}a_2 - \cdots - a_{n_a})}.
\]

(10.4)

From the theory of signals and systems, given the infinite sequences of the input \(\{ y_t \} \) and the output \(\{ u_t \} \), we can compute their Z-transform \(\hat{y}(z) \) and \(\hat{u}(z) \), respectively. Then we can identify the parameters of the ARX model by directly computing \(\hat{H}(z) \) as \(\hat{y}(z)/\hat{u}(z) \).\(^2\) This requires the ARX model to be identifiable, i.e., \(\hat{H}(z) \) must have no pole-zero cancellation,\(^3\) and \(\hat{u}(z) \) to have no zero in common with a pole of \(\hat{H}(z) \) and vice versa.

Alternatively, we may identify the system via the identification of a subspace associated with the input/output data. Let us define \(D = n_a + n_e + 1 \) and the vector of regressors to be:

\[
x_t = [y_t, y_{t-1}, \ldots, y_{t-n_a}, u_{t-1}, u_{t-2}, \ldots, u_{t-n_e}]^T \in \mathbb{R}^D.
\]

(10.5)

Thus, for all time \(t \), the so-defined \(x_t \) is orthogonal to the vector that consists of the parameters of the ARX system:

\[
b = [1, -a_1, -a_2, \ldots, -a_{n_a}, -c_1, -c_2, \ldots, -c_{n_e}]^T \in \mathbb{R}^D.
\]

(10.6)

\(^2\)Notice that this scheme is not practical since it requires one to obtain the typically infinitely-long output sequence \(\{ y_t \} \).

\(^3\)That is, the polynomials \(z^{\max(n_e - n_a, 0)}(z^{n_a} - z^{n_a-1}a_1 - z^{n_a-2}a_2 - \cdots - a_{n_a}) \) and \(z^{n_a-1}c_1 + z^{n_a-2}c_2 + \cdots + c_{n_e} \) are co-prime.
That is, \(\forall t \) \(x_t \) and \(b \) satisfy the equation \(b^T x_t = 0 \). In other words, \(b \) is the normal vector to the hyperplane spanned by (the rows of) the following data matrix:

\[
L(n_a, n_c) \equiv [x_{\max(n_a, n_c)}^T, \ldots, x_{t-1}^T, x_t^T, x_{t+1}^T, \ldots]^T \in \mathbb{R}^{\infty \times D}. \tag{10.7}
\]

When the model orders \(n_a, n_c \) are known, we can readily solve for the model parameters \(b \) from the null space of \(L(n_a, n_c) \) via SVD.

In practice, however, the model orders may be unknown, and only upper bounds \(\bar{n}_a \) and \(\bar{n}_c \) may be available. Thus, the vector of regressors \(x_t \) is

\[
x_t \equiv [y_t, y_{t-1}, y_{t-2}, \ldots, y_{t-\bar{n}_a}, u_{t-1}, u_{t-2}, \ldots, u_{t-\bar{n}_c}]^T \in \mathbb{R}^D, \tag{10.8}
\]

where \(D = \bar{n}_a + \bar{n}_c + 1 \). Obviously, the following vector

\[
b \equiv [1, -a_1, \ldots, -a_{n_a}, 0_{1 \times (\bar{n}_a - n_a)}, -c_1, \ldots, -c_{n_c}, 0_{1 \times (\bar{n}_c - n_c)}]^T \tag{10.9}
\]

satisfies the equation \(x_t^T b = 0 \) for all \(t \). Notice that here the vector \(b \) is the one in (10.6) with additional \(\bar{n}_a - n_a \) and \(\bar{n}_c - n_c \) zeros filled in after the terms \(-a_{n_a} \) and \(-c_{n_c} \), respectively.

Let us define the data matrix \(L(\bar{n}_a, \bar{n}_c) \) in the same way as in equation (10.7). Because of the redundant embedding (10.8), the vector \(b \) is no longer the only one in the null space of \(L \). It is easy to verify that all the following vectors are also in the null space of \(L \):

\[
b^1 = [0_1, 1, -a_1, \ldots, -a_{n_a}, 0_{\bar{n}_a - n_a - 1}, 0_1, -c_1, \ldots, -c_{n_c}, 0_{\bar{n}_c - n_c - 1}]^T,
\]

\[
b^2 = [0_2, 1, -a_1, \ldots, -a_{n_a}, 0_{\bar{n}_a - n_a - 2}, 0_2, -c_1, \ldots, -c_{n_c}, 0_{\bar{n}_c - n_c - 2}]^T,
\]

\[
\vdots
\]

\[
\vdots
\] \tag{10.10}

Therefore, the data \(\{x_t\} \) span a low-dimensional linear subspace \(S \) in the ambient space \(\mathbb{R}^D \). Each of the vectors defined above uniquely determines the original system (10.3), including its order and coefficients. However, a vector in the null space of \(L \) is in general a linear combination of all such vectors and it is not necessarily one of the above. Thus, in order to identify the original system from the data matrix \(L \), we need to seek a vector in its null space that has certain desired structure.

Notice that the last \(\bar{n}_c - n_c \) entries of \(b \) in (10.9) are zero, hence the last non-zero entry of \(b \) has the lowest order – in terms of the ordering of the entries of \(x_t \) – among all vectors that are in the null space of \(L \). Therefore, we can obtain the first \(n_a + n_c + 1 \) entries of \(b \) from the null space of the submatrix of \(L \) defined by its first \(n_a + n_c + 1 \) columns. Since \(n_c \) is unknown, we can incrementally take the first \(j = 1, 2, \ldots \) columns of the matrix \(L \) from the left to the right:

\[
L^1 \equiv L(:, 1 : 1), \quad L^2 \equiv L(:, 1 : 2), \quad \ldots, \quad L^j \equiv L(:, 1 : j), \tag{10.11}
\]

\[4\)Only when the initial conditions \(\{y_{t_0-1}, \ldots, y_{t_0-n_a}\} \) are arbitrary do the data span a hyperplane in \(\mathbb{R}^D \) with \(b \) as the only normal vector.\]
until the rank of the submatrix L^j stops increasing for the first time for some $j = m$.\footnote{If n_c was known, then we would have $m = \bar{n}_a + n_c + 1$.}

Remark 10.1 (Identifying b and m in the Stochastic Case). In the stochastic case (i.e., $w_t \neq 0$), the ultimate goal is to minimize the (squared) modeling error $\sum_t w_t^2 = \sum_t (b^T x_t)^2$, which corresponds to the maximum-likelihood estimate when w_t is white-noise. Then the optimal solution b^* can be found in a least-square sense as the singular vector that corresponds to the smallest singular value of L^m. However, in the noisy case, we cannot directly estimate m from the rank of L^j since it might be full rank for all j. Based on model selection techniques, m can be estimated from a noisy L^j as

$$m = \arg \min_{j=1, \ldots, D} \left\{ \frac{\sigma_j^2(L^j)}{\sum_{k=1}^{j-1} \sigma_k^2(L^j)} + \kappa \cdot j \right\},$$ \hspace{1cm} (10.12)$$

where $\sigma_k(L^j)$ is the kth singular value of L^j and $\kappa \in \mathbb{R}$ is a parameter weighting the two terms. The above criterion minimizes a cost function that consists of a data fitting term and a model complexity term. The data fitting term measures how well the data is approximated by the model – in this case how close the matrix L^j is to dropping rank. The model complexity term penalizes choosing models of high complexity – in this case choosing a large rank.

There is, however, a much more direct way of dealing with the case of unknown orders. The following lemma shows that the system orders n_a and n_c together with the system parameters b can all be simultaneously and uniquely computed from the data.

Lemma 10.2 (Identifying the Orders of an ARX System). Suppose we are given data generated by an identifiable ARX model whose input $\hat{u}(z)$ shares no poles or zeros with the zeros or poles, respectively, of the model transfer function $\hat{H}(z)$. If $\bar{n}_a + \bar{n}_c + 1 \leq n_a + n_c + 1$, then

$$\text{rank}(L(\bar{n}_a, \bar{n}_c)) = \begin{cases}
\bar{n}_a + \bar{n}_c & \text{if and only if } \bar{n}_a = n_a \text{ and } \bar{n}_c = n_c, \\
\bar{n}_a + \bar{n}_c + 1 & \text{otherwise.}
\end{cases}$$ \hspace{1cm} (10.13)$$

Therefore the systems orders can be computed as:

$$(n_a, n_c) = \arg \min_{(\bar{n}_a, \bar{n}_c) \in \mathbb{Z}^2} \{ \bar{n}_a + \bar{n}_c : \text{rank}(L(\bar{n}_a, \bar{n}_c)) = \bar{n}_a + \bar{n}_c \}. \hspace{1cm} (10.14)$$

The parameter vector b is the unique vector in the null space of $L(n_a, n_c)$.

Proof. Suppose $\text{rank}(L(\bar{n}_a, \bar{n}_c)) \leq \bar{n}_a + \bar{n}_c$ and $b' = [1, b'_1, b'_2, \ldots, b'_{\bar{n}_a + \bar{n}_c}] \in \mathbb{R}^{\bar{n}_a + \bar{n}_c + 1}$ is a nonzero vector such that $Lb' = 0$. Consider the Z-transform of
In such cases, we need to assume that the sequence of regressors is estimated from a noisy exciting, i.e., the \(\{a_n, b_n\} \) output has the same rank complexity. The two terms – the first for the model fitting error and the second for the model complexity.

Since \(\hat{u}(z) \) does not have any of the poles or zeros of the transfer function \(\hat{H}(z) \) in (10.4), the ratio \(\hat{y}(z)/\hat{u}(z) \) derived from the above equation should be a rational function whose numerator and denominator contain those of \(\hat{H}(z) \) as factors, respectively. Since \(\hat{n}_a + \hat{n}_c \leq n_a + n_c \), this happens only if \(\hat{n}_a = n_a \) and \(\hat{n}_c = n_c \), and the vector \(\mathbf{b}' \) is exactly the same as \(\mathbf{b} \) in (10.6).

Remark 10.3 (Identifying \(n_a, n_c \) in the Stochastic Case). In the stochastic case (i.e., \(\omega_i \neq 0 \)), we cannot directly estimate \(n_a, n_c \) from the rank of \(L(\bar{n}_a, \bar{n}_c) \) since it might be full rank for all \(\bar{n}_a, \bar{n}_c \). From model selection methods, \(n_a, n_c \) can be estimated from a noisy \(L \) as

\[
(n_a, n_c) = \arg \min_{(\bar{n}_a, \bar{n}_c) \in \mathbb{Z}^2} \left\{ \frac{\sigma^2_{\bar{n}_a+n_c+1}(L(\bar{n}_a, \bar{n}_c))}{\sum_{k=1}^{n_a+n_c} \sigma^2_k(L(\bar{n}_a, \bar{n}_c))} + \kappa \cdot (\bar{n}_a + \bar{n}_c) \right\}, \tag{10.15}
\]

where \(\sigma_k(L) \) is the \(k \)-th singular value of \(L \) and \(\kappa \in \mathbb{R} \) is a parameter weighting the two terms – the first for the model fitting error and the second for the model complexity.

In principle, the above lemma allows us to identify the precise orders \(n_a, n_c \) and the vector \(\mathbf{b} \) of the ARX system from the (infinite) sequences of input \(\{u_t\} \) and output \(\{y_t\} \). In practice, we are usually given a finite input/output sequence. In such cases, we need to assume that the sequence of regressors is sufficiently exciting, i.e., the \(T \times (n_a + n_c + 1) \) submatrix

\[
L = [\mathbf{x}_{\max(n_a, n_c)}, \ldots, \mathbf{x}_{\max(n_a, n_c)+T-1}]^T
\]

has the same rank \(n_a + n_c \) as the “full” \(L \) matrix defined in (10.7). Then, the maximum-likelihood estimate for \(\mathbf{b} \in \mathbb{R}^{n_a+n_c+1} \) can be identified as the singular vector that corresponds to the smallest singular value of \(L \).

This condition for sufficient exciting for finite data can also be expressed in terms of only the input sequence. As shown in [Anderson and Johnson, 1982], the regressors are sufficiently exciting if the input sequence \(\{u_t\} \) is, i.e., if the following vectors

\[
\mathbf{u}_t = [u_t, u_{t-1}, \ldots, u_{t-n_a-n_c+1}]^T \in \mathbb{R}^{n_a+n_c}, \quad n_a + n_c - 1 \leq t \leq T,
\]

span an \((n_a + n_c) \)-dimensional subspace.

10.3 Identification of Hybrid ARX Systems

From our discussion in the previous section, we know that the regressors generated by an identifiable ARX system with sufficiently exciting input live in a linear subspace in \(\mathbb{R}^D \) where \(D = \bar{n}_a + \bar{n}_c + 1 \) and \(\bar{n}_a, \bar{n}_c \) are upper bounds on the
orders of the system. The problem of identifying the ARX system becomes one of seeking a vector in the orthogonal complement to this subspace that has certain desired structure. We show in this section how to generalize these concepts to the more challenging problem of identifying a hybrid ARX system (Problem 10.1). Most of our development will focus on the case of single-input single-output (SISO) systems. However, we will discuss at the end of this section how our approach can be easily extended to multiple-input multiple-output (MIMO) systems.

Consider an input/output sequence \(\{u_t, y_t\} \) generated by a hybrid ARX system switching among a set of \(n \) ARX systems with parameters \(\{b_i\}_{i=1}^n \) and possibly different orders \(\{n_a(i), n_c(i)\}_{i=1}^n \). We assume that the HARX system is identifiable, i.e., for all \(i = 1, \ldots, n \), the rational function \(\tilde{H}_i(z) \) associated with the \(i \)th ARX model has no zero-pole cancellation and the configuration subspaces of all the ARX models do not contain one another.\(^6\) In general, we also assume that we do not know the exact orders of the systems but know only certain upper bounds of them, i.e.,

\[
\bar{n}_a \geq \max\{n_a(1), \ldots, n_a(n)\}, \quad \bar{n}_c \geq \max\{n_c(1), \ldots, n_c(n)\}.
\]

Very often we do not know the exact number of systems involved either but know only an upper bound of it, i.e., \(\bar{n} \geq n \).\(^7\) In this section, we study how to identify the hybrid ARX system despite these uncertainties.

10.3.1 The Hybrid Decoupling Polynomial

One of the difficulties in identifying hybrid ARX systems is that we do not know the switching sequence \(\lambda_t \), hence we cannot directly apply the subspace identification technique described in the previous section to each of the \(n \) ARX systems. As we will soon see, in fact both the number of subspaces and their dimensions depend not only on the number of systems and their orders but also on the switching sequence. This motivates us to look for relationships between the data \(\{x_t \in \mathbb{R}^D\} \) and the system parameters \(\{b_i \in \mathbb{R}^D\} \) that do not depend on the switching sequence. To this end, recall that for every \(t \) there exists a state \(\lambda_t = i \in \{1, 2, \ldots, n\} \) such that \(b_i^T x_t = 0 \). Therefore, the following polynomial equation must be satisfied by the system parameters and the input/output data for any switching sequence and mechanism (JMLS or PW ARX):

\[
p_n(x_t) := \prod_{i=1}^n (b_i^T x_t) = 0. \tag{10.16}
\]

\(^6\)One way to ensure this is to assume that for all \(i \neq j = 1, \ldots, n \), \(\tilde{H}_i(z) \) and \(\tilde{H}_j(z) \) do not have all their zeros and poles in common. That is, there is no ARX system that can simulate another ARX system with a smaller order. However, this is not necessary because two ARX systems can have different configuration spaces even if one system’s zeros and poles are a subset of the other’s.

\(^7\)This is the case when a particular switching sequence visits only a subset of all the discrete states.
We call this polynomial equation the hybrid decoupling polynomial (HDP). In the absence of knowledge about the switching mechanism, the HDP encodes all the information about the system parameters that we can obtain from the input/output data.

The HDP eliminates the discrete state by taking the product of the equations defining each one of the ARX systems. While taking the product is not the only way of algebraically eliminating the discrete state, this leads to an algebraic equation with a very nice algebraic structure. The HDP is simply a homogeneous multivariate polynomial of degree \(n \) in \(D \) variables

\[
p_n(z) = \prod_{i=1}^{n} (b_i^T z) = 0,
\]

which can be written linearly in terms of its coefficients as

\[
p_n(z) = \sum_{h_{n1},\ldots,n_D} h_{n1} z_1^{n1} \cdots z_D^{nD} = h_n^T \nu_n(z) = 0.
\]

In equation (10.18), \(h_{n1},\ldots,n_D \in \mathbb{R} \) is the coefficient of the monomial \(z_1^{n1} z_2^{n2} \cdots z_D^{nD} \). Obviously, the vector \(h_n = (h_{n1},\ldots,n_D) \) encodes the parameters of all the constituent ARX systems. We will show in the sequel how this vector can be correctly recovered from the data and how the parameters of each individual ARX system can be further retrieved from it.

10.3.2 Identifying the Hybrid Decoupling Polynomial

Let us assume for now that we know the number of systems \(n \). We will show later how to relax this assumption. Since the HDP (10.16) – (10.18) is satisfied by all the data points \(\{x_t\} \), we can use it to derive the following linear system on the vector \(h_n \):

\[
L_n(\tilde{n}_a, \tilde{n}_c) h_n = \begin{bmatrix} \nu_n(x_{\max}^{\tilde{n}_a, \tilde{n}_c})^T \\ \nu_n(x_{\max}^{\tilde{n}_a, \tilde{n}_c}+1)^T \\ \vdots \\ \nu_n(x_{\max}^{\tilde{n}_a, \tilde{n}_c}+T-1)^T \end{bmatrix} h_n = 0_{T \times 1},
\]

where \(L_n(\tilde{n}_a, \tilde{n}_c) \in \mathbb{R}^{T \times M_0(D)} \) is the matrix of the input/output data embedded via the Veronese map.

Definition 10.4 (Sufficiently Exciting Switching and Input Sequences). A switching and input sequence \(\{\lambda_t, u_t\} \) is called sufficiently exciting for a hybrid ARX system, if the data points \(\{x_t\} \) generated by \(\{\lambda_t, u_t\} \) are sufficient to determine the union of the subspaces associated with the constituent ARX systems as an algebraic variety, in the sense of Theorem B.10 of Appendix A.

Given the data matrix \(L_n(\tilde{n}_a, \tilde{n}_c) \) from a sufficiently exciting switching and input sequence, we would like to retrieve the coefficient vector \(h_n \) from its null space. There are two potential difficulties. First, since the maximum orders \(\tilde{n}_a, \tilde{n}_c \)
may not be tight for every constituent ARX system, the null space of $L_n(\bar{n}_a, \bar{n}_c)$ may be more than one-dimensional, as we have known from a single ARX system. Second, even if we know the discrete state for each time, the structure of the data associated with each state is not exactly the same as that of the ARX system itself: Suppose we switch to the ith system at time t_0, then we have $b_i^T x_{t_0} = 0$. However, the vectors b_i given in equation (10.10) are no longer orthogonal to x_{t_0} even if the embedding is redundant for the ith system. In a sense, the regressor at a switching time usually lives in a subspace whose dimension is higher than that of the subspace associated with the ARX model generating the regressor. Therefore, the configuration space of the data $\{x_t\}$ of an HARX system will not exactly be the union of all the subspaces associated with the constituent ARX systems. Let us denote the former as an algebraic variety Z' and the latter as Z. Then in general, we have $Z' \supseteq Z$.

In order to retrieve h_n uniquely from the data matrix L_n, we need to utilize its additional structure.

Lemma 10.5 (Structure of the Hybrid Decoupling Polynomial). The monomial associated with the last non-zero entry of the coefficient vector h_n of the hybrid decoupling polynomial $p_n(z) = h_n^{T} r_0(z)$ has the lowest degree-lexicographic order in all the polynomials in $a(Z) \cap S_n$.

Proof. Any polynomial of degree n in the ideal $a(Z)$ is a superposition of the polynomials $\prod_{i=1}^{n} (b_{\sigma(i)}^T z)$ where $b_{\sigma(i)}$ is a normal vector to the subspace associated with the ith ARX system. Notice that h_n is the symmetric tensor of b_1, b_2, \ldots, b_n defined in (10.9). For the ith ARX system, the last non-zero entry of the vector b_i always has the lowest degree-lexicographic order among all normal vectors that are orthogonal to the regressors $z = x_t$ associated to the ith system. Therefore, the last non-zero entry of h_n must have the lowest degree-lexicographic order.

Theorem 10.6 (Identifying the Hybrid Decoupling Polynomial). Suppose that $\{u_t, y_t\}_{t=0}^{T}$ are the input/output data generated by an identifiable HARX system. Let $L_n^j \in \mathbb{R}^{j \times j}$ be the first j columns of the embedded data matrix $L_n(\bar{n}_a, \bar{n}_c)$, and let

$$m = \min \{ j : \text{rank}(L_n^j) = j - 1 \}. \quad (10.20)$$

If T is sufficiently large and the input and switching sequences are sufficiently exciting, then the coefficient vector h_n of the hybrid decoupling polynomial is given by

$$h_n = \left[(h_m^m)^T, 0_{1 \times (M_n(D) - m)} \right]^T \in \mathbb{R}^{M_n(D)}, \quad (10.21)$$

8The set of (homogeneous) polynomial of degree n.

9This is easily verifiable from the fact that the derivatives of the polynomials in $a(Z)$ are exactly the normal vectors of the subspaces.
where \(h^m_n \in \mathbb{R}^m \) is the unique vector that satisfies
\[
L^m_n h^m_n = 0 \quad \text{and} \quad h^m_n(1) = 1. \tag{10.22}
\]

Proof. Let \(Z \) be the union of the subspaces associated with the \(n \) constituent ARX systems. Since the input and switching sequence is sufficiently exciting in the sense of Definition 10.4, according to Theorem B.10 of Appendix A, any polynomial of degree less than and equal to \(n \) that vanishes on all the data points must be in the set \(a(Z) \cap S^n \).

From our discussion before the theorem, the configuration space \(Z' \) of the data \(\{x_t\} \) associated with the hybrid ARX system is in general a superset of \(Z \). The ideal \(a'(Z') \) of polynomials that vanish on the configuration space \(Z' \) is then a sub-ideal of the ideal \(a(Z) \) associated with the union of the subspaces. Furthermore, regardless of the switching sequence, the hybrid decoupling polynomial \(p_n(z) \) is always in \(a' \cap S_n \subseteq a \cap S_n \). According to Lemma 10.5, the last non-zero term of \(p_n(z) \) has the lowest degree-lexicographic order among all polynomials of degree \(n \) in \(a \), so does it in \(a' \). Since every solution \(L_n \tilde{h} = 0 \) gives a polynomial \(\tilde{p}_n(z) = h^T_n \nu_n(z) \in a \cap S_n \) of degree \(n \) that vanishes on all data points, the last non-zero entry of \(h_n \) given by (10.21) obviously has the lowest degree-lexicographic order. Therefore, we have \(p_n(z) = h^T_n \nu_n(z) \).

In fact to compute the coefficients \(h_n \) of the hybrid decoupling polynomial, we can do better than checking the rank of the submatrix \(L^j_n \) for every \(j = 1, 2, \ldots \). The following corollary provides one alternative scheme.

Corollary 10.7 (Zero Coefficients of the Decoupling Polynomial). Consider a set of vectors \(b_i \in \mathbb{R}^D, i = 1, \ldots, n \). Suppose that one of the \(b_i \) has a maximal number of zeros on its right, and without loss of generality, assume it is
\[
b_1 = [b_{11}, b_{12}, \ldots, b_{1n_1}, 0, \ldots, 0]^T, \quad \text{with} \quad b_{1n_1} \neq 0.
\]
The multivariate polynomial \(p_n(z) = (b_1^T z)(b_2^T z) \cdots (b_D^T z) \) has zero coefficients for all the monomials of \(\nu_n([z_{n_1+1}, z_{n_1+2}, \ldots, z_D]) \); but the coefficients cannot all be zeros for the monomials of \(\nu_n([z_{n_1}, z_{n_1+1}, \ldots, z_D]) \).

This corollary allows us to narrow down the range for \(m \) (where \(L^j_n \) first drops rank) because \(m \) must fall between two consecutive values of the following:
\[
1, \quad M_n(D) - M_n(D-1), \quad M_n(D) - M_n(D-2), \quad \ldots, \quad M_n(D) - 1.
\]

Remark 10.8 (Sub-Optimality in the Stochastic Case). In the stochastic case (i.e., \(w_t \neq 0 \)), we can still solve for \(h^m_n \) in (10.22) in a least-squares sense as the singular vector of \(L^m_n \) associated with its smallest singular value, using a similar model selection criterion for \(m \) as in Remark 10.1. However, unlike the single system case, the so-found \(h_n \) no longer minimizes the sum of least-square errors \(\sum_t w_t^2 = \sum_t (b_n^T x_t)^2 \). Instead, it minimizes (in a least-square sense) a

\[10^{th} S^n \] is the set of polynomials of degree up to \(n \).
“weighted version” of this objective:
\[
\sum t \alpha_t (b_t^T x_t)^2 = \sum_t \prod_{i \neq \lambda_t} (b_t^T x_t)^2 (b_{\lambda_t}^T x_t)^2,
\]
(10.23)

where the weight \(\alpha_t \) is conveniently chosen to be \(\prod_{i \neq \lambda_t} (b_t^T x_t)^2 \). Such a “softening” of the objective function allows a global algebraic solution. It offers a sub-optimal approximation for the original stochastic objective when the variance of \(w_t \) is small. One can use the solution as the initialization for any other (local) nonlinear optimization scheme (such as Expectation Maximization) to further minimize the original stochastic objective.

Notice that in the above theorem, we have assumed that the switching sequence is such that all the ARX systems are sufficiently visited. What if only a subset of the \(n \) systems are sufficiently visited? Furthermore, in practice, we sometimes do not even know the correct number of systems involved and only know an upper bound for it. The question is whether the above theorem still applies when the degree \(n \) we choose for the Veronese embedding is strictly larger than the actually number of systems. This is answered by the following corollary whose proof is straightforward.

Corollary 10.9 (Identifying the Number of ARX Systems). Let \(\{u_t, y_t\}_{t=0}^T \) be the input/output data generated by an HARX system with \(n < n_\bar{n} \) discrete states. If \(T \) is sufficiently large and the input and switching sequences are sufficiently exciting, then the vector \(h_{\bar{n}} \) found by Theorem 10.6 is the symmetric tensor product
\[
h_{\bar{n}} = \text{Sym} (b_1 \otimes b_2 \cdots \otimes b_n \otimes e_1 \otimes \cdots \otimes e_1),
\]
(10.24)

where \(e_1 = [1, 0, \ldots, 0]^T \in \mathbb{R}^D \), i.e., \(h_{\bar{n}} \) is the coefficients of the polynomial:
\[
p_{\bar{n}}(z) = h_{\bar{n}}^T \nu_{\bar{n}}(z) = (b_1^T z)(b_2^T z) \cdots (b_n^T z) z_{\bar{n}-n}.
\]
(10.25)

Therefore, even if we may over-estimate the number of constituent systems or the switching sequence does not visit all the systems, the solution given by Theorem 10.6 will simply treat the nonexistent (or not visited) systems as if they had zero order\(^{11}\) and the information about the rest of the systems will be conveniently recovered.

10.3.3 Identifying System Parameters and Discrete States

Theorem 10.6 allows us to determine the hybrid decoupling polynomial \(p_{\bar{n}}(z) = h_{\bar{n}}^T \nu_{\bar{n}}(z) \), from input/output data \(\{u_t, y_t\}_{t=0}^T \). The rest of the problem is to recover the system parameters \(\{b_i\}_{i=1}^n \) from \(h_{\bar{n}} \). To this end, recall from Chapter 4 that

\(^{11}\) That is, the coefficient vector \(b = e_1 \) corresponds to the “system” \(y_t = 0 \) with \(n_a = n_c = 0 \), which is a trivial ARX system.
Theorem 10.10

(Identifying the Constituent System Parameters)

following theorem.

if

choose

n

that is strictly larger than

put/output data

\(x \) with the

n

0

\((p \) latter constraint is equivalent to

We are left with choosing the parameters

where

\(e_1 = [1, 0, \ldots, 0]^T \in \mathbb{R}^D \). Therefore, we can estimate the system parameters directly from the derivatives of \(p_n(z) \) at a collection of \(n \) points \(\{z_i \in \mathcal{H}_i\}_{i=1}^n \) lying in the \(n \) hyperplanes, respectively.

In order to find the set of points \(\{z_i \in \mathcal{H}_i\}_{i=1}^n \), let us consider a line with base point \(z_0 \) and direction \(v \), \(L = \{z_0 + \alpha v, \alpha \in \mathbb{R}\} \). If \(z_0 \neq 0 \), \(z_0 \) is not parallel to \(v \), and \(b_i^Tv \neq 0 \), then the line \(L \) in general intersects the \(n \) hyperplanes \(\bigcup_{i=1}^n \mathcal{H}_i = \{z : p_n(z) = 0\} \) at \(n \) distinct points

\[
z_i = z_0 + \alpha_i v \in \mathcal{H}_i \cap L, \quad i = 1, \ldots, n,
\]

where \(\{\alpha_i\} \) are the roots of the univariate polynomial

\[
q_n(\alpha) = p_n(z_0 + \alpha v).
\]

We are left with choosing the parameters \(x_0 \) and \(v \) for the line \(L \). The base point \(x_0 \) can be chosen as any nonzero vector in \(\mathbb{R}^D \). Given \(x_0 \), the direction \(v \) must be chosen not parallel to \(z_0 \) and such that \(b_i^Tv \neq 0 \), for all \(i = 1, \ldots, n \). Since the latter constraint is equivalent to \(p_n(v) \neq 0 \), and \(p_n \) is known, we can immediately choose \(v \) even though we do not know the system parameters \(\{b_i\}_{i=1}^n \).

Be aware that if we have chosen for the Veronese embedding a number \(\bar{n} \) that is strictly larger than \(n \), the polynomial \(p_{\bar{n}}(z) \) will be of the form

\[
(b_1^Tv)(b_2^Tv) \cdots (b_n^Tv) z_1^{\bar{n}-n}.
\]

Then the line \(L \) will have only \(n+1 \) intersections with the \(n \) hyperplanes \(\mathcal{H}_1, \ldots, \mathcal{H}_n \) and the hyperplane \(\mathcal{H}_0 = \{z : e_1^Tz = z_1 = 0\} \). The intersection \(z_0 = \mathcal{H}_0 \cap L \) has a multiplicity of \(\bar{n} - n \); and \(Dp_{\bar{n}}(z_0) \sim e_1 \) if \(\bar{n} - n = 1 \) or \(Dp_{\bar{n}}(z_0) = 0 \) if \(\bar{n} - n > 1 \). We have essentially proven the following theorem.

Theorem 10.10 (Identifying the Constituent System Parameters). *Given the input/output data \(\{u_t, y_t\}_{t=0}^T \) generated by an HARX system with \(n \) discrete states, the system parameters \(\{b_i\}_{i=1}^n \) can be computed from the the hybrid decoupling polynomial \(p_n(z) = h_n^Tv_n(z) \) for any \(\bar{n} \geq n \) as follows:

1. Choose \(z_0 \neq 0 \) and \(v \) such that \(v \neq \gamma z_0 \) and \(p_{\bar{n}}(v) \neq 0 \).

2. Solve for the \(\bar{n} \) roots \(\{\alpha_i\}_{i=1}^{\bar{n}} \) of \(q_{\bar{n}}(\alpha) = p_{\bar{n}}(z_0 + \alpha v) = 0 \).
3. For all the roots \(z_i = z_0 + \alpha_i v \) with \(z_1 \neq 0 \), compute the system parameters \(\{ b_i \}_{i=1}^n \) as
\[
b_i = \frac{Dp_n(z_i)}{\epsilon_i^T Dp_n(z_i)} \in \mathbb{R}^D, \quad i = 1, 2, \ldots, n.
\] (10.30)

Remark 10.11 (Alternative Ways of Identifying \(\{ b_i \}_{i=1}^n \) from Noisy Data). In the presence of noise, we can still estimate the normal vectors \(\{ b_i \}_{i=1}^n \) as in Theorem 10.10. However, the quality of the estimates will depend on the choice of the parameters \(z_0 \) and \(v \). In this case, one can choose multiple \((z_0, v) \) satisfying the above conditions, obtain the system parameters for each choice, and let \(\{ b_i \}_{i=1}^n \) be the parameters that better reconstruct \(h_n \). Alternatively, one can directly choose \(\{ z_i \}_{i=1}^n \) from points in the data set that fit the decoupling polynomial in an optimal way. That allows us to bypass the problem of solving the (real) roots of the real polynomial \(q_0(\alpha) \).

Once the system parameters \(\{ b_i \}_{i=1}^n \) are recovered, we can then reconstruct the orders \(n_a(i), n_c(i) \) of each constituent ARX system as well as the discrete state trajectory \(\{ \lambda_t \} \) from the input/output data \(\{ x_t \}_{t=0}^T \). Notice that for each time \(t \) there exists a generally unique \(i \) such that \(b_i^T x_t = 0 \). Therefore, the discrete state \(\lambda_t \) can be easily identified as:
\[
\lambda_t = \arg \min_{i=1, \ldots, n} (b_i^T x_t)^2.
\] (10.31)

There will be ambiguity in the value of \(\lambda_t \) only if \(x_t \) happens to be at (or close to) the intersection of more than one subspace associated to the constituent ARX systems. However, the set of all such points is a zero measure set of the variety \(Z \subseteq \{ z : p_n(z) = 0 \} \).

10.3.4 The Basic Algorithm and its Extensions

Based on the results that we have derived so far, we summarize the main steps for solving the identification of an HARX system (Problem 10.1) as the following Algorithm 10.1. Notice that the algorithm is different from the general-purpose GPCA algorithm given in Chapter 4. By utilizing the structure in the system parameters \(b_i \) and subsequently in their symmetric tensor product \(h_n \), the algorithm guarantees that the so found polynomial \(p_n \) is the desired hybrid decoupling polynomial.

Different Embedding Orders.

The order of stacking \(\{ y_t \} \) and \(\{ u_t \} \) in the vector \(x_t \) in (10.8) is more efficient for the algorithm when \(n_a(i) \) are approximately the same for all the constituent systems and \(n_c(i) \) are much smaller than \(n_a(i) \). However, if \(n_a(i) \) are rather different for different systems and \(n_c(i) \) and \(n_a(i) \) are roughly the same, the following ordering in time \(t \)
\[
x_t = \begin{bmatrix} y_t, y_{t-1}, u_{t-1}, y_{t-2}, u_{t-2}, \ldots, y_{t-n_a}, u_{t-n_a} \end{bmatrix}^T \in \mathbb{R}^D
\] (10.32)
Algorithm 10.1 (Identification of an SISO HARX System).

Given the input/output data \(\{y_t, u_t\} \) from a sufficiently excited hybrid ARX system, and the upper bound on the number \(\bar{n} \) and maximum orders \((\bar{n}_a, \bar{n}_c)\) of its constituent ARX systems:

1. **Veronese Embedding.** Construct the data matrix \(L_{\bar{n}}(\bar{n}_a, \bar{n}_c) \) via the Veronese map based on the given number \(\bar{n} \) of systems and the maximum orders \((\bar{n}_a, \bar{n}_c)\).

2. **Hybrid Decoupling Polynomial.** Compute the coefficients of the polynomial

 \[
 p_{\bar{n}}(z) \doteq h_{\bar{n}}(z) = \prod_{i=1}^{\bar{n}} (b_i^T z) z^{\bar{n}-n} = 0
 \]

 from the data matrix \(L_{\bar{n}} \) according to Theorem 10.6 and Corollary 10.9. In the stochastic case, comply with Remarks 10.1 and 10.8.

3. **Constituent System Parameters.** Retrieve the parameters \(\{b_i\}_{i=1}^{\bar{n}} \) of each constituent ARX system from \(p_{\bar{n}}(z) \) according to Theorem 10.10. In the noisy case, comply with Remark 10.11.

4. **Key System Parameters.** The correct number of system \(n \) is the number of \(b_i \neq e_1 \); The correct orders \(n_a(i), n_c(i) \) are determined from such \(b_i \) according to their definition (10.9); The discrete state \(\lambda_t \) for each time \(t \) is given by equation (10.31).

results in less non-zero leading coefficients in \(h_{\bar{n}} \). Thus the above algorithm becomes more efficient. Nevertheless, if all the systems have the same \(n_a = n_c \), both embeddings have the same efficiency.

Inferring the Switching Mechanisms.

Once the system parameters and the discrete state have been identified, the problem of estimating the switching mechanisms, e.g., the partition of the state space for PWARX or the parameters of the jump Markov process for JMLS, becomes a simpler problem. We refer interested readers to [Bemporad et al., 2003, Ferrari-Trecate et al., 2003] for specific algorithms.

10.4 Simulations and Experiments

In this section we evaluate the performance of the proposed algorithm with respect to the model orders and the amount of noise. We also present experiments on real data from a component placement process in a pick-and-place machine.
10.4.1 Error in the Estimation of the Model Parameters

Consider the PW ARX system taken from [Niessen and A.Juloski, 2004]

\[
y_t = \begin{cases}
0.5u_{t-1} + 0.5 + w_{t-1} & \text{if } u_{t-1} \in [-2.5, 0], \\
-u_{t-1} + 2 + w_{t-1} & \text{if } u_{t-1} \in (0, 2.5].
\end{cases}
\]

(10.33)

The input sequence \(u_t \) consists of 100 points, 80% uniformly distributed in \([-2.5, 2.5]\) and 20% uniformly distributed in \([0.85, 1.15]\). The noise is \(w_t \overset{i.i.d.}{\sim} \mathcal{N}(0, 0.005) \). The error between the estimated parameters \(\hat{b} \) and the true parameters \(b \) is defined as

\[
\text{error} = \max_{i=1, \ldots, m} \min_{j=1, \ldots, n} \frac{\| \hat{b}_i - b_j \|}{\| b_j \|}.
\]

We applied our algorithm with known parameters \(n = 2 \), \(n_a = 0 \) and \(n_c = 1 \). Our algorithm gives an estimate for the ARX model parameters of \([0.5047, 0.5102]^T\) and \([-0.9646, 1.9496]^T\), which corresponds to an error of 0.0276. Table 10.1 compares our results with those reported in [Niessen and A.Juloski, 2004] for the algorithms of [Ferrari-Trecate et al., 2003] and [Bemporad et al., 2003]. Notice that our algorithm provides a purely algebraic solution to the problem which does not perform iterative refinement. Nevertheless it provides a comparable error with the other algorithms which are based on iterative refinement.

<table>
<thead>
<tr>
<th>Algorithms</th>
<th>Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferrari-Trecate et. al.</td>
<td>0.0045</td>
</tr>
<tr>
<td>Bemporad et. al.</td>
<td>0.0334</td>
</tr>
<tr>
<td>Algorithm 10.1</td>
<td>0.0276</td>
</tr>
</tbody>
</table>

10.4.2 Error as a Function of the Model Orders

Consider the PWAR system taken from [Niessen and A.Juloski, 2004]

\[
y_t = \begin{cases}
2y_{t-1} + 0u_{t-1} + 10 + w_t & \text{if } y_{t-1} \in [-10, 0], \\
-1.5y_{t-1} + 0u_{t-1} + 10 + w_t & \text{if } y_{t-1} \in (0, 10].
\end{cases}
\]

(10.34)

with initial condition \(y_0 = -10 \), input \(u_t \overset{i.i.d.}{\sim} \mathcal{U}(-10, 10) \) and noise \(w_t \overset{i.i.d.}{\sim} \mathcal{N}(0, 0.01) \).
We applied our algorithm with known number of models $n = 2$, but unknown model orders (n_a, n_c). We evaluated the performance of our algorithm as a function of the orders (n_a, n_c). We used a fixed value for (n_a, n_c) and search for the polynomial in the null space of $L_n(n_a, n_c)$ with the smallest degree-lexicographic order. We repeated the experiment for multiple values of $n_a = 1, \ldots, 4$ and $n_c = 1, \ldots, 10$, to evaluate the effectiveness of equation (10.12) at finding the “correct” null space of $L_n(n_a, n_c)$. Figure 10.2 shows the results for $\kappa = 10^{-5}$. Notice that for all the range of values of n_a and n_c, the algorithm gives an error that is very close to the theoretical bound of 0.01 (the noise variance).

For the correct system orders $n_a = 1$ and $n_c = 0$, the estimates of the ARX model parameters from our algorithm are $[1.9878, 0, 10.0161]^T$ and $[-1.4810, 0, 10.0052]^T$, which have an error of 0.0020. These results are significantly better than those reported in [Niessen and A.Juloski, 2004] for the Ferrari-Trecate and Bemporad’s algorithms.

10.4.3 Error as a Function of Noise

Consider the PWAR model taken from [Niessen and A.Juloski, 2004]

\[
y_t = \begin{cases}
2u_{t-1} + 10 + w_t & \text{if } u_{t-1} \in [-10, 0], \\
-1.5u_{t-1} + 10 + w_t & \text{if } u_{t-1} \in (0, 10],
\end{cases}
\]

(10.35)

with input $u_t \text{i.i.d.} \sim \mathcal{U}(-10, 10)$ and noise $w_t \text{i.i.d.} \sim \mathcal{N}(0, \sigma_n^2)$. We run our algorithm with $n = 2$, $n_a = 0$ and $n_c = 1$ for 10 different values of σ_n and compute the mean and the variance of the error in the estimated model parameters, as shown in Figure 11.4. The algorithm estimates the parameters with an error of less than 0.37% for the levels of noise considered. Again, the errors provided by the

12Since here the system is an affine ARX model with a constant input, we need to slightly modify our algorithm by using the homogeneous representation for the regressor x_t, i.e., appending an entry of “1.”
purely algebraic algorithm (Algorithm 10.1) without any iterative refinement are comparable to those of the Ferrari-Trecate and Bemporad’s algorithms reported in [Niessen and A.Juloski, 2004] which are about $2 \sim 3\%$. Furthermore, if we use the solutions offered by our algebraic algorithm to initialize other iterative refinement algorithms such as the Expectation and Maximization (EM) algorithm, then the error is reduced significantly to about 1% (see Figure 11.4 left).

10.4.4 Experimental Results on Test Datasets

We applied our algorithm with $n = n_a = n_c = 2$ to four datasets of $T = 60,000$ measurements from a component placement process in a pick-and-place machine [Juloski et al., 2004].

Since the methods of [Ferrari-Trecate et al., 2003] and [Bemporad et al., 2003] cannot handle large datasets, for comparison purposes we first report results on a down-sampled dataset of 750 points. The 750 points are separated in two overlapping groups of points. The first 500 points are used for identification, and the last 500 points are used for validation. Table 10.2 shows the average sum of squared residuals (SSR) – one step ahead prediction errors, and the average sum of squared simulation errors (SSE) obtained by our method for all four datasets, as well as the SSE of Ferrari-Trecate’s and Bemporad’s algorithm for the first dataset as reported in [Niessen and A.Juloski, 2004]. Figure 10.4 shows the true and simulated outputs for dataset 1.

We now report the results of our algorithm tested on the entire datasets. We split the 60,000 measurements in two groups of 30,000 points each. The first 30,000 are used for identification and the last 30,000 for simulation. Table 10.3 shows the average sum of squared residual error (SSR) and the average sum of squared

13 We thank Prof. A. Juloski for providing us with the datasets
14 We take one out of every 80 samples.
Table 10.2. Training and simulation errors for down-sampled datasets.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>n</th>
<th>n_a</th>
<th>n_c</th>
<th>GPCA</th>
<th>SSR</th>
<th>SSE</th>
<th>F-T SSE</th>
<th>Bem. SSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0.0803</td>
<td>0.1195</td>
<td>1.98</td>
<td>2.15</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0.4765</td>
<td>0.4678</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0.6692</td>
<td>0.7368</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3.1004</td>
<td>3.8430</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

Figure 10.4. Training and simulation sequences for down-sampled dataset 1.

Simulation error (SSE) obtained by our method for all four datasets. Figure 10.5 shows the true and simulated outputs for dataset 1.

Overall, the algorithm demonstrates a very good performance in all four datasets. The running time of a MATLAB implementation of our algorithm is 0.15 second for the 500 data points and 0.841 second for 30,000 data points.

Table 10.3. Training and simulation errors for complete datasets.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>n</th>
<th>n_a</th>
<th>n_c</th>
<th>SSR</th>
<th>SSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 with all points</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4.9696×10^{-6}</td>
<td>5.3426×10^{-6}</td>
</tr>
<tr>
<td>2 with all points</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>9.2464×10^{-6}</td>
<td>7.9081×10^{-6}</td>
</tr>
<tr>
<td>3 with all points</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2.3010×10^{-5}</td>
<td>2.5290×10^{-5}</td>
</tr>
<tr>
<td>4 with all points</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>7.5906×10^{-6}</td>
<td>9.6362×10^{-6}</td>
</tr>
</tbody>
</table>

10.5 Bibliographic Notes

Work on identification (and filtering) of hybrid systems first appeared in the seventies; a review of the state of the art as of 1982 can be found in [Tugnait, 1982]. After a decade-long hiatus, the problem has recently been enjoying considerable interest [Bemporad et al., 2000, Ezzine and Haddad, 1989, Sun et al., 2002, Szigeti, 1992, Vidal et al., 2002a, Vidal et al., 2003a]. Much related work has also
Figure 10.5. Training and simulation sequences for complete datasets – the simulated and the identified sequences overlap almost exactly.

When the model parameters and the switching mechanism are known, the identification problem reduces to the design of observers for the hybrid state [Alessandri and Coletta, 2001, Balluchi et al., 2002, Ferrari-Trecate et al., 2002, Vecchio and Murray, 2004], together with the study of observability conditions under which hybrid observers operate correctly [Babaali and Egerstedt, 2004, Bemporad et al., 2000, Collins and Schuppen, 2004, Vidal et al., 2002a, Vidal et al., 2003a, Hwang et al., 2003, Santis et al., 2003].

When the model parameters and the switching mechanism are both unknown, the identification problem becomes much more challenging. Existing work has concentrated on the class of piecewise affine and piecewise ARX systems, i.e., models in which the regressor space is partitioned into polyhedra with affine or ARX submodels for each polyhedron. For instance, [Ferrari-Trecate et al., 2003] assumes that the number of systems is known, and proposes an identification algorithm that combines clustering, regression and classification techniques; [Bemporad et al., 2001] solves for the model parameters and the partition of the state space using mixed-integer linear and quadratic programming; [Bemporad et al., 2003] uses a greedy approach for partitioning a set of infeasible inequalities into a minimum number of feasible subsystems, and then iterates between assigning data points to models and computing the model parameters.

The connection between GPCA and identification of Hybrid ARX systems is first noticed in [Vidal et al., 2003c, Vidal, 2004]. Material presented in this chapter follows that in [Ma and Vidal, 2005a].
Chapter 11
Switched ARMA Systems

In this chapter, we consider the identification problem of a class of hybrid linear time-invariant systems (LTI) based on their state-space representations. For a single LTI system, its state-space representation is also known in systems theory as the Auto Regressive Mean Average (ARMA) model:

\[
\begin{align*}
\text{ARMA:} & \quad \begin{cases}
x_{t+1} = Ax_t + Bu_t + v_t, \\
y_t = Cx_t + Du_t + w_t,
\end{cases}
\end{align*}
\]

(11.1)

where \(x_t \in \mathbb{R}^n\) is the state of the system, \(u_t \in \mathbb{R}^l\) the input of the system, \(y_t \in \mathbb{R}^m\) the output of the system, and \(v_t\) and \(w_t\) are the model and output noise, respectively. Then we have \(A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times l}, C \in \mathbb{R}^{m \times n},\) and \(D \in \mathbb{R}^{m \times l}\).

Now let us consider a hybrid LTI system which may switches among multiple ARMA models. For simplicity, we assume the ARMA models involved have the same number of inputs and outputs but probably different orders, \(^1\) and we have

\[
\text{Hybrid ARMA:} \begin{cases}
x_{t+1} = A_{\lambda(t)}x_t + B_{\lambda(t)}u_t + v_t, \\
y_t = C_{\lambda(t)}x_t + D_{\lambda(t)}u_t + w_t,
\end{cases}
\]

(11.2)

where the discrete switching state \(\lambda(t)\) is a piecewise-constant function taking values in \(\{1, 2, \ldots, s\},\) \(^2\) \(A_i \in \mathbb{R}^{n_i \times n_i}, B_i \in \mathbb{R}^{n_i \times l}, C_i \in \mathbb{R}^{m \times n_i},\) and \(D_i \in \mathbb{R}^{m \times l}\) are the system matrices for the \(i\)th ARMA system, \(u_t \in \mathbb{R}^l, y_t \in \mathbb{R}^m,\)

\(^1\)One can always view the states of all of the systems, independent of order, as being embedded in the state-space of their highest order. For the method presented in this chapter, it does not make any difference if continuity in the states is imposed or not.

\(^2\)We assume that the hybrid system is switching relatively slowly from one system to another. We will quantify how slow the switching needs to be in Section 11.3.
and \(x_t \in \mathbb{R}^n \) are the input, output, and state of the hybrid system, respectively. Regarding the above hybrid system, we are interested in the following problem:

Problem 11.1 (Identification of Hybrid ARMA Systems).

Given only the input \(u_t \) and the output \(y_t \) of system (11.2) over a period of time and an upper bound \(n \) on the order of all the ARMA systems, determine:

1. the number of discrete states \(s \), i.e., the number of ARMA systems involved in the hybrid system,
2. the unknown order \(n_i \) of each ARMA system,
3. all of the system parameters \(\{ (A_i, B_i, C_i, D_i) \} \) and continuous states \(\{ x_t \} \),
4. the times where the systems switch from one to another, i.e., the piecewise-constant function \(\lambda(t) \).

The reader should be aware that if the switching function \(\lambda(t) \) is known, the rest of the problem can be reduced to a conventional identification problem for a single ARMA system. Solutions to the single-system case have been well established in the literature, for instance see [Ljung, 1987, van Overschee and Moor, 1996] and references therein.

In this chapter, we focus on finding solutions to the identification of the hybrid ARMA system without knowing the switching function. In Section 11.1, we discuss how to convert the hybrid identification problem into one that identifies multiple subspaces by embedding the input/output data into a higher-dimensional space. In Section 11.2, we show how to identify the multiple subspaces via GPCA. In Section 11.3, we discuss how to handle the embedded data around the switches since these data points do not belong to any of the subspaces. Thus, unlike the case with hybrid ARX systems, identification of hybrid ARMA systems must deal with outliers and robustness of the GPCA algorithm becomes a crucial issue. In Section 11.4, we demonstrate the proposed identification schemes through a series of experiments for both deterministic and stochastic ARMA systems.

11.1 Subspace Embeddings of an ARMA System

In this section, we study two different ways of embedding the input/output data from an ARMA system as points of a subspace in a high-dimensional ambient space. The first embedding, based on the so-called oblique projection, was introduced in the subspace method [van Overschee and Moor, 1996]; and the second embedding is based on the direct input/output relationship. Each embedding has its own desirable properties, as will be discussed in detail. Using either embedding, the hybrid identification problem becomes one of identify multi-
ple subspaces from the embedded data of all of the ARMA systems – a typical problem that can be solved using GPCA.

Notation.

Consider a stochastic ARMA system,

\[
\text{ARMA: } \begin{cases}
 x_{t+1} = Ax_t + Bu_t + v_t, \\
 y_t = Cx_t + Du_t + w_t.
\end{cases}
\] (11.3)

We define the \textit{i}th-order observability matrix as

\[
\Gamma_i = \begin{bmatrix}
 C \\
 CA \\
 \vdots \\
 CA^{i-1}
\end{bmatrix} \in \mathbb{R}^{im \times n}.
\]

For an observable system, \text{rank}(\Gamma_n) = n. Given a time instant \(t\) and two integers \(i, j\), define the input and output block Hankel matrices, respectively, as

\[
U_{t|t+i-1} = \begin{bmatrix}
 u_t & \cdots & u_{t+j-1} \\
 \vdots & \ddots & \vdots \\
 u_{t+i-1} & \cdots & u_{t+i+j-2}
\end{bmatrix} \in \mathbb{R}^{(li)\times j},
\]

\[
Y_{t|t+i-1} = \begin{bmatrix}
 y_t & \cdots & y_{t+j-1} \\
 \vdots & \ddots & \vdots \\
 y_{t+i-1} & \cdots & y_{t+i+j-2}
\end{bmatrix} \in \mathbb{R}^{(mi)\times j}.
\]

Furthermore, define the input/output Hankel block matrix to be

\[
W_{t|t+i-1} = \begin{bmatrix}
 U_{t|t+i-1} \\
 Y_{t|t+i-1}
\end{bmatrix} \in \mathbb{R}^{(l+m)i\times j}. \quad (11.4)
\]

For a pair of fixed \(i, j\), define the \textit{past} and \textit{future} input Hankel block matrices as

\[
U_p = U_{0|i-1} \quad \text{and} \quad U_f = U_{i|2i-1},
\]

and the \textit{past} and \textit{future} output Hankel block matrices as

\[
Y_p = Y_{0|i-1} \quad \text{and} \quad Y_f = Y_{i|2i-1}.
\]

The Toeplitz matrix is denoted by

\[
\Delta_i = \begin{bmatrix}
 D & 0 & 0 & \cdots & 0 & 0 \\
 CB & D & 0 & \cdots & 0 & 0 \\
 CAB & CB & \ddots & \ddots & \ddots & \ddots \\
 \vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\
 CA^{i-3}B & \cdots & CB & D & 0 \\
 CA^{i-2}B & CA^{i-3}B & \cdots & CAB & CB & D
\end{bmatrix} \in \mathbb{R}^{(mi)\times (li)}.
\]

\subsection*{11.1.1 Input/Output Embedding via the Oblique Projection}

The subspace method introduced in [van Overschee and Moor, 1996] has proposed a way of embedding the input/output data of a system into a subspace. This scheme makes use of the notion of \textit{oblique projection}. Consider three matrices \(A, B, \) and \(C\) with the same number of columns \((A \in \mathbb{R}^{p \times j}, \ B \in \mathbb{R}^{q \times j}, \)

\[
\]
The orthogonal projection of the row space of A onto B is denoted by A/B and computed as

$$A/B = AB^T (BB^T)^+ B.$$

The oblique projection of the row space of A onto the row space of C along the direction of the row space of B is denoted by $A/B \cdot C$ and calculated as the formula:

$$A/B \cdot C = A \hat{C}^T B^T \tilde{C} \tilde{C}^T B B^T \tilde{C} (BB^T)^+ \tilde{B}.$$

We summarize the results from the subspace method [van Overschee and Moor, 1996] as the following proposition:

Proposition 11.1 (Subspace Method). Consider a deterministic ARMA system (i.e., $v_t = w_t = 0$), its input u and output y over a time interval $t = 0, 1, \ldots, T - 1$, two integers i and j, and let $W_p = \begin{bmatrix} Y_p \\ U_p \end{bmatrix}$. If the following three conditions are satisfied:

1. The covariance matrix of $U = \begin{bmatrix} U_p \\ U_f \end{bmatrix}$ has rank $2i$,

2. The row spaces of U_f and $X_p = [x_0, x_1, \ldots, x_{j-1}]$ have no nontrivial intersection,

3. rank $\begin{bmatrix} U_p \\ X_p \end{bmatrix} = \text{rank} \begin{bmatrix} U_p - U_p/U_f \\ X_p - X_p/U_f \end{bmatrix}$,

then we have

$$Z = Y_f/U_f W_p = \Gamma_i [x(i), \ldots, x(i + j - 1)]. \quad (11.5)$$

For the stochastic case (with v_t, w_t being stationary processes), this statement hold asymptotically as $j \to \infty$.

That is, the oblique projection of Y_f on W_p along U_f, i.e., column vectors of the matrix Z, belongs to the range of the observability matrix Γ_i. Each condition above imposes some constraints on the possible choices of i and j. From the first condition, we know that $j \geq 2i$. From the second condition, we need $j > li + n$. Finally, from the third condition, we need $j - li \geq li + n$. For an observable system, Γ_i has rank n for $i \geq n$. However, in order for the above oblique projection always to span an n-dimensional proper subspace in the ambient space \mathbb{R}^{mi}, we need $i > n$ in case $m = 1$. So the lower bounds for i and j are

$$i \geq n + 1, \quad j \geq 2li + n \geq (2l + 1)(n + 1) - 1. \quad (11.6)$$

Note that the first two conditions above do not necessarily imply the third condition, as shown by the example below.
Example 11.2 Consider the system:

\[
A = \begin{bmatrix}
0.603 & 0.603 & 0 & 0 \\
-0.603 & 0.603 & 0 & 0 \\
0 & 0 & -0.603 & -0.603 \\
0 & 0 & 0.603 & -0.603
\end{bmatrix}, \\
B = \begin{bmatrix}
0.1582 & 0.4724 & 0.7395 & -0.4528 \\
\end{bmatrix}^T, \\
C = \begin{bmatrix}
-0.5794 & 1.0751 & -0.5225 & 0.1830 \\
\end{bmatrix}, \\
D = \begin{bmatrix}
-0.7139
\end{bmatrix}.
\]

We have \(n = 4, \ l = 1, \) and \(m = 1. \) The system is observable since the observability matrix \(\Gamma_n \) has rank 4. We choose \(i = n + 1 = 5 \) and \(j = (2l + 1)(n + 1) - 1 = (2 \times 1 + 1)(4 + 1) - 1 = 14. \) Hence \(Y_f \in \mathbb{R}^{5 \times 14}. \) It can be easily verified that, with independent random inputs, the rank of \(Y_f / U_f W_p \) is 4, and equation (11.5) always holds. However, if we choose \(j = 13, \) the above condition 3) is not satisfied since the left side of the condition 3) has rank 9 while the right side has rank 8. Furthermore, the rank of \(Y_f / U_f W_p \) becomes 5, and equation (11.5) fails.

11.1.2 Direct Input/Output Embedding

The subspace obtained for each ARMA system from the above method only depends on the model parameters \((A, C)\) but not \((B, D)\) at all. Hence it cannot differentiate systems that differ only \((B, D)'s, \) at least not from the subspaces alone. In addition, the available sample points for such subspaces, i.e., columns of the matrix \(Z, \) depend on input/output data over a time window size of at least \(T = 2i + j - 1 = (2l + 3)(n + 1) - 2, \) which can be very large. This is not very desirable in our context in that each switch may corrupt a large number of sample points.

We now present a more direct way of embedding the input/output data of an ARMA system into a subspace structure, whose dimensionality also happens to be related to the rank of the observability matrix \(\Gamma. \) The key is that there is a natural rank condition associated with the input/output data matrix \(W_{t|t+k} \in \mathbb{R}^{(l+m)(k+1)\times j} \) defined in equation (11.4).

\[\text{Theorem 11.3. For a deterministic ARMA system and a given } k > 0, \text{ assume the rank of the observability matrix } \Gamma_{k+1} \text{ is } q \leq n. \text{ We always have}\]

\[\text{rank } (W_{t|t+k}) \leq l(k + 1) + q. \] (11.7)

For large enough \(j \) and \(k \geq n, \) the bound on the rank of \(W_{t|t+k} \) is also tight if \(U_{t|t+k} \) is full-rank and the system is observable.

3 Time window for \(W_p \) is from \(t \) to \(t + i + j - 1, \) and from \(t + i - 1 \) to \(t + 2i + j - 2 \) for \(Y_f \) and \(U_f. \)

4 The reader should realize that the following theorem and its proof can be easily paraphrased in terms of properties of the (input/output) transfer function associated with an \(n \)-th-order observable state-space model. However, our statement is more general since \(k \) can be larger than the system order. This is important when the actual system order is not known.
Proof. Let \(s = l(k + 1) + q + 1 \). We only need to prove the case for \(j \geq s \), which can be achieved by showing that the size of the maximal set of linearly independent column vectors of \(W_{t|t+k} \) is smaller than \(s \). Select any \(s \) column vectors from \(W_{t|t+k} \) corresponding to time instants \(t_1, \ldots, t_s \) and denote them as \(w_i \) for \(i = 1, \ldots, s \). We want to show that the \(w_i \)'s are linearly dependent. Let \(g_p \) be the \(p \)th row of \(\Gamma_{k+1} \). We can pick \(p_1 < p_2 < \cdots < p_q \) such that \(g_{p_1}, g_{p_2}, \ldots, g_{p_q} \) are a set of maximal linearly independent row vectors of \(\Gamma_{k+1} \). Denote the stack of these \(q \) rows as \(\bar{\Gamma}_{k+1} \). We can then define

\[
\bar{w}_i = \begin{bmatrix} u_{t_i}^T, \ldots, u_{t_i+k}^T, g_{p_1}x_{t_i}, \ldots, g_{p_q}x_{t_i} \end{bmatrix}^T \in \mathbb{R}^{l(k+1)+q},
\]

for \(i = 1, 2, \ldots, s \). Therefore, there exist \(\alpha_1, \ldots, \alpha_s \in \mathbb{R} \) such that

\[
\sum_{p=1}^{s} \alpha_p \bar{w}_p = 0,
\]

which gives \(\bar{\Gamma}_{k+1} \sum_{i=1}^{s} \alpha_i x_{t_i} = 0 \) and \(\sum_{p=1}^{s} \alpha_p u_{t_p+r} = 0, r = 0, \ldots, k \). This implies that \(\sum_{p=1}^{s} \alpha_p g_{p+r} = C \sum_{p=1}^{s} \alpha_p u_{t_p+r} = CA \sum_{p=1}^{s} \alpha_p x_{t_p} \), for \(r = 0, 1, \ldots, k \). Since \(\bar{\Gamma}_{k+1} \) represents a maximal set of linearly dependent row vectors of \(\Gamma_{k+1} \), we have \(\bar{\Gamma}_{k+1} \sum_{p=1}^{s} \alpha_p x_{t_p} = 0 \) and consequently \(\sum_{p=1}^{s} \alpha_p g_{p+r} = 0 \) for \(r = 0, \ldots, k \). This means that the \(s \) columns of \(W_{t|t+k} \) corresponding to \(t_1, t_2, \ldots, t_s \) are also linearly dependent, which implies that the maximal set of linearly independent columns of \(W_{t|t+k} \) contains no more than \(l(k + 1) + q \) columns and thus \((11.7)\) holds. If the system is observable, for large enough \(j \) and \(k \geq n \), the equality of \((11.7)\) can be easily shown using transfer functions. The proof is omitted here due to space limitations.

Under the conditions of Theorem 11.3, with both \(l \) and \(k \) known, in principle, we can determine \(q \), the dimension of the observability matrix \(\Gamma \). This will be the system order \(n \) for an observable system if \(k \geq n \).

Example 11.4 Consider the same system as in Example 11.2, where \(n = 4, l = 1, \) and \(m = 1 \). The system is observable since the observability matrix \(\Gamma_n \) has rank 4. We choose \(k = 4 \). Therefore the dimension of the ambient space is \((l+m)(k+1) = 10, W_{t|t+k} \in \mathbb{R}^{10 \times s_n} \), and \(q = \text{rank} \(\Gamma_n \) = 4 \). It can be verified that the rank of \(W \) is typically \((l(k+1) + q = 9 \) for independent input \(\bar{U} \) and large \(j \). If we replace the output matrix \(C \) with \([0, 0, -0.5225, 0.1830] \), then \(q = \text{rank} \(\Gamma_k \) = 2 \) and the rank of \(W \) becomes \((l(k+1) + q = 1(4+1) + 2 = 7 \) for this case, if we further reduce \(k \) to be 3, we still have \(q = 2 \), but \(W_{t|t+k} \in \mathbb{R}^{8 \times s_n} \) and \(\text{rank} \(W_{t|t+k} \) = l(k+1) + q = 1(3+1) + 2 = 6 \).

When \(k \geq n \), we know that the range of \(W \) will always be a proper subspace of \(\mathbb{R}^{(l+m)(k+1)} \) even if \(m = 1 \). How does this subspace depend on the system parameters \((A, B, C, D)\)? For a general MIMO system, the answer is not entirely clear, except that we know the subspace does depend on all the system matrices, which is different from the embedding given in Section 11.1.1. This can already be shown for any observable single-output (possibly multiple-input) ARMA system:

Proposition 11.5. For an observable single-output deterministic ARMA system and \(k = n \), let \(\Gamma_n^\dagger = (\Gamma_n^T \Gamma_n)^{-1} \Gamma_n^T \). The range of \(W_{t|t+n} \) spans an \((l(n+1) + n)-\)
dimensional hyperplane in $\mathbb{R}^{(l+1)(n+1)}$ whose normal vector is given by the row vector of the following rank-1 matrix:

$$F_n \doteq \left[-AT_n^\dagger \Delta_n, -A^T_n, 0_{n \times 1} \right] + \left[B, 0, \ldots, 0 \right]$$

$$- \left[0_{n \times 1}, -\Gamma_n^\dagger \Delta_n, \Gamma_n^\dagger \right] \in \mathbb{R}^{n \times (l+1)(n+1)}.$$

The proof uses the structure of the Toeplitz matrix Δ defined earlier and is fairly straightforward. We omit the details for brevity. In fact, the above statement is very intuitive: the row vector of F very much corresponds to the coefficients of the transfer function, $H(z)$, of the ARMA system.

Note that the time window size on which the sample points, i.e., the column vectors of W, depend is $T = k \geq n$, which can be significantly smaller than $(2l + 3)(n + 1) - 2$, the minimum of the previous embedding. However, the dimension of the ambient space is now $(l + m)(k + 1) \geq (l + m)(n + 1)$, which is typically larger than $m(n + 1)$, the minimum dimension of the previous embedding, especially when the number of inputs, l, is large. We summarize the differences of the two embeddings in Table 11.1.

Table 11.1. Comparison of the minimum dimension and time window size of the two embeddings of Section 11.1.1 and 11.1.2.

<table>
<thead>
<tr>
<th>Embeddings</th>
<th>Ambient Space</th>
<th>Subspace</th>
<th>Time Window</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oblique</td>
<td>$m(n + 1)$</td>
<td>n</td>
<td>$(2l+3)(n+1)-2$</td>
</tr>
<tr>
<td>Direct</td>
<td>$(m+l)(n+1)$</td>
<td>$(l+1)(n+1)-1$</td>
<td>n</td>
</tr>
</tbody>
</table>

11.2 Identification of Hybrid ARMA Systems

The previous section provides us with two ways of embedding the input/output data of an ARMA system as a proper subspace of a certain ambient space. Thus, for a hybrid ARMA system that switches among multiple ARMA systems, using the upper bound of their orders, say n, in the above embeddings, the embedded input/output data will in general belong to multiple subspaces of possibly different dimensions (depending on their actual orders) in the ambient space, except for the few data points around the switches. Therefore, the problem of identifying multiple ARMA systems from their input/output data becomes a problem of identifying multiple subspaces in an ambient space from sample points from these subspaces. This is exactly the problem addressed by generalized principal component analysis (GPCA), studied in earlier chapters.

5Be aware that the first embedding does not depend on (B, D), and the second embedding does not distinguish systems that have the same transfer function.

6We will discuss in more detail how to deal with such “outliers” around the switches in the next section.
Combining the GPCA method for subspace identification with the subspace embeddings of the input/output data, the overall scheme for identifying a hybrid ARMA system can be illustrated by the following diagram:

\[(U, Y) \xrightarrow{\text{Embedding}} X = Z \text{ or } W \xrightarrow{\text{GPCA}} \bigcup_{i=1}^{s} S_i.\]

We now illustrate how the scheme works with a numerical example.

Example 11.6 (A Numerical Example). Here we consider a hybrid ARMA system consisting of three linear systems. The first system is a 1st-order system

\[A_1 = -0.85, \quad B_1 = 0.5, \quad C_1 = -0.6, \quad D_1 = 0.9.\]

The second system is a 3rd-order system

\[
A_2 = \begin{bmatrix}
0.6 & 0.6 & 0 \\
-0.6 & 0.6 & 0 \\
0 & 0 & 0.4
\end{bmatrix}, \quad B_2 = \begin{bmatrix}
0.4756 \\
-0.4202 \\
0.7728
\end{bmatrix},
\]

\[C_2 = \begin{bmatrix}
0.5801 & 0.3964 & 0.7186
\end{bmatrix}, \quad D_2 = \begin{bmatrix}
1
\end{bmatrix}.
\]

The third system is the 4th-order system given in Example 11.2. The hybrid system is driven by random inputs \(u_t\) from \(t = 1\) to \(900\). The switches among these linear systems are shown in Figure 11.1 Top. The data points are generated by embedding the input/output data via the oblique projection introduced in Section 11.1. In our implementation, we choose \(i = 5\) and \(j = 14\) for the embedding. For each time instant \(t\), a data point \(z_t\) is chosen as the first column of \(Z = Y_t / u_t W_t\). If \(U, Y\) all come from the same system, \(z_t\) lies in the range of the observability matrix of the system. As shown in the second plot of Figure 11.1, the recursive GPCA algorithm (see Algorithm 4.5) first segments the data points into two 4-dimensional subspaces in the ambient space \(\mathbb{R}^5\). The first group corresponds to the third system of order 4. The second group corresponds to the data points from both the first and second systems. This is expected since the data points of the first system (spanning a 1-dimensional subspace) and those of the second system (spanning a 3-dimensional subspace) together span a 4-dimensional subspace. In the next level of recursion, the first subspace remains unchanged; the second one is segmented into a 3-dimensional subspace for the second system and a 1-dimensional subspace for the first (Figure 11.1 Bottom). These two new subspaces cannot be split further. Note that at both levels of recursion, points around the switching times are grouped into a special "outliers group 0" since those \(z_t\)'s do not belong to any of the subspaces associated with the linear systems. We will discuss how such points are dealt with in more detail in the next section.\(^7\)

\[\]

In practice, real data sets will not be noise-free (i.e., \(v_t, w_t \neq 0\)). In this case, one must resort to the statistically stable techniques introduced in Chapter 5 to implement the GPCA algorithm so as to obtain good estimates of the systems. In addition to noise, outliers are another problem that is unavoidable in the identification of hybrid ARMA systems. We now discuss this issue in more detail.

\(^7\) Also notice that a very small number of points are mis-classified due to the fact that they are too close to the intersection of two subspaces.
11.3 Outliers Caused by Switches

Note that, for both embeddings mentioned above, each data point embedded in the subspaces depends on the input and output data over a time window, say T. Hence if a window contains a switch from one ARMA system to another, the obtained data point, even in the noise-free case, may not belong to any of the subspaces associated with the ARMA systems. Figure 11.2 illustrates what happen to the data points when switching from one system to another. Since such points have very little structure, for the purpose of identifying the subspaces, they should be treated as "outliers."

Therefore, in addition to tolerating noise, the GPCA algorithm should also be able to tolerate certain percentage, say δ, of outliers in the data. To this end, one can employ any of the robust statistical techniques introduced in Section 5.4 of Chapter 5. For points that cannot be assigned to any subspaces within the given error tolerance τ, they are assigned to a special group for outliers. For a data set with N points, a valid solution is such that the identified subspaces can fit at least $(1 - \delta)N$ points within a given error tolerance τ. This is the reason why, in Figure 11.1, such “transient” data points around the switches are segmented into an additional group 0. Thus, the ability to handle outliers is critical for the problem of identifying hybrid ARMA systems.

The outlier tolerance ratio δ actually sets realistic bounds on the number of switches allowed for the hybrid system during any given time period. From our analysis in Section 11.1, if n is an upper bound on the order of all ARMA sys-
tems involved, then the time window on which a data point depends is at least $k \geq n$ for the direct embedding and $2i + j - 1 \geq (2l + 3)(n + 1) - 2$ for the oblique embedding (see Table 11.1). Therefore, given an outlier tolerance ratio δ, the number of switches allowed for the direct embedding is

$$N_s \leq \frac{\delta N}{k} \leq \frac{\delta N}{n},$$

(11.9)

if N is the length of the overall time period. Similarly, the number of switches should be

$$N_s \leq \frac{\delta N}{2i + j - 1} \leq \frac{\delta N}{(2l + 3)(n + 1) - 2},$$

(11.10)

for the oblique embedding.

Obviously, the direct embedding has the advantage of having a smaller time window, hence a lower percentage of outliers. This allows the subspaces, especially the switching times to be identified more precisely. However, it normally has a much higher data dimension $-(l + m)(n + 1)$ compared to $m(n + 1)$ in the minimum case for the embedding using oblique projection. Because the dimension of the Veronese map grows quickly, the computational cost of the GPCA algorithm grows rapidly with the dimension of the data. We here do not advocate for either embedding as the embedding of choice. Rather, we would like to point out via our studies that there seems to be a fundamental tradeoff between the time window size and the embedding dimension.

11.4 Implementation and Experiments

In this section, we discuss the implementation issues associated with the proposed algorithm, and present the results of our experimentation.
Implementing the GPCA Algorithm.

As mentioned in Chapter 5, the robust GPCA algorithm normally takes two parameters: the error tolerance τ and the outlier tolerance (ratio) δ. The tolerance for outliers is necessary for the detection of switching points, even for the case without noise. For a slow switching system, we can set δ to be small, and equations (11.9) and (11.10) give a good estimate of the range of δ. In our experiments, we conservatively set δ to be 25%. The error tolerance τ is a parameter that we use to assign a data point to a subspace. If the space angle between a data point (as a vector) and the subspace is less than τ, we assign the data point to the subspace. Therefore, the appropriate value of τ varies with the noise level. In our experiments, for a noise level from 0% to 2% (of the input and output), τ ranges from 0.02 to 0.1 for the embedding based on oblique projection; and τ is 0.025 for the direct embedding for the same noise range.

Post-Processing.

In the presence of both noise and outliers, the results of the GPCA algorithm are expected to have two types of errors. Firstly, some points can be assigned to a wrong subspace (and hence wrong system) if they are close to the intersection of two subspaces (e.g., there are a couple mis-classified points in Figure 11.1). Secondly, sometimes (often because the error tolerance is set too small), the GPCA algorithm may over-split one subspace into multiple subspaces that, however, do not correspond to actual systems. Therefore, some post-processing of the results is due for reducing these errors.

For each subspace obtained, we can re-calculate its basis from the points using conventional principal component analysis (PCA). With this new basis, we can reassign all the data points to their closest subspaces. In addition, to avoid over splitting, we compute the space angle between the obtained subspaces, and merge any two subspaces which have a small space angle. The threshold for the space angle depends on the error tolerance τ. Typically, we set it to be 2τ.

11.4.1 Subspace Segmentation and Detection of Switches

Figure 11.3 shows segmentation resulting from the GPCA algorithm using two different embeddings of the input/output data of the hybrid system in Example 11.6. For this experiment the average norm of the input (u) and the output (y) is around 1. The input and output are corrupted by adding 0.5% independent Gaussian noise signals v_t and w_t. For the embedding using oblique projection, we choose $i = 5$ and $j = 14$, and the embedded data points are in a 5-dimensional space. For the direct embedding, we choose $i = 7$ and $j = 15$, and the embedded data points are in a 7-dimensional space.
ambient space with three subspaces (i.e., systems) of dimension 1, 3, and 4, respectively. For the direct embedding, we set \(k = 4 \). The embedded data points are in a 10-dimensional space with the subspaces of dimension 6, 8, and 9. As Figure 11.3 shows, the robust GPCA algorithm along with post-processing successfully segments the data points into three groups (except for outliers in group number 0). The dimensions of the so-obtained three subspaces are correct as well. As expected, data points around the switches are classified as outliers, and the effect of switching is more significant in the embedding using oblique projection than that in the direct embedding. The mis-classification of data points can be further corrected by imposing the slow-switching assumption. For this experiment, the embedding using direct embedding has much less mis-classified data points. The running time is 6 seconds for embedding with oblique projection and 21 seconds for direct embedding in Matlab on a laptop computer with a 1.9GHz Pentium 4 CPU.

11.4.2 Subspace Angle Errors Induced by Noises

We also test the performance of the algorithm under different levels of Gaussian noise. We again use the hybrid system of Example 11.6. The subspaces associated with the individual linear systems are reasonably separated for both embeddings. We choose the noise level at \(\sigma = 0, 0.001, 0.002, 0.005, 0.01, \text{ and } 0.02 \). For each noise level, we run the algorithm for 1000 trials. The three subspaces obtained are compared to the ground truth. The averaged errors (space angle between the subspaces and the true ones) are shown in Figure 11.4. The direct embedding gives a smaller error than the embedding using oblique projection. Nevertheless, this is not an entirely fair comparison since the algorithm is dealing with subspaces of different dimensions in different ambient spaces. Notice that there are even angle errors at zero noise for the estimations. These errors are introduced by the points around the switching regions that are mis-classified.
11.4.3 Identifiability Using the Two Embeddings

The subspace obtained from the oblique projection is the range of the observability matrix of the linear system, which only depends on the matrices A and C. Therefore, this embedding is not able to distinguish between systems with different B and D. Conversely, the subspace obtained from the direct embedding depends on all matrices A, B, C, and D. To verify this experimentally, we choose a hybrid system that consists of three ARMA systems. The first system is the same as the 4th-order system given in Example 11.6, the other two systems are variations of this system by modifying only B and D. As shown in Figure 11.5, subsequently, the GPCA algorithm cannot distinguish the three systems with the embedding using oblique projection (Figure 11.5 Left); yet with the direct embedding, the correct segmentation and dimensions of the subspaces are obtained (Figure 11.5 Right). However, notice that the data points around the switches between the systems are correctly identified as outliers (group 0) for both embeddings.

11.5 Bibliographic Notes

Filtering and identification of hybrid linear systems, especially the jump-Markov linear systems, was an active area of research throughout the seventies and into the eighties; a review as of 1982 can be found in [Tugnait, 1982]. Recently, there has been a significant revival of interest in the observability and identifiability of hybrid systems, drawing attention simultaneously from control [Alessandri and Coletta, 2001, Babaali and Egerstedt, 2004, Balluchi et al., 2002, Bar-Shalom and Li, 1993, Doucet et al., 2000, Ferrari-Trecate et al., 2000, Krishnamurthy and Evans, 1998], signal processing [Doucet and Andrieu, 2000, Doucet et al., 2001, Logothetis and Krishnamurthy, 1999], machine learning [Billio et al., 1999, Blake et al., 1999, Doucet et al., 2000, Ghahramani and Hinton, 1998, ...]
Figure 11.5. Subspace embedding and segmentation for a hybrid system consisting of three 4th-order linear systems with the same matrices A and C but different matrices B and D. Left: input/output embedding using the oblique projection. Right: direct input/output embedding.

Murphy, 1998, Pavlovic et al., 2000], and computer vision [Pavlovic et al., 1999a, Pavlovic et al., 1999b] researchers. There have also been a few approaches to systematically developing the theory of observability for discrete event and linear hybrid systems [Bemporad et al., 2000, Ezzine and Haddad, 1989, Özveren and Willsky, 1990, Ramadge, 1986, Sun et al., 2002, Szigeti, 1992, Vidal et al., 2002a, Vidal et al., 2003a]. For piecewise (input/output) ARX models, some effective algorithms for identifying the model parameters have already been proposed [Bemporad et al., 2003, Bemporad et al., 2001, Ferrari-Trecate et al., 2003].

Because the number of ARMA systems, the model parameters, the discrete state, and the switching function are all unknown, the identification problem is rather a challenging one in that there is a strong coupling between the estimation of the model parameters and the segmentation of (data into) discrete states. Traditionally, this is viewed as a “chicken-and-egg” problem, and the typical approach is to alternate between assigning data points to models and computing the model parameters from data points, starting from a random or heuristic initialization [Ferrari-Trecate et al., 2003, Bemporad et al., 2003, Bemporad et al., 2001].

In this chapter, we have demonstrated that the identification of a slowly-switching hybrid ARMA system can be converted to the GPCA problem (i.e., estimation and segmentation of multiple linear subspaces) by embedding the input/output data into a high-dimensional ambient space. We have implemented and compared two different types of embeddings. From our analysis and experimental verification, we see that the direct embedding in general gives better estimation and segmentation of the subspaces, but it has a higher computational cost than the embedding using oblique projection. Although switches among systems result in data points that do not lie on any of the subspaces, they can be treated as out-

\[10^\text{This is similar to the expectation and maximization (EM) method in machine learning.}\]
liers and dealt with using the robust GPCA algorithm. Material presented in this chapter follows that in [Huang et al., 2004b].
Chapter 12
Extensions to Arrangements of Nonlinear Models

So far, we have studied exclusively how to model data with subspace arrangements and fit the data with a piecewise linear model. In practice, data may not always be perfectly piecewise linear, and piecewise linear models can only approximate the data to certain extent. In many applications, we may actually have information about the form of nonlinearity in the data (e.g., the data lies on quadratic surfaces or certain nonlinear manifolds). It just seems wiser to exploit such nonlinearity than throw the information away. In this chapter, we will extend the GPCA techniques to incorporate nonlinear models, especially quadratic ones.\(^1\) Following the spirit of this book, our focus will be on the algebraic and geometric aspect of the problem. Nevertheless, the proposed methods are numerically stable and tolerate moderate noises in the data.

12.1 Arrangements of Quadratic Surfaces

In this section, we extend the pool of models to arrangements of both linear subspaces and quadratic surfaces, possibly of different dimensions.\(^2\) As GPCA, we like to simultaneously segment the data into multiple groups and determine a linear or quadratic model for each group. Specifically, we show how the basic algebraic techniques that we developed in the previous chapters for GPCA can be

\(^{1}\)For readers who are not interested in nonlinear models, they can simply skip this chapter without losing any continuity.

\(^{2}\)Linear subspaces can be viewed as degenerate quadratic surfaces.
12.1. Arrangements of Quadratic Surfaces

extended to this case. To distinguish with GPCA, we refer to the new method as \textit{generalized principal surface analysis} (GPSA).

In GPCA, we have seen that the derivatives of the vanishing polynomials play a crucial role in segmenting the data and determining the local dimension. As we will see in this section, to segment and extract quadratic models, one needs to study the properties of both the derivatives and Hessians, the second-order derivatives, of the vanishing polynomials. These properties lead to a rich spectrum of algebraic signatures for the data points which allow us to effectively segment them into different linear or quadratic models.

Notice that a quadratic surface is in general described by a quadratic equation of the form:

\[y^T B y + 2c^T y + d = 0, \]

(12.1)

where \(B \) is a symmetric matrix. Define the homogeneous coordinates of \(y \) as \(x = [y, 1] \) and we can rewrite the above equation as

\[x^T A x = [y^T, 1] \begin{bmatrix} B & c \\ c^T & d \end{bmatrix} [y, 1] = 0. \]

(12.2)

Therefore, using the homogeneous representation, we can always represent a quadratic surface by a homogeneous quadratic equation (in a space of one dimension higher).

Under this notation, we define the subject of interest for this section. A “quadratic surface” of dimension \(d_q \) in \(\mathbb{R}^D \) is defined to be

\[S_q = \{ x : x^T A_i x = 0, \ i = 1, \ldots, D - d_q \}. \]

(12.3)

where \(A_i \in \mathbb{R}^{D \times D}, \ i = 1, \ldots, D - d_q \) are a set of linearly independent symmetric matrices (i.e., for any \(A_i, \) it cannot be expressed as the linear combination of other matrices \(A_j \)'s).\(^4\) To avoid degenerate cases, we further require that \(A_i \) are \textit{not} semi-definite.\(^5\) The superscript “\(q \)” indicates “quadratic.” For convenience, we denote the codimension as \(r_q = D - d_q \).

As before, we represent a \(d_l \)-dimensional (\(1 \leq d_l \leq D \)) linear subspace by

\[S_l = \{ x : B^T x = 0, \ B \in \mathbb{R}^{D \times (D - d_l)} \}. \]

The superscript “\(l \)” indicates “linear.” We denote the codimension as \(r_l = D - d_l \).

We then formulate the problem of segmenting arrangements of linear subspaces and quadratic surfaces as the following:

\(^3\)Note that our notion of “quadratic surfaces” is more general than the traditional definition. A quadratic surface here will be an algebraic surface that satisfies a set of quadratic equations. Such a surface, strictly speaking, could be an algebraic surface of order higher than two.

\(^4\)The representation of \(S_q \) by \(A_i \)'s is not unique since it can also be described by any other set of linearly independent symmetric matrices \(A_1', A_2', \ldots, A_{D-d_q}'s \) whose span is the same as that of \(A_i \)'s.

\(^5\)If \(A \) is either positive or negative semi-definite, then we have \(A = B B^T \) or \(A = -B B^T \) for some \(B \). Then \(x^T A x = x^T B B^T x = \| B^T x \|^2 = 0 \) defines a linear subspace.
Problem 12.1 (Segmentation of Linear Subspaces and Quadratic Surfaces).

Let \(X = \{x_i\} \subset \mathbb{R}^D \) be the homogeneous coordinates of a set of \(N \) data points that are sampled from \(m \) unknown quadratic varieties \(S_i^1, \ldots, S_i^d_i \) of dimensions \(d_i^1 (i = 1, \ldots, m) \) and \(n \) linear varieties \(S_j^1, \ldots, S_j^d_j \) with dimensions \(d_j^1 (j = 1, \ldots, n) \). Assume that the \(i \)th quadratic surface is defined by \(D - d_i^1 \) symmetric matrices \(A_{ik} (k = 1, \ldots, D - d_i^1) \). Similarly, the \(j \)th linear subspace is defined by a matrix \(B_j = [b_{j1}, \ldots, b_{j(D-d_j^1)}] \in \mathbb{R}^{D \times (D-d_j^1)} \). From the samples, we want to

1. determine the number of varieties \(m \) and \(n \) and segment the data points in \(X \) into the \(m + n \) subspaces and surfaces;
2. identify, for each subspace and surface, the corresponding matrix (matrices) \(A_i \) or \(B_i \).

12.1.1 Properties of the Vanishing Polynomials

As in GPCA, we first fit all the data points in \(X \) with high order polynomial(s). For any data point \(x \in X \), since \(x \in (\bigcup_{i=1}^m S_i^1) \cup (\bigcup_{j=1}^n S_j^1) \), \(x \) satisfies a polynomial equation of the form:

\[
p(x) = f(x) \cdot g(x) = 0,
\]

(12.4)

where \(f(x) = \prod_{i=1}^m x^T A_{ik(i)} x \) for some \(k(i) \in \{1, \ldots, r_i^2\} \) and \(g(x) = \prod_{j=1}^n b_{jk(j)}^T x \) for some \(k(j) \in \{1, \ldots, r_j^1\} \). Then \(p(x) \) is a \((2m+n)\)-degree homogeneous polynomial in the entries of \(x \), and it is one of the polynomials of the lowest degree that can fit all the data points in \(X \) [Harris, 1992, Lang, 1993].

The null space of the data matrix \(L_{2m+n} \) (obtained via the Veronese map of order \(2m + n \)) contains \(s \) vectors \(c_1, \ldots, c_s \). We then have \(s \) polynomial(s) \(p_i(x) = v_{2m+n}^T x c_i (i = 1, \ldots, s) \) that fit all the data points in \(X \). In general, these polynomials may not be factorable, and instead they are linear combinations of the factorable ones in (12.4).

Given the polynomials \(p_i(x) (i = 1, \ldots, s) \) and the data set \(X \), we need to extract the information about the subspaces and surfaces so that we can segment the data set. Ideally, this can be solved by factoring the polynomials \(p_i(x) \) into its irreducible factors. However, as we have discussed above, the polynomials obtained from the null space of the Veronese data matrix \(L \) may not be factorable.

As in the GPCA, although it is the factors that we are after, it turns out that we do not have to perform the algebraic factorization per se.

We can avoid the difficulty with the factorization by utilizing the relationship between the polynomials \(p_i(x) \) and the given data set \(X \). In particular, we need to understand certain algebraic signatures that one can derive from \(p_i(x) \) at every data point. These signatures are associated with the first and second order derivatives of \(p_i(x) \). We list below some of the relevant properties of the derivatives. They can all be verified by applying the fact that \(p_i(x) \) is a linear combination of the factorable polynomials in (12.4).
Proposition 12.1 (Derivatives of the Vanishing Polynomials). Let $p_i(x)$ be a polynomial that fits X. Then the derivatives of $p_i(x)$ at $x \in X$ are given by:

If x belongs to a quadratic surface S^q defined by $A_j, j = 1, \ldots, r^q (= D - d^q)$, then

$$\nabla p_i(x) = \sum_{j=1}^{r^q} 2\alpha_{ij}(x)A_jx \in \mathbb{R}^D,$$

$$H_{p_i}(x) = \sum_{j=1}^{r^q} 2\alpha_{ij}(x)A_j + A_jx\nabla_{\alpha_{ij}}(x) + \nabla\alpha_{ij}(x)(A_jx)^T \in \mathbb{R}^{D \times D} (12.5)$$

where $\alpha_{ij}(x)$ are scalar functions of x that contain polynomial factors from other surfaces or subspaces.

If x belongs to a linear subspace S^l defined by $b_j, j = 1, \ldots, r^l (= D - d^l)$, then

$$\nabla p_i(x) = \sum_{j=1}^{r^l} \beta_{ij}(x)b_j \in \mathbb{R}^D,$$

$$H_{p_i}(x) = \sum_{j=1}^{r^l} b_j\nabla_{\beta_{ij}}(x) + \nabla\beta_{ij}(x)b_j^T \in \mathbb{R}^{D \times D}, (12.6)$$

where $\beta_{ij}(x)$ are scalar functions of x which contains polynomial factors from other subspaces and surfaces.

If x is on the intersection of more than one subspace or surface, then

$$\nabla p(x) = 0 \in \mathbb{R}^D.$$

(12.9)

Proposition 12.2 (Surface Normals from the Derivatives). Let $x \in X$ be a general point in a d-dimensional subspace or surface S but not at any intersection. Then the matrix $\nabla p(x) = [\nabla p_1(x), \ldots, \nabla p_s(x)] \in \mathbb{R}^{D \times s}$ has rank $r = D - d$.

Let the singular value decomposition (SVD) of $\nabla p(x) = U\Sigma V^T$ with U and V being orthogonal matrices and Σ a diagonal matrix. The first r columns of U gives a set of orthonormal vectors $n_1(x), \ldots, n_r(x)$ to S at x.

Proof. Let $t(x) \in \mathbb{R}^D$ be any tangent vector to S at x and let $\gamma(u) : \mathbb{R} \to \mathbb{R}^D$ be any curve in S such that $\gamma(0) = x$ and $\gamma'(0) = t(x)$. Then for any vanishing polynomial $p_i(x)$, we have

$$p_i(\gamma(u)) = 0, \quad \forall u \in \mathbb{R}.$$

Differentiate the above equation with respect to u and evaluate the derivative at $u = 0$. We obtain

$$\nabla_{p_i}T(x)t(x) = 0.$$

That is, the derivative of every vanishing polynomial is orthogonal to all tangent vectors. The rest of the proposition then follows. \qed
This proposition allows one to compute the normal vectors to the surface from the vanishing polynomials. As we have already seen in the case of GPCA, the normal vectors are already sufficient to segment linear subspaces since they are invariant for each subspace. However, this is no longer true for a quadratic surface and additional information from higher-order derivatives is needed in this case.

Examining the Hessian (12.6) associated to a quadratic surface, we notice that the first term is indeed the Hessian of the factor for the surface itself, but the second and third terms depend on derivatives of factors for other subspaces and surfaces in the arrangement. This prevents us from directly using the Hessians to segment the data to different surfaces.

One solution to resolve this difficulty is to use, instead of the Hessian, the “contraction” of the Hessian by the tangent vectors to the surface.

Definition 12.3 (Contraction of Hessians). Let $T(x) = [t_1, \ldots, t_d] \in \mathbb{R}^{D \times d}$ be a matrix whose columns are orthonormal tangent vectors to a subspace or a surface at a point x. Then for every vanishing polynomial $p_i(x)$, the contraction of $H_{p_i}(x)$ by $T(x)$ is defined to be the symmetric matrix

$$C_i(x) = T(x)^T H_{p_i}(x) T(x) \in \mathbb{R}^{d \times d}. \quad (12.10)$$

Based on the above definition and Proposition 12.1, we have

Proposition 12.4 (Properties of Contractions). Given an arrangement of linear subspaces and quadratic surfaces, if a point x is on a quadratic surface defined by $A_j (j = 1, \ldots, r)$, then

$$C_i(x) = \sum_{j=1}^{r} 2\alpha_{ij}(x) T(x)^T A_j T(x) \in \mathbb{R}^{d \times d} \quad (12.11)$$

for some scalars $\alpha_{ij}(x) \in \mathbb{R}$. If x is on a linear subspace, then

$$C_i(x) \equiv 0. \quad (12.12)$$

Proof. If x is on the quadratic surface, $x^T A_j x = 0, j = 1, \ldots, r$. Its directional derivative along any tangent vector t at x is also zero: $t^T A_j x = 0, j = 1, \ldots, r$. When we contract $H_{p_i}(x)$ with the tangent vectors, all the cross terms vanish, except for the ones in (12.11). The linear case is easy since in the expression (12.8) b_j are by definition the normal vectors to the subspace and their inner product with any tangent vector is zero. \qed

Corollary 12.5 (Contractions on a Quadratic Hyper-Surface). If there is a $(D-1)$-dimensional quadratic surface in the arrangement and it is defined by a symmetric matrix A, then, for a point x on it, we have

$$C_i(x) = 2\alpha_i(x) T(x)^T A T(x) \in \mathbb{R}^{(D-1) \times (D-1)} \quad (12.13)$$

for some scalar $\alpha_i(x) \in \mathbb{R}$.

6Notice that, the tangent vectors to the surface at the point are readily available as the orthogonal complement of the normal vectors.
We summarize the properties of the derivatives, Hessians, and contractions of points on an arrangement of subspaces and surfaces in Table 12.1.

Table 12.1. Properties of the derivatives and contractions for points at different locations in the arrangement.

<table>
<thead>
<tr>
<th>Location of x</th>
<th>$\nabla_p(x)$</th>
<th>$C(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S \cap S'$</td>
<td>0</td>
<td>N/A</td>
</tr>
<tr>
<td>S^l</td>
<td>rank($\nabla_p(x)$) = $D - d^l$</td>
<td>0</td>
</tr>
<tr>
<td>S^q</td>
<td>rank($\nabla_p(x)$) = $D - d^q$</td>
<td>$\sum 2\alpha_j(x) T^T A_j T$</td>
</tr>
</tbody>
</table>

12.1.2 Generalized Principal Surface Analysis (GSA)

As we see from the analysis above, the derivatives and contractions at each data point depend on its location in the arrangement. Therefore, we can potentially use the derivatives and contractions to determine the membership of the point. We have used the derivatives for exactly the same purpose in the case of GPCA. We now examine how the contractions may help with the case of GSA.

Linear Subspaces versus Quadratic Surfaces

According to Proposition 12.4, the contractions of points in the linear subspaces are always zero. Therefore, in principle, we can clearly separate points that belong to the linear subspaces from points that belong to the quadratic surfaces. That is, we can easily perform the following segmentation:

$$X = X^l \cup X^q,$$

s.t. $X^l \subseteq \cup S^l$, $X^q \subseteq \cup S^q$. (12.14)

We can further apply GPCA to segment X^l into different linear subspaces; that leaves us with only the question how to segment X^q into different quadratic surfaces.

Quadratic Surfaces of Different Dimensions

If the quadratic surfaces have different dimensions, the problem is also relatively simple (at least in principle): one can segment the points into surfaces of different dimensions by examining the rank of the first order derivatives $\nabla_p(x)$ at each point x. Therefore, the only case left is the case with an arrangement of quadratic surfaces of the same dimension.

Quadratic Surfaces of the Same Dimension

Without loss of generality, let x_1, $x_2 \in X^q$ be two (linearly independent) points on an arrangement of d-dimensional quadratic surfaces. Let $T(x_1)$ and $T(x_2)$ be the two tangent spaces at x_1 and x_2, respectively. Their intersection $T(x_1) \cap T(x_2)$ is in general a $(2d - D)$-dimensional subspace in \mathbb{R}^D, assuming $2d > D$. Every $t \in T(x_1, x_2)$ is a tangent to the surface at both points. We define
the “mutual contractions” for $x_1, x_2 \in X^S$ to be the contractions of Hessians at x_1 and x_2 with $T(x_1, x_2)$:

$$\bar{C}^i(x_1, x_2) = T(x_1, x_2)^T H_{p_i}(x_1) T(x_1, x_2) \in \mathbb{R}^{(2d-D) \times (2d-D)},$$

$$\bar{C}^i(x_2, x_1) = T(x_1, x_2)^T H_{p_i}(x_2) T(x_1, x_2) \in \mathbb{R}^{(2d-D) \times (2d-D)},$$

for $i = 1, \ldots, s$. Notice that both $\bar{C}^i(x_1, x_2)$ and $\bar{C}^i(x_2, x_1)$ are symmetric matrices. Since the space of all $n \times n$ symmetric matrices has dimension $n(n+1)/2$, we define $M = (2d-D)(2d-D+1)/2$. Then we have the following relationships between the subspaces spanned by the two sets of mutual contractions matrices:

Theorem 12.6 (Mutual Contraction Subspace). Suppose $M > D - d$ and $D < 2d$. If $x_1, x_2 \in X^S$ both belong to the same quadratic surface, then we have

$$\text{span}\{\bar{C}^1(x_1, x_2), \ldots, \bar{C}^s(x_1, x_2)\} = \text{span}\{\bar{C}^1(x_2, x_1), \ldots, \bar{C}^s(x_2, x_1)\},$$

which is a proper subspace in \mathbb{R}^M. We call it the mutual contraction subspace between x_1 and x_2.

Proof. Suppose the quadratic surface is defined by the set of symmetric matrices $A_j, j = 1, \ldots, D - d$. Similar to the proof of Proposition 12.4, one can show that both sets of matrices span the same subspace as the following $D - d$ matrices:

$$T(x_1, x_2)^T A_j T(x_1, x_2), \quad j = 1, \ldots, D - d.$$ (12.16)

By the assumption $M > D - d$, the subspace is proper.

Be aware that the mutual contraction subspaces, unlike the normal vectors for linear subspaces, are not globally invariant on the quadratic surfaces. They may change for different choices in the pair (x_1, x_2). Nevertheless, they give very effective necessary conditions for segmenting the data points: two points belong to the same quadratic surface only if their mutual contraction subspaces are the same. We summarize our above discussions as Algorithm 12.1.

Like the GPCA algorithm, the GPSA algorithm assumes noise-free data, but it is designed in such a way that it can handle moderate noises. When the noise level is high, it might be very difficult to stably and robustly estimate all the vanishing polynomials. A simple but not necessarily optimal solution is to put a heuristic threshold on the eigenvalues of the data matrix $V_n(D)$ to determine its null space. Or one can employ the statistical techniques introduced in Chapter 5 to estimate the vanishing polynomials.

Example 12.7 We illustrate the above algorithm using a numerical example. Assume we have data points sampled from two surfaces -- a paraboloid S_1 and a plane S_2 in \mathbb{R}^3:

$$S_1: x^T A x = x^2 + y^2 - zw = 0, \quad A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -0.5 \\ 0 & 0 & -0.5 & 0 \end{bmatrix}; \quad S_2: b^T x = y = 0, \quad b = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix},$$

where the homogeneous coordinates are $x = [x, y, z, w]^T$ with $w = 1$. Thus a third order polynomial $p(x) = x^3 y + y^3 - yzw = 0$ can fit all the data points in X. The gradient
Algorithm 12.1 (Generalized Principal Surface Analysis).

Given a large enough set of data points \(X \) in \(\mathbb{R}^D \) sampled from an arrangement of linear subspaces and quadratic surfaces with the dimensions of the quadratic surfaces satisfying \(2d > D \) and \(M > D - d \):

1. Find a set of homogeneous polynomials \(p_1(x), \ldots, p_s(x) \) of the lowest degree that fit the data \(X \).
2. Separate the \(X \) into three groups using the criteria in Table 12.1. \(X^{in} \): points on the intersections; \(X^l \): points on linear subspaces; and \(X^q \): points on quadratic varieties.
3. Segment \(X^l \) into \(n \) linear subspaces via GPCA and identify the subspaces.
4. Segment \(X^q \), based on the rank of \(\nabla p(x) \), into \(t \) groups \(X^{d_1}, \ldots, X^{d_t} \) with \(X^{d_i} \) containing data points from \(d_i \)-dimensional quadratic surfaces.
5. **for all** \(i = 1 : t \) **do**
6. Segment \(X^{d_i} \) into \(m_i \) quadratic surfaces based on Theorem 12.6.
7. Identify the parameters of the \(m_i \) quadratic surfaces.
8. **end for**

and gradients and Hessian at each point are:

\[
\nabla p(x) = [2xy, x^2 + 3y^2 - zw, -yw, -yz]^T, \quad H_p(x) = \begin{bmatrix} 2y & 2x & 0 & 0 \\ 2x & 6y & -w - z & 0 \\ 0 & -w & 0 & -y \\ 0 & -z & -y & 0 \end{bmatrix}. \quad (12.17)
\]

As shown in Table 12.2, we examine four points. Point \(x_1 \) is on both surfaces, \(x_2 \) is on the plane \(S_2 \) only, and \(x_3, x_4 \) are both on the quadratic surface \(S_1 \) only. The values of the gradients and contraction matrices are consistent with those in Table 12.1. Note that the first two columns of the \(T(x) \) matrix for \(x_3 \) are also the tangent vectors for \(S_1 \) at \(x_4 \). Therefore the top-left 2 \times 2 submatrices of \(C(x) \) for \(x_3 \) and \(x_4 \) are their mutual contraction matrices \(C(x_3, x_4) \) and \(C(x_4, x_3) \), respectively. The two matrices are linearly dependent, which agrees with Theorem 12.6.

Table 12.2. Result of evaluating the derivatives, Hessians, tangents, and contractions of the vanishing polynomial at four points.

<table>
<thead>
<tr>
<th>Points</th>
<th>Locations</th>
<th>(\nabla p(x))</th>
<th>(H_p(x))</th>
<th>(T(x))</th>
<th>(C(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1) = [1 0 1 1]</td>
<td>(S_1 \cap S_2)</td>
<td>(0 0 0 0)</td>
<td>(0 2 0 -1)</td>
<td>(2 0 -1 -1)</td>
<td>N/A</td>
</tr>
<tr>
<td>(x_2) = [0 1 0 1]</td>
<td>(S_2 - S_1)</td>
<td>(2 0 0 0)</td>
<td>(0 2 -1 0)</td>
<td>(2 0 0 0)</td>
<td>(0 0 0 0)</td>
</tr>
<tr>
<td>(x_3) = [0 0 1 1]</td>
<td>(S_1 - S_2)</td>
<td>(2 0 0 0)</td>
<td>(0 2 -1 0)</td>
<td>(0 0 0 0)</td>
<td>(0 0 0 0)</td>
</tr>
<tr>
<td>(x_4) = [0 1 1 0]</td>
<td>(S_1 - S_2)</td>
<td>(2 0 0 0)</td>
<td>(0 2 -1 0)</td>
<td>(0 0 0 0)</td>
<td>(0 0 0 0)</td>
</tr>
</tbody>
</table>
In the special case when all the quadratic surfaces are hyper-surfaces (which are often the only quadratic surfaces considered in practice), each surface is defined by a single symmetric matrix A and there is only one vanishing polynomial p for X^q. According to Theorem 12.6, we have:

Corollary 12.8 (Mutual Contractions on a Quadratic Hyper-Surface). If all the quadratic surfaces are of $D - 1$ dimension, for two points x_1 and x_2 to be on the same quadratic surface S^q, we must have

$$
\bar{C}(x_1, x_2) \sim \bar{C}(x_2, x_1) \in \mathbb{R}^{(D-2)\times(D-2)}, \quad (12.18)
$$

where \sim means “equal up to a nonzero scalar.”

Notice that the statistical techniques introduced in Chapter 5 also apply to the estimation of vanishing polynomials of quadratic surfaces. This can be very useful in handling noises in the data. In addition, instead of identifying the entire set of polynomials that fit the data, we can use only one polynomial that fits the data the best and segment the data to different hypersubspaces or hypersurfaces, based on the criteria for the hypersurface case $d = D - 1$. Therefore, Corollary 12.8 in fact can be applied to quadratic surfaces of any dimension. The only case in which it does not offer any effective constraints on the mutual contraction is when $D = 3$ since $D - 2 = 1$. We leave the study of this special case as an exercise.

Given a data point x_1 in a quadratic surface S^q, we denote the set of all the data points x_2 that have the same mutual contraction with x_1 as $X^{x_1} \subseteq X^q$. Then all the data points on S^q will be included in X^{x_1}. However, since Theorem 12.6 is only a necessary condition for two points to be on the same quadratic surface, it is possible that in some ambiguous configurations X^{x_1} also contains data points from other quadratic surfaces. Fortunately, such ambiguity can be easily detected and resolved. Given a point $x_2 \in X^{x_1}$, we can calculate X^{x_2}. It can be conceived that X^{x_1} and X^{x_2} should be similar only if both x_1 and x_2 are on the same S^q. Therefore we can verify if x_2 is on the same surface with x_1 by checking if the following ratio:

$$
w^{12} = \frac{|X^{x_1} \cap X^{x_2}|}{|X^{x_1} \cup X^{x_2}|} \quad (12.19)
$$

is higher than some threshold. In this way, we can single out all the points in the same surface as x_1. The remaining data points can be similarly segmented.

7Suppose there exists an \hat{A} such that $\hat{A}s$, the vector obtained by stacking \hat{A}, is in the null space of $T^T \otimes T^T$. If $A_1 = A_2 + \hat{A}$ then $T^T A_1 T = T^T A_2 T + T^T \hat{A} T = T^T A_2 T$. Thus even though the two data samples are from two different surfaces, they will have the same contraction by T (up to a scalar)! However in the noiseless case the set of \hat{A} is a zero-measure set, and even with noise the probability remains small.
12.1.3 Simulation Results

Segmentation with Ambiguity

Figure 12.1 shows the results for segmenting 1000 data points drawn from a paraboloid and a sphere. Most of the data points are correctly segmented. The misclassified ones are those close to the intersection of the two surfaces. Given two points \(x_1 = [1, 0, 0, 1]^T \) on the sphere and \(x_2 = [0, 0, 0, 1]^T \) on the paraboloid, the contraction matrices with respect to the common tangent vectors at \(x_1 \) and \(x_2 \) are \(C(x_1) \sim C(x_2) \sim \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \), that satisfies Theorem 12.6. This is the ambiguity we have discussed in the previous section, and it has been successfully resolved in the experiment using the criterion (12.19). The two surfaces are correctly retrieved from the segmented data points.

Segmentation with Noises

Figure 12.2 shows the results for segmenting 1000 data points drawn from two ellipsoids contaminated by Gaussian noise with a standard deviation \(\sigma = 0.2 \). Although the algorithm is developed assuming the noise-free case, in practice it can tolerate a moderate amount of noises in the data. It can provide a decent initialization for other iterative optimization schemes such as EM. In this experiment, we perform a simple postprocessing by reassigning the data points based on the recovered surfaces.

12.2 Other Nonlinear Models

Yi notes: More general manifolds... But I don’t know what you guys have in mind.
272 Chapter 12. Extensions to Arrangements of Nonlinear Models

Figure 12.2. Left: The 1000 data points drawn from two ellipsoids in \mathbb{R}^3. Middle: The segmentation results. Right: The recovered quadratic surfaces.

12.3 Bibliographic Notes

Many different methods have been developed to model data points sampled from nonlinear manifolds. In [Scholkopf et al., 1998], a set of nonlinear mappings called *kernels* are introduced. A kernel maps the original data points into another space in which the manifold is linear. PCA is then applied to the mapped data points in the new space. ISOMAP [Tenenbaum et al., 2000] and LLE [Roweis and L.Saul, 2000] utilize the local information of the data set to infer the global properties of the manifold. There has been relatively little work on modeling data with an arrangement of nonlinear models. The material presented in this chapter follows that of [Rao et al., 2005b]. However, modeling and segmenting mixed data with nonlinear models (algebraic, geometric, or dynamical) is still a largely open problem and merits further investigation.

12.4 Exercises

Exercise 12.1 (Special Case: $D = 3$, $d = 2$). According to Corollary 12.8, the GPSA algorithm does not work for only one special case: (homogeneous) 2-dimensional quadratic surfaces in \mathbb{R}^3. Because $D - 2 = 1$, the mutual contractions $\tilde{C}(x_1, x_2)$ become scalars. Therefore some additional algebraic constraints need to be found in order to separate points on quadratic surfaces in \mathbb{R}^3. Given a point x on a quadratic surface defined by the symmetric matrix $A \in \mathbb{R}^{3\times3}$, we want to solve the 6 unknown entries of A. From Proposition 12.2 and Corollary 12.5, we have the equations:

$$2\alpha(x)n(x)^T A x = n(x)^T \nabla_p(x) \in \mathbb{R},$$

$$2\alpha(x)T(x)^T A T(x) = C(x) \in \mathbb{R}^{2\times2},$$

where $x, n(x), \nabla_p(x), T(x)$ and $C(x)$ are all known. The second equation is symmetric and it only gives three scalar equations. Let $A^s \in \mathbb{R}^6$ be the vector of the stacked unknown entries of A.

1. Show that, in order to eliminate the unknown scalar $\alpha(x) \in \mathbb{R}$, we can rewrite the above two equations in A^s as the following relationship:

$$M(x)A^s \sim V(x), \quad M(x) \in \mathbb{R}^{4\times6}, V(x) \in \mathbb{R}^4,$$

(12.20)
where $M(x), V(x)$ depend only on $x, n(x), \nabla p(x), T(x)$ and $C(x)$.

2. Let $V(x) \perp \in \mathbb{R}^{4 \times 3}$ be the orthogonal complementary of $V(x) \in \mathbb{R}^4$, i.e.,

$$(V(x) \perp)^T V(x) = 0.$$

Show that, by eliminating the unknown scale, we end up with three scalar equations given by:

$$F(x)A^s = \left(V(x) \perp \right)^T M(x)A^s = 0 \in \mathbb{R}^3.$$

(12.21)

3. Then show that, given two points x_1 and x_2 from the same 2-dimensional (homogeneous) quadratic surface in \mathbb{R}^3, let $F(x_1), F(x_2) \in \mathbb{R}^{3 \times 6}$ be the two matrices defined in (12.21) for x_1 and x_2, respectively. Then

$$\det \begin{bmatrix} F(x_1) \\ F(x_2) \end{bmatrix} = 0, \quad \text{and} \quad \begin{bmatrix} F(x_1) \\ F(x_2) \end{bmatrix} A^s = 0.$$

(12.22)

In general, the above equation gives new necessary constraints, in addition to the relation (12.15), that allow us to determine whether two points belong to the same quadratic surface in \mathbb{R}^3. Moreover, we can solve the matrix A using the above equation if two such points on the surface are given.
Part IV

Appendices
Appendix A
Basic Facts from Mathematical Statistics

“A knowledge of statistics is like a knowledge of foreign languages or of algebra; it may prove of use at any time under any circumstances.”
– A. L. Bowley

In the practice of science and engineering, data are often modeled as samples of a random variable (or vector) drawn from certain probabilistic distribution. Mathematical statistics then deals with the problem how to infer the underlying distribution from the given samples. To render the problem tractable, we typically assume that the unknown distribution belongs to certain parametric family (e.g., Gaussian), and the problem becomes how to estimate the parameters of the distribution from the samples.

In this appendix, we provide a brief review of some of the relevant concepts and results from mathematical statistics used in this book. The review is not meant to be complete but to make the book self-contained for readers who already have basic knowledge in probability theory and statistics. If one is looking for a more formal and thorough introduction to mathematical statistics, we recommend the classic books of [Wilks, 1962] or [Bickel and Doksum, 2000].

A.1 Estimation of Parametric Models

Let x be a random variable or vector. For simplicity, we assume the distribution of x has a density $p(x, \theta)$, where the parameter (vector) $\theta = [\theta_1, \theta_2, \ldots, \theta_d]^T \in \mathbb{R}^d$, once known, uniquely determines the density function $p(\cdot, \theta)$. Now suppose
Appendix A. Basic Facts from Mathematical Statistics

$X = \{x_1, x_2, \ldots, x_N\}$ are a set of samples of x independently drawn according to the density $p(x, \theta)$. That is, X has the density

$$p(X, \theta) = \prod_{i=1}^{N} p(x_i, \theta). \tag{A.1}$$

We call any real or vector-valued function of the samples X a statistic and denote it by $T(X)$. The goal here is to properly choose the function $T(\cdot)$ so that it gives a “good” estimate for the true parameter θ.

Definition A.1 (Sufficient Statistic). A statistic $T(X)$ is said to be sufficient for θ if, and only if, the conditional distribution of X given $T(X)$ does not depend on θ.

That is, $p(X, \theta | T(X))$ no longer depends on θ. Thus, the original samples X do not contain any more information about θ than $T(X)$.

Theorem A.2 (Factorization Theorem). A statistic $T(X)$ is sufficient for θ if, and only if, there exists a function $g(t, \theta)$ and a function $h(X)$ such that

$$p(X, \theta) = g(T(X), \theta)h(X). \tag{A.2}$$

A popular measure of “goodness” of a statistic $T(X) \in \mathbb{R}^d$ as an estimate of $\theta \in \mathbb{R}^d$ is the mean squared error between $T(X)$ and θ:

$$R(\theta, T) = E[\|T(X) - \theta\|^2]. \tag{A.3}$$

The choice of this measure is not just for convenience: When the sample size N is large, the distribution of many estimates converges to a normal distribution with θ as the mean. Then R is the variance of the estimates. In some literature, such a function is also referred to as the “risk function,” hence the capital letter “R.”

We may rewrite the expression $R(\theta, T)$ as follows:

$$R(\theta, T) = E[\|T(X) - E[T(X)] + E[T(X)] - \theta\|^2]$$

$$= E[\|T(X) - E[T(X)]\|^2] + \|E[T(X)] - \theta\|^2$$

$$\triangleq \text{Var}(T(X)) + b^2(\theta, T), \tag{A.4}$$

where $b(\theta, T) = E[T(X)] - \theta$ is called the bias of the estimate $T(X)$, and $\text{Var}(T(X)) \in \mathbb{R}$ is the trace of the covariance matrix

$$\text{cov}(T(X)) = E[T(X)T(X)^T] \in \mathbb{R}^{d \times d}.$$

We refer to $\text{Var}(T(X))$ as the “variance” of $T(X)$. Thus, a good estimate is one that has both small bias and variance.

Unfortunately, there is no such thing as a universally optimal estimate that gives a smaller error R than any other estimates for all θ. For instance, if the true parameter is θ_0, for the estimate $S(X) = \theta_0$, it achieves the smallest possible error $R(\theta, S) = 0$. Thus, the universally optimal estimate, say T, would have to have $R(\theta_0, T) = 0$ too. As θ_0 can be arbitrary, then T has to estimate every potential parameter θ perfectly, which is impossible except for trivial cases. One can view
this as a manifestation of the so-called \textit{No Free Lunch Theorem} known in learning theory: Without any prior knowledge in θ, we can only expect a statistical estimate to be better than others most of the time, but we can never expect it to be the best \textit{all the time}. Thus, in the future, whenever we claim some estimate is “optimal,” it will be in the restricted sense that it is optimal within a special class of estimates considered (e.g., unbiased estimates).

Define the \textit{Fisher information matrix} to be

$$I(\theta) \equiv E\left[\left(\frac{\partial}{\partial \theta} \log p(X, \theta)\right)\left(\frac{\partial}{\partial \theta} \log p(X, \theta)\right)^T\right] \in \mathbb{R}^{d \times d}. \quad (A.5)$$

Let $\psi(\theta) \equiv E[T(X)] = [\psi_1(\theta), \psi_2(\theta), \ldots, \psi_d(\theta)]^T$ and define:

$$\frac{\partial \psi(\theta)}{\partial \theta} \equiv \begin{bmatrix} \frac{\partial \psi_1(\theta)}{\partial \theta_1} & \frac{\partial \psi_1(\theta)}{\partial \theta_2} & \cdots & \frac{\partial \psi_1(\theta)}{\partial \theta_d} \\ \frac{\partial \psi_2(\theta)}{\partial \theta_1} & \frac{\partial \psi_2(\theta)}{\partial \theta_2} & \cdots & \frac{\partial \psi_2(\theta)}{\partial \theta_d} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial \psi_d(\theta)}{\partial \theta_1} & \frac{\partial \psi_d(\theta)}{\partial \theta_2} & \cdots & \frac{\partial \psi_d(\theta)}{\partial \theta_d} \end{bmatrix} \in \mathbb{R}^{d \times d}. \quad (A.6)$$

Theorem A.3 (Information Inequality). Under reasonable conditions, we have that for all θ, $\psi(\theta)$ is differentiable and

$$\text{cov}(T(X)) \geq \frac{\partial \psi(\theta)}{\partial \theta} I(\theta)^{-1} \left(\frac{\partial \psi(\theta)}{\partial \theta} \right)^T,$$

where the inequality is between semi-positive definite symmetric matrices.

For unbiased estimate $\psi(\theta) = \theta$, we have $\psi'(\theta) = I$. The information inequality can be thought of as giving a lower bound for the variance of any unbiased estimate: $\text{cov}(T(X)) \geq I(\theta)^{-1}$, which is often referred to as the Cram\’er-Rao lower bound.

As $X = \{x_1, x_2, \ldots, x_N\}$ are i.i.d. samples from the distribution $p(x, \theta)$, we define $I_1(\theta) \equiv E\left[\left(\frac{\partial}{\partial \theta} \log p(x_1, \theta)\right)\left(\frac{\partial}{\partial \theta} \log p(x_1, \theta)\right)^T\right] \in \mathbb{R}^{d \times d}$. Then, we have

$$I(\theta) = NI_1(\theta). \quad (A.8)$$

The Cram\’er-Rao lower bound can be rewritten as $\text{cov}(T(X)) \geq \frac{1}{N} I_1(\theta)^{-1}$.

A.1.1 Uniformly Minimum Variance Unbiased Estimates

As we have mentioned earlier, to make the model estimation problem well-conditioned, one must restrict the class of estimates. For instance, we may require the estimate $T(X)$ needs to be unbiased, i.e., $b(\theta, T) = 0$. Then the problem of finding the best unbiased estimate becomes

$$\min_{T(\cdot)} R(\theta, T) = \text{Var}(T(X)) \quad \text{s.t.} \quad E[T(X)] = \theta. \quad (A.9)$$

The optimal T^* is then called the \textit{uniformly minimum variance unbiased} (UMVU) estimate. Such a T^* often exists and in the absence of knowledge in θ, it seems to be the best estimate one can hope to obtain.
Definition A.4 (Complete Statistic). A statistic \(T \) is said to be complete if the only real function \(g(\cdot) \) which satisfies \(E[g(T)] = 0 \) for all \(\theta \) is the function \(g(T) \equiv 0 \).

Starting with a sufficient and complete statistic \(T(X) \), the following theorem simplifies the computation of the UMVU estimate:

Theorem A.5 (Lehmann-Scheffé). If \(T(X) \) is a complete sufficient statistic and \(S(X) \) is any unbiased estimate of \(\theta \), then \(T^*(X) = E[S(X) | T(X)] \) is an UMVU estimate of \(\theta \). If further \(\text{Var}(T^*(X)) < \infty \) for all \(\theta \), \(T^*(X) \) is the unique UMVU estimate.

Even so, the UMVU estimate is often too difficult to compute in practice. Furthermore, the property of unbiasedness is not invariant under functional transformation: if \(T(X) \) is an unbiased estimate for \(\theta \), \(g(T(X)) \) is in general not an unbiased estimate for \(g(\theta) \). To have the functional invariant property, we often resort to the so-called Maximum Likelihood estimate.

A.1.2 Maximum Likelihood Estimates

As we assume the \(N \) samples \(x_i \) in the given sample set \(X \) are independently drawn from the same distribution, the joint distribution of \(x_i \) has the density \(p(X, \theta) = \prod_{i=1}^{N} p(x_i, \theta) \). Now consider \(p(X, \theta) \) as a function of \(\theta \) with \(X \) fixed. We call this function the likelihood function, denoted as \(L(\theta, X) = p(X, \theta) \).

Then the maximum likelihood (ML) estimate of \(\theta \) is given by solving the following optimization problem:

\[
\hat{\theta}_N = \arg \max_{\theta} L(\theta, X) = p(X, \theta) = \prod_{i=1}^{N} p(x_i, \theta). \tag{A.10}
\]

As \(\hat{\theta}_N \) maximizes the likelihood function \(L(\theta, X) \), a necessary condition for solving \(\hat{\theta}_N \) is

\[
\left. \frac{\partial L(\theta, X)}{\partial \theta} \right|_{\hat{\theta}_N} = 0. \tag{A.11}
\]

It is easy to show that the ML estimate is invariant under functional transformation: if \(\hat{\theta}_N \) is an ML estimate of \(\theta \), then \(g(\hat{\theta}_N) \) is an ML estimate of \(g(\theta) \).

Since the logarithmic function is monotonic, we may choose to maximize the log likelihood function instead:

\[
\hat{\theta}_N = \arg \max_{\theta} \log L(\theta, X) = \sum_{i=1}^{N} \log p(x_i, \theta), \tag{A.12}
\]

which often turns out to be more convenient to use in practice. The ML estimate is a more popular choice than the UMVU estimate because its existence is easier to establish and is usually easier to compute than the UMVU estimate. Furthermore, when the sample size is large, the ML estimate is asymptotically optimal for a
wide variety of parametric models. Thus, both UMVU and ML estimates give essentially the same answer in a way that we explain in more detail.

A.1.3 Estimates from a Large Number of Samples

Definition A.6 *(Consistency).* *An estimate* $\hat{\theta}_N$ *of* θ *is said to be consistent if, and only if,*

$$P[\|\hat{\theta}_N - \theta\| \geq \epsilon] \to 0$$

(A.13)

for all $\epsilon > 0$ *as* $N \to \infty$.

In other words, $\hat{\theta}_N$ is consistent if it converges in probability to θ.

Definition A.7 *(Asymptotic Unbiasedness).* *Let* $\mu_N = E[\hat{\theta}_N] \in \mathbb{R}^d$ *and* $\Sigma_N = \text{cov}(\hat{\theta}_N) \in \mathbb{R}^{d \times d}$. *We say that* $\hat{\theta}$ *is asymptotically unbiased if as* $N \to \infty$

$$\sqrt{N}(\mu_N - \theta) \to 0, \quad N\Sigma_N \to \Sigma > 0$$

(A.14)

for some positive-definite symmetric matrix $\Sigma \in \mathbb{R}^{d \times d}$.

It is easy to see that asymptotic unbiasedness is a stronger property than consistency. That is, an estimate can be consistent but asymptotically biased. In addition, for most “reasonable” estimate $\hat{\theta}_N$ (e.g., the ML estimate), due to the law of large numbers, it is often asymptotically normal distributed with mean μ_N and covariance matrix Σ_N. Therefore, the asymptotical distribution of an asymptotically unbiased estimate is uniquely characterized by the parameters θ and Σ.

Between any two asymptotically unbiased estimates, say $\hat{\theta}_N^{(1)}$ and $\hat{\theta}_N^{(2)}$, their relative *asymptotic efficiency* of $\hat{\theta}_N^{(1)}$ to $\hat{\theta}_N^{(2)}$ is defined to be the ratio

$$e(\hat{\theta}_N^{(1)}, \hat{\theta}_N^{(2)}) = \frac{\det(\Sigma^{(2)})}{\det(\Sigma^{(1)})},$$

(A.15)

where $\Sigma^{(i)} = \lim_{N \to \infty} N\text{cov}(\hat{\theta}_N^{(i)})$, for $i = 1, 2$. The larger the efficiency ratio e, the smaller the asymptotic variance of $\hat{\theta}^{(1)}$, relative to that of $\hat{\theta}^{(2)}$. Thus, $\hat{\theta}^{(1)}$ gives more accurate or “sharper” estimate for θ although both $\hat{\theta}^{(1)}$ and $\hat{\theta}^{(2)}$ are asymptotically unbiased.

Nevertheless, according to Theorem A.3, an estimate cannot be arbitrarily more efficient than others. That is, for any asymptotically unbiased estimate $\hat{\theta}_N$, using *(A.8)* and *(A.14)*, its covariance matrix is bounded asymptotically from below by the Cramér-Rao bound:

$$\lim_{N \to \infty} N\Sigma_N = \Sigma \geq I_1(\theta)^{-1}.$$

(A.16)

Definition A.8 *(Asymptotic Efficiency).* *An estimate* $\hat{\theta}_N$ *is said to be asymptotically efficient if it is asymptotically normal and it achieves equality in the Cramér-Rao bound* *(A.16).*
Obviously, an asymptotically efficient estimate has efficiency \(e \geq 1 \) with respect to any other asymptotically unbiased estimates that satisfy (A.16).

Asymptotic efficiency is a desirable property for an estimate and it is sometimes referred to as asymptotic optimality. It often can be shown that UMVU estimates are asymptotically efficient. We also have that:

Proposition A.9. In general, the maximum likelihood estimate of is asymptotically efficient.

Proof. We here outline the basic ideas for a “proof,” which can also be used to establish for other estimates their asymptotic unbiasedness or efficiency with respect to the ML estimate. Define the function

\[\psi(x, \theta) = \frac{\partial}{\partial \theta} \log p(x, \theta) \in \mathbb{R}^d. \]

(A.17)

Assume that the maximum likelihood estimate \(\hat{\theta}_N \) exists. It satisfies the equation

\[\frac{\partial L(\theta, X)}{\partial \theta} \bigg|_{\hat{\theta}_N} = \sum_{i=1}^N \psi(x_i, \hat{\theta}_N) = 0. \]

(A.18)

By the mean value theorem,

\[\sum_{i=1}^N \psi(x_i, \hat{\theta}_N) - \sum_{i=1}^N \psi(x_i, \theta) = \left[\sum_{i=1}^N \frac{\partial \psi(x_i, \theta^*_N)}{\partial \theta} \right] \left(\hat{\theta}_N - \theta \right), \]

(A.19)

where \(\theta^*_N \) is a point between \(\theta \) and \(\hat{\theta}_N \). Using (A.18),

\[\sqrt{N} (\hat{\theta}_N - \theta) = \left[\frac{1}{N} \sum_{i=1}^N \frac{\partial \psi(x_i, \theta^*_N)}{\partial \theta} \right]^{-1} \left(- N^{-\frac{1}{2}} \sum_{i=1}^N \psi(x_i, \theta) \right). \]

(A.20)

Under suitable conditions, \(\hat{\theta}_N \) is consistent, and by the law of large numbers, \(\frac{1}{N} \sum_{i=1}^N \frac{\partial \psi(x_i, \theta^*_N)}{\partial \theta} \) behaves like \(\frac{1}{N} \sum_{i=1}^N \frac{\partial \psi(x_i, \theta)}{\partial \theta} \) which converges to

\[E \left[\frac{\partial \psi(x_1, \theta)}{\partial \theta} \right] = E \left[\frac{\partial^2}{\partial \theta^2} \log p(x_1, \theta) \right] - E \left[\frac{\partial}{\partial \theta} \log p(x_1, \theta) \left(\frac{\partial}{\partial \theta} \log p(x_1, \theta) \right)^T \right] = -I_1(\theta). \]

It is easy to show that \(\psi(x, \theta) \) is zero-mean and thus, by the central limit theorem, the right-hand side of (A.20) converges to a normal distribution with zero mean and variance \(I_1(\theta)^{-1} \). That is, the asymptotic variance of the ML estimate reaches the Cramér-Rao lower bound.

When the sample size is large and by appealing to the law of large number, there is an information-theoretic justification for the ML estimate, which can be somewhat more revealing. Notice that maximizing the log likelihood function is
equivalent to minimizing the following objective function:

$$\min_{\theta} H(\theta, N) = \frac{1}{N} \sum_{i=1}^{N} -\log p(x_i, \theta). \quad (A.21)$$

In information theory, the quantity $-\log p(x, \theta)$ is associated with the number of bits required to represent a random event x that has the probability $p(x, \theta)$ [Cover and Thomas, 1991]. When the sample size N is large, due to the law of large numbers, the quantity $H(\theta, N)$ converges to

$$\lim_{N \to \infty} H(\theta, N) = H(\theta) = E[-\log p(x, \theta)] = \int (-\log p(x, \theta)) p(x, \theta_0) \, dx,$$

(A.22)

where $p(x, \theta_0)$ is the true distribution. Notice that the above quantity is a measure similar to the notion of “entropy”: $H(\theta)$ is asymptotically the average code length of the sample set $\{x_i\}$ when we assume that it is of the distribution $p(x, \theta)$ while x is actually drawn according to $p(x, \theta_0)$. Thus, the goal of ML estimate is to find the $\hat{\theta}$ that minimizes the empirical entropy of the given sample set. This is obviously a smart thing to do as such estimate $\hat{\theta}$ gives the most compact representation of the given sample data if an optimal coding scheme is adopted [Cover and Thomas, 1991]. We refer to this as the “minimum entropy principle.”

Notice that the $\hat{\theta}$ that minimizes $\int (-\log p(x, \theta)) p(x, \theta_0) \, dx$ is the same as that minimizing

$$D(p(x, \theta_0)\|p(x, \theta)) = \int \left(\frac{p(x, \theta_0)}{p(x, \theta)} \right) p(x, \theta_0) \, dx,$$

the so-called Kullback-Leibler (KL) divergence between the two distributions $p(x, \theta_0)$ and $p(x, \theta)$. One may show that under general conditions, the KL divergence is always non-negative and becomes zero if and only if $\theta = \theta_0$. In essence, when the sample size is large, the ML objective is equivalent to minimizing the KL divergence.

However, the ML estimate is known to have very bad performance in some models even with a large number of samples. This is particularly the case when the models have many redundant parameters or the distributions are degenerate. Furthermore, both UMVU and ML estimates are not the optimal estimate in a Bayesian\footnote{A Bayesian estimate T^* is the solution to the following problem $\min_T \int R(\theta, T) \pi(\theta) \, d\theta$ for a given prior distribution $\pi(\theta)$ of θ. That is, T^* is the best estimate in terms of its average risk.} or minimax\footnote{A minimax estimate T^* is the solution to the problem $\min_T \max_{\theta} R(\theta, T)$. That is, T^* is the best estimate according to its worst performance. Of course, such a T^* does not have to always exist or be easier to compute than the ML estimate.} sense. For instance, the ML estimate can be viewed as a special Bayesian estimate only when the parameter θ is of a uniform distribution.

In this book, the concepts introduced in this section help us to understand what assumptions for the distribution, the estimate given by the GPCA algorithms can be asymptotically unbiased (hence consistent), or asymptotically efficient.
A.2 Expectation Maximization

In many practical situations, one is required to estimate a statistical model with only part of the random states being observable and the rest being “missing,” or “hidden,” or “latent,” or “unobserved.” For instance, suppose that two random vectors \((x, z)\) have a joint distribution (density) \(p(x, z, \theta)\) but only samples of \(x\) are observable and \(z\) is not available. Our goal is, as before, to find an optimal estimate \(\hat{\theta}\) for \(\theta\) from the observations.

As samples of \(z\) are not available, there is no way one can find the maximum likelihood estimate of \(\theta\) from the complete log likelihood function:

\[
\max_{\theta} L_c(\theta, X, Z) = \sum_{i=1}^{N} \log p(x_i, z_i, \theta). \tag{A.23}
\]

Thus, it makes sense to use only the marginal distribution of \(x\): \(p(x, \theta) = \int p(x, z, \theta) \, dz\) and find the maximum likelihood estimate from

\[
\max_{\theta} L(\theta, X) = \sum_{i=1}^{N} \log p(x_i, \theta), \tag{A.24}
\]

which, in this context, is often referred to as the incomplete log likelihood function in the statistical literature. The problem is now reduced to a standard ML estimation problem and one can adopt any appropriate optimization method (say conjugate gradient) to find the maximum. It seems that there is no need of involving \(z\) at all.

An alternative approach to maximize \(L(\theta, X)\) is to use the available data of \(x\) to estimate the values \(\hat{z}\) of the latent variables, and then search for the ML estimate \(\hat{\theta}\) from the complete log likelihood \(L_c(\theta, X, Z)\). There are several reasons why this often turns out to be a better idea. First, for some models \(p(x, z, \theta)\), marginalizing \(z\) out can be difficult to do or that could destroy good structures in the models. The alternative approach may better harness these structures. Second, directly maximizing \(L(\theta, X)\) may turn out to be a very difficult optimization problem (e.g., high-dimension, many local minima), the introduction of intermediate latent variables \(z\) actually makes the optimization easier (as we will see later). Third, in some applications, it is desired to obtain an estimate of the unobservables \(z\) from the observables \(x\). The alternative approach can simultaneously estimate both \(\theta\) and \(z\). Be aware that regardless of the introduction of the latent variables \(z\) or not, as far as the parameter \(\theta\) is concerned, the ultimate objective has always been to maximize the objective function \(\max_{\theta} L(\theta, X)\).

Using the following identities

\[
\forall z \quad p(x, \theta) = \frac{p(x, z, \theta)}{p(z|x, \theta)} \quad \text{and} \quad \int p(z|x, \theta) \, dz = 1, \tag{A.25}
\]
we have

\[
L(\theta, X) = \sum_{i=1}^{N} \log p(x_i, \theta) = \sum_{i=1}^{N} \int p(z|x_i, \theta) \log \frac{p(x_i, z, \theta)}{p(z|x_i, \theta)} dz
= \sum_{i=1}^{N} \int [p(z|x_i, \theta) \log p(x_i, z, \theta) - p(z|x_i, \theta) \log p(z|x_i, \theta)] dz. \quad (A.26)
\]

Although the last expression seems more complicated than the original log likelihood \(L(\theta, X)\), it reveals that the likelihood is a function of the a posteriori probability \(w_i(z) = p(z|x_i, \theta)\). The a posteriori distribution of \(z\) gives us the best estimate of \(z\) given \(x_i\) and \(\theta\). In turn, we can update the parameter \(\theta\) based on the estimate of \(z\). This leads to the well-known Expectation and Maximization (EM) algorithm for optimizing the log likelihood \(L(\theta, X)\):

Step 1 (Expectation): For fixed \(\theta^k\) and every \(i = 1, 2, \ldots, N\),

\[
w_i^{k+1}(z) = \arg \max_{w_i} \left[w_i(z) \log p(x_i, z, \theta^k) - w_i(z) \log w_i(z) \right].
\]

Step 2 (Maximization): For fixed \(w_i^{k+1}\),

\[
\theta^{k+1} = \arg \max_{\theta} \sum_{i=1}^{N} \int w_i^{k+1}(z) \log p(x_i, z, \theta) dz.
\]

The Maximization step does not involve the second term in (A.26) because it is constant with \(w_i\) fixed. The Expectation step is decomposed to every \(i\) because the a posteriori \(w_i(z)\) depends only on \(x_i\). It is important to know that each step of the EM algorithm is in general a much simpler optimization problem than directly maximizing the log likelihood \(L(\theta, X)\) as the sum \(\sum_{i=1}^{N} \log p(x_i, \theta)\). For many popular models (e.g., mixtures of Gaussians), one might even be able to find closed-form formulae for both steps (see Chapter 3). Notice that the EM algorithm is an iterative algorithm. Like gradient ascent, it is essentially a hill-climbing algorithm that each iteration increases the value of the log likelihood.

Proposition A.10. The Expectation Maximization process converges to one of the stationary points (extrema) of the (log) likelihood function \(L(\theta, X)\).

Proof. We here give a sketch of the basic ideas of the proof. Notice that the a posteriori \(w_i\) defined above depend on both \(z\) and the parameter \(\theta\). By substituting \(w = \{w_i\}\) into the incomplete log-likelihood, we can view \(L(\theta, X)\) as

\[
L(\theta, X) = g(w, \theta) \quad (A.27)
\]

for some function \(g(\cdot, \cdot)\). Instead of directly maximizing the \(L(\theta, X)\) with respect to \(\theta\), the EM algorithm maximizes the functional \(g(w(\theta), \theta)\) in a “hill-climbing” style by iterating between the following two steps:

E Step: partially maximizing \(g(w, \theta)\) with respect to \(w\) with the second variable \(\theta\) fixed;
M Step: partially maximizing $g(w, \theta)$ with respect to the second variable θ with w fixed.

Notice that at each step the value of $g(w, \theta)$ does not decrease, so does $L(\theta, X)$. When both steps become stationary and no longer increase the value, the process reaches a (local) extremum θ^* of the function $L(\theta, X)$. To see this, examine the equation

$$
\frac{dL(\theta, X)}{d\theta} = \frac{\partial g(w, \theta)}{\partial w} \frac{\partial w}{\partial \theta} + \frac{\partial g(w, \theta)}{\partial \theta}.
$$

(A.28)

Since at θ^*, each step is stationary, we have $\frac{\partial g(w, \theta)}{\partial w} = 0$ and $\frac{\partial g(w, \theta)}{\partial \theta} = 0$. Therefore, $\frac{dL(\theta, X)}{d\theta} \bigg|_{\theta^*} = 0$.

For a more thorough exposition and complete proof of the convergence of the EM algorithm, one may refer to the book of [McLachlan and Krishnan, 1997]. However, for the EM algorithm to converge to the maximum-likelihood estimate (usually the global maximum) of $L(\theta, X)$, a good initialization is crucial.

A.3 Estimation of Mixture Models

A.3.1 Maximum-Likelihood Estimates

The EM algorithm is often used for estimating a mixture model. By that, we mean the data x is sampled from a distribution which is a superposition of multiple distributions:

$$
p(x, \theta) = \pi_1 p_1(x, \theta) + \pi_2 p_2(x, \theta) + \cdots + \pi_n p_n(x, \theta).
$$

(A.29)

Such a distribution can be easily interpreted as the marginal distribution of a model with a latent random variable z that takes discrete values in $\{1, 2, \ldots, n\}$:

$$
p(x, \theta) = \sum_z p(x, z, \theta) = \sum_z p(x|z, \theta) p(z, \theta)
= p(x|z = 1, \theta) p(z = 1, \theta) + \cdots + p(x|z = n, \theta) p(z = n, \theta)
$$

with $p(z = j, \theta) = \pi_j > 0, j = 1, 2, \ldots, n$. Obviously, one can use the EM algorithm to estimate the mixture model, with the mixing weights π_j as part of the unknown model parameters.

Once the model parameters are estimated from the EM algorithm, for a given sample point x_i, its “membership” $c(i) \in \{1, 2, \ldots, n\}$, i.e., the component distribution from which x_i is most likely drawn, can be determined by the Bayesian

Here the “derivative” with respect to w is formal as w is in general a function if z is a continuous random variable. To make the proof here rigorous, one needs to resort to the calculus of variation. For a more careful proof of the convergence of the EM algorithm, one should refer to [McLachlan and Krishnan, 1997].
A.3. Estimation of Mixture Models

rule from its \textit{a posterior} probability:

\[c(i) = \arg \max_j p(z = j \mid x_i) = \frac{p_j(x_i)}{\pi_1 p_1(x_i) + \cdots + \pi_n p_n(x_i)}. \]
(A.30)

A.3.2 Minimax Estimates

Obviously, for the mixture model (A.29), we need to estimate both the distribution parameters \(\theta \) and the unknown mixing weights \(\pi_j \). This increases the dimension of the optimization problem that needs to be solved. In practice, we often seek for alternative estimates of the mixture model which do not depend on the mixing weights. Such estimates may no longer be optimal with respect to the above mixture model (A.29) but can be much easier to compute than the ML estimate.

If the mixing weights are not known or not of any interest, the membership of a given sample \(x_i \) can be directly determined by the component distribution that returns the highest likelihood:

\[c(i) = \arg \max_j p_j(x_i) = \arg \min_j - \log p_j(x_i). \]

Therefore, the parameters of the distributions \(p_j \) can be estimated by solving the following optimization problem:

\[\min_{\theta} \sum_{i=1}^{N} \left(\min_j - \log p_j(x_i, \theta) \right). \]
(A.31)

One may interpret the above objective as the follows: For each sample, we find the component distribution for which \(x_i \) achieves the highest likelihood; once we have decided to “assign” \(x_i \) to the distribution \(p_j(x_i, \theta) \), it takes \(- \log p_j(x_i, \theta) \) bits to encode \(x_i \). Thus, the above objective function is equivalent to minimize the sum of coding length given the membership of all the samples.

A straightforward way to solve the above optimization problem is to iterate between the following two steps:

\textbf{Step 1:} For fixed \(\theta^k \) and every \(i = 1, 2, \ldots, N \),

\[c^{k+1}(i) = \arg \max_j \log p_j(x_i, \theta). \]
(A.32)

\textbf{Step 2:} With all \(c^{k+1}(i) \) known,

\[\theta^{k+1} = \arg \min_{\theta} \sum_{i=1}^{N} \left(- \log p_{c^{k+1}(i)}(x_i, \theta) \right). \]
(A.33)

Notice that the two steps resemble the two steps of the EM algorithm introduced earlier. The difference is that here each sample \(x_i \) is assigned to only one of the \(n \) groups while in the EM algorithm the hidden variable \(z_i \) gives a probabilistic assignment of \(x_i \) to the \(n \) groups. In fact, the well-known \textit{K-means} algorithm for clustering (see Chapter 2) is essentially based upon the above iteration.
A.4 Model Selection Criteria

So far, we have studied how to solve the following problem: Given a number of samples drawn from a family of distributions \(\{p(x, \theta)\} \), how to obtain the (approximate) optimal estimate \(\theta^* \) of the model parameter. Typically the function \(p(x, \theta) \) depends smoothly on the parameter \(\theta \). However, in practice, we often face a more difficult situation. Very often we do not know exactly to which family of distributions the model belongs to and might only know it belongs to several possible families: \(p(x, \theta, m) \) where \(m \) is a (discrete) index for the model families.

Sometimes the set of models of interest cannot be smoothly parameterized. For instance, in the context of GPCA, we try to fit multiple subspaces to a given set of data. However, the number of subspaces and their exact dimensions are sometimes not known or given *a priori*. Thus, determining the number of subspaces and their dimensions is now part of the model estimation problem. Notice that the number of subspaces and their dimensions are discrete variables as opposed to the continuous parameters (say base vectors) needed to specify each subspace. For such cases in which we need to determine both the model type \(m \) and its parameter \(\theta \), it is conventionally referred to as a model selection problem (as opposed to parameter estimation).

Many important model-selection criteria have been developed in the statistics community and the algorithmic complexity community for general classes of models. These criteria include:

- Akaike Information Criterion (AIC) [Akaike, 1977] (also known as the \(C_p \) statistics [Mallows, 1973]) and Geometric AIC (G-AIC) [Kanatani, 2003],

- Bayesian Information Criterion (BIC) (also known as the Schwartz criterion),

- Minimum Description Length (MDL) [Rissnen, 1978] and Minimum Message Length (MML) [Wallace and Boulton, 1968].

Although these criteria are originally motivated and derived from different viewpoints (or in different contexts), they all share a common characteristic: The optimal model should be the one that strikes a good balance between the model complexity (typically depends on the dimension of the parameter space) and the data fidelity to the chosen model (typically measured as the sum of squared errors). In fact, some of the criteria are essentially equivalent to each other despite their different origins: To a large extent, BIC is equivalent to MDL; and AIC is equivalent to the \(C_p \) statistics. Even so, it is impossible to give a detailed review here of all the model selection criteria. We give below a brief review of the AIC and the BIC to illustrate the key ideas behind model selection. In Chapter 5, we will further discuss how to modify AIC in the context of GPCA.
A.4. Model Selection Criteria

A.4.1 Akaike and Bayesian Information Criteria

Akaike Information Criterion

Given N independent sample points $X = \{x_i\}_{i=1}^N$ drawn from a distribution $p(x, \theta_0)$, the maximum-likelihood estimate $\hat{\theta}_N$ of the parameter θ is the one that maximizes the log-likelihood function $L(\theta, X) = \sum_{i=1}^N \log p(x_i, \theta)$. From an information-theoretic viewpoint,

$$E[-\log p(x, \hat{\theta}_N)] = \int (-\log p(x, \hat{\theta}_N)) p(x, \theta_0) \, dx \quad (A.34)$$

corresponds to the average code length that we use the optimal coding scheme of $p(x, \hat{\theta}_N)$ for a random variable with actual distribution $p(x, \theta_0)$. Thus, for model selection, it then desirable to choose the model that minimizes the above expected log-likelihood loss.

The Akaike information criterion (AIC) relies on an approximation to the above expected log-likelihood loss that holds asymptotically as $N \to \infty$:

$$2E[-\log p(x, \hat{\theta}_N)] \approx -\frac{2}{N} L(\hat{\theta}_N, X) + 2 \frac{d}{N} = \text{AIC}, \quad (A.35)$$

where d is the number of free parameters for the class of models of interest. For Gaussian noise models with variance σ^2, we have

$$L(\hat{\theta}_N, X) = -\frac{1}{2\sigma^2} \sum_{i=1}^N \|x_i - \hat{x}_i\|^2,$$

where \hat{x}_i is the best estimate of x_i given the model $p(x, \hat{\theta}_N)$. Thus, if σ^2 is known (or approximated by the empirical sample variance), minimizing AIC is equivalent to minimizing the so-called C_p statistic:

$$C_p = \frac{1}{N} \sum_{i=1}^N \|x_i - \hat{x}_i\|^2 + 2 \frac{d}{N} \sigma^2, \quad (A.36)$$

where the first term is obviously the mean squared error (a measure of data fidelity) and the second term depends linearly on the dimension of the parameter space (a measure of the complexity of the model).

Now consider multiple classes of models whose parameter spaces are of different dimensions. Let us denote the dimension of model class m as $d(m)$. Then AIC selects the model class m^* that minimizes the following objective function:

$$\text{AIC}(m) = \frac{1}{N} \sum_{i=1}^N \|x_i - \hat{x}_i\|^2 + 2 \frac{d(m)}{N} \sigma^2. \quad (A.37)$$

Bayesian Information Criterion

The Bayesian information criterion (BIC) for model selection is motivated from a Bayesian inference viewpoint. In this approach, we normally assume some a priori distribution of the model $p(\theta|m)$, and would like to choose the model class
that maximizes the \textit{a posteriori} probability \(p(m|X) \). Using Bayesian rule, this is equivalent to maximize

\[
p(m|X) \propto p(m) \cdot p(X|m) = p(m) \cdot \int p(X|\theta, m) p(\theta|m) \, d\theta.
\] (A.38)

If we assume that each model class is equally probable, this reduces to maximize the likelihood \(p(X|m) \) among all the model classes. This is equivalent to minimize the negated log-likelihood \(-2 \log p(X|m)\). With certain approximation, one can show that for general distributions, the following relationship holds asymptotically as \(N \to \infty \):

\[
\text{BIC}(m) \triangleq -2 \log p(X|m) = -2L(X, \hat{\theta}_N) + (\log N)d(m) \quad \text{for all } m,
\] (A.39)

where \(\hat{\theta}_N \) is the maximum-likelihood estimate of \(\theta \) (given \(m \)), \(d(m) \) is the number of parameters for class \(m \), and \(\sigma^2 \) is the variance (of a Gaussian noise model).

Notice that with \(N \) and \(\sigma \) known, BIC is very similar to AIC except that the factor 2 in front of the second term in AIC is replaced by \(\log N \) in BIC. Because we normally have \(N \gg e^2 \), BIC penalizes complex models much more than AIC does. Thus, BIC tends to choose simpler models. In general, no model selection criterion is always better than others under all circumstances; the best criterion depends on the purpose of the model. From our experience, AIC tends to provide more satisfactory results for estimation of subspaces. That makes it more favorable in the context of GPCA.

A.4.2 Model Selection Criteria for PCA

We now give more detail on how to apply the above criteria to the problem of principal component analysis (PCA) where we try to fit a subspace \(S \) of dimension \(d \) in \(\mathbb{R}^D \) to a given set of data points \(X = \{x_i \in \mathbb{R}^D\}_{i=1}^N \). Let us denote the projection of each data point \(x_i \in X \) on the subspace as \(\hat{x}_i \) and let \(\hat{X} = \{\hat{x}_i\} \).

Then, the sum of squared errors is:

\[
\| X - \hat{X} \|^2 = \sum_{i=1}^N \| x_i - \hat{x}_i \|^2.
\] (A.41)

Using the Grassmannian coordinates, the dimension of the parameter space for a \(d \)-dimensional subspace in \(\mathbb{R}^D \) should be \(Dd - d^2 \).

\(Dd - d^2 \) is the dimension of the Grassmannian manifold of \(d \)-dimensional subspaces in \(\mathbb{R}^D \). To specify a subspace, one can use the so-called Grassmannian coordinates which need exactly \(Dd - d^2 \) entries: starting with a \(D \times d \) matrix whose columns form a basis for the subspace, perform column-reduction so that the first \(d \times d \) block is the identity matrix. Then, one only needs to give the rest \((D - d) \times d \) entries to specify the subspace.
Thus, with a model parameter space of dimension $Dd - d^2$ and a Gaussian noise model with variance σ^2, the Bayesian information criterion (BIC) is equivalent to minimize

$$\text{BIC}(d) = \frac{1}{N} \|X - \hat{X}\|^2 + (\log N) \frac{(Dd - d^2)}{N} \sigma^2.$$ \hspace{1cm} (A.42)

while the Akaike information criterion (AIC) minimizes

$$\text{AIC}(d) = \frac{1}{N} \|X - \hat{X}\|^2 + 2 \frac{(Dd - d^2)}{N} \sigma^2.$$ \hspace{1cm} (A.43)

These criteria provide more principled ways to determine the optimal dimension of the subspace than the methods given in Chapter 2.

More recently, a geometric version of the Akaike information criterion has been proposed by [Kanatani, 2003] which minimizes

$$\text{GAIC}(d) = \frac{1}{N} \|X - \hat{X}\|^2 + 2 \frac{(Dd - d^2 + N\delta)}{N} \sigma^2,$$ \hspace{1cm} (A.44)

where the extra term $N\delta$ accounts for the number of coordinates needed to represent (the closest projection of) the given N data points in the estimated d-dimensional subspace. From the information-theoretic viewpoint, the additional $N\delta$ coordinates are necessary if we are interested in encoding not only the model but also the data themselves. This is often the case when we use PCA or GPCA for purposes such as data compression and dimension reduction. The quantity $\frac{(Dd - d^2 + N\delta)}{N}$ is closely related to the so-called “effective dimension” of the data set defined in Chapter 6, which can be generalized to multiple subspaces.

In some sense, all the above criteria can be loosely referred to as information-theoretic model selection criteria, in the sense that most of these criteria can be interpreted as variations to minimizing the optimal code length for both the model and the data with respect to certain class of distributions and coding schemes [Hansen and Yu, 2001].

A.5 Robust Statistical Methods

For all the model estimation and selection techniques discussed above, we have always assumed that the given data samples $\{x_i\}_{i=1}^N$ are independent samples drawn from the same distribution $p(x, \theta_0)$. By an appeal to the law of large num-

5Even if one chooses to compare models by their algorithmic complexity, such as the minimum message length (MML) criterion [Wallace and Boulton, 1968] (an extension of the Kolmogrov complexity to model selection), a strong connection with the above information-theoretic criteria, such as MDL, can be readily established via Shannon’s optimal coding theory (see [Wallace and Dowe, 1999]).
bers (or the central limit theorems), the asymptotic optimality of the estimate normally does not depend on the particular set of samples given.\(^6\)

However, in many practical situations, the validity of the given data as independent samples of the model becomes questionable: Sometimes, the given data can be corrupted by or mixed with samples of different (probabilistic) nature; or it can simply be the case that the given data are not a typical set of i.i.d. samples from the distribution in question. For the purpose of model estimation, these seemingly different interpretations are actually equivalent: We need to somehow infer the correct model while \textit{accommodating} an atypical set of samples of the distribution (or the model). Obviously, this is an impossible task unless we impose some restrictions on how “atypical” the samples are. It is customary to assume that only a portion of the samples are somehow different from or inconsistent with the rest of the data. Those samples are often referred to as “outliers” and they may have significant effect on the model inferred from the data.

Unfortunately, despite centuries of interest and study\(^7\), there is no universally agreed definition of what an outlier is, especially for multivariate data. Roughly speaking, most definitions (or tests) of outlier are based on one of the following guidelines:

1. The outliers are a set of \textit{small-probability} samples with respect to the distribution in question. The given data set is therefore an atypical set if such small-probability samples constitute a significant portion of the data.

2. The outliers are a set of samples that are \textit{not consistent} with (the model inferred from) the remainder of the data. A measure of inconsistency is normally the error residue of the sample in question with respect to the model.

3. The outliers are a set of samples that have relatively \textit{large influence} on the estimated model parameters. A measure of influence is normally the difference between the model estimated with or without the sample in question.

Nevertheless, as we will soon see, for popular distributions such as Gaussian, they all lead to more or less equivalent ways of detecting or accommodating outliers. However, under different conditions, different approaches that follow each of the above guidelines may give rise to solutions that can be more convenient and efficient than others.

\(^6\)The fact that almost all sets of i.i.d sample are “typical” or “representative” of the given distribution has been at the heart of the development of Shannon’s information theory.

\(^7\)Earliest documented discussions among astronomers about outliers or “erroneous observations” date back to mid 18th century. See [Barnett and Lewis, 1983, Huber, 1981, Bickel, 1976] for a more thorough exposition of the studies of outliers in statistics.
A.5.1 Sample Influence

When we try to estimate the parameter of the distribution \(p(x, \theta) \) from a set of samples \(\{x_i\}_{i=1}^N \), every sample \(x_i \) might have uneven effect on the estimated parameter \(\hat{\theta}_N \). The samples that have relatively large effect are called influential samples and they can be regarded as outliers.

To measure the influence of a particular sample \(x_i \), we may compare the difference between the parameter \(\hat{\theta}_N \) estimated from all the \(N \) samples and the parameter \(\hat{\theta}_N^{(i)} \) estimated from all but the \(i \)th sample. Without loss of generality, we here consider the maximum-likelihood estimate of the model:

\[
\hat{\theta}_N = \arg \max_{\theta} \sum_{j=1}^{N} \log p(x_i, \theta),
\]

\[
\hat{\theta}_N^{(i)} = \arg \max_{\theta} \sum_{j \neq i} \log p(x_i, \theta),
\]

and the influence of \(x_i \) on the estimation of \(\theta \) can be measured by the difference

\[
I(x_i; \theta) = \hat{\theta}_N - \hat{\theta}_N^{(i)}. \tag{A.45}
\]

Let us assume that \(p(x, \theta) \) is analytical in \(\theta \). Then we have

\[
f(\theta) = \sum_{j=1}^{N} \frac{1}{p(x_i, \theta)} \left. \frac{\partial p(x_i, \theta)}{\partial \theta} \right|_{\theta = \hat{\theta}_N} = 0,
\]

\[
f(\theta)^{(i)} = \sum_{j \neq i} \frac{1}{p(x_i, \theta)} \left. \frac{\partial p(x_i, \theta)}{\partial \theta} \right|_{\theta = \hat{\theta}_N^{(i)}} = 0.
\]

Now let us evaluate the function \(f(\theta) \) at \(\theta = \hat{\theta}_N \) in terms of the Taylor series of \(f(\theta) \) expanded at \(\theta = \hat{\theta}_N^{(i)} \):

\[
f(\hat{\theta}_N^{(i)}) = f(\hat{\theta}_N) + f'(\hat{\theta}_N)(\hat{\theta}_N^{(i)} - \hat{\theta}_N) + o(\|\hat{\theta}_N - \hat{\theta}_N^{(i)}\|). \tag{A.46}
\]

As we have \(f(\hat{\theta}_N) = 0 \) and \(f^{(i)}(\hat{\theta}_N^{(i)}) = 0 \), the difference in the estimate caused by the \(i \)th sample is

\[
\hat{\theta}_N^{(i)} - \hat{\theta}_N \approx \left(f'(\hat{\theta}_N) \right)^{\dagger} \left[\frac{1}{p(x_i, \hat{\theta}_N^{(i)})} \frac{\partial p(x_i, \hat{\theta}_N^{(i)})}{\partial \theta} \right]. \tag{A.47}
\]

Notice that in the expression on the right hand side, the factor \(\left(f'(\hat{\theta}_N) \right)^{\dagger} \) is common for all samples.

Proposition A.11 (Approximate Sample Influence). The difference between the ML estimate \(\hat{\theta}_N \) from \(N \) samples and the ML estimate \(\hat{\theta}_N^{(i)} \) without the \(i \)th sample \(x_i \) depends approximately linearly on the quantity:

\[
d(x_i; \theta) = \frac{1}{p(x_i, \hat{\theta}_N^{(i)})} \left. \frac{\partial p(x_i, \hat{\theta}_N^{(i)})}{\partial \theta} \right|_{\theta = \hat{\theta}_N^{(i)}}. \tag{A.48}
\]
Appendix A. Basic Facts from Mathematical Statistics

In the special case when \(p(x, \theta) \) is the Gaussian distribution \(\mathcal{N}(\mu, \sigma^2) \) with \(\sigma^2 \) known, the above equation gives the influence of the \(i \)th sample on the estimate of \(\mu \):

\[
\hat{\mu}_N^{(i)} - \hat{\mu}_N \approx \alpha(x_i - \hat{\mu}_N^{(i)}),
\]

where \(\alpha \) is some constant depending on \(\sigma \). That is, the sample influence is very much proportional to the distance between the sample and the mean estimated without the sample; or equivalently, the smaller the probability of a sample is with respect to the estimated (Gaussian) distribution, the larger is its influence on the estimated mean. Therefore, the three guidelines for defining outliers become very much equivalent for a Gaussian distribution.

In general, to evaluate the influence of all the samples, one needs to compute the estimate of the model for \(N + 1 \) times. That is reasonable to do only if each estimate is not so costly to compute. In light of this drawback, some first order approximations of the influence values were developed at roughly the same period as the sample influence function was proposed [Campbell, 1978, Critchley, 1985], when the computational resource was scarcer than it is today. In robust statistics, formulae that approximate an influence function are referred to as theoretical influence functions. One such formula for the influence function of PCA can be found in [Jollife, 2002].

A.5.2 Robust Covariance Estimation

In principal component analysis (PCA), the goal is to find a low-dimensional subspace that best fits a given set of data points \(\{x_i\}_{i=1}^N \subset \mathbb{R}^D \). In general, we assume that the data are drawn from a zero-mean\(^8\) multivariate Gaussian distribution \(\mathcal{N}(0, \Sigma) \). Ideally, the principal \(d \)-dimensional subspace is spanned by the first \(d \) eigenvectors of the covariance matrix \(\Sigma \). Thus, in order to improve the robustness of PCA in the presence of outliers, we essentially seek for robust estimation of the covariance matrix \(\Sigma \).

If there were no outliers, the maximum likelihood of the covariance matrix is given by

\[
\hat{\Sigma}_N = \frac{1}{N-1} \sum_{i=1}^N x_i x_i^T \in \mathbb{R}^{D \times D}.
\]

(A.50)

The probability of each sample \(x_i \) is

\[
p(x_i; \hat{\Sigma}_N) = \frac{1}{(2\pi)^{D/2} \sqrt{\det(\hat{\Sigma}_N)^{1/2}}} \exp \left(-\frac{1}{2} x_i^T \hat{\Sigma}_N^{-1} x_i \right).
\]

(A.51)

\(^8\)That is, we here are only interested in how to robustly estimate the covariance, or “scale,” of the distribution. In case the mean, or “location,” of the distribution is not known, a separate robust procedure can be employed to determine the mean before the covariance, see [Barnett and Lewis, 1983].
Now if we adopt the guideline that outliers are samples that have a small probability with respect to the estimated model, they are exactly those samples that have a relatively large Mahalanobis distance:

\[d_i = x_i^T \hat{\Sigma}_N^{-1} x_i, \quad i = 1, 2, \ldots, N. \]

(A.52)

In fact, it can be shown that [Ferguson, 1961], if the outliers have a Gaussian distribution of a different covariance matrix \(\alpha \Sigma \), then \(d_i \) is a sufficient statistic for the test that maximizes the probability of correct decision about the outlier (in the class of tests that are invariant under linear transformations).

Maximum Likelihood Type Estimators (M-Estimators).

However, the above estimate \(\Sigma_N \) is obtained by using all the samples including the outliers themselves. Obviously a better estimate of the covariance matrix can be obtained if we recompute the covariance matrix by discarding or down-weighting samples that have large Mahalanobis distance:

\[\hat{\Sigma}_N = \frac{w_1^2 x_1 x_1^T + w_2^2 x_2 x_2^T + \cdots + w_N^2 x_N x_N^T}{w_1^2 + w_2^2 + \cdots + w_N^2 - 1}, \]

(A.53)

where \(w_i = w(d_i)/d_i \) for some weight function \(w(\cdot) \).

If \(w(d) \equiv d \), the above expression gives the original estimate (A.50) of the covariance matrix. Or, if we want to simply discard all samples with a Mahalanobis distance larger than certain threshold \(d_0 > 0 \), we can choose the following weight function:

\[w(d) = \begin{cases}
 d, & \text{for } d \leq d_0, \\
 0, & \text{for } d > d_0.
\end{cases} \]

(A.54)

Nevertheless, under the assumption that the distribution is elliptically symmetric and is contaminated by an associated normal distribution, the following weight function gives a more robust estimate of the covariance matrix [Hampel, 1974, Campbell, 1980]:

\[w(d) = \begin{cases}
 d_0, & \text{for } d \leq d_0, \\
 d_0 \exp\left[-\frac{1}{2a}(d - d_0)^2 \right], & \text{for } d > d_0.
\end{cases} \]

(A.55)

with \(d_0 = \sqrt{p + b} \) for some suitable choice of positive values for \(a \) and \(b \) and \(p \) denotes the dimension of the space.

Notice that calculating the robust estimate \(\hat{\Sigma}_N \) in term of (A.53) is not easy because the weights \(w_i \) also depend on the resulting \(\hat{\Sigma}_N \). There is no surprise that many known algorithms are based on Monte Carlo [Maronna, 1976, Campbell, 1980].

Many other weight functions have also been proposed in the statistics literature. They serve as the basis for a class of robust estimators, known as *M-estimators*.

9Interested reader may want to find out how this distance is equivalent (or related) to the sample influence \(\Sigma_N^{-1} \hat{\Sigma}_N - \Sigma_N \) or the approximate sample influence given in (A.48).
(maximum-likelihood type estimators) [Huber, 1981, Barnett and Lewis, 1983]. Nevertheless, most M-estimators differ only in how the samples are down-weighted but no one seems to dominate others in terms of performance in all circumstances.

Multivariate Trimming (MVT).

One drawback of the M-estimators is that its “breakdown point” is inversely proportional to the dimension of the space. The breakdown point is an important measure of robustness of any estimator: Roughly speaking, it is the smallest proportion of contamination that the estimator can tolerate (or does not diverge). Thus, the M-estimators become much less robust when the dimension is high. This makes M-estimators of limited use in the context of GPCA since the dimension of the space is typically very high (≥ 70).

One way to resolve this problem is to modify the M-estimators by simply trimming out a percentage of the samples with relatively large Mahalanobis distance and then use the remaining samples to re-estimate the covariance matrix. Then each time we have a new estimate of the covariance matrix, we can recalculate the Mahalanobis distance of every sample and reselect samples that need to be trimmed. We can repeat the above process until a stable estimate of the covariance matrix is obtained. This iterative scheme is known as **multivariate trimming (MVT)** – another popular robust estimator. By construction, the breakdown point of MVT does not depend on the dimension of the problem and only depends on the chosen trimming percentage.

When the percentage of outliers is somehow known, it is relatively easy to determine how many samples need to be trimmed. It usually takes only a few iterations for the iteration to converge. However, if the percentage is wrongfully specified, the MVT is known to have trouble to converge or it may converge to a wrong estimate of the covariance matrix. In Chapter 5, we will discuss in the context of GPCA, how MVT can be modified when the percentage is not known.

A.5.3 Random Sampling Techniques

When the outliers constitute of a large portion (up to 50% or even more than 50%) of the data set, the (ML) estimate $\hat{\theta}_N$ obtained from all the samples can be so severely corrupted that the sample influence and the Mahalanobis distance computed based on it become useless in discriminating outliers from valid samples.\(^\text{10}\) This motivates people to estimate the model parameter θ using only a (randomly sampled) small subset of the samples to begin with. Least median of squares (LMS) and random sample consensus (RANSAC) are two such methods and we now give a brief discussion below.

\(^{\text{10}}\)Thus, the iterative process is likely to converge to a local minimum other than the true model parameter. Sometimes, it can even be the case that the role of inliers and outliers are exchanged with respect to the converged estimate.
Least Median Estimation

If we know that only less than half of the samples are potential outliers, it is then reasonable to use only half of the samples to estimate the model parameter. But which half of the samples? We know the maximum-likelihood estimate minimizes the sum of negative log-likelihoods:

$$\hat{\theta}_N = \arg\min_{\theta} \sum_{i=1}^{N} -\log p(x_i, \theta).$$

A popular approximation to the above objective is to simply minimize the median value of the negative log-likelihood:

$$\hat{\theta}_M = \arg\min_{\theta} \text{median}_{x_i \in X} -\log p(x_i, \theta).$$

We call $\hat{\theta}_M$ the least median estimate. In the case of Gaussian noise model, $-\log p(x_i, \theta)$ is proportional to the squared error:

$$-\log p(x_i, \theta) \propto \|x_i - \hat{x}_i\|^2.$$

For this reason, the estimate $\hat{\theta}_M$ is more often known as the least median of squares (LMS) estimate.11

However, without knowing θ, it is impossible to order the log-likelihoods or the squared errors, let alone to compute the median. A typical method to resolve this difficulty is to randomly sample a number of small subsets of the data:

$$X_1, X_2, \ldots, X_m \subset X,$$

where each subset X_j is independently drawn and contains $k \ll N$ samples. So, if p is the fraction of valid samples (the “inliers”), then with probability $q = 1 - (1 - p^k)^m$, one of the above subsets will contain only valid samples. In other words, if we want to be of probability q that one of the selected subsets contains only valid samples, we need to randomly sample at least

$$m \geq \frac{\log(1 - q)}{\log(1 - p^k)}$$

subsets of k samples.

11The importance of median for robust estimation were pointed out first in the article of [Hampel, 1974].
Using each subset X_j, we can compute an estimate $\hat{\theta}_j$ of the model and use the estimate to compute the median for the remaining $N - k$ samples in $X \setminus X_j$:

$$\hat{M}_j \doteq \text{median}_{x_i \in X \setminus X_j} - \log p(x_i, \hat{\theta}_j).$$ \hfill (A.61)

Then the least median estimate $\hat{\theta}_M$ is approximated by the $\hat{\theta}_j^*$ that gives the smallest median $\hat{M}_j^* = \min_j \hat{M}_j$.

In the case of Gaussian noise model, based on the order statistics of squared errors, we can use the median statistic to obtain an (asymptotically unbiased) estimate of the variance, or scale, of the error as follows:

$$\hat{\sigma} = \frac{N + 5}{N \Phi^{-1}(0.5 + p/2)} \sqrt{\text{median}_{x_i \in X} \|x_i - \hat{x}_i\|^2},$$ \hfill (A.62)

where $p = 0.5$ for the median statistic. One then can use $\hat{\sigma}$ to find “good” samples in X whose squared errors are less than $\lambda \hat{\sigma}^2$ for some chosen constant λ (normally less than 5). Using such good samples, we can recompute a more efficient (ML) estimate $\hat{\theta}$ of the model.

Random Sample Consensus (RANSAC)

In theory, the breakdown point of the least median estimate is up to 50% outliers. In many practical situations however, there might be more than half outlying samples in the data. Random Sample Consensus (RANSAC) [Fischler and Bolles, 1981] is a method that is designed to work for such highly contaminated data.

In many aspects, RANSAC is actually very much similar to LMS. The main difference is that instead of looking at the median statistic, RANSAC try to find, among all the estimates $\{\hat{\theta}_j\}$ obtained from the subsets $\{X_j\}$, the one that maximizes the number of samples that have error residual (measured either by the negative log-likelihood or the squared error) smaller than a pre-specified error tolerance:

$$\hat{\theta}_j^* \doteq \arg \max_{\hat{\theta}_j} \#\{x_i \in X : -\log p(x_i, \hat{\theta}_j) \leq \tau\}. \hfill (A.63)$$

In other words, $\hat{\theta}_j^*$ achieves the highest “consensus” among all the sample estimates $\{\hat{\theta}_j\}$, hence the name “random sample consensus” (RANSAC). To improve the efficiency of the estimate, we can recompute an ML estimate $\hat{\theta}$ of the model from all the samples that are consistent with $\hat{\theta}_j^*$.

Notice that for RANSAC, one needs to specify the error tolerance τ a priori. In other words, RANSAC requires to know the variance σ^2 of the error a priori, while LMS normally does not. There have been a few variations of RANSAC in the literature that relax this requirement. We here do not elaborate on them and interested readers may refer to [Steward, 1999] and references therein.

12 which becomes meaningless when the fraction of outliers is over 50%.
However, in the context of GPCA, the random sampling techniques have not been so effective. The reason is largely because the number of subsets needed grows prohibitively high when the dimension of the model is large or the model is a mixture model such as an arrangement of subspaces. Other complications may also arise when dealing with a mixture model. We will give a more detailed account of these complications in Chapter 5.
Appendix B
Basic Facts from Algebraic Geometry

“As algebra is but written geometry; geometry is but drawn algebra.”
– Sophie Germain

As a centuries-old practice in science and engineering, people often fit polynomials to a given set of data points. In this book, we often use the set of zeros of (multivariate) polynomials to model a given data set. In mathematics, polynomials and their zero sets are studied in Algebraic Geometry, with Hilbert’s Nullstellensatz establishing the basic link between Algebra (polynomials) and Geometry (the zero set of polynomials, a geometric object). In order to make this book self-contained, in this appendix, we review some of the basic notions and facts that are frequently used in this book. For a more systematic introduction to this topic, the reader may refer to the classic texts of Lang [Lang, 1993] and Eisenbud [Eisenbud, 1996].

B.1 Polynomial Ring

Consider a D-dimensional vector space over a field R (of characteristic 0), denoted by R^D, where R is usually the field of real numbers \mathbb{R} or the field of complex numbers \mathbb{C}.

Let $R[x] = \{x_1, x_2, \ldots, x_D\}$ be the set of all polynomials of D variables x_1, x_2, \ldots, x_D. Then $R[x]$ is a commutative ring with two basic operations: “summation” and “multiplication” of polynomials. The elements of R are called scalars or constants. A monomial is a product of the variables; its degree is the
number of the variables (counting repeats). A monomial of degree n is of the form $x^n = x_1^{n_1}x_2^{n_2} \cdots x_D^{n_D}$ with $0 \leq n_j \leq n$ and $n_1 + n_2 + \cdots + n_D = n$. There are a total of

$$M_n(D) = \binom{D+n-1}{n} = \frac{(D+n-1)!}{n!(D-1)!}$$

different degree-n monomials.

Definition B.1 (Veronese Map). For given n and D, the Veronese map of degree n, denoted as $\nu_n : R^D \to R^{M_n(D)}$, is defined as:

$$\nu_n : [x_1, \ldots, x_D]^T \mapsto [\ldots, x^n, \ldots]^T,$$

where x^n are degree-n monomials of the form $x_1^{n_1}x_2^{n_2} \cdots x_D^{n_D}$ with $n = (n_1, n_2, \ldots, n_D)$ chosen in the degree-lexicographic order.

Example B.2 (The Veronese Map of Degree 2 in 3 Variables). If $x = [x_1, x_2, x_3]^T \in R^3$, the Veronese map of degree 2 is given by:

$$\nu_2(x) = [x_1^2, x_1x_2, x_1x_3, x_2^2, x_2x_3, x_3^2]^T \in R^6.$$

In the context of Kernel methods (Chapter 2), the Veronese map is usually referred to as the polynomial embedding and the ambient space $R^{M_n(D)}$ is called the feature space.

A term is a scalar multiplying a monomial. A polynomial $p(x)$ is said to be homogeneous if all its terms have the same degree. Sometimes, the word form is used to mean a homogeneous polynomial. Every homogeneous polynomial $p(x)$ of degree n can be written as:

$$p(x) = c_{\nu_n}(x) = \sum c_{n_1, \ldots, n_D}x_1^{n_1} \cdots x_D^{n_D},$$

where $c_{n_1, \ldots, n_D} \in R$ are the coefficients associated with the monomials $x^n = x_1^{n_1} \cdots x_D^{n_D}$.

In this book, we are primarily interested in the algebra of homogeneous polynomials with D variables.\footnote{For algebra of polynomials defined on R^D as an affine space, the reader may refer to [Lang, 1993].} Because of that, we view R^D as a projective space — the set of one-dimensional subspaces (meaning lines through the origin). Any one-dimensional subspace, say a line L, can be represented by a point $[a_1, a_2, \ldots, a_D]^T \neq [0, 0, \ldots, 0]^T$ on the line. The result is a projective $(D-1)$-space over R which can be regarded as the D-tuples $[a_1, a_2, \ldots, a_D]^T$ of elements of R, modulo the equivalence relation $[a_1, a_2, \ldots, a_D]^T \sim [ba_1, ba_2, \ldots, ba_D]^T$ for all $b \neq 0$ in R.

If $p(x_1, x_2, \ldots, x_D)$ is a homogeneous polynomial of degree n, then for $b \in R$ we have

$$p(ba_1, ba_2, \ldots, ba_D) = b^n p(a_1, a_2, \ldots, a_D).$$
Therefore, whether \(p(a_1, a_2, \ldots, a_D) = 0 \) or not on a line \(L \) does not depend on the representative point chosen on the line \(L \).

We may view \(R[x] \) as a graded ring which can be decomposed as

\[
R[x] = \bigoplus_{i=0}^{\infty} R_i = R_0 \oplus R_1 \oplus \cdots \oplus R_n \oplus \cdots,
\]

where \(R_i \) consists of all polynomials of degree \(i \). In particular, \(R_0 = R \) is the set of nonzero scalars (or constants). It is convention (and convenient) to define the degree of the zero element, 0, in \(R \) to be infinite or \(-1\). \(R_1 \) is the set of all homogeneous polynomials of degree one, i.e., the set of 1-forms,

\[
R_1 = \{ b_1x_1 + b_2x_2 + \cdots + b Dx_D : [b_1, b_2, \ldots, b_D]^T \in R^D \}.
\]

Obviously, the dimension of \(R_1 \) as a vector space is also \(D \). \(R_1 \) can also be viewed as the dual space \((R^D)^* \) of \(R^D \). For convenience, we also define the following two sets

\[
R_{\leq m} = \bigoplus_{i=0}^{m} R_i = R_0 \oplus R_1 \oplus \cdots \oplus R_m,
\]

\[
R_{\geq m} = \bigoplus_{i=m}^{\infty} R_i = R_m \oplus R_{m+1} \oplus \cdots,
\]

which are the set of polynomials of degree up to degree \(m \) and those of degree higher and equal to \(m \), respectively.

B.2 Ideals and Algebraic Sets

Definition B.3 (Ideal). An ideal in the (commutative) polynomial ring \(R[x] \) is an additive subgroup \(I \) (with respect to the summation of polynomials) such that if \(p(x) \in I \) and \(q(x) \in R[x] \), then \(p(x)q(x) \in I \).

From the definition, it is easy to verify that if \(I, J \) are two ideals of \(R[x] \), their intersection \(K = I \cap J \) is also an ideal. The previously defined set \(R_{\geq m} \) is an ideal for every \(m \). In particular, \(R_{\geq 1} \) is the so-called irrelevant ideal, sometimes denoted by \(R_+ \).

An ideal is said to be generated by a subset \(\mathcal{G} \subset I \) if every element \(p(x) \in I \) can be written in the form

\[
p(x) = \sum_{i=1}^{k} q_i(x)g_i(x), \quad \text{with} \quad q_i(x) \in R[x] \quad \text{and} \quad g_i(x) \in \mathcal{G}.
\]

We write \((\mathcal{G})\) for the ideal generated by a subset \(\mathcal{G} \subset R[x] \); if \(\mathcal{G} \) contains only a finite number of elements \{\(g_1, \ldots, g_k \)\}, we usually write \((g_1, \ldots, g_k)\) in place of \((\mathcal{G})\). An ideal \(I \) is principal if it can be generated by one element (i.e., \(I = \)}
generated by the product of elements in I and J

$$\{ f(x)g(x), \ f(x) \in I, \ g(x) \in J \}$$

is called the product ideal, denoted as IJ.

An ideal I of the polynomial ring $R[x]$ is prime if $I \neq R[x]$ and if $p(x), q(x) \in R[x]$ and $p(x)q(x) \in I$ implies that $p(x) \in I$ or $q(x) \in I$. If I is prime, then for any ideals JK with $JK \subseteq I$ we have $J \subseteq I$ or $K \subseteq I$.

A polynomial $p(x)$ is said to be prime or irreducible if $p(x)$ generates a prime ideal. Equivalently, if $p(x)$ is irreducible if $p(x)$ is not a nonzero scalar and whenever $p(x) = f(x)g(x)$, then one of $f(x)$ and $g(x)$ is a nonzero scalar.

Definition B.4 (Homogeneous Ideal). A homogeneous ideal of $R[x]$ is an ideal that is generated by homogeneous polynomials.

Note that the sum of two homogeneous polynomials of different degrees is no longer a homogeneous polynomial. Thus, a homogeneous ideal contains nonhomogeneous polynomials too.

Definition B.5 (Algebraic Set). Given a set of homogeneous polynomials $J \subset R[x]$, we may define a corresponding (projective) algebraic set $Z(J)$ as a subset of R^D to be

$$Z(J) = \{ [a_1, a_2, \ldots, a_D]^T \in R^D | f(a_1, a_2, \ldots, a_D) = 0, \forall f \in J \}. \quad (B.7)$$

If we view algebraic sets as the closed sets of R^D, this assigns a topology to the space R^D, which is called the Zariski topology.\(^2\)

If $X = Z(J)$ is an algebraic set, an algebraic subset $Y \subset X$ is a set of the form $Y = Z(K)$ (where K is a set of homogeneous polynomials) that happens to be contained in X. A nonempty algebraic set is said to be irreducible if it is not the union of two nonempty smaller algebraic subsets. We call irreducible algebraic sets as algebraic varieties. For instance, any subspace of R^D is an irreducible algebraic variety.

There is an inverse construction of algebraic sets. Given any subset $X \subseteq R^D$, we define the vanishing ideal of X to be the set of all polynomials that vanish on X:

$$I(X) = \{ f(x) \in R[x] | f(a_1, a_2, \ldots, a_n) = 0, \forall [a_1, a_2, \ldots, a_n]^T \in X \}. \quad (B.8)$$

One can easily verify that $I(X)$ is an ideal. Treating two polynomials as equivalent if they agree at all the points of X, we get the coordinate ring $A(X)$ of X as the quotient $R[x]/I(X)$.

Now, consider a set of homogeneous polynomials $J \subset R[x]$ (which is not necessarily an ideal) and a subset $X \subset R^D$ (which is not necessarily an algebraic set.)

\(^2\)This is because the intersection of any algebraic sets is an algebraic set; and the union of finitely many algebraic sets is also an algebraic set.
Proposition B.6. The following facts are true:

1. \(I(Z(J)) \) is an ideal that contains \(J \);
2. \(Z(I(X)) \) is an algebraic set that contains \(X \).

Proposition B.7. If \(X \) is an algebraic set and \(I(X) \) is the ideal of \(X \), then \(X \) is irreducible if and only if \(I \) is a prime ideal.

Proof. If \(X \) is irreducible and \(f(x)g(x) \in I \), since \(Z(\{I, f(x)\}) \cup Z(\{I, g(x)\}) = X \), then either \(X = Z(\{I, f(x)\}) \) or \(X = Z(\{I, g(x)\}) \). That is, either \(f(x) \) or \(g(x) \) vanishes on \(X \) and is in \(I \). Conversely, suppose \(X = X_1 \cup X_2 \). If both \(X_1 \) and \(X_2 \) are algebraic sets strictly smaller than \(X \), then there exist polynomials \(f_1(x) \) and \(f_2(x) \) that vanish on \(X_1 \) and \(X_2 \) respectively, but not on \(X \). Since the product \(f_1(x)f_2(x) \) vanishes on \(X \), we have \(f_1(x)f_2(x) \in I \) but neither \(f_1(x) \) or \(f_2(x) \) is in \(I \). So \(I \) is not prime. \(\square \)

B.3 Algebra and Geometry: Hilbert’s Nullstellensatz

In practice, we often use an algebraic set to model a given set of data points and the (ideal of) polynomials that vanish on the set provide a natural parametric model for the data. One question that is of particular importance in this context is: Is there an one-to-one correspondence between ideals and algebraic sets? This is in general not true as the ideals \(I = (f^2(x)) \) and \(J = (f(x)) \) both vanish on the same algebraic set as the zero-set of the polynomial \(f(x) \). Fortunately, this turns out to be essentially the only case that prevents the one-to-one correspondence between ideals and algebraic sets.

Definition B.8 (Radical Ideal). Given a (homogeneous) ideal \(I \) of \(R[x] \), the (homogeneous) radical ideal of \(I \) is defined to be

\[
\text{rad}(I) = \{ f(x) \in R[x] \mid f(x)^m \in I \text{ for some integer } m \}. \tag{B.9}
\]

We leave it to the reader to verify that \(\text{rad}(I) \) is indeed an ideal and furthermore, if \(I \) is homogeneous, so is \(\text{rad}(I) \).

Hilbert proved in 1893 the following important theorem that establishes one of the fundamental results in algebraic geometry:

Theorem B.9 (Nullstellensatz). Let \(R \) be an algebraically closed field (e.g., \(R = \mathbb{C} \)). If \(I \subset R[x] \) is an (homogeneous) ideal, then

\[
I(Z(I)) = \text{rad}(I). \tag{B.10}
\]

Thus, the correspondences \(I \mapsto Z(I) \) and \(X \mapsto I(X) \) induce a one-to-one correspondence between the collection of (projective) algebraic sets of \(R^D \) and (homogeneous) radical ideals of \(R[x] \).
One may find up to five different proofs for this theorem in [Eisenbud, 1996].

The importance of the Nullstellensatz cannot be exaggerated. It is a natural extension of Gauss’ fundamental theorem of algebra to multivariate polynomials. One of the remarkable consequences of the Nullstellensatz is that it identifies a geometric object (algebraic sets) with an algebraic object (radical ideals).

In our context, we often assume our data points are drawn from an algebraic set and use the set of vanishing polynomials as a parametric model for the data. Hilbert’s Nullstellensatz guarantees such a model for the data is well-defined and unique. To some extent, when we fit vanishing polynomials to the data, we are essentially inferring the underlying algebraic set. In the next section, we will discuss how to extend Hilbert’s Nullstellensatz to the practical situation in which we only have finitely many sample points from an algebraic set.

B.4 Algebraic Sampling Theory

We often face a common mathematical problem: How to identify a (projective) algebraic set \(Z \subseteq \mathbb{R}^D \) from a finite, though maybe very large, number of sample points in \(Z \)? In general, the algebraic set \(Z \) is not necessarily irreducible and the ideal \(I(Z) \) is not necessarily prime.

From an algebraic viewpoint, it is impossible to recover a continuous algebraic set \(Z \) from a finite number of discrete sample points. To see this, note that the set of all polynomials that vanish on one (projective) point \(z \) is a submaximal ideal in the (homogeneous) polynomial ring \(R[z] \). The set of polynomials that vanish on a set of sample points \(\{ z_1, z_2, \ldots, z_i \} \subseteq Z \) is the intersection

\[
\mathfrak{a}_i \triangleq m_1 \cap m_2 \cap \cdots \cap m_i, \quad (B.11)
\]

which is a radical ideal that is typically much larger than \(I(Z) \).

Thus, some additional assumptions must be imposed on the algebraic set in order to make the problem of inferring \(I(Z) \) from the samples well-defined. Typically, we assume that the ideal \(I(Z) \) of the algebraic set \(Z \) in question is generated by a set of (homogeneous) polynomials whose degrees are bounded by a relatively small \(n \). That is,

\[
I(Z) \triangleq (f_1, f_2, \ldots, f_s) \quad \text{s.t.} \quad \deg(f_j) \leq n,
\]

\[
Z(I) \triangleq \{ z \in R^D \mid f_i(z) = 0, \quad i = 1, 2, \ldots, s \}.
\]

3Strictly speaking, for homogeneous ideals, for the one-to-one correspondence to be exact, one should only consider proper radical ideals.

4Every degree-\(n \) polynomial in one variable has exactly \(n \) roots in an algebraically closed field such as \(\mathbb{C} \) (counting repeats).

5For instance, it is often the case that \(Z \) is the union of many subspaces or algebraic surfaces.

6The ideal of a point in the affine space is a maximal ideal; and the ideal of a point in the projective space is called a submaximal ideal. They both are “maximal” in the sense that they cannot be a subideal of any other homogeneous ideal of the polynomial ring.
We are interested in retrieving $I(Z)$ uniquely from a set of sample points $\{z_1, z_2, \ldots, z_i\} \subseteq Z$. In general, $I(Z)$ is always a proper subideal of a_i, regardless of how large i is. However, the information about $I(Z)$ can still be retrieved from a_i in the following sense.

Theorem B.10 (Sampling of an Algebraic Set). Consider a nonempty set $Z \subseteq \mathbb{R}^D$ whose vanishing ideal $I(Z)$ is generated by polynomials in $R_{\leq n}$. Then there is a finite sequence $F_N = \{z_1, \ldots, z_N\}$ such that the subspace $I(F_N) \cap R_{\leq n}$ generates $I(Z)$.

Proof. Let $I_{\leq n} = I(Z) \cap R_{\leq n}$. This vector space generates $I(Z)$. Let $a_0 = R[x] = I(\emptyset)$. Let $b_0 = a_0 \cap R_{\leq n}$ and let $A_0 = (b_0)$, the ideal generated by polynomials in a_0 of degree less than or equal to n. Since $1 \in R[x] \cap R_{\leq n}$ is the generator of this ideal, we have $A_0 = R[x]$. Since $Z \neq \emptyset$, then $A_0 \neq I(Z)$.

Set $N = 1$ and pick a point $z_1 \in Z$. Then $1(z_1) \neq 0$ (1 is the function that assigns 1 to every point of Z). Let a_1 be the ideal that vanishes on $\{z_1\}$ and define $b_1 = a_1 \cap R_{\leq n}$. Further let $A_1 = (b_1)$. Since $I(Z) \subseteq a_1$, it follows that $I_{\leq n} \subseteq b_1$. If $A_1 = I(Z)$, then we are done. Suppose then that $I(Z) \subset A_1$.

Let us do the induction at this point. Suppose we have found a finite sequence $F_N = \{z_1, z_2, \ldots, z_N\} \subset Z$ with

\[
\begin{align*}
I(F_N) &= a_N \tag{B.12} \\
b_N &= a_N \cap R_{\leq n} \tag{B.13} \\
A_N &= (b_N) \tag{B.14} \\
b_0 \supset b_1 \supset \cdots \supset b_N \supseteq I_{\leq n}. \tag{B.15}
\end{align*}
\]

It follows that $I_{\leq n} \subseteq b_N$ and that $I(Z) \subseteq A_N$. If equality holds here, then we are done. If not, then there is a function $g \in b_N$ not in $I(Z)$ and an element $z_{N+1} \in Z$ for which $g(z_{N+1}) \neq 0$. Set $F_{N+1} = \{z_1, \ldots, z_N, z_{N+1}\}$. Then one gets $a_{N+1}, b_{N+1}, A_{N+1}$ as before with

\[
\begin{align*}
b_0 \supset b_1 \supset \cdots \supset b_N \supset b_{N+1} \supseteq I_{\leq n}. \tag{B.16}
\end{align*}
\]

We obtain a descending chain of subspaces of the vector space $R_{\leq n}$. This chain must stabilize, since the vector space is finite dimensional. Hence there is an N for which $b_N = I_{\leq n}$ and we are done.

We point out that in the above proof, no clear bound on the total number N of points needed is given.\(^6\) Nevertheless, from the proof of the theorem, the set of finite sequences of samples that satisfy the theorem is an open set. This is of great practical importance: With probability one, the vanishing ideal of an algebraic set can be correctly determined from a randomly chosen sequence of samples.

\(^6\)Here we are using the convention that (S) is the ideal generated by the set S. Recall also that the ring $R[x]$ is noetherian by the Hilbert basis theorem and so all ideals in the ring are finitely generated [Lang, 1993].

However, loose bounds can be easily obtained from the dimension of $R_{\leq n}$ as a vector space. In fact, in the algorithm, we implicitly used the dimension of $R_{\leq n}$ as a bound for N.\(^4\)
B.5. Decomposition of Ideals and Algebraic Sets

Example B.11 (A Hyperplane in \mathbb{R}^3). Consider a plane $P = \{ z \in \mathbb{R}^3 : f(z) = az_1 + bz_2 + cz_3 = 0 \}$. Given any two points in general position in the plane P, $f(x) = ax_1 + bx_2 + cx_3$ will be the only (homogeneous) polynomial of degree 1 that fits the two points. In terms of the notation introduced earlier, we have $I(P) = (a_2 \cap R_{\leq 1})$.

Example B.12 (Zero Polynomial). When $Z = \mathbb{R}^D$, the only polynomial that vanishes on Z is the zero polynomial, i.e., $I(Z) = (0)$. Since the zero polynomial is regarded to be of degree -1, we have $(a_N \cap R_{\leq n}) = \emptyset$ for any given n (and large enough N).

The above theorem can be viewed as a first step towards an algebraic analogy to the well-known Nyquist-Shannon sampling theory in signal processing, which stipulates that a continuous signal with a limited frequency bandwidth Ω can be uniquely determined from a sequence of discrete samples with a sampling rate higher than 2Ω. Here a signal is replaced by an algebraic set and the frequency bandwidth is replaced by the bound on the degree of polynomials. It has been widely practiced in engineering that a curve or surface described by polynomial equations can be recovered from a sufficient number of sample points in general configuration, a procedure often loosely referred to as “polynomial fitting.” However, the algebraic basis for this is often not clarified and the conditions for the uniqueness of the solution are usually not well characterized or specified. This problem certainly merits further investigation.

B.5 Decomposition of Ideals and Algebraic Sets

Modeling a data set as an algebraic set does not stop at obtaining its vanishing ideal (and polynomials). The ultimate goal is to extract all the internal geometric or algebraic structures of the algebraic set. For instance, if an algebraic set consists of multiple subspaces, called a subspace arrangement, we need to know how to derive from its vanishing ideal the number of subspaces, their dimensions, and a basis of each subspace.

Thus, given an algebraic set X or equivalently its vanishing ideal $I(X)$, we want to decompose or segment it into a union of subsets each of which can no longer be further decomposed. As we have mentioned earlier, an algebraic set that cannot be decomposed into smaller algebraic sets is called irreducible. As one of the fundamental finiteness theorem of algebraic geometry, we have:

Theorem B.13. An algebraic set can have only finitely many irreducible components. That is, for some n,

$$X = X_1 \cup X_2 \cup \cdots \cup X_n, \quad (B.17)$$

where X_1, X_2, \ldots, X_n are irreducible algebraic varieties.

Proof. The proof is essentially based on the fact that the polynomial ring $R[x]$ is Noetherian (i.e., finitely generated), and there are only finitely many prime ideals containing $I(X)$ that are minimal with respect to inclusion (See [Eisenbud, 1996]).
The vanishing ideal \(I(X_i) \) of each irreducible algebraic variety \(X_i \) must be a prime ideal that is minimal over the radical ideal \(I(X) \) — there is no prime subideal of \(I(X_i) \) that includes \(I(X) \). The ideal \(I(X) \) is precisely the intersection of all the minimal prime ideals:

\[
I(X) = I(X_1) \cap I(X_2) \cap \cdots \cap I(X_n). \tag{B.18}
\]

This intersection is called a \textit{minimal primary decomposition} of the radical ideal \(I(X) \). Thus the primary decomposition of a radical ideal is closely related to the notion of “segmenting” or “decomposing” an algebraic set into multiple irreducible algebraic varieties: If we know how to decompose the ideal, we can easily find the irreducible algebraic variety corresponding to each primary component.

We are particularly interested in a special class of algebraic sets known as subspace arrangements. One of the goals of generalized principal component analysis (GPCA) is to decompose a subspace arrangement into individual (irreducible) subspaces (see Chapter 4). In Appendix C, we will further study the algebraic properties of subspace arrangements.

\section*{B.6 Hilbert Function, Polynomial, and Series}

Finally, we introduce an important invariant of algebraic sets, given by the Hilbert function. Knowing the values of Hilbert function can be very useful in the identification of subspace arrangements, especially the number of subspaces and their dimensions.

Given a (projective) algebraic set \(Z \) and its vanishing ideal \(I(Z) \), we can grade the ideal by degree as

\[
I(Z) = I_0(Z) \oplus I_1(Z) \oplus \cdots \oplus I_i(Z) \oplus \cdots. \tag{B.19}
\]

The \textit{Hilbert function} of \(Z \) is defined to be

\[
h_I(i) \doteq \dim(I_i(Z)). \tag{B.20}
\]

Notice that \(h_I(i) \) is exactly the number of linearly independent polynomials of degree \(i \) that vanish on \(Z \). In this book, we also refer to \(h_I \) as the Hilbert function of the algebraic set \(Z \).

The \textit{Hilbert series}, also known as the Poincaré series, of the ideal \(I \) is defined to be the power series

\[
\mathcal{H}(I, t) = \sum_{i=0}^{\infty} h_I(i) t^i = h_I(0) + h_I(1)t + h_I(2)t^2 + \cdots. \tag{B.21}
\]

\begin{footnotesize}
\footnote{In the literature, however, the Hilbert function of an algebraic set \(Z \) is sometimes defined to be the dimension of the homogeneous components of the coordinate ring \(A(Z) \doteq R[x]/I(Z) \) of \(Z \), which is the codimension of \(I_i(Z) \) as a subspace in \(R_x \).}

\footnote{In general, the Hilbert series can be defined for any finitely-generated graded module \(E = \bigoplus_{i=1}^{\infty} E_i \) using any Euler-Poincaré \(Z \)-valued function \(h_E(\cdot) \) as \(\mathcal{H}(E, t) = \sum_{i=0}^{\infty} h_E(i) t^i \) [Lang, 1993]. Here, for \(E = I \), we choose \(h_I(i) = \dim(I_i) \).}
\end{footnotesize}
Thus, given $H(I, t)$, we know all the values of the Hilbert function h_I from its coefficients.

Example B.14 (Hilbert Series of the Polynomial Ring). The Hilbert series of the polynomial ring $R[x] = \mathbb{R}[x_1, x_2, \ldots, x_D]$ is

$$H(R[x], t) = \sum_{i=0}^{\infty} \dim(R_i) t^i = \sum_{i=0}^{\infty} \binom{D+i-1}{i} t^i = \frac{1}{(1-t)^D}. \quad (B.22)$$

One can easily verify the correctness of the formula with the special case $D = 1$. Obviously, the coefficients of the Hilbert series of any ideal (as a subset of $R[x]$) are bounded by those of $H(R[x], t)$ and hence the Hilbert series converges.

Example B.15 (Hilbert Series of a Subspace). The above formula can be easily generalized to the vanishing ideal of a subspace S of dimension d in \mathbb{R}^D. Let the co-dimension of the subspace be $c = D - d$. We have

$$H(I(S), t) = \left(\frac{1}{(1-t)^c} - 1 \right) \cdot \left(\frac{1}{(1-t)^{D-c}} \right) = \frac{1 - (1-t)^c}{(1-t)^D}. \quad (B.23)$$

The following theorem, also due to Hilbert, reveals that the values of the Hilbert function of an ideal have some remarkable properties:

Theorem B.16 (Hilbert Polynomial). Let $I(Z)$ be the vanishing ideal of an algebraic set Z over $R[x_1, \ldots, x_D]$, then the values of its Hilbert function $h_I(i)$ agree, for large i, with those of a polynomial of degree $\leq D$. This polynomial, denoted as $H_I(i)$, is called the Hilbert polynomial of $I(Z)$.

Then in the above example, for the polynomial ring, the Hilbert function itself is obviously a polynomial in i

$$H_R(i) = h_R(i) = \binom{D+i-1}{i} = \frac{1}{(D-1)!} (D + i - 1)(D + i - 2) \cdots (i + 1).$$

However, for a general ideal I (of an algebraic set), it is not necessarily true that all values of its Hilbert function h_I agree with those of its Hilbert polynomial H_I. They might agree only when i is large enough. Thus, for a given algebraic set (or ideal), it would be interesting to know how large i needs to be in order for the Hilbert function to coincide with a polynomial. As we will see in Appendix B, for subspace arrangements, there is a very elegant answer to this question. One can even derive closed-form formulae for the Hilbert polynomials. These results are very important and useful for Generalized Principal Component Analysis, both conceptually and computationally.
Appendix C

Algebraic Properties of Subspace Arrangements

In this book, the main problem that we study is how to segment a collection of data points drawn from a subspace arrangement $A = \{S_1, S_2, \ldots, S_n\}$, formally introduced in Chapter 3. $Z_A = S_1 \cup S_2 \cup \cdots \cup S_n$ is the union of all the subspaces. Z_A can be naturally described as the zero set of a set of polynomials, which makes it an algebraic set. The solution to the above problem typically relies on inferring the subspace arrangement Z_A from the data points. Thus, knowing the algebraic properties of Z_A may significantly facilitate this task.

Although subspace arrangements seem to be a very simple class of algebraic sets, a full characterization of their algebraic properties is a surprisingly difficult, if not impossible, task. Subspace arrangements have been a centuries-old subject that still actively interweaves many mathematical fields: algebraic geometry and topology, combinatorics and complexity theory, graph and lattice theory, etc. Although the results are extremely rich and deep, in fact only a few special classes of subspace arrangements have been well characterized.

In this appendix, we examine some important concepts and properties of subspace arrangements that are closely related to the subspace-segmentation problem. The purpose of this appendix is two-fold: 1. to provide a rigorous justification for the GPCA algorithms derived in the book, especially Chapter 4; 2. to introduce important properties of subspace arrangements, which may suggest potential improvements of the algorithms. For readers who are interested only in

1Unless stated otherwise, the subspace arrangement considered will always be a central arrangement, as in Definition 3.7.
the basic GPCA algorithms and their applications, this appendix can be skipped at first read.

C.1 Ideals of Subspace Arrangements

Vanishing Ideal of a Subspace.

A d-dimensional subspace S can be defined by $k = D - d$ linearly independent linear forms $\{l_1, l_2, \ldots, l_k\}$:

$$ S = \{ x \in \mathbb{R}^D : l_i(x) = 0, \ i = 1, 2, \ldots, k = D - d \}, \quad (C.1) $$

where l_i is of the form $l_i(x) = a_{i1}x_1 + a_{i2}x_2 + \cdots a_{iD}x_D$ with $a_{ij} \in R$. Let S^* denote the space of all linear forms that vanish on S, then $\dim(S^*) = k = D - d$. The subspace S is also called the zero set of S^*, i.e., points in the ambient space that vanish on all polynomials in S^*, which is denoted as $Z(S^*)$. We define

$$ I(S) = \{ p \in R[x] : p(x) = 0, \forall x \in S \}. \quad (C.2) $$

Clearly, $I(S)$ is an ideal generated by linear forms in S^*, and it contains polynomials of all degrees that vanish on the subspace S. Every polynomial $p(x)$ in $I(S)$ can be written as a superposition:

$$ p = l_1h_1 + l_2h_2 + \cdots + l_kh_k \quad (C.3) $$

for some polynomials $h_1, h_2, \ldots, h_k \in R[x]$. Furthermore, $I(S)$ is a prime ideal.\(^{2}\)

Vanishing Ideal of a Subspace Arrangement.

Given a subspace arrangement $Z_A = S_1 \cup S_2 \cup \cdots \cup S_n$, its vanishing ideal is

$$ I(Z_A) = I(S_1) \cap I(S_2) \cap \cdots \cap I(S_n). \quad (C.4) $$

The ideal $I(Z_A)$ can be graded by the degree of the polynomial $I(Z_A) = I_m(Z_A) \oplus I_{m+1}(Z_A) \oplus \cdots \oplus I_1(Z_A) \oplus \cdots. \quad (C.5)$

Each $I_i(Z_A)$ is a vector space that consists of forms of degree i in $I(Z_A)$, and $m \geq 1$ is the least degree of the polynomials in $I(Z_A)$. Notice that forms that vanish on Z_A may have degrees strictly less than n. One example is an arrangement of two lines and one plane in \mathbb{R}^3. Since any two lines lie on a plane, the arrangement can be embedded into a hyperplane arrangement of two planes, and there exist forms of second degree that vanish on the union of the three subspaces. The dimension of $I_1(Z_A)$ is known as the Hilbert function $h_1(i)$ of Z_A.

Example C.1 (Boolean Arrangement). The Boolean arrangement is the collection of coordinate hyperplanes $H_j = \{ x : x_j = 0 \}, 1 \leq j \leq D$. The vanishing ideal of the Boolean arrangement is generated by a single polynomial $p(x) = x_1x_2 \cdots x_D$ of degree D. \(

\footnote{It is a prime ideal because for any product $p_1p_2 \in I(S)$, either $p_1 \in I(S)$ or $p_2 \in I(S)$.}
312 Appendix C. Algebraic Properties of Subspace Arrangements

Example C.2 (Braid Arrangement). The Braid arrangement is the collection of hyperplanes $H_{jk} = \{x : x_j - x_k = 0\}, 1 \leq j \neq k \leq D$. Similarly, the vanishing ideal the Braid arrangement is generated by a single polynomial $p(x) = \prod_{1 \leq j < k \leq D} (x_j - x_k)$.

Theorem C.3 (Regularity of Subspace Arrangements). The vanishing ideal $I(Z_A)$ of a subspace arrangement $Z_A = S_1 \cup S_2 \cup \cdots \cup S_n$ is n-regular. This implies that $I(Z)$ has a set of generators with degree $\leq n$.

Proof. For the concept of n-regularity and the proof of the above statement, please refer to [Derksen, 2005] and references therein.

Due to the above theorem, the subspace arrangement Z_A is uniquely determined as the zero set of all polynomials of degree up to n in its vanishing ideal, i.e., as the zero set of polynomials in

$$Z_A = Z(I(n)),$$

where $I(n) = I_0 \oplus I_1 \oplus \cdots \oplus I_n$.

Product Ideal of a Subspace Arrangement

Let $J(Z_A)$ be the ideal generated by the products of linear forms

$$\{l_1 \cdot l_2 \cdots l_n, \forall l_j \in S_j^+, j = 1, \ldots, n\}.$$

Or equivalently, we can define $J(Z_A)$ to be the product of the n ideals $I(S_1), I(S_2), \ldots, I(S_n)$:

$$J(Z_A) = I(S_1) \cdot I(S_2) \cdots I(S_n).$$

Then, the product ideal $J(Z_A)$ is a subideal of $I(Z_A)$. Nevertheless, the two ideals share the same zero set:

$$Z_A = Z(J) = Z(I). \quad \text{(C.6)}$$

By definition I is the largest ideal that vanishes on Z_A. I is in fact the radical ideal of the product ideal J, i.e., $I = \text{rad}(J)$. We may also grade the ideal $J(Z_A)$ by the degree

$$J(Z_A) = J_n(Z_A) \oplus J_{n+1}(Z_A) \oplus \cdots \oplus J_1(Z_A) \oplus \cdots. \quad \text{(C.7)}$$

Notice that, unlike I, the lowest degree of polynomials in J always starts from n, the number of subspaces. The Hilbert function of J is denoted as $h_J(i) = \dim(J_i(Z_A))$. As we will soon see, the Hilbert functions (or polynomials, or series) of the product ideal J and the vanishing ideal I have very interesting and important relationships.

C.2 Subspace Embedding and PL-Generated Ideals

Let Z_A be a central subspace arrangement $Z_A = S_1 \cup S_2 \cup \cdots \cup S_n$. Let $Z_A' = S_1' \cup S_2' \cup \cdots \cup S_n'$ be another (central) subspace arrangement. If we have $Z_A \subseteq$
C.2. Subspace Embedding and PL-Generated Ideals

Z\textsubscript{A'}, then it is necessary that for all S\textsubscript{j} ⊂ Z\textsubscript{A} there exists S\textsubscript{j}' ⊂ Z\textsubscript{A'} such that S\textsubscript{j} ⊆ S\textsubscript{j}'c. If so, we call

\[Z\textsubscript{A} \subseteq Z\textsubscript{A'} \]

a subspace embedding. Beware that it is possible n' < n for a subspace embedding as more than one subspace S\textsubscript{j} of Z\textsubscript{A} may belong to the same subspace S\textsubscript{j}' of Z\textsubscript{A'}. The subspace arrangements in Theorem 4.8 are examples of subspace embedding. If Z\textsubscript{A'} happens to be a hyperplane arrangement, we call the embedding a hyperplane embedding.

Is the zero-set of each homogeneous component of \(I(Z\textsubscript{A}) \), in particular \(I_m(Z\textsubscript{A}) \), a subspace embedding of Z\textsubscript{A}? Unfortunately, this is not true as counterexamples can be easily constructed.

Example C.4 (Five Lines in \(\mathbb{R}^3 \)). Consider five points in \(\mathbb{P}^2 \) (or equivalently, five lines in \(\mathbb{R}^3 \)). The Veronese embedding of order two of a point \(x = [x_1, x_2, x_3] \in \mathbb{R}^3 \) is

\[\nu_2(x) = [x_2^1, x_1 x_2, x_1 x_3, x_2^2, x_2 x_3, x_3^2] \in \mathbb{R}^6. \]

For five points in general position, the matrix \(V_2 = [\nu_2(x_1), \nu_2(x_2), \ldots, \nu_2(x_5)] \) is of rank 5. Let \(c^T \) be the only vector in the left null space of \(V_2 : c^T V_2 = 0. \) Then \(p(x) = c^T \nu_2(x) \) is in general an irreducible quadratic polynomial. Thus, the zero-set of \(I_2(Z\textsubscript{A}) = p(x) \) is not a subspace arrangement but an (irreducible) cone in \(\mathbb{R}^3 \).

Nevertheless, the following statement allows us to retrieve a subspace embedding from any polynomials in the vanishing ideal \(I(Z\textsubscript{A}) \).

Theorem C.5 (Hyperplane Embedding via Differentiation). For every polynomial \(p \) in the vanishing ideal \(I(Z\textsubscript{A}) \) of a subspace arrangement \(Z\textsubscript{A} = S_1 \cup S_2 \cup \cdots \cup S_n \) and \(n \) points \(\{x_j \in S_j\}_{j=1}^n \) in general position, the union of the hyperplanes \(\bigcup_{j=1}^n H_j = \{x : Dp(x_j)^T x = 0\} \) is a hyperplane embedding of the subspace arrangement.

Proof. The proof is based on the simple fact that the derivative (gradient) \(\nabla f(x) \) of any smooth function \(f(x) \) is orthogonal to (the tangent space of) its level set \(f(x) = c. \)

In the above statement, if we replace \(p \) with a collection of polynomials in the vanishing ideal, their derivatives give a subspace embedding in a similar fashion as the hyperplane embedding. When the collection contains all the generators of the vanishing ideal, the subspace embedding becomes tight – the resulting subspace arrangement coincides with the original one. This property has been used in the development of GPCA algorithms in Chapter 4.

Another concept that is closely related to subspace embedding is a \textit{pl-generated} ideal.

Definition C.6 (pl-Generated Ideals). An ideal is said to be pl-generated if it is generated by products of linear forms.

If the ideal of a subspace arrangement \(Z\textsubscript{A} \) is pl-generated, then the zero-set of every generator gives a hyperplane embedding of \(Z\textsubscript{A}. \)
Example C.7 (Hyperplane Arrangements). If Z_A is a hyperplane arrangement, $I(Z_A)$ is always pl-generated as it is generated by a single polynomial of the form:
\[p(x) = (b_1^T x)(b_2^T x) \cdots (b_n^T x), \]
where $b_i \in \mathbb{R}^D$ are the normal vectors to the hyperplanes.

Obviously, the vanishing ideal $I(S)$ of a single subspace S is always pl-generated. The following example shows that this is also true for an arrangement of two subspaces.

Example C.8 (Two Subspaces). Let us show that for an arrangement Z_A of two subspaces, $I(Z_A)$ is always pl-generated. Let $Z_A = S_1 \cup S_2$ and define $U^* \equiv S_1^* \cap S_2^*$ and $V^* \equiv S_1^* \cup U^* \cup U^*$. Let (u_1, u_2, \ldots, u_k) be a basis for U^*, (v_1, v_2, \ldots, v_l) a basis for V^*, and (w_1, w_2, \ldots, w_m) a basis for W^*. Then obviously $I(Z_A) = I(S_1) \cap I(S_2)$ is generated by $(u_1, \ldots, u_k, v_1, v_2, \ldots, v_l, w_1, w_2, \ldots, w_m)$.

Now consider an arrangement of n subspaces: $Z_A = S_1 \cup S_2 \cup \cdots S_n$. By its definition, the product ideal $I(Z_A)$ is always pl-generated. Now, is the vanishing ideal $I(Z_A)$ always pl-generated? Unfortunately, this is not true. Below are some counterexamples.

Example C.9 (Lines in \mathbb{R}^3 [Björner et al., 2005]). For a central arrangement Z_A of r lines in general position in \mathbb{R}^3, $I(Z_A)$ is not pl-generated when $r = 5$ or $r > 6$. Example C.4 gives a proof for the case with $r = 5$.

Example C.10 (Planes in \mathbb{R}^4 [Björner et al., 2005]). For a central arrangement Z_A of r planes in general position in \mathbb{R}^4, $I(Z_A)$ is not pl-generated for all $r > 2$.

However, can each homogeneous component $I_i(Z_A)$ be “pl-generated” when i is large enough? For instance, can it be that $I_n = J_n = S_1^* \cdot S_2^* \cdots S_n^*$? This is in general not true for an arbitrary arrangement and below is a counterexample.

Example C.11 (Three Subspaces in \mathbb{R}^5 – due to R. Fossum). Consider $R[x] = \mathbb{R}[x_1, \ldots, x_5]$ and an arrangement Z_A of three three-dimensional subspaces in \mathbb{R}^5 whose vanishing ideals are given by, respectively:
\[I(S_1) = (x_1, x_2), \quad I(S_2) = (x_3, x_4), \quad I(S_3) = ((x_1 + x_3), (x_2 + x_4)). \]

Denote their intersection as $I = I(S_1) \cap I(S_2) \cap I(S_3)$. The intersection contains the element
\[x_1x_4 - x_2x_3 = (x_1 + x_3)x_4 - (x_2 + x_4)x_3 = x_1(x_2 + x_4) - x_2(x_1 + x_3). \]

Then any element $(x_1x_4 - x_2x_3)f(x_1, \ldots, x_5)$ with f a linear form is in $I_3(Z_A)$, the homogeneous component of elements of degree three. In particular, $(x_1x_4 - x_2x_3)x_5$ is in $I_3(Z_A)$. However, it is easy to check that this element cannot be written in the form
\[\sum_i (a_i x_1 + b_i x_2)(c_i x_2 + d_i x_4)(e_i x_1 + f_i x_2), \]
for any $a_i, b_i, c_i, d_i, e_i, f_i \in \mathbb{R}$. Thus, $I_3(Z_A)$ is not spanned by $S_1^* \cdot S_2^* \cdot S_3^*$.

3In algebra, an ideal which is generated by a single generator is called a principal ideal.
However, notice that the subspaces in the above example are not in “general position” — their intersections are not of the minimum possible dimension. Could $I_n = S_n^1 \cdot S_n^2 \cdots S_n^n$ be instead true for n subspaces if they are in general position? The answer is yes. In fact, we can say more than that. As we will see in the next section, from the Hilbert functions of I and J, we actually have

$$I_i = J_i, \ \forall i \geq n$$

if S_1, S_2, \ldots, S_n are “transversal” (i.e., all intersections are of minimum possible dimension). In other words, J_i could differ from I_i only for $i < n$.

\[\text{C.3 Hilbert Functions of Subspace Arrangements}\]

In this section, we study the Hilbert functions of subspace arrangements defined in Section B.6. We first discuss a few reasons why in the context of generalized principal component analysis, it is very important to know the values of the Hilbert function for the vanishing ideal I or the product ideal J of a subspace arrangement. We then examine the values of the Hilbert function for a few special examples. Finally, we give a complete characterization of the Hilbert function, the Hilbert polynomial, and the Hilbert series of a general subspace arrangement. In particular, we give a closed-form formula for the Hilbert polynomial of the vanishing ideal and the product ideal of the subspace arrangement.

\[\text{C.3.1 Relationships between the Hilbert Function and GPCA}\]

In general, for a subspace arrangement $Z_A = S_1 \cup S_2 \cup \cdots \cup S_n$ in general position, the values of the Hilbert function $h_I(i)$ of its vanishing ideal $I(Z_A)$ are invariant under a continuous change of the positions of the subspaces. They depend only on the dimensions of the subspaces d_1, d_2, \ldots, d_n or their co-dimensions $c_i = D - d_i, i = 1, 2, \ldots, n$. Thus, the Hilbert function gives a rich set of invariants of subspace arrangements. In the context of GPCA, such invariants can help to determine the type of the subspace arrangement, such as the number of subspaces and their individual dimensions from a given set of (possibly noisy) sample points.

To see this, consider a sufficiently large number of sample points in general position are drawn from the subspaces $X = \{x_1, x_2, \ldots, x_N\} \subset Z_A$, let the embedded data matrix (via the Veronese map of degree i) to be

$$V_i = [\nu_i(x_1), \nu_i(x_2), \ldots, \nu_i(x_N)]^T. \quad (C.9)$$

According to the Algebraic Sampling Theorem of Appendix B, the dimension of $\text{Null}(V_i)$ is exactly the number of linearly independent polynomials of degree i that vanish on Z_A. That is, the following relation holds

$$\dim(\text{Null}(V_i)) = h_I(i) \quad (C.10)$$
or equivalently,
\[
\text{rank}(V_i) = \dim(R_i) - h_I(i).
\] (C.11)

Thus, if we know the Hilbert function for different subspace arrangements in advance, we can determine from the rank of the data matrix from which subspace arrangement the sample data points are drawn. The following example illustrates the basic idea.

Example C.12 (Three Subspaces in \(\mathbb{R}^3\)). Suppose that we only know our data are drawn from an arrangement of three subspaces in \(\mathbb{R}^3\). There are in total four different types of such arrangements, shown in Figure C.1. The values of their corresponding Hilbert function are listed in Table C.1. Given a sufficiently large number \(N\) of sample points from one of the above subspace arrangements, the rank of the embedded data matrix \(V_3 \in \mathbb{R}^{N \times 10}\) can be, instead of any value between 1 and 10, only \(10 - h_I(3) = 9, 8, 6, 3\), which correspond to the only four possible configurations of three subspaces in \(\mathbb{R}^3\): three planes, two planes and one line, one plane and two lines, or three lines, respectively, as shown in Figure C.1.

This suggests that, given the dimensions of individual subspaces, we may know the rank of the embedded data matrix. Conversely, given the rank of the embedded data matrix, we can determine to a large extent the possible dimensions of the individual subspaces. Therefore, knowing the values of the Hilbert function will help us to at least rule out in advance impossible rank values for the embedded data matrix or the impossible subspace dimensions. This is particularly useful when the data is corrupted by noise so that there is ambiguity in determining the rank of the embedded data matrix or the dimensions of the subspaces.

The next example illustrates how the values of Hilbert function can help determine the correct number of subspaces.
Example C.13 (Over-Fit Hyperplane Arrangements in \mathbb{R}^5). Consider a dataset sampled from a number of hyperplanes in general position in \mathbb{R}^5. Suppose we only know that the number of the hyperplanes is at most 4, and we embed the data via the degree-4 Veronese map anyway. Table C.2 gives the possible values of the Hilbert function for an arrangement of 4, 3, 2, 1 hyperplanes in \mathbb{R}^5, respectively. Here we use the convention that an empty set has co-dimension 5 in \mathbb{R}^5.

<table>
<thead>
<tr>
<th>c_1</th>
<th>c_2</th>
<th>c_3</th>
<th>c_4</th>
<th>$h_{I(Z_A)}(4)$</th>
<th>rank(V_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>69</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>65</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>15</td>
<td>55</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>35</td>
<td>35</td>
</tr>
</tbody>
</table>

Table C.2. Values of the Hilbert function of (codimension-1) hyperplane arrangements in \mathbb{R}^5.

The first row shows that if the number of hyperplanes is exactly equal to the degree of the Veronese map, then $h_{I(Z_A)}(4) = 1$, i.e., the data matrix V_4 has a rank-1 null space. The following rows show the values of $h_{I(Z_A)}(4)$ when the number of hyperplanes is $n = 3, 2, 1$, respectively. If the rank of the matrix V_4 matches any of these values, we know exactly the number of hyperplanes in the arrangement. Figure C.2 shows a super-imposed plot of the singular values of V_4 for samples points drawn from $n = 1, 2, 3, 4$ hyperplanes in \mathbb{R}^5, respectively.

Figure C.2. A super-imposed semi-log plot of the singular values of the embedded data matrix V_4 for $n = 1, 2, 3, 4$ hyperplanes in \mathbb{R}^5, respectively. The rank drops at 35, 55, 65, 69, which confirm the theoretical values of the Hilbert function.

Thus, in general, knowing the values of $h_{I}(i)$ even for $i > n$ may significantly help determine the correct number of subspaces in case the degree i of the Veronese map used for constructing the data matrix V_i is strictly higher than the number n of non-trivial subspaces in the arrangement.
The above examples show merely a few cases in which the values of Hilbert function may facilitate solving the GPCA problem. In Chapter 5, we will see how the Hilbert function can help to improve the performance of GPCA. It now remains as a question how to compute the values of Hilbert function for arbitrary subspace arrangements.

Mathematically, we are interested in finding closed-form formulae, if exist at all, for the Hilbert function (or the Hilbert polynomial, or the Hilbert series) of the subspace arrangements. As we will soon show, if the subspace arrangements are transversal (i.e., any intersection of subset of the subspaces has the smallest possible dimension), we are able to show that the Hilbert function (of both \(I \) and \(J \)) agrees with the Hilbert polynomial (of both \(I \) and \(J \)) with \(i \geq n \); and a closed-form formula for the Hilbert polynomial is known (and will be given later). However, no general formula is known for the Hilbert function (or series) of \(I \), especially for the values \(h_I(i) \) with \(i < n \). For those values, one can still compute them in advance numerically based on the identity

\[
h_I(i) = \dim(\text{Null}(V_i)) \tag{C.12}
\]

from a sufficient set of samples on the subspace arrangements. The values for each type of arrangements need to be computed only once, and the results can be stored in a table such as Table C.1 for each ambient space dimension \(D \) and number of subspaces \(n \). We may later query these tables to retrieve information about the subspace arrangements and exploit relations among these values for different practical purposes.

However, computing the values of \(h_I \) numerically can be very expensive, especially when the dimension of the space (or the subspaces) is high. In order to densely sample the high-dimensional subspaces, the number of samples grows exponentially with the number of subspaces and their dimensions. Actually the MATLAB package that we are using runs out of the memory limit of 2GB for computing the table for the case \(D = 12 \) and \(n = 6 \).

Fortunately, for most applications in image processing, or computer vision, or systems identification, it is typically sufficient to know the values of \(h_I(i) \) up to \(n = 10 \) and \(D = 12 \). For instance, for most images, the first \(D = 12 \) principal components already keep up to 99% of the total energy of the image, which is more than sufficient for any subsequent representation or compression purposes. Furthermore, if one chooses to use two by two blocks to represent a color image, then each block becomes one data point of dimension \(2 \times 2 \times 3 = 12 \). The number of segments sought for an image is typically less than ten. In system identification, the dimensions of the subspaces correspond to the orders of the systems and they are typically less than 10.

C.3.2 Special Cases of the Hilbert Function

Before we study the Hilbert function for general subspace arrangements in the next section, we here give a few special cases for which we have computed certain values of the Hilbert function.
Example C.14 (Hyperplane Arrangements). Consider $Z_A = S_1 \cup S_2 \cup \ldots \cup S_n \subset \mathbb{R}^D$ with each S_i a hyperplane. The subspaces S_i are of co-dimension 1, i.e., $c_1 = c_2 = \cdots = c_n = 1$. Then we have $h_1(n) = 1$, which is consistent with the fact there is exactly one (factorable) polynomial of degree n that fits n hyperplanes. Furthermore, $h_j(i) = 0$ for all $i < n$ and

$$h_j(n + i) = \binom{D + i - 1}{i}, \quad \forall i \geq 1.$$

We can generalize the case of hyperplanes to the following example.

Example C.15 (Subspaces Whose Duals Have No Intersection). Consider a subspace arrangement $Z_A = S_1 \cup S_2 \cup \ldots \cup S_n \subset \mathbb{R}^D$ with $S_i^* \cap S_j^* = 0$ for all $i \neq j$. In other words, if the co-dimensions of S_1, S_2, \ldots, S_n are c_1, c_2, \ldots, c_n, respectively, we have $c_1 + c_2 + \cdots + c_n \leq D$. Notice that hyperplane arrangements are a special case here. Generalizing the result in Example B.15, one can easily show that the Hilbert series $H(I(Z_A))$ and $H(J(Z_A))$ is

$$
H(I(Z_A), t) = H(J(Z_A), t) = f(t) = \prod_{i=1}^n \frac{(1 - (1 - t)^{c_i})}{(1 - t)^D}.
$$

The values of the Hilbert function $h_j(i)$ can be easily computed from the coefficients of the function $f(t)$ associated with t^j.

However, if the dual subspaces S_i^* do have non-trivial intersections, the computation of Hilbert series and function becomes much more complicated. Below we give some special examples and leave the general study to the next section.

Example C.16 (Hilbert Function of Two Subspaces). We here derive a closed-form formula of $h_j(2)$ for an arrangement of $n = 2$ subspaces $Z_A = S_1 \cup S_2$ in general position (see also Example C.8). Suppose their co-dimensions are c_1 and c_2, respectively. In \mathbb{R}^5, the intersection of their dual subspaces S_1^* and S_2^* has the dimension

$$c = \max\{c_1 + c_2 - D, 0\}.$$

Then we have

$$
h_j(2) = c \cdot (c + 1)/2 + c \cdot (c_1 - c) + c \cdot (c_2 - c) + (c_1 - c) \cdot (c_2 - c)$$

$$= c_1 \cdot c_2 - c \cdot (c - 1)/2.
$$

Example C.17 (Three Subspaces in \mathbb{R}^3). Consider an arrangement of three subspaces $Z_A = S_1 \cup S_2 \cup S_3 \subset \mathbb{R}^3$ in general position. After a change of coordinates, we may assume $S_1^* = \text{span}\{x_1, x_2, x_3\}$, $S_2^* = \text{span}\{x_1, x_4, x_5\}$, and $S_3^* = \text{span}\{x_2, x_3, x_4, x_5\}$. The value of $h_j(3)$ in this case is equal to $\text{dim}(S_1^* \cdot S_2^* \cdot S_3^*)$. Firstly, we compute $S_1^* \cdot S_2^*$ and obtain a basis for it:

$$S_1^* \cdot S_2^* = \text{span}\{x_1^2, x_1 x_4, x_1 x_5, x_2 x_1, x_2 x_4, x_2 x_5, x_3 x_1, x_3 x_4, x_3 x_5\}.$$

From this, it is then easy to compute the basis for $S_1^* \cdot S_2^* \cdot S_3^*$:

$$S_1^* \cdot S_2^* \cdot S_3^* = \text{span}\{x_1^2 x_2, x_1 x_2 x_4, x_1 x_2 x_5, x_1 x_2^2, x_1 x_2 x_4, x_1 x_2 x_5, x_1 x_3 x_1, x_1 x_3 x_4, x_1 x_3 x_5, x_1 x_3^2, x_1 x_3 x_4, x_1 x_3 x_5, x_1 x_4 x_1, x_1 x_4 x_2, x_1 x_4 x_3, x_1 x_4 x_5, x_1 x_4^2, x_1 x_5 x_1, x_1 x_5 x_2, x_1 x_5 x_3, x_1 x_5 x_4, x_1 x_5 x_5, x_1 x_5^2, x_2 x_3 x_1, x_2 x_3 x_4, x_2 x_3 x_5, x_2 x_3^2, x_2 x_3 x_4, x_2 x_3 x_5, x_2 x_4 x_1, x_2 x_4 x_2, x_2 x_4 x_3, x_2 x_4 x_5, x_2 x_4^2, x_2 x_5 x_1, x_2 x_5 x_2, x_2 x_5 x_3, x_2 x_5 x_4, x_2 x_5 x_5, x_2 x_5^2, x_3 x_1 x_2, x_3 x_1 x_4, x_3 x_1 x_5, x_3 x_2 x_1, x_3 x_2 x_4, x_3 x_2 x_5, x_3 x_3 x_1, x_3 x_3 x_4, x_3 x_3 x_5, x_3 x_4 x_1, x_3 x_4 x_2, x_3 x_4 x_3, x_3 x_4 x_5, x_3 x_5 x_1, x_3 x_5 x_2, x_3 x_5 x_3, x_3 x_5 x_4, x_3 x_5 x_5, x_3 x_5^2, x_4 x_1 x_2, x_4 x_1 x_4, x_4 x_1 x_5, x_4 x_2 x_1, x_4 x_2 x_4, x_4 x_2 x_5, x_4 x_3 x_1, x_4 x_3 x_4, x_4 x_3 x_5, x_4 x_4 x_1, x_4 x_4 x_2, x_4 x_4 x_3, x_4 x_4 x_5, x_4 x_5 x_1, x_4 x_5 x_2, x_4 x_5 x_3, x_4 x_5 x_4, x_4 x_5 x_5, x_4 x_5^2, x_5 x_1 x_2, x_5 x_1 x_4, x_5 x_1 x_5, x_5 x_2 x_1, x_5 x_2 x_4, x_5 x_2 x_5, x_5 x_3 x_1, x_5 x_3 x_4, x_5 x_3 x_5, x_5 x_4 x_1, x_5 x_4 x_2, x_5 x_4 x_3, x_5 x_4 x_5, x_5 x_5 x_1, x_5 x_5 x_2, x_5 x_5 x_3, x_5 x_5 x_4, x_5 x_5 x_5, x_5 x_5^2\}.$$
Thus, we have \(h_I(3) = 26 \).

Example C.18 (Five Subspaces in \(\mathbb{R}^3 \)). Consider an arrangement of five subspaces \(S_1, S_2, \ldots, S_5 \) in \(\mathbb{R}^3 \) of co-dimensions \(c_1, c_2, \ldots, c_5 \), respectively. We want to compute the value of \(h_I(5) \), i.e., the dimension of homogeneous polynomials of degree five that vanish on the five subspaces \(Z_A = S_1 \cup S_2 \cup \cdots \cup S_5 \). For all the possible values of \(1 \leq c_1 \leq c_2 \leq \cdots \leq c_5 < 3 \), we have computed the values of \(D_{35} \) and listed them in Table C.3. Notice that the values of \(h_I(3) \) in the earlier Table C.1 is a subset of those of \(h_I(5) \) in Table C.3. In fact, many relationships like this one exist among the values of the Hilbert function. If properly harnessed, they can significantly reduce the amount of work for computing the values of the Hilbert function.

Example C.19 (Five Subspaces in \(\mathbb{R}^4 \)). Similar to the above example, we have computed the values of \(h_I(5) \) for arrangements of five linear subspaces in \(\mathbb{R}^4 \). The results are given in Table C.4. In fact, using the numerical method described earlier, we have computed using computer the values of \(h_I(5) \) up to five subspaces in \(\mathbb{R}^{12} \).

Table C.3

<table>
<thead>
<tr>
<th>(c_1)</th>
<th>(c_2)</th>
<th>(c_3)</th>
<th>(c_4)</th>
<th>(c_5)</th>
<th>(h_I(5))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>16</td>
</tr>
</tbody>
</table>

Table C.3. Values of the Hilbert function \(h_I(5) \) for arrangements of five subspaces in \(\mathbb{R}^3 \).

C.3.3 Formulae for the Hilbert Function

In this section, we give a general formula for the Hilbert polynomial of the subspace arrangement \(Z_A = S_1 \cup S_2 \cup \cdots \cup S_n \). However, due to the limit of space, we will not be able to give a detailed proof for all the results given here. Interested readers may refer to [Derksen, 2005].

Let \(U \) be any subset of the set of indexes \(\underline{n} = \{1, 2, \ldots, n\} \), we define the following ideals

\[
I_U = \bigcap_{u \in U} I(S_u), \quad J_U = \prod_{u \in U} I(S_u). \tag{C.16}
\]

If \(U \) is empty, we use the convention \(I_\emptyset = J_\emptyset = R \). We further define \(V_U = \bigcap_{u \in U} S_u \), \(d_U = \dim(V_U) \), and \(c_U = D - d_U \).

Let us define polynomials \(p_U(t) \) recursively as follows. First we define

\[
p_\emptyset(t) = 1.
\]
C.3. Hilbert Functions of Subspace Arrangements

Table C.4

<table>
<thead>
<tr>
<th>c_1</th>
<th>c_2</th>
<th>c_3</th>
<th>c_4</th>
<th>c_5</th>
<th>$h_I(5)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>17</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>19</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>23</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>27</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>31</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>26</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>31</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>36</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>41</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>46</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>51</td>
</tr>
</tbody>
</table>

Table C.4. Values of the Hilbert function $h_I(5)$ for arrangements of five subspaces in \mathbb{R}^4.

For $U \neq \emptyset$ and $p_W(t)$ is already defined for all proper subsets W of U, then $p_U(t)$ is uniquely determined by the following equation

$$\sum_{W \subseteq U} (-t)^{|W|} p_W(t) \equiv 0 \mod (1 - t)^{c_U}, \quad \deg(p_U(t)) < c_U. \quad (C.17)$$

Here $|W|$ is the number of indexes in the set W.

With the above definitions, the Hilbert series of the product ideal J is given by

$$\mathcal{H}(J,t) = \frac{p_n(t)^{tn}}{(1-t)^{\sigma}}. \quad (C.18)$$

That is, the Hilbert series of the product ideal J depends only on the numbers $c_U, U \subseteq \underline{n}$. Thus, the values of the Hilbert function $h_I(i)$ are all combinatorial invariants – invariants that depend only on the values $\{c_U\}$ but not the particular position of the subspaces.

Definition C.20 (Transversal Subspaces). The subspaces S_1, S_2, \ldots, S_n are called transversal if $c_U = \min \{D, \sum_{u \in U} c_u\}$ for all $U \subseteq \underline{n}$. In other words, the intersection of any subset of the subspaces has the smallest possible dimension.
Notice that the notion of “transversality” defined here is less strong than the typical notion of “general position.” For instance, according to the above definition, three coplanar lines (through the origin) in \mathbb{R}^3 are transversal. However, they are not “in general position.”

Theorem C.21. Suppose that S_1, S_2, \ldots, S_n are transversal, then $\mathcal{H}(I, t) - f(t)$ and $\mathcal{H}(J, t) - f(t)$ are polynomials in t, where $f(t) = \prod_{i=1}^n \frac{(1-(1-t)^{c_i})}{(1-t)^D}$.

Thus, the difference between $\mathcal{H}(I, t)$ and $\mathcal{H}(J, t)$ is also a polynomial. As a corollary to the above theorem, we have

Corollary C.22. If S_1, S_2, \ldots, S_n are transversal, then $h_I(i) = H_I(i) = h_J(i) = H_J(i)$ for all $i \geq n$. That is, the Hilbert polynomials of both the vanishing ideal I and the product ideal J are the same, and the values of their Hilbert functions agree with the polynomial with $i \geq n$.

One of the consequences of this corollary is that for transversal subspace arrangements, we must have $I_i = J_i$ for all $i \geq n$. This is a result that we have mentioned earlier in Section C.2.

Example C.23 (Hilbert Series of Three Lines in \mathbb{R}^3). For example, suppose that Z_A is the union of three distinct lines (through the origin) in \mathbb{R}^3. Regardless whether the three lines are coplanar or not, they are transversal. We have

$$\mathcal{H}(J(Z_A), t) = \frac{7t^3 - 9t^4 + 3t^5}{(1-t)^3} = 7t^3 + 12t^4 + 18t^5 + \cdots$$

However, one has

$$\mathcal{H}(I(Z_A), t) = \frac{t + t^3 - t^4}{(1-t)^3} = t + 3t^2 + 7t^3 + 12t^4 + 18t^5 + \cdots$$

if the lines are coplanar, and

$$\mathcal{H}(I(Z_A), t) = \frac{3t^2 - 2t^3}{(1-t)^3} = 3t^2 + 7t^3 + 12t^4 + 18t^5 + \cdots$$

if the three lines are not coplanar. Notice that the coefficients of these Hilbert series become the same starting from the term t^3.

Then, using the recursive formula (C.18) of the Hilbert series $\mathcal{H}(J, t)$, we can derive a closed-form formula for the values of the Hilbert function $h_I(i)$ with $i \geq n$.

Corollary C.24 (A Formula for the Hilbert Function). If S_1, S_2, \ldots, S_n are transversal, then

$$h_I(i) = h_J(i) = \sum_{U} (-1)^{|U|} \begin{pmatrix} D + i - 1 - c_U \\ D - 1 - c_U \end{pmatrix}, \quad i \geq n, \quad (C.19)$$

where $c_U = \sum_{m \in U} c_m$ and the sum is over all index subsets U of n for which $c_U < D$.

Example C.25 (Three Subspaces in \(\mathbb{R}^4 \)). Suppose that \(Z_A = S_1 \cup S_2 \cup S_3 \) is a transversal arrangement in \(\mathbb{R}^4 \). Let \(d_1, d_2, d_3 \) (respectively \(c_1, c_2, c_3 \)) be the dimensions (resp. codimensions) of \(S_1, S_2, S_3 \). We make a table of \(h_I(n) \) for \(n = 3, 4, 5 \).

<table>
<thead>
<tr>
<th>(c_1, c_2, c_3)</th>
<th>(d_1, d_2, d_3)</th>
<th>(h_I(3))</th>
<th>(h_I(4))</th>
<th>(h_I(5))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 1, 1</td>
<td>3, 3, 3</td>
<td>1</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>1, 1, 2</td>
<td>3, 3, 2</td>
<td>2</td>
<td>7</td>
<td>16</td>
</tr>
<tr>
<td>1, 1, 3</td>
<td>3, 3, 1</td>
<td>3</td>
<td>9</td>
<td>19</td>
</tr>
<tr>
<td>1, 2, 2</td>
<td>3, 3, 2</td>
<td>4</td>
<td>12</td>
<td>25</td>
</tr>
<tr>
<td>1, 2, 3</td>
<td>3, 2, 1</td>
<td>6</td>
<td>15</td>
<td>29</td>
</tr>
<tr>
<td>1, 3, 3</td>
<td>3, 1, 1</td>
<td>8</td>
<td>18</td>
<td>33</td>
</tr>
<tr>
<td>2, 2, 2</td>
<td>2, 2, 2</td>
<td>8</td>
<td>20</td>
<td>38</td>
</tr>
<tr>
<td>2, 2, 3</td>
<td>2, 2, 1</td>
<td>11</td>
<td>24</td>
<td>43</td>
</tr>
<tr>
<td>2, 3, 3</td>
<td>2, 1, 1</td>
<td>14</td>
<td>28</td>
<td>48</td>
</tr>
<tr>
<td>3, 3, 3</td>
<td>1, 1, 1</td>
<td>17</td>
<td>32</td>
<td>53</td>
</tr>
</tbody>
</table>

Note that the codimensions \(c_1, c_2, c_3 \) are almost determined by \(h_I(3) \). They are uniquely determined by \(h_I(3) \) and \(h_I(4) \).

Corollary below is a general result that explains why the codimensions of the subspaces \(c_1, c_2, c_3 \) can be uniquely determined by \(h_I(3), h_I(4), h_I(5) \) in the above example. The corollary also reveals a strong theoretical connection between the Hilbert function and the GPCA problem.

Corollary C.26 (Subspace Dimensions from the Hilbert Function). Consider a transversal arrangements of \(n \) subspaces. The co-dimensions \(c_1, c_2, \ldots, c_n \) are uniquely determined by the values of the Hilbert function \(h_I(i) \) for \(i = n, n + 1, \ldots, n + D - 1 \).

As we have alluded to earlier, in the context of GPCA, these values of the Hilbert function are closely related to the ranks of the embedded data matrix \(V_i \) for \(i = n, n + 1, \ldots, n + D - 1 \). Thus, knowing these ranks, in principle, we should be able to uniquely determine the (co)dimensions of all the individual subspaces. These results suggest that knowing the values of the Hilbert function, one can potentially develop better algorithms for determining the correct subspace arrangement from a given set of data.

C.4 Bibliographic Notes

Subspace arrangements constitute of a very special but important class of algebraic sets that have been studied in mathematics for centuries [Björner et al., 2005, Björner, 1994, Orlik, 1989]. The importance as well as the difficulty of studying subspace arrangements can hardly be exaggerated. Different aspects of their properties have been and are still being investigated and exploited in many mathematical fields, including algebraic geometry & topology, combinatorics and complexity theory, and graph and lattice theory, etc. See [Björner, 1994] for a general review. Although the results about subspace arrangements are extremely rich
and deep, only a few special classes of subspace arrangements have been fully characterized. Nevertheless, thanks to the work of [Derksen, 2005], the Hilbert function, Hilbert polynomial, and Hilbert series of the vanishing ideal (and the product ideal) of transversal subspace arrangements have been well understood recently. This appendix gives a brief summary of these theoretical developments. These results have provided a sound theoretical foundation for many of the methods developed in this book for GPCA.
References

References

References

References

References

References

References

identifiability of jump linear systems. In IEEE Conf. on Decision & Control, pages
3614–3619.

Springer Verlag.

missing data by PowerFactorization and Generalized PCA. In IEEE Conference on

D and 3-D motion segmentation. In European Conference on Computer Vision, pages
1–15.

for clustering subspaces by fitting, differentiating and dividing polynomials. In IEEE
Conference on Computer Vision and Pattern Recognition, volume I, pages 510–517.

Component Analysis (GPCA). In IEEE Conference on Computer Vision and Pattern
Recognition, volume I, pages 621–628.

ponent Analysis (GPCA). IEEE Trans. on Pattern Analysis and Machine Intelligence,

multibody structure from motion. International Journal of Computer Vision.

timation and segmentation of multiple moving dynamic textures. In IEEE Conference on

from image intensities. In IEEE Workshop on Motion and Video Computing, pages 44–
49.

namic scenes from two perspective views. In IEEE Conference on Computer Vision and
Pattern Recognition, volume 2, pages 281–286.

dynamic scenes from the multibody fundamental matrix. In ECCV Workshop on Visual
Modeling of Dynamic Scenes.

geometric approach to the identification of a class of linear hybrid systems. In IEEE
Conf. on Decision & Control, pages 167–172.

References

