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Abstract-We consider the problem of learning from examples in layered linear feed-forward neural networks 
using optimization methods, such as back propagation, with respect to the usual quadratic error function E of 
the connection weights. Our main result is a complete description of the landscape attached to E in terms of 
principal component analysis. We show that E has a unique minimum corresponding to the projection onto the 
subspace generated by the first principal vectors of a covariance matrix associated with the training patterns. All 
the additional critical points of E are saddle points (corresponding to projections onto subspaces generated by 
higher order vectors). The auto-associative case is examined in detail. Extensions and implications for the learning 
algorithms are discussed. 

Keywords-Neural networks, Principal component analysis, Learning, Back propagation. 

1. INTRODUCTION 

Neural networks can be viewed as circuits of highly 
interconnected units with modifiable interconnection 
weights. They can be classified, for instance, ac
cording to their architecture, algorithm for adjusting 
the weights, and the type of units used in the circuit. 
We shall assume that the reader is familiar with the 
basic concepts of the field; general reviews, comple
ments, and references can be found in Rumelhart, 
McClelland, and the PDP Research Group (1986a), 
Lippman (1987), and Grossberg (1988). 

The network architecture considered here is of the 
type often described in Rumelhart Hinton, and Wil
liams (1986b), namely layered feed-forward net
works with one layer of input units, one layer of 
output units, and one or several layers of hidden 
units. We assume that there are T input patterns X t 

(1 ::5 t ::5 T) and T corresponding target output pat
terns Yt which are used to train the network. For this 
purpose, a quadratic error function is defined as usual 
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to be: E = ~tllYt - F(x()112 where F is the current 
function implemented by the network. During the 
training phase, the weights (and hence F) are suc
cessively modified, according to one of several pos
sible algorithms, in order to reduce E. Back prop
agation, the best known of such algorithms, is just a 
way of implementing a gradient descent method for 
E. The main thrust of this paper is not the study of 
a specific algorithm but rather a precise description 
of the salient features of the surface attached to E 
when the units are linear. 

Linear units are the simplest one can use in these 
circuits. They are often considered as uninteresting 
for: (a) only linear functions can be computed in 
linear networks (and most "interesting" functions 
are nonlinear); and (b) a network with several layers 
of linear units can always be collapsed into a linear 
network without any hidden layer by multiplying the 
weights in the proper fashion. 

As a result, nonlinear units are most commonly 
used: linear threshold gates or, when continuity or 
differentiability is required, units with a sigmoid in
put-output function. In this setting, the results of 
numerous simulations have led several people to be
lieve that descent methods, such as back propaga
tion, applied to the error function E are not seriously 
plagued by the problem of local minima (either be
cause global minima are found, either because the 
local minima encountered are "good enough" for 
practical purposes) and that, for instance, the solu-
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tions obtained have remarkable generalization prop
erties. The complete absence, to this date, of any 
analytical result supporting these claims would alone 
by itself justify a careful investigation of the simpler 
linear case. 

In addition, recent work of Linsker (1986a, 1986b, 
1986c) and Cottrell, Munro, and Zipser (in press) 
seems to indicate that, for some tasks, linear units 
can still be of interest, not as much for the global 
map they implement but for the internal represen
tation of the input data and the transformations that 
occur in the different layers during the learning pe
riod. 

Linsker, for instance, has shown that in a layered 
feed-forward network of linear units with random 
inputs and a Hebb type of algorithm for adjusting 
the synaptic weights, spatial opponent and orienta
tion selective units spontaneously emerge in succes
sive hidden layers, in a way which does not contradict 
what is observed in the early visual system of higher 
animals. Cottrell et al. (in press) have used linear 
units together with the technique of auto-association 
to realize image compression. Auto-association, 
which is also called auto-encoding or identity map
ping (see Ackley, Hinton, & Sejnowski; 1985; Ell
man & Zipser, 1988) is a simple trick intended to 
avoid the need for having a teacher, that is, for know
ing the target values Yt, by setting Xt = Yt. In this 
mode, the network will tend to learn the identity 
map which in itself is not too exciting. However, if 
this is done using one narrow layer of hidden units, 
one expects the network to find efficient ways of 
compressing the information contained in the input 
patterns. An analysis of linear auto-association has 
been provided by Bourlard and Kamp (1988) based 
on singular value decomposition of matrices. How
ever, their results for the linear case, which are com
prised by ours, do not give a description of the land
scape of E. 

Our notation will be as follows. All vectors are 
column vectors and prime superscripts denote trans
position. To begin with, we shall assume that both 
Xt and Yt are n-dimensional vectors and that the net
work consists of one input layer with n inputs, one 
hidden layer with p(p ::5 n) units, and one output 
layer with n units (see Figure 1). The weights con-

n output units 

p hidden units 

n input units 

FIGURE 1. The network. 
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necting the inputs to the hidden layer are described 
by a p X n real matrix B and those from the hidden 
layer to the output by an n X p real matrix A. With 
these assumptions, the error function can be written: 

E(A, B) = LilY, - ABx,W. (1) 
l~rs;T 

We define the usual sample covariance matrices 
~xx = It xtx;, ~XY = It xty;, ~yy = It YtY;, and 
~YX = It YtS;. We consider the problem of finding 
the matrices A and B so as to minimize E. In Section 
2, we use spectral analysis to describe the properties 
of the landscape attached to E in the general situa
tion. The auto-associative case and its relations to 
principal component analysis follow immediately as 
a special case. In Section 3, we briefly examine some 
consequences for the optimization algorithms. All 
mathematical proofs are deferred to the Appendix. 

It is important to notice from the onset that if C 
is any p X P invertible matrix, then AB = ACC- 1 

B = (AC)( C-l B). Therefore the matrices A and B 
are never unique since they can always be multiplied 
by appropriate invertible matrices. Whenever 
uniqueness occurs it is in terms of the global map 
W = AB (equivalently, one could partition the 
matrices into equivalence classes). Notice also that 
W has rank at most p and recall that if ~xx is inver
tible the solution to the problem of minimizing E (L) = 

Lt IIYt - LxtlIZ
, where L is an n x n matrix without 

any rank restrictions, is unique and given by L = 
~Yx~xk which is the usual slope matrix for the or
dinary least squares regression of Yon X. Finally, if 
M is an n x p(p ::5 n) matrix we shall denote by PM 
the matrix of the orthogonal projection onto the sub
space spanned by the columns of M. It is well known 
that P~ = PM and p~ = PM' If in addition M is of 
full rankp, then PM = M(M'M)-lM'. 

2. MAIN RESULTS: THE LANDSCAPE 
OF E 

Our main result is that: 
E has, up to equivalence, a unique local and global 
minimum corresponding to an orthogonal projection 
onto the subspace spanned by the first principal ei
genvectors of a covariance matrix associated with the 
training patterns. All other critical points of E are 
saddle points. 

More precisely, one has the following four facts. 
Fact 1: For any fixed n x p matrix A the function 

E(A, B) is convex in the coefficients of B and attains 
its minimum for any B satisfying the equation 

A'AB~xx = A'~yx. (1) 

If ~xx is invertible and A is full rank p, then E is 
strictly convex and has a unique minimum reached 
when 

(3) 
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In the auto-associative case, (3) becomes 

B = h(A) = (A'A)~IA'. (3') 

Fact 2: For any fixed p x n matrix B the function 
E(A, B) is convex in the coefficients of A and attains 
its minimum for any A satisfying the equation 

ABIxxB' = IyxB'. (4) 

If ~xx is invertible and B is of full rank p, then E is 
strictly convex and has a unique minimum reached 
when 

A = A.(B) = IyxB'(BIxxB')~I. (5) 

In the auto-associative case, (5) becomes 

A = A.(B) = IxxB'(BIxxB')-I. (5') 

Fact 3: Assume that ~xx is invertible. If two matri
ces A and B define a critical point of E (i.e., a point 
where aElaa" = aElab" = 0) then the global map 
W = AB is of the form 

(6) 

with A satisfying 

PAI = PAIPA = IPA (7) 

where ~ = ~YX~xl~XY. In the auto-associative case, 
~ = ~xx and (6) and (7) become 

W = AB = PA (6') 

PAIxx = PAIxxPA = IXXPA. (7') 

If A is of full rank p, then A and B define a critical 
point of E if and only if A satisfies (7) and B == 
R(A), or equivalently if and only if A and W satisfy 
(6) and (7). 

Notice that in (4), the matrix ~Yx~xl is the slope 
matrix for the ordinary least squares regression of Y 
on X. It is easily seen that ~ is the sample covariance 
matrix of the best unconstrained linear approxima
tion Yt = ~Yx~xkXI of Y based on X. 

Fact 4: Assume that ~ is full rank with n distinct 
eigenvalues hI > ... > hn . If Y= {iJ, ... , ip} (1 ::os 
i l < ... < ip ::os n) is any ordered p-index set, let 
U.J' = [U'l' ... , u'pJ denote the matrix formed by 
the orthonormal eigenvectors of ~ associated with 
the eigenvalues h" ... , h, . Then two full rank 

I p 

matrices A and B define a critical point of E if and 
only if there exist an ordered p-index set Yand an 
invertible p x p C matrix such that 

A = U,C (8) 

(9) 

For such a critical point we have 

(10) 

E(A, B) = trI yy - L A" (11) 
IEf 
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Therefore a critical W of rank p is always the product 
of the ordinary least squares regression matrix fol
lowed by an orthogonal projection onto the subspace 
spanned by p eigenvectors of ~. The critical map W 
associated with the index set {I, 2, ... , p} is the 
unique local and global minimum of E. The remain
ing (~) - 1 p-index sets correspond to saddle points. 
All additional critical points defined by matrices A 
and B which are not of full rank are also saddle points 
and can be characterized in terms of orthogonal pro
jections onto subspaces spanned by q eigenvectors, 
with q < P (see Figure 2). In the auto-associative 
case, (8) (9) and (10) become 

B = C~IU', 

(8') 

(9') 

(10') 

and therefore the unique locally and globally optimal 
map W is the orthogonal projection onto the space 
spanned by the first p eigenvectors of ~xx. 

Remark: At the global minimum, if C is the iden
tity Ip then the activities of the units in the hidden 
layer are given by u; Yn ... , u;Yt the so-called prin
cipal components of the y/s (see for instance Kshir
sagar, 1972). In the auto-associative case, these ac
tivities are given by U;Xt, •.• , u;xt• They are the 
coordinates of the vector X t along the first p eigen
vectors of ~xx' 

The assumptions on the rank or eigenvalues of the 
matrices appearing in the statements of the facts are 
by no means restrictive. They are satisfied in most 
practical situations and also in the case of random 
matrices with probability one. For instance a non
invertible ~xx corresponds to a poor choice of the 
training patterns with linear dependencies and a rank 
deficient matrix A (or B) to a very poor utilization 
of the units in the network. For back propagation, 
the initial weights are usually set at random which 
yields, with probability one, matrices A and B of full 
rank. ~ is a covariance matrix and therefore its ei
genvalues are always non-negative. To assume that 
they are all strictly positive is equivalent to assuming 

FIGURE 2. The landscape of E. 

Saddle 
points 
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that both Ixx and I yx are of full rank. Full rank 
matrices are dense and in a realistic environment 
with noise and finite precision, we can always slightly 
perturb the conditions so as to make I invertible and 
~ith distin~t eigenvalues. Furthermore, in the proofs 
In Appendix B, we describe the structure of the crit
ical points with deficient rank and what happens in 
the case where some of the eigenvalues of I are 
equal. 

We have also restricted our analysis to the case of 
lin~ar un~ts without bias and to networks containing 
a sIngle hidden layer. The generalization of our result 
to the a.ffine case is straightforward either by pre
subtractIng the mean from the input and target data, 
or by adding a unit which is kept at a fixed value. 
A rigorous extension to the nonlinear sigmoid case 
or the case involving linear threshold units seems 
more difficult. However, our results, and in particular 
the main features of the landscape of E, hold true in 
the case of linear networks with several hidden lay
ers. 

One of the central issues in learning from exam
ples is the problem of generalization, that is, how 
does the network perform when exposed to a pattern 
~ev~r seen previously? In our setting, a precise quan
tItatIve answer can be given to this question. For 
instance, in the auto-associative case, the distortion 
on a new pattern is exactly given by its distance to 
the subspace generated by the first p eigenvectors of 
Ixx. 

It is reasonable to think that for most solutions 
found by running a gradient descent algorithm on 
the function E, the final matrix C will not be the 
identity Ip. In fact, we even expect C to be rather 
"ran~om" looking. This is the main reason why the 
relatlO.n of auto-association to principal component 
analysIs was not apparent in earlier simulations de
scribed in the literature and why, in the solutions 
found by back propagation, the work load seems to 
be evenly distributed among the units of the hidden 
layer. If in (9') we take C == 1 then B == V' P' 'f. 

Therefore the synaptic vector corresponding to the 
"first" hidden unit is exactly equal to the dominant 
eigenvector of the input correlation matrix. This is 
in fact exactly the same result as the one obtained 
by Oja (1982) in a different setting, using differential 
equations to approximate a constrained form of Heb
bian learning on a single linear unit with n stochastic 
in~uts. In other words, up to equivalence, the so
l~tlOn .sought by a back propagation type of algo
rIthm In the auto-associative case and by Hebbian 
learning are identical on one single linear "neuron." 
It remains to be checked whether simultaneous Heb
bian learning on p units, probably with some appropri
ate form of late rial inhibition, leads to the same re
sults as those encountered here for the auto-associ
ation. 

P. Baldi and K. Hornik 

3. CONCLUDING REMARKS ON 
THE ALGORITHMS 

On~ of the nice features of the landscape of E is 
the eXistence, up to equivalence, of a unique local 
and global minimum which, in addition, can be de
scribed in terms of principal component analysis and 
least squares regression. Consequently, this opti
mum could also be obtained from several well-known 
algorithms for computing the eigenvalues and eigen
vec~ors of symm~tric positive definite matrices (see 
for Instance AtkInson, 1978). By numerical analysis 
standards, these algorithms are superior to gradient 
methods for the class of problems considered here. 
However, though efficiency considerations are of im
portance, one should not disregard back propagation 
on this sole basis, for its introduction in the design 
of neural networks was guided by several other con
siderations. In particular, in addition to its simplicity, 
error back-propagation can be applied to nonlinear 
networks and to a variety of problems without having 
any detailed a priori knowledge of their structure or 
of the mathematical properties of the optimal solu
tions. 

A second nice feature of the landscape of E is that 
if we fix A (resp. B) with full rank, then E is a strictly 
convex quadratic form and there exists a unique min
imum reached for B == B(A) (resp. A == A(B)). In 
this case, gradient descent with appropriate step width 
(or "learning rate") leads to a convergence with a 
r~sidual error ~ecaying exponentially fast. Of course, 
B(A) (resp. A(B)) can also be obtained directly by 
solving the linear system in (2). This also suggests 
another optimization strategy which consists of suc
cessively ~omputipg~ starting for instance from a ran
dom A, B(A), A(B(A)), ... and so forth which 
in fact is a Newton's type of method. In ady case, 
from a theoretical standpoint, one should notice that, 
although E has no local minima, both gradient de
scent and Newton's type of methods could get stuck 
in a saddle point. However, as exemplified by sim
ulations (Cottrell et al., in press), this seems unlikely 
to happen, especially with the way error back-pro
pagaton is usually implemented, with a descent di
rection computed by differentiating E after presen
tation of one or just a few training patterns. Such a 
direction is clearly distinct from a true gradient. 
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APPENDIX A: MATHEMATICAL PROOFS 

We have tried to write proofs which are self-contained up to 
very basic results of linear algebra. Slightly less elementary results 
which are often used in the proofs (sometimes without explicit 
mentioning) are listed below as a reminder for the reader. For 
any matrices p, Q, R we have tr(PQR) = tr(RPQ) = tr(QRP), 
provided that these quantities are defined. Thus in particular if 
P is idempotent, that is, p2 = P, then 

tr(PQP) = tr(P:Q) = tr(PQ). (a) 

If U is orthogonal, that is U' U = I, then 

tr(UQU') = tr(U'UQ) = tr(Q). (b) 

The Kronecker product P ® Q of any two matrices P and Q is 
the matrix: obtained from the matrix P by replacing each entry p" 
of P with the matrix p"Q. If P is any m x n matrix and p, its jth 
column, then vee P is the mn x 1 vector vec P = [p{, ... , p~]'. 
Thus the vee operation transforms a matrix into a column vector 
by stacking the columns of the matrix one underneath the other. 
We then have (see for instance Magnus & Neudecker, 1986) for 
any matrices P, Q, R 

tr(PQ') = (vec P)' vec Q (c) 

vec(PQR') = (R ® P) vec Q (d) 

(P ® Q)(R ® S) = PR ® QS (e) 

(P ® Q)-I = P-I ® Q-I (f) 

(P® Q)' = P' ® Q' (g) 
whenever these quantities are defined. Also: 
if P and Q are symmetric and positive semidefinite (resp. positive 
definite) then P® Q is symmetric and positive semidefinite (resp. 
positive definite). (h) 
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Finally, let us introduce the input data matrix: X = [Xlo ... , 
XTJ and the output data matrix Y = [Ylo ... , yrJ. It is easily 
seen that XX' = lxx, XY' = I xy , YY' = I yy , YX' = Iyx and 
E(A, B) = Ilvec(Y - ABX)112. In the proofs of facts 1 and 2, we 
shall use the following well known lemma. 

Lemma: The quadratic function 

F(z) = IIc - Mzl12 = c'c - 2c'Mz + z'M'Mz 

is convex. A point z corresponds to a global minimum of F if and 
only if it satisfies the equation V F = 0, or equivalently M'Mz == 
M' c. If in addition M'M is positive definite, then F is strictly 
convex and the unique minimum of F is attained for z == 
(M'M)-IM'c. 

Proof of fact 1: For fixed A, use (d) to write vec( Y -
ABX) = vec Y - vec(ABX) = vec Y - (X' ® A) vee Band 
thus E(A, B) = Ilvec Y - (X' ® A) vec B112. By the above 
lemma, E is convex in the coefficients of Band B corresponds to 
a global minimum if and only if (X' ® A)'(X' ® A) vec B == 
(X' ® A)' vec Y. Now on one hand (X' ® A)'(X' ® A) vec 
B = (X' ®A)vecB = (XX' ®A'A)vecB = (Ixx®A'A) 
vecB = vec(A'ABIxx ). On the other hand (X' ®A)' vec Y == 
(X ® A') vec Y = vec(A 'YX') = vec(A 'I yx ). Therefore 

A'ABIxx = A'Iyx , 

which is (2). If A is full rank, A' A is symmetric and positive 
definite. As a covariance matrix, Ixx is symmetric and positive 
semidefinite; if, in addition, Ixx is invertible, then Ixx is also 
positive definite. Because of (h), (X' ® A )'(X' ® A) = Ixx ® 
A' A is also symmetric and positive definite. Applying the above 
lemma, we conclude that if Ixx is invertible and A is a fixed full 
rank matrix, then E is strictly convex in the coefficients ~f Band 
attains its unique minimum at the unique solution B = B(A) == 
(A'A)-IA'IyxIxk of (2), which is (3). In the auto-associative 
case, x, = y,. Therefore Ixx = I yy = Ixy = Iyx and the above 
expression simplifies to (3'). 

Proof of Fact 2: For fixed B, use (d) to write vec(Y -
ABX) = vec Y - vec(ABX) = vec Y - (X'B' ®l)vecA and 
so E(A, B) = IIvec Y - (X' B' ® I) vec A112. By the above 
lemma, E is convex in the coefficients of A and A corresponds 
to a global minimum if and only if (X' B' ® I)'(X' B' ® I) vec 
A == (X'B' ® I)' vec Y. Since (X'B' ® I)' (X'B' ® I) vec 
A = (BXX' B pr ® I) vec A = (BIxxB' ® I) vec A == 
vec(ABIxxB') and (X' B' ® I)' vec Y = (BX ® I) vec Y = 
vec(YX'B') = vec(IyxB') we have 

ABIxxB' = IyxB', 

which is (4). If B and In are full rank, then the symmetric and 
positive semi-definite matrix BIxxB' becomes full rank and 
therefore positive definite. Because of (h), (X' B' ® 
I)'(X' B' ® /) = (BIxxB' ® I) is also positive definite and (5) 
and (5') are easily derived as in the end of the proof of fact 1. 

Notice that from facts 1 and 2, two full rank matrices A and 
B define a critical point for E if and only if (2) and (4) are si
multaneously satisfied. In all cases of practical interest where I yx 
is full rank both ,4(B) and B(A) are full rank. In what follows, 
we shall always assume that A is of full rank p. The case rank 
(A) < p is, although intuitively of no practical interest, slightly 
more technical and its treatment will be postponed to Appendix 
B. 

Proof of Fact 3: Assume first that A and B define a critical 
point of E, with A full rank. Then from fact 1 we get B = B(A) 
and thus 

W = AB = A(A'A)-lA'IyxIxk = PAIyxIxk 

which is (6). Multiplication of (4) by A' on the right yields 

WIxxW' = ABIxxB'A' = lyxB'A' = IyxW' 

or 

PAIyxlXkIxxIXklxyPA = IyxIxkIxyPA 

or equivalently PAlPA = IPA. Since both I and PA are symmetric, 
PAIPA = IPA is also symmetric and therefore IPA = (IPA )' = 
P~I' = PAl. So PAI = PAlPA = IPA, which is (7). Hence if 
A and B correspond to a critical point and A is full rank then (6) 
and (7) must hold and B = B(A). 
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Conversely, assume that A and W satisfy (6) and (7), with A 
full rank. Multiplying (6) by (A'A)-IA' on the left yields B = 
(A'A)-IA'IyxI;t = SeA) and (2) is satisfied. From PAIPA = 

IPA and using (6) we immediately get ABlxxB'A' = IyxB'A' 
and multiplication of both sides by A (A' A) -Ion the right yields 
ABlxxB' = IyxB', which is (4). Thus A and B satisfy (2) and 
(4) and therefore they define a critical point of E. 

Proof of Fact 4: First notice that since I is a real symmetric 
covariance matrix, it can always be written as I = V A V' where 
V is an orthogonal column matrix of eigenvectors of I and A is 
the diagonal matrix with non-increasing eigenvalues on its diag
onal. Also if I is full rank, then lxx, I yx and Ixy are full rank 
too. 

Now clearly if A and B satisfy (8) and (9) for some C and 
some f, then A and B are full rank p and satisfy (3) and (5). 
Therefore they define a critical point of E. 

For the converse, we have 

PU'A = V'A(A'VV'A)-IA'V = V'A(A'A)-IA'V = V'PAV 

or, equivalently, PA = VPU'A V'. Hence (7) yields 

VPu'AV'VAV' = PAl = IPA = VA V'VPU'A V' 

and so PU'AA = APU'A' Since Al > '" > An > 0, it is readily seen 
that PU'A is diagonal. PU'A is an orthogonal projector of rank p 
and its eigenvalues are 1 (p times) and 0 (n - p times). Therefore 
there exists a unique index set f= {it. ... , ip} with 1 oS i l < 
'" < ip oS n such that PU'A = l,where r,is the diagonal matrix 
with entry i = 1 if i E f and 0 otherwise. It follows that 

PA = VPU'A V' = VI, V' = V, V', 

where U, = [U'I' ... , U, ]. Thus PA is the orthogonal projection 
onto the subspace spanned by the columns of V, . Since the column 
space of A coincides with the column space of V" there exists an 
invertible p x p matrix C such that A = V, C. Moreover, B = 
R(A) = C-IV~ IyxI;t and (8) and (9) are satisfied. There are 
(~) possible choices for .'I and therefore, up to equivalence, (~) 
critical points with full rank. 

From (8) and (9), (10) results immediately. 
Remark: In the most general case with n-dimensional inputs 

x, and m-dimensional outputs y" I has r(r oS m) distinct eigen
values Al 2: ... 2: A, 2: 0 with multiplicities mh ... , m,. Using 
the above arguments, it is easily seen that PU'A will now be block
diagonal [PI> ... , P,] where PI> ... , P, are orthogonal projec
tors of dimension ml> ... , m, and thus A is of the form A = 

(UV) ,C where V is block-diagonal [VI' ... , V,], VI' ... , V, 
being orthogonal matrices of dimension ml> ... , m,. For all such 
choices of V, VV is a matrix of normalized eigenvectors of I 
corresponding to ordered eigenvalues of I. The geometric situ
ation, as expected, does not really change but the parameteriza
tion becomes more involved as V is no longer unique. 

To prove (11), use (c) to write E(A, B) = (vec(Y - ABX))' 
vec(Y - ABX) = (vec Y)' vec Y - 2(vec(ABX))' vec Y + 
(vec ABX)' vec ABX = trYY' - 2trABXY' + trABXX' B'A' 
= trlyy - 2trWI"y + trWlxx W'. If A is full rank and B = 
R(A), then W = AB(A) = PAlyxlxl and therefore tr(Wlxx W') 
= tr(PAIPA) = tr(PAI) = tr(VPu'AV'VAV') = tr(Pu'AV'VA) 
= tr(Pu'AA) and tr(Wl yx) = tr(PAI) = tr(Pu'AA). So for an 
arbitrary A of rank p, 

E(A, R(A)) = trl yy - trPu'AA. 

If A is of the form Vfc, then PU'A = I;. Therefore 

E(A, B(A)) = trlyy - trlfA = trl yy - 2: A, 
,E' 

which is (11). 
We shall now establish that whenever A and B satisfy (8) and 

(9) with .Y¥< {I, 2, ... , p} there exist matrices A, R arbitrarily 
close to A, B such that E(A, B) < E(A, B). For this purpose it 
is enough to slightly perturb the column space of A in the direction 
of an eigenvector associated with one of the first p eigenvalues of 
I which is not contained in {A" i E j}. More precisely, fix two 
indices j and k with j E .:1, k ff .f For any E, put ul = (1 + 
E')-II'(UI + wd and construct U; from V; by replacing u, with 
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UJ' Sin~e ~ ff .1, we ~till have U';O ,.= Ip. Now let.A = O;C and 
B = B(A) = C-IV',~yxlxt. A slmp1e calculatIOn shows that 
the diagonal elements of Pu';' are 

{

o 
- 1 
0, = 1/(1 + E') 

E2/(I + E2) 

ififffU{k} 
if i E f and i ¥< j and i ¥< k 
if i = j 
ifi = k. 

Therefore E(A, B) = trlyy - trPu';.A = trlyy - [L'E>'-IIIA, + 
A/(l + e') + e'AA1 + e2)] = trlyy - L'E ,A, - e'(Ak - A)I 
(1 + e') = E(A, B) - E'(Ak - A)I(I + E'). By taking values 
of e arbitrarily small, we see _ th/!t any neighborhood of A, B 
contains points of the form A, B with a strictly smaller error 
function. Thus if .'N {I, 2, ... , p}, then (8) and (9) define a 
saddle point and not a local minimum. Notice that. in any case, 
it could not be a local maximum because of the strict convexity 
of E, with fixed full rank A, in fact 1. 

APPENDIX B: THE RANK DEFICIENT CASE 

We now complete the proof of fact 3 (equations (6) and (7)) 
and fact 4, in the case where A is not of full rank. Using the 
Moore-Penrose inverse A + of the matrix A (see for instance Pol
lock, 1979), the general solution to equation (2) can be written 
as 

B = A+lyxl;t + (I - A+A)L, 

where L is an arbitrary p x n matrix. We have PA = AA + and 
AA+A = A and so W = AB = AA+lyxlxl + A(I - A+A) 
L = PAlyxlxt + (A - AA+A)L = h~;yxlxl, which is (6). 
Multiplication of (4) by A' on the right yields Wlxx W' = IyxW' 
and (7) follows as usual. Observe that in order for A and B to 
determine a critical point of E, L must in general be constrained 
by (4); L = 0 is always a solution. 

In any case, as in the proof of fact 4 for full rank A, if rank 
A = r we conclude that PU'A is an orthogonal projector of rank 
r commuting with A, so that PU'A = I; for an index set f= {it. 
... ,i,} with 1 oS i l < ... < i, oS nand PA = VPU' A V' = V;V~. 
Again as the column space of A is identical to the column space 
of V;, we can write A in the form 

A = [V;, O]C, 

where a denotes a matrix of dimension n x (p - r) with all 
entries O. At any critical point A, B of E, A will be of the above 
form and, from (2), B will be of the form 

B = A+lyxlxl + (I - A+A)L, 

where L is constrained by (4). No matter what L actually is, using 

we obtain that 

B = C-I [~,] lyxlxl + (I - C-I [~,] [VIO]C) L 

= C-I [V"~xl;t] + C-I (Ip - [1'0]) CL 

= C-I [V'llyx1xt] + C- I [0 ] CL 
P Ip _, 

- C- I [ V';lyxlxt ] 
- last p - r rows of CL . 

Now, by assumption, I has full rank n, and so V~lyxI;t has full 
rank r. Upon slightly perturbing the last p - r rows of CB (whic~ 
are also the last p - r rows of CL, we can always obtain B 
arbitrarily close to B such that B has maximal rank and W = 
AB = AB and thus E(A, B) = E(A, B). Now B has full rank 
and so E is strictly convex in the elements of A. _ P~tting A = 
(1 - E)A + EA(B) with 0 < E < 1, we have E(A, B) < E(A, 
B) = E(A, B). If E ~ 0, A ~ A and therefore (A, B) is a saddle 
point for E. 




